xref: /dpdk/examples/ipsec-secgw/sa.c (revision 1cde1b9a9b4dbf31cb5e5ccdfc5da3cb079f43a2)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 /*
6  * Security Associations
7  */
8 #include <sys/types.h>
9 #include <netinet/in.h>
10 #include <netinet/ip.h>
11 #include <netinet/ip6.h>
12 
13 #include <rte_memzone.h>
14 #include <rte_crypto.h>
15 #include <rte_security.h>
16 #include <rte_cryptodev.h>
17 #include <rte_byteorder.h>
18 #include <rte_errno.h>
19 #include <rte_ip.h>
20 #include <rte_random.h>
21 #include <rte_ethdev.h>
22 #include <rte_malloc.h>
23 
24 #include "ipsec.h"
25 #include "esp.h"
26 #include "parser.h"
27 
28 #define IPDEFTTL 64
29 
30 #define IP4_FULL_MASK (sizeof(((struct ip_addr *)NULL)->ip.ip4) * CHAR_BIT)
31 
32 #define IP6_FULL_MASK (sizeof(((struct ip_addr *)NULL)->ip.ip6.ip6) * CHAR_BIT)
33 
34 struct supported_cipher_algo {
35 	const char *keyword;
36 	enum rte_crypto_cipher_algorithm algo;
37 	uint16_t iv_len;
38 	uint16_t block_size;
39 	uint16_t key_len;
40 };
41 
42 struct supported_auth_algo {
43 	const char *keyword;
44 	enum rte_crypto_auth_algorithm algo;
45 	uint16_t digest_len;
46 	uint16_t key_len;
47 	uint8_t key_not_req;
48 };
49 
50 struct supported_aead_algo {
51 	const char *keyword;
52 	enum rte_crypto_aead_algorithm algo;
53 	uint16_t iv_len;
54 	uint16_t block_size;
55 	uint16_t digest_len;
56 	uint16_t key_len;
57 	uint8_t aad_len;
58 };
59 
60 
61 const struct supported_cipher_algo cipher_algos[] = {
62 	{
63 		.keyword = "null",
64 		.algo = RTE_CRYPTO_CIPHER_NULL,
65 		.iv_len = 0,
66 		.block_size = 4,
67 		.key_len = 0
68 	},
69 	{
70 		.keyword = "aes-128-cbc",
71 		.algo = RTE_CRYPTO_CIPHER_AES_CBC,
72 		.iv_len = 16,
73 		.block_size = 16,
74 		.key_len = 16
75 	},
76 	{
77 		.keyword = "aes-256-cbc",
78 		.algo = RTE_CRYPTO_CIPHER_AES_CBC,
79 		.iv_len = 16,
80 		.block_size = 16,
81 		.key_len = 32
82 	},
83 	{
84 		.keyword = "aes-128-ctr",
85 		.algo = RTE_CRYPTO_CIPHER_AES_CTR,
86 		.iv_len = 8,
87 		.block_size = 4,
88 		.key_len = 20
89 	},
90 	{
91 		.keyword = "3des-cbc",
92 		.algo = RTE_CRYPTO_CIPHER_3DES_CBC,
93 		.iv_len = 8,
94 		.block_size = 8,
95 		.key_len = 24
96 	}
97 };
98 
99 const struct supported_auth_algo auth_algos[] = {
100 	{
101 		.keyword = "null",
102 		.algo = RTE_CRYPTO_AUTH_NULL,
103 		.digest_len = 0,
104 		.key_len = 0,
105 		.key_not_req = 1
106 	},
107 	{
108 		.keyword = "sha1-hmac",
109 		.algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
110 		.digest_len = 12,
111 		.key_len = 20
112 	},
113 	{
114 		.keyword = "sha256-hmac",
115 		.algo = RTE_CRYPTO_AUTH_SHA256_HMAC,
116 		.digest_len = 12,
117 		.key_len = 32
118 	}
119 };
120 
121 const struct supported_aead_algo aead_algos[] = {
122 	{
123 		.keyword = "aes-128-gcm",
124 		.algo = RTE_CRYPTO_AEAD_AES_GCM,
125 		.iv_len = 8,
126 		.block_size = 4,
127 		.key_len = 20,
128 		.digest_len = 16,
129 		.aad_len = 8,
130 	}
131 };
132 
133 static struct ipsec_sa sa_out[IPSEC_SA_MAX_ENTRIES];
134 static uint32_t nb_sa_out;
135 
136 static struct ipsec_sa sa_in[IPSEC_SA_MAX_ENTRIES];
137 static uint32_t nb_sa_in;
138 
139 static const struct supported_cipher_algo *
140 find_match_cipher_algo(const char *cipher_keyword)
141 {
142 	size_t i;
143 
144 	for (i = 0; i < RTE_DIM(cipher_algos); i++) {
145 		const struct supported_cipher_algo *algo =
146 			&cipher_algos[i];
147 
148 		if (strcmp(cipher_keyword, algo->keyword) == 0)
149 			return algo;
150 	}
151 
152 	return NULL;
153 }
154 
155 static const struct supported_auth_algo *
156 find_match_auth_algo(const char *auth_keyword)
157 {
158 	size_t i;
159 
160 	for (i = 0; i < RTE_DIM(auth_algos); i++) {
161 		const struct supported_auth_algo *algo =
162 			&auth_algos[i];
163 
164 		if (strcmp(auth_keyword, algo->keyword) == 0)
165 			return algo;
166 	}
167 
168 	return NULL;
169 }
170 
171 static const struct supported_aead_algo *
172 find_match_aead_algo(const char *aead_keyword)
173 {
174 	size_t i;
175 
176 	for (i = 0; i < RTE_DIM(aead_algos); i++) {
177 		const struct supported_aead_algo *algo =
178 			&aead_algos[i];
179 
180 		if (strcmp(aead_keyword, algo->keyword) == 0)
181 			return algo;
182 	}
183 
184 	return NULL;
185 }
186 
187 /** parse_key_string
188  *  parse x:x:x:x.... hex number key string into uint8_t *key
189  *  return:
190  *  > 0: number of bytes parsed
191  *  0:   failed
192  */
193 static uint32_t
194 parse_key_string(const char *key_str, uint8_t *key)
195 {
196 	const char *pt_start = key_str, *pt_end = key_str;
197 	uint32_t nb_bytes = 0;
198 
199 	while (pt_end != NULL) {
200 		char sub_str[3] = {0};
201 
202 		pt_end = strchr(pt_start, ':');
203 
204 		if (pt_end == NULL) {
205 			if (strlen(pt_start) > 2)
206 				return 0;
207 			strncpy(sub_str, pt_start, 2);
208 		} else {
209 			if (pt_end - pt_start > 2)
210 				return 0;
211 
212 			strncpy(sub_str, pt_start, pt_end - pt_start);
213 			pt_start = pt_end + 1;
214 		}
215 
216 		key[nb_bytes++] = strtol(sub_str, NULL, 16);
217 	}
218 
219 	return nb_bytes;
220 }
221 
222 void
223 parse_sa_tokens(char **tokens, uint32_t n_tokens,
224 	struct parse_status *status)
225 {
226 	struct ipsec_sa *rule = NULL;
227 	uint32_t ti; /*token index*/
228 	uint32_t *ri /*rule index*/;
229 	uint32_t cipher_algo_p = 0;
230 	uint32_t auth_algo_p = 0;
231 	uint32_t aead_algo_p = 0;
232 	uint32_t src_p = 0;
233 	uint32_t dst_p = 0;
234 	uint32_t mode_p = 0;
235 	uint32_t type_p = 0;
236 	uint32_t portid_p = 0;
237 
238 	if (strcmp(tokens[0], "in") == 0) {
239 		ri = &nb_sa_in;
240 
241 		APP_CHECK(*ri <= IPSEC_SA_MAX_ENTRIES - 1, status,
242 			"too many sa rules, abort insertion\n");
243 		if (status->status < 0)
244 			return;
245 
246 		rule = &sa_in[*ri];
247 	} else {
248 		ri = &nb_sa_out;
249 
250 		APP_CHECK(*ri <= IPSEC_SA_MAX_ENTRIES - 1, status,
251 			"too many sa rules, abort insertion\n");
252 		if (status->status < 0)
253 			return;
254 
255 		rule = &sa_out[*ri];
256 	}
257 
258 	/* spi number */
259 	APP_CHECK_TOKEN_IS_NUM(tokens, 1, status);
260 	if (status->status < 0)
261 		return;
262 	if (atoi(tokens[1]) == INVALID_SPI)
263 		return;
264 	rule->spi = atoi(tokens[1]);
265 
266 	for (ti = 2; ti < n_tokens; ti++) {
267 		if (strcmp(tokens[ti], "mode") == 0) {
268 			APP_CHECK_PRESENCE(mode_p, tokens[ti], status);
269 			if (status->status < 0)
270 				return;
271 
272 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
273 			if (status->status < 0)
274 				return;
275 
276 			if (strcmp(tokens[ti], "ipv4-tunnel") == 0)
277 				rule->flags = IP4_TUNNEL;
278 			else if (strcmp(tokens[ti], "ipv6-tunnel") == 0)
279 				rule->flags = IP6_TUNNEL;
280 			else if (strcmp(tokens[ti], "transport") == 0)
281 				rule->flags = TRANSPORT;
282 			else {
283 				APP_CHECK(0, status, "unrecognized "
284 					"input \"%s\"", tokens[ti]);
285 				return;
286 			}
287 
288 			mode_p = 1;
289 			continue;
290 		}
291 
292 		if (strcmp(tokens[ti], "cipher_algo") == 0) {
293 			const struct supported_cipher_algo *algo;
294 			uint32_t key_len;
295 
296 			APP_CHECK_PRESENCE(cipher_algo_p, tokens[ti],
297 				status);
298 			if (status->status < 0)
299 				return;
300 
301 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
302 			if (status->status < 0)
303 				return;
304 
305 			algo = find_match_cipher_algo(tokens[ti]);
306 
307 			APP_CHECK(algo != NULL, status, "unrecognized "
308 				"input \"%s\"", tokens[ti]);
309 
310 			rule->cipher_algo = algo->algo;
311 			rule->block_size = algo->block_size;
312 			rule->iv_len = algo->iv_len;
313 			rule->cipher_key_len = algo->key_len;
314 
315 			/* for NULL algorithm, no cipher key required */
316 			if (rule->cipher_algo == RTE_CRYPTO_CIPHER_NULL) {
317 				cipher_algo_p = 1;
318 				continue;
319 			}
320 
321 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
322 			if (status->status < 0)
323 				return;
324 
325 			APP_CHECK(strcmp(tokens[ti], "cipher_key") == 0,
326 				status, "unrecognized input \"%s\", "
327 				"expect \"cipher_key\"", tokens[ti]);
328 			if (status->status < 0)
329 				return;
330 
331 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
332 			if (status->status < 0)
333 				return;
334 
335 			key_len = parse_key_string(tokens[ti],
336 				rule->cipher_key);
337 			APP_CHECK(key_len == rule->cipher_key_len, status,
338 				"unrecognized input \"%s\"", tokens[ti]);
339 			if (status->status < 0)
340 				return;
341 
342 			if (algo->algo == RTE_CRYPTO_CIPHER_AES_CBC ||
343 				algo->algo == RTE_CRYPTO_CIPHER_3DES_CBC)
344 				rule->salt = (uint32_t)rte_rand();
345 
346 			if (algo->algo == RTE_CRYPTO_CIPHER_AES_CTR) {
347 				key_len -= 4;
348 				rule->cipher_key_len = key_len;
349 				memcpy(&rule->salt,
350 					&rule->cipher_key[key_len], 4);
351 			}
352 
353 			cipher_algo_p = 1;
354 			continue;
355 		}
356 
357 		if (strcmp(tokens[ti], "auth_algo") == 0) {
358 			const struct supported_auth_algo *algo;
359 			uint32_t key_len;
360 
361 			APP_CHECK_PRESENCE(auth_algo_p, tokens[ti],
362 				status);
363 			if (status->status < 0)
364 				return;
365 
366 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
367 			if (status->status < 0)
368 				return;
369 
370 			algo = find_match_auth_algo(tokens[ti]);
371 			APP_CHECK(algo != NULL, status, "unrecognized "
372 				"input \"%s\"", tokens[ti]);
373 
374 			rule->auth_algo = algo->algo;
375 			rule->auth_key_len = algo->key_len;
376 			rule->digest_len = algo->digest_len;
377 
378 			/* NULL algorithm and combined algos do not
379 			 * require auth key
380 			 */
381 			if (algo->key_not_req) {
382 				auth_algo_p = 1;
383 				continue;
384 			}
385 
386 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
387 			if (status->status < 0)
388 				return;
389 
390 			APP_CHECK(strcmp(tokens[ti], "auth_key") == 0,
391 				status, "unrecognized input \"%s\", "
392 				"expect \"auth_key\"", tokens[ti]);
393 			if (status->status < 0)
394 				return;
395 
396 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
397 			if (status->status < 0)
398 				return;
399 
400 			key_len = parse_key_string(tokens[ti],
401 				rule->auth_key);
402 			APP_CHECK(key_len == rule->auth_key_len, status,
403 				"unrecognized input \"%s\"", tokens[ti]);
404 			if (status->status < 0)
405 				return;
406 
407 			auth_algo_p = 1;
408 			continue;
409 		}
410 
411 		if (strcmp(tokens[ti], "aead_algo") == 0) {
412 			const struct supported_aead_algo *algo;
413 			uint32_t key_len;
414 
415 			APP_CHECK_PRESENCE(aead_algo_p, tokens[ti],
416 				status);
417 			if (status->status < 0)
418 				return;
419 
420 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
421 			if (status->status < 0)
422 				return;
423 
424 			algo = find_match_aead_algo(tokens[ti]);
425 
426 			APP_CHECK(algo != NULL, status, "unrecognized "
427 				"input \"%s\"", tokens[ti]);
428 
429 			rule->aead_algo = algo->algo;
430 			rule->cipher_key_len = algo->key_len;
431 			rule->digest_len = algo->digest_len;
432 			rule->aad_len = algo->aad_len;
433 			rule->block_size = algo->block_size;
434 			rule->iv_len = algo->iv_len;
435 
436 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
437 			if (status->status < 0)
438 				return;
439 
440 			APP_CHECK(strcmp(tokens[ti], "aead_key") == 0,
441 				status, "unrecognized input \"%s\", "
442 				"expect \"aead_key\"", tokens[ti]);
443 			if (status->status < 0)
444 				return;
445 
446 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
447 			if (status->status < 0)
448 				return;
449 
450 			key_len = parse_key_string(tokens[ti],
451 				rule->cipher_key);
452 			APP_CHECK(key_len == rule->cipher_key_len, status,
453 				"unrecognized input \"%s\"", tokens[ti]);
454 			if (status->status < 0)
455 				return;
456 
457 			key_len -= 4;
458 			rule->cipher_key_len = key_len;
459 			memcpy(&rule->salt,
460 				&rule->cipher_key[key_len], 4);
461 
462 			aead_algo_p = 1;
463 			continue;
464 		}
465 
466 		if (strcmp(tokens[ti], "src") == 0) {
467 			APP_CHECK_PRESENCE(src_p, tokens[ti], status);
468 			if (status->status < 0)
469 				return;
470 
471 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
472 			if (status->status < 0)
473 				return;
474 
475 			if (IS_IP4_TUNNEL(rule->flags)) {
476 				struct in_addr ip;
477 
478 				APP_CHECK(parse_ipv4_addr(tokens[ti],
479 					&ip, NULL) == 0, status,
480 					"unrecognized input \"%s\", "
481 					"expect valid ipv4 addr",
482 					tokens[ti]);
483 				if (status->status < 0)
484 					return;
485 				rule->src.ip.ip4 = rte_bswap32(
486 					(uint32_t)ip.s_addr);
487 			} else if (IS_IP6_TUNNEL(rule->flags)) {
488 				struct in6_addr ip;
489 
490 				APP_CHECK(parse_ipv6_addr(tokens[ti], &ip,
491 					NULL) == 0, status,
492 					"unrecognized input \"%s\", "
493 					"expect valid ipv6 addr",
494 					tokens[ti]);
495 				if (status->status < 0)
496 					return;
497 				memcpy(rule->src.ip.ip6.ip6_b,
498 					ip.s6_addr, 16);
499 			} else if (IS_TRANSPORT(rule->flags)) {
500 				APP_CHECK(0, status, "unrecognized input "
501 					"\"%s\"", tokens[ti]);
502 				return;
503 			}
504 
505 			src_p = 1;
506 			continue;
507 		}
508 
509 		if (strcmp(tokens[ti], "dst") == 0) {
510 			APP_CHECK_PRESENCE(dst_p, tokens[ti], status);
511 			if (status->status < 0)
512 				return;
513 
514 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
515 			if (status->status < 0)
516 				return;
517 
518 			if (IS_IP4_TUNNEL(rule->flags)) {
519 				struct in_addr ip;
520 
521 				APP_CHECK(parse_ipv4_addr(tokens[ti],
522 					&ip, NULL) == 0, status,
523 					"unrecognized input \"%s\", "
524 					"expect valid ipv4 addr",
525 					tokens[ti]);
526 				if (status->status < 0)
527 					return;
528 				rule->dst.ip.ip4 = rte_bswap32(
529 					(uint32_t)ip.s_addr);
530 			} else if (IS_IP6_TUNNEL(rule->flags)) {
531 				struct in6_addr ip;
532 
533 				APP_CHECK(parse_ipv6_addr(tokens[ti], &ip,
534 					NULL) == 0, status,
535 					"unrecognized input \"%s\", "
536 					"expect valid ipv6 addr",
537 					tokens[ti]);
538 				if (status->status < 0)
539 					return;
540 				memcpy(rule->dst.ip.ip6.ip6_b, ip.s6_addr, 16);
541 			} else if (IS_TRANSPORT(rule->flags)) {
542 				APP_CHECK(0, status, "unrecognized "
543 					"input \"%s\"",	tokens[ti]);
544 				return;
545 			}
546 
547 			dst_p = 1;
548 			continue;
549 		}
550 
551 		if (strcmp(tokens[ti], "type") == 0) {
552 			APP_CHECK_PRESENCE(type_p, tokens[ti], status);
553 			if (status->status < 0)
554 				return;
555 
556 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
557 			if (status->status < 0)
558 				return;
559 
560 			if (strcmp(tokens[ti], "inline-crypto-offload") == 0)
561 				rule->type =
562 					RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO;
563 			else if (strcmp(tokens[ti],
564 					"inline-protocol-offload") == 0)
565 				rule->type =
566 				RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL;
567 			else if (strcmp(tokens[ti],
568 					"lookaside-protocol-offload") == 0)
569 				rule->type =
570 				RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL;
571 			else if (strcmp(tokens[ti], "no-offload") == 0)
572 				rule->type = RTE_SECURITY_ACTION_TYPE_NONE;
573 			else {
574 				APP_CHECK(0, status, "Invalid input \"%s\"",
575 						tokens[ti]);
576 				return;
577 			}
578 
579 			type_p = 1;
580 			continue;
581 		}
582 
583 		if (strcmp(tokens[ti], "port_id") == 0) {
584 			APP_CHECK_PRESENCE(portid_p, tokens[ti], status);
585 			if (status->status < 0)
586 				return;
587 			INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
588 			if (status->status < 0)
589 				return;
590 			rule->portid = atoi(tokens[ti]);
591 			if (status->status < 0)
592 				return;
593 			portid_p = 1;
594 			continue;
595 		}
596 
597 		/* unrecognizeable input */
598 		APP_CHECK(0, status, "unrecognized input \"%s\"",
599 			tokens[ti]);
600 		return;
601 	}
602 
603 	if (aead_algo_p) {
604 		APP_CHECK(cipher_algo_p == 0, status,
605 				"AEAD used, no need for cipher options");
606 		if (status->status < 0)
607 			return;
608 
609 		APP_CHECK(auth_algo_p == 0, status,
610 				"AEAD used, no need for auth options");
611 		if (status->status < 0)
612 			return;
613 	} else {
614 		APP_CHECK(cipher_algo_p == 1, status, "missing cipher or AEAD options");
615 		if (status->status < 0)
616 			return;
617 
618 		APP_CHECK(auth_algo_p == 1, status, "missing auth or AEAD options");
619 		if (status->status < 0)
620 			return;
621 	}
622 
623 	APP_CHECK(mode_p == 1, status, "missing mode option");
624 	if (status->status < 0)
625 		return;
626 
627 	if ((rule->type != RTE_SECURITY_ACTION_TYPE_NONE) && (portid_p == 0))
628 		printf("Missing portid option, falling back to non-offload\n");
629 
630 	if (!type_p || !portid_p) {
631 		rule->type = RTE_SECURITY_ACTION_TYPE_NONE;
632 		rule->portid = -1;
633 	}
634 
635 	*ri = *ri + 1;
636 }
637 
638 static void
639 print_one_sa_rule(const struct ipsec_sa *sa, int inbound)
640 {
641 	uint32_t i;
642 	uint8_t a, b, c, d;
643 
644 	printf("\tspi_%s(%3u):", inbound?"in":"out", sa->spi);
645 
646 	for (i = 0; i < RTE_DIM(cipher_algos); i++) {
647 		if (cipher_algos[i].algo == sa->cipher_algo &&
648 				cipher_algos[i].key_len == sa->cipher_key_len) {
649 			printf("%s ", cipher_algos[i].keyword);
650 			break;
651 		}
652 	}
653 
654 	for (i = 0; i < RTE_DIM(auth_algos); i++) {
655 		if (auth_algos[i].algo == sa->auth_algo) {
656 			printf("%s ", auth_algos[i].keyword);
657 			break;
658 		}
659 	}
660 
661 	for (i = 0; i < RTE_DIM(aead_algos); i++) {
662 		if (aead_algos[i].algo == sa->aead_algo) {
663 			printf("%s ", aead_algos[i].keyword);
664 			break;
665 		}
666 	}
667 
668 	printf("mode:");
669 
670 	switch (WITHOUT_TRANSPORT_VERSION(sa->flags)) {
671 	case IP4_TUNNEL:
672 		printf("IP4Tunnel ");
673 		uint32_t_to_char(sa->src.ip.ip4, &a, &b, &c, &d);
674 		printf("%hhu.%hhu.%hhu.%hhu ", d, c, b, a);
675 		uint32_t_to_char(sa->dst.ip.ip4, &a, &b, &c, &d);
676 		printf("%hhu.%hhu.%hhu.%hhu", d, c, b, a);
677 		break;
678 	case IP6_TUNNEL:
679 		printf("IP6Tunnel ");
680 		for (i = 0; i < 16; i++) {
681 			if (i % 2 && i != 15)
682 				printf("%.2x:", sa->src.ip.ip6.ip6_b[i]);
683 			else
684 				printf("%.2x", sa->src.ip.ip6.ip6_b[i]);
685 		}
686 		printf(" ");
687 		for (i = 0; i < 16; i++) {
688 			if (i % 2 && i != 15)
689 				printf("%.2x:", sa->dst.ip.ip6.ip6_b[i]);
690 			else
691 				printf("%.2x", sa->dst.ip.ip6.ip6_b[i]);
692 		}
693 		break;
694 	case TRANSPORT:
695 		printf("Transport ");
696 		break;
697 	}
698 	printf(" type:");
699 	switch (sa->type) {
700 	case RTE_SECURITY_ACTION_TYPE_NONE:
701 		printf("no-offload ");
702 		break;
703 	case RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO:
704 		printf("inline-crypto-offload ");
705 		break;
706 	case RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL:
707 		printf("inline-protocol-offload ");
708 		break;
709 	case RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL:
710 		printf("lookaside-protocol-offload ");
711 		break;
712 	}
713 	printf("\n");
714 }
715 
716 struct sa_ctx {
717 	void *satbl; /* pointer to array of rte_ipsec_sa objects*/
718 	struct ipsec_sa sa[IPSEC_SA_MAX_ENTRIES];
719 	union {
720 		struct {
721 			struct rte_crypto_sym_xform a;
722 			struct rte_crypto_sym_xform b;
723 		};
724 	} xf[IPSEC_SA_MAX_ENTRIES];
725 };
726 
727 static struct sa_ctx *
728 sa_create(const char *name, int32_t socket_id)
729 {
730 	char s[PATH_MAX];
731 	struct sa_ctx *sa_ctx;
732 	uint32_t mz_size;
733 	const struct rte_memzone *mz;
734 
735 	snprintf(s, sizeof(s), "%s_%u", name, socket_id);
736 
737 	/* Create SA array table */
738 	printf("Creating SA context with %u maximum entries on socket %d\n",
739 			IPSEC_SA_MAX_ENTRIES, socket_id);
740 
741 	mz_size = sizeof(struct sa_ctx);
742 	mz = rte_memzone_reserve(s, mz_size, socket_id,
743 			RTE_MEMZONE_1GB | RTE_MEMZONE_SIZE_HINT_ONLY);
744 	if (mz == NULL) {
745 		printf("Failed to allocate SA DB memory\n");
746 		rte_errno = ENOMEM;
747 		return NULL;
748 	}
749 
750 	sa_ctx = (struct sa_ctx *)mz->addr;
751 
752 	return sa_ctx;
753 }
754 
755 static int
756 check_eth_dev_caps(uint16_t portid, uint32_t inbound)
757 {
758 	struct rte_eth_dev_info dev_info;
759 	int retval;
760 
761 	retval = rte_eth_dev_info_get(portid, &dev_info);
762 	if (retval != 0) {
763 		RTE_LOG(ERR, IPSEC,
764 			"Error during getting device (port %u) info: %s\n",
765 			portid, strerror(-retval));
766 
767 		return retval;
768 	}
769 
770 	if (inbound) {
771 		if ((dev_info.rx_offload_capa &
772 				DEV_RX_OFFLOAD_SECURITY) == 0) {
773 			RTE_LOG(WARNING, PORT,
774 				"hardware RX IPSec offload is not supported\n");
775 			return -EINVAL;
776 		}
777 
778 	} else { /* outbound */
779 		if ((dev_info.tx_offload_capa &
780 				DEV_TX_OFFLOAD_SECURITY) == 0) {
781 			RTE_LOG(WARNING, PORT,
782 				"hardware TX IPSec offload is not supported\n");
783 			return -EINVAL;
784 		}
785 	}
786 	return 0;
787 }
788 
789 /*
790  * Helper function, tries to determine next_proto for SPI
791  * by searching though SP rules.
792  */
793 static int
794 get_spi_proto(uint32_t spi, enum rte_security_ipsec_sa_direction dir,
795 		struct ip_addr ip_addr[2], uint32_t mask[2])
796 {
797 	int32_t rc4, rc6;
798 
799 	rc4 = sp4_spi_present(spi, dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS,
800 				ip_addr, mask);
801 	rc6 = sp6_spi_present(spi, dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS,
802 				ip_addr, mask);
803 
804 	if (rc4 >= 0) {
805 		if (rc6 >= 0) {
806 			RTE_LOG(ERR, IPSEC,
807 				"%s: SPI %u used simultaeously by "
808 				"IPv4(%d) and IPv6 (%d) SP rules\n",
809 				__func__, spi, rc4, rc6);
810 			return -EINVAL;
811 		} else
812 			return IPPROTO_IPIP;
813 	} else if (rc6 < 0) {
814 		RTE_LOG(ERR, IPSEC,
815 			"%s: SPI %u is not used by any SP rule\n",
816 			__func__, spi);
817 		return -EINVAL;
818 	} else
819 		return IPPROTO_IPV6;
820 }
821 
822 /*
823  * Helper function for getting source and destination IP addresses
824  * from SP. Needed for inline crypto transport mode, as addresses are not
825  * provided in config file for that mode. It checks if SP for current SA exists,
826  * and based on what type of protocol is returned, it stores appropriate
827  * addresses got from SP into SA.
828  */
829 static int
830 sa_add_address_inline_crypto(struct ipsec_sa *sa)
831 {
832 	int protocol;
833 	struct ip_addr ip_addr[2];
834 	uint32_t mask[2];
835 
836 	protocol = get_spi_proto(sa->spi, sa->direction, ip_addr, mask);
837 	if (protocol < 0)
838 		return protocol;
839 	else if (protocol == IPPROTO_IPIP) {
840 		sa->flags |= IP4_TRANSPORT;
841 		if (mask[0] == IP4_FULL_MASK &&
842 				mask[1] == IP4_FULL_MASK &&
843 				ip_addr[0].ip.ip4 != 0 &&
844 				ip_addr[1].ip.ip4 != 0) {
845 
846 			sa->src.ip.ip4 = ip_addr[0].ip.ip4;
847 			sa->dst.ip.ip4 = ip_addr[1].ip.ip4;
848 		} else {
849 			RTE_LOG(ERR, IPSEC,
850 			"%s: No valid address or mask entry in"
851 			" IPv4 SP rule for SPI %u\n",
852 			__func__, sa->spi);
853 			return -EINVAL;
854 		}
855 	} else if (protocol == IPPROTO_IPV6) {
856 		sa->flags |= IP6_TRANSPORT;
857 		if (mask[0] == IP6_FULL_MASK &&
858 				mask[1] == IP6_FULL_MASK &&
859 				(ip_addr[0].ip.ip6.ip6[0] != 0 ||
860 				ip_addr[0].ip.ip6.ip6[1] != 0) &&
861 				(ip_addr[1].ip.ip6.ip6[0] != 0 ||
862 				ip_addr[1].ip.ip6.ip6[1] != 0)) {
863 
864 			sa->src.ip.ip6 = ip_addr[0].ip.ip6;
865 			sa->dst.ip.ip6 = ip_addr[1].ip.ip6;
866 		} else {
867 			RTE_LOG(ERR, IPSEC,
868 			"%s: No valid address or mask entry in"
869 			" IPv6 SP rule for SPI %u\n",
870 			__func__, sa->spi);
871 			return -EINVAL;
872 		}
873 	}
874 	return 0;
875 }
876 
877 static int
878 sa_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
879 		uint32_t nb_entries, uint32_t inbound,
880 		struct socket_ctx *skt_ctx)
881 {
882 	struct ipsec_sa *sa;
883 	uint32_t i, idx;
884 	uint16_t iv_length, aad_length;
885 	int inline_status;
886 	int32_t rc;
887 
888 	/* for ESN upper 32 bits of SQN also need to be part of AAD */
889 	aad_length = (app_sa_prm.enable_esn != 0) ? sizeof(uint32_t) : 0;
890 
891 	for (i = 0; i < nb_entries; i++) {
892 		idx = SPI2IDX(entries[i].spi);
893 		sa = &sa_ctx->sa[idx];
894 		if (sa->spi != 0) {
895 			printf("Index %u already in use by SPI %u\n",
896 					idx, sa->spi);
897 			return -EINVAL;
898 		}
899 		*sa = entries[i];
900 		sa->seq = 0;
901 
902 		if (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL ||
903 			sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) {
904 			if (check_eth_dev_caps(sa->portid, inbound))
905 				return -EINVAL;
906 		}
907 
908 		sa->direction = (inbound == 1) ?
909 				RTE_SECURITY_IPSEC_SA_DIR_INGRESS :
910 				RTE_SECURITY_IPSEC_SA_DIR_EGRESS;
911 
912 		switch (WITHOUT_TRANSPORT_VERSION(sa->flags)) {
913 		case IP4_TUNNEL:
914 			sa->src.ip.ip4 = rte_cpu_to_be_32(sa->src.ip.ip4);
915 			sa->dst.ip.ip4 = rte_cpu_to_be_32(sa->dst.ip.ip4);
916 			break;
917 		case TRANSPORT:
918 			if (sa->type ==
919 				RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) {
920 				inline_status =
921 					sa_add_address_inline_crypto(sa);
922 				if (inline_status < 0)
923 					return inline_status;
924 			}
925 			break;
926 		}
927 
928 		if (sa->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) {
929 			iv_length = 16;
930 
931 			sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_AEAD;
932 			sa_ctx->xf[idx].a.aead.algo = sa->aead_algo;
933 			sa_ctx->xf[idx].a.aead.key.data = sa->cipher_key;
934 			sa_ctx->xf[idx].a.aead.key.length =
935 				sa->cipher_key_len;
936 			sa_ctx->xf[idx].a.aead.op = (inbound == 1) ?
937 				RTE_CRYPTO_AEAD_OP_DECRYPT :
938 				RTE_CRYPTO_AEAD_OP_ENCRYPT;
939 			sa_ctx->xf[idx].a.next = NULL;
940 			sa_ctx->xf[idx].a.aead.iv.offset = IV_OFFSET;
941 			sa_ctx->xf[idx].a.aead.iv.length = iv_length;
942 			sa_ctx->xf[idx].a.aead.aad_length =
943 				sa->aad_len + aad_length;
944 			sa_ctx->xf[idx].a.aead.digest_length =
945 				sa->digest_len;
946 
947 			sa->xforms = &sa_ctx->xf[idx].a;
948 
949 			if (sa->type ==
950 				RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL ||
951 				sa->type ==
952 				RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) {
953 				rc = create_inline_session(skt_ctx, sa);
954 				if (rc != 0) {
955 					RTE_LOG(ERR, IPSEC_ESP,
956 						"create_inline_session() failed\n");
957 					return -EINVAL;
958 				}
959 			}
960 			print_one_sa_rule(sa, inbound);
961 		} else {
962 			switch (sa->cipher_algo) {
963 			case RTE_CRYPTO_CIPHER_NULL:
964 			case RTE_CRYPTO_CIPHER_3DES_CBC:
965 			case RTE_CRYPTO_CIPHER_AES_CBC:
966 				iv_length = sa->iv_len;
967 				break;
968 			case RTE_CRYPTO_CIPHER_AES_CTR:
969 				iv_length = 16;
970 				break;
971 			default:
972 				RTE_LOG(ERR, IPSEC_ESP,
973 						"unsupported cipher algorithm %u\n",
974 						sa->cipher_algo);
975 				return -EINVAL;
976 			}
977 
978 			if (inbound) {
979 				sa_ctx->xf[idx].b.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
980 				sa_ctx->xf[idx].b.cipher.algo = sa->cipher_algo;
981 				sa_ctx->xf[idx].b.cipher.key.data = sa->cipher_key;
982 				sa_ctx->xf[idx].b.cipher.key.length =
983 					sa->cipher_key_len;
984 				sa_ctx->xf[idx].b.cipher.op =
985 					RTE_CRYPTO_CIPHER_OP_DECRYPT;
986 				sa_ctx->xf[idx].b.next = NULL;
987 				sa_ctx->xf[idx].b.cipher.iv.offset = IV_OFFSET;
988 				sa_ctx->xf[idx].b.cipher.iv.length = iv_length;
989 
990 				sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_AUTH;
991 				sa_ctx->xf[idx].a.auth.algo = sa->auth_algo;
992 				sa_ctx->xf[idx].a.auth.key.data = sa->auth_key;
993 				sa_ctx->xf[idx].a.auth.key.length =
994 					sa->auth_key_len;
995 				sa_ctx->xf[idx].a.auth.digest_length =
996 					sa->digest_len;
997 				sa_ctx->xf[idx].a.auth.op =
998 					RTE_CRYPTO_AUTH_OP_VERIFY;
999 			} else { /* outbound */
1000 				sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
1001 				sa_ctx->xf[idx].a.cipher.algo = sa->cipher_algo;
1002 				sa_ctx->xf[idx].a.cipher.key.data = sa->cipher_key;
1003 				sa_ctx->xf[idx].a.cipher.key.length =
1004 					sa->cipher_key_len;
1005 				sa_ctx->xf[idx].a.cipher.op =
1006 					RTE_CRYPTO_CIPHER_OP_ENCRYPT;
1007 				sa_ctx->xf[idx].a.next = NULL;
1008 				sa_ctx->xf[idx].a.cipher.iv.offset = IV_OFFSET;
1009 				sa_ctx->xf[idx].a.cipher.iv.length = iv_length;
1010 
1011 				sa_ctx->xf[idx].b.type = RTE_CRYPTO_SYM_XFORM_AUTH;
1012 				sa_ctx->xf[idx].b.auth.algo = sa->auth_algo;
1013 				sa_ctx->xf[idx].b.auth.key.data = sa->auth_key;
1014 				sa_ctx->xf[idx].b.auth.key.length =
1015 					sa->auth_key_len;
1016 				sa_ctx->xf[idx].b.auth.digest_length =
1017 					sa->digest_len;
1018 				sa_ctx->xf[idx].b.auth.op =
1019 					RTE_CRYPTO_AUTH_OP_GENERATE;
1020 			}
1021 
1022 			sa_ctx->xf[idx].a.next = &sa_ctx->xf[idx].b;
1023 			sa_ctx->xf[idx].b.next = NULL;
1024 			sa->xforms = &sa_ctx->xf[idx].a;
1025 
1026 			print_one_sa_rule(sa, inbound);
1027 		}
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 static inline int
1034 sa_out_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
1035 		uint32_t nb_entries, struct socket_ctx *skt_ctx)
1036 {
1037 	return sa_add_rules(sa_ctx, entries, nb_entries, 0, skt_ctx);
1038 }
1039 
1040 static inline int
1041 sa_in_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
1042 		uint32_t nb_entries, struct socket_ctx *skt_ctx)
1043 {
1044 	return sa_add_rules(sa_ctx, entries, nb_entries, 1, skt_ctx);
1045 }
1046 
1047 /*
1048  * helper function, fills parameters that are identical for all SAs
1049  */
1050 static void
1051 fill_ipsec_app_sa_prm(struct rte_ipsec_sa_prm *prm,
1052 	const struct app_sa_prm *app_prm)
1053 {
1054 	memset(prm, 0, sizeof(*prm));
1055 
1056 	prm->flags = app_prm->flags;
1057 	prm->ipsec_xform.options.esn = app_prm->enable_esn;
1058 	prm->replay_win_sz = app_prm->window_size;
1059 }
1060 
1061 static int
1062 fill_ipsec_sa_prm(struct rte_ipsec_sa_prm *prm, const struct ipsec_sa *ss,
1063 	const struct rte_ipv4_hdr *v4, struct rte_ipv6_hdr *v6)
1064 {
1065 	int32_t rc;
1066 
1067 	/*
1068 	 * Try to get SPI next proto by searching that SPI in SPD.
1069 	 * probably not the optimal way, but there seems nothing
1070 	 * better right now.
1071 	 */
1072 	rc = get_spi_proto(ss->spi, ss->direction, NULL, NULL);
1073 	if (rc < 0)
1074 		return rc;
1075 
1076 	fill_ipsec_app_sa_prm(prm, &app_sa_prm);
1077 	prm->userdata = (uintptr_t)ss;
1078 
1079 	/* setup ipsec xform */
1080 	prm->ipsec_xform.spi = ss->spi;
1081 	prm->ipsec_xform.salt = ss->salt;
1082 	prm->ipsec_xform.direction = ss->direction;
1083 	prm->ipsec_xform.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP;
1084 	prm->ipsec_xform.mode = (IS_TRANSPORT(ss->flags)) ?
1085 		RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT :
1086 		RTE_SECURITY_IPSEC_SA_MODE_TUNNEL;
1087 	prm->ipsec_xform.options.ecn = 1;
1088 	prm->ipsec_xform.options.copy_dscp = 1;
1089 
1090 	if (IS_IP4_TUNNEL(ss->flags)) {
1091 		prm->ipsec_xform.tunnel.type = RTE_SECURITY_IPSEC_TUNNEL_IPV4;
1092 		prm->tun.hdr_len = sizeof(*v4);
1093 		prm->tun.next_proto = rc;
1094 		prm->tun.hdr = v4;
1095 	} else if (IS_IP6_TUNNEL(ss->flags)) {
1096 		prm->ipsec_xform.tunnel.type = RTE_SECURITY_IPSEC_TUNNEL_IPV6;
1097 		prm->tun.hdr_len = sizeof(*v6);
1098 		prm->tun.next_proto = rc;
1099 		prm->tun.hdr = v6;
1100 	} else {
1101 		/* transport mode */
1102 		prm->trs.proto = rc;
1103 	}
1104 
1105 	/* setup crypto section */
1106 	prm->crypto_xform = ss->xforms;
1107 	return 0;
1108 }
1109 
1110 static int
1111 fill_ipsec_session(struct rte_ipsec_session *ss, struct rte_ipsec_sa *sa,
1112 	const struct ipsec_sa *lsa)
1113 {
1114 	int32_t rc = 0;
1115 
1116 	ss->sa = sa;
1117 	ss->type = lsa->type;
1118 
1119 	/* setup crypto section */
1120 	if (ss->type == RTE_SECURITY_ACTION_TYPE_NONE) {
1121 		ss->crypto.ses = lsa->crypto_session;
1122 	/* setup session action type */
1123 	} else {
1124 		ss->security.ses = lsa->sec_session;
1125 		ss->security.ctx = lsa->security_ctx;
1126 		ss->security.ol_flags = lsa->ol_flags;
1127 	}
1128 
1129 	if (ss->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO ||
1130 		ss->type == RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL) {
1131 		if (ss->security.ses != NULL) {
1132 			rc = rte_ipsec_session_prepare(ss);
1133 			if (rc != 0)
1134 				memset(ss, 0, sizeof(*ss));
1135 		}
1136 	}
1137 
1138 	return rc;
1139 }
1140 
1141 /*
1142  * Initialise related rte_ipsec_sa object.
1143  */
1144 static int
1145 ipsec_sa_init(struct ipsec_sa *lsa, struct rte_ipsec_sa *sa, uint32_t sa_size)
1146 {
1147 	int rc;
1148 	struct rte_ipsec_sa_prm prm;
1149 	struct rte_ipv4_hdr v4  = {
1150 		.version_ihl = IPVERSION << 4 |
1151 			sizeof(v4) / RTE_IPV4_IHL_MULTIPLIER,
1152 		.time_to_live = IPDEFTTL,
1153 		.next_proto_id = IPPROTO_ESP,
1154 		.src_addr = lsa->src.ip.ip4,
1155 		.dst_addr = lsa->dst.ip.ip4,
1156 	};
1157 	struct rte_ipv6_hdr v6 = {
1158 		.vtc_flow = htonl(IP6_VERSION << 28),
1159 		.proto = IPPROTO_ESP,
1160 	};
1161 
1162 	if (IS_IP6_TUNNEL(lsa->flags)) {
1163 		memcpy(v6.src_addr, lsa->src.ip.ip6.ip6_b, sizeof(v6.src_addr));
1164 		memcpy(v6.dst_addr, lsa->dst.ip.ip6.ip6_b, sizeof(v6.dst_addr));
1165 	}
1166 
1167 	rc = fill_ipsec_sa_prm(&prm, lsa, &v4, &v6);
1168 	if (rc == 0)
1169 		rc = rte_ipsec_sa_init(sa, &prm, sa_size);
1170 	if (rc < 0)
1171 		return rc;
1172 
1173 	rc = fill_ipsec_session(&lsa->ips, sa, lsa);
1174 	return rc;
1175 }
1176 
1177 /*
1178  * Allocate space and init rte_ipsec_sa strcutures,
1179  * one per session.
1180  */
1181 static int
1182 ipsec_satbl_init(struct sa_ctx *ctx, const struct ipsec_sa *ent,
1183 	uint32_t nb_ent, int32_t socket)
1184 {
1185 	int32_t rc, sz;
1186 	uint32_t i, idx;
1187 	size_t tsz;
1188 	struct rte_ipsec_sa *sa;
1189 	struct ipsec_sa *lsa;
1190 	struct rte_ipsec_sa_prm prm;
1191 
1192 	/* determine SA size */
1193 	idx = SPI2IDX(ent[0].spi);
1194 	fill_ipsec_sa_prm(&prm, ctx->sa + idx, NULL, NULL);
1195 	sz = rte_ipsec_sa_size(&prm);
1196 	if (sz < 0) {
1197 		RTE_LOG(ERR, IPSEC, "%s(%p, %u, %d): "
1198 			"failed to determine SA size, error code: %d\n",
1199 			__func__, ctx, nb_ent, socket, sz);
1200 		return sz;
1201 	}
1202 
1203 	tsz = sz * nb_ent;
1204 
1205 	ctx->satbl = rte_zmalloc_socket(NULL, tsz, RTE_CACHE_LINE_SIZE, socket);
1206 	if (ctx->satbl == NULL) {
1207 		RTE_LOG(ERR, IPSEC,
1208 			"%s(%p, %u, %d): failed to allocate %zu bytes\n",
1209 			__func__,  ctx, nb_ent, socket, tsz);
1210 		return -ENOMEM;
1211 	}
1212 
1213 	rc = 0;
1214 	for (i = 0; i != nb_ent && rc == 0; i++) {
1215 
1216 		idx = SPI2IDX(ent[i].spi);
1217 
1218 		sa = (struct rte_ipsec_sa *)((uintptr_t)ctx->satbl + sz * i);
1219 		lsa = ctx->sa + idx;
1220 
1221 		rc = ipsec_sa_init(lsa, sa, sz);
1222 	}
1223 
1224 	return rc;
1225 }
1226 
1227 /*
1228  * Walk through all SA rules to find an SA with given SPI
1229  */
1230 int
1231 sa_spi_present(uint32_t spi, int inbound)
1232 {
1233 	uint32_t i, num;
1234 	const struct ipsec_sa *sar;
1235 
1236 	if (inbound != 0) {
1237 		sar = sa_in;
1238 		num = nb_sa_in;
1239 	} else {
1240 		sar = sa_out;
1241 		num = nb_sa_out;
1242 	}
1243 
1244 	for (i = 0; i != num; i++) {
1245 		if (sar[i].spi == spi)
1246 			return i;
1247 	}
1248 
1249 	return -ENOENT;
1250 }
1251 
1252 void
1253 sa_init(struct socket_ctx *ctx, int32_t socket_id)
1254 {
1255 	int32_t rc;
1256 	const char *name;
1257 
1258 	if (ctx == NULL)
1259 		rte_exit(EXIT_FAILURE, "NULL context.\n");
1260 
1261 	if (ctx->sa_in != NULL)
1262 		rte_exit(EXIT_FAILURE, "Inbound SA DB for socket %u already "
1263 				"initialized\n", socket_id);
1264 
1265 	if (ctx->sa_out != NULL)
1266 		rte_exit(EXIT_FAILURE, "Outbound SA DB for socket %u already "
1267 				"initialized\n", socket_id);
1268 
1269 	if (nb_sa_in > 0) {
1270 		name = "sa_in";
1271 		ctx->sa_in = sa_create(name, socket_id);
1272 		if (ctx->sa_in == NULL)
1273 			rte_exit(EXIT_FAILURE, "Error [%d] creating SA "
1274 				"context %s in socket %d\n", rte_errno,
1275 				name, socket_id);
1276 
1277 		sa_in_add_rules(ctx->sa_in, sa_in, nb_sa_in, ctx);
1278 
1279 		if (app_sa_prm.enable != 0) {
1280 			rc = ipsec_satbl_init(ctx->sa_in, sa_in, nb_sa_in,
1281 				socket_id);
1282 			if (rc != 0)
1283 				rte_exit(EXIT_FAILURE,
1284 					"failed to init inbound SAs\n");
1285 		}
1286 	} else
1287 		RTE_LOG(WARNING, IPSEC, "No SA Inbound rule specified\n");
1288 
1289 	if (nb_sa_out > 0) {
1290 		name = "sa_out";
1291 		ctx->sa_out = sa_create(name, socket_id);
1292 		if (ctx->sa_out == NULL)
1293 			rte_exit(EXIT_FAILURE, "Error [%d] creating SA "
1294 				"context %s in socket %d\n", rte_errno,
1295 				name, socket_id);
1296 
1297 		sa_out_add_rules(ctx->sa_out, sa_out, nb_sa_out, ctx);
1298 
1299 		if (app_sa_prm.enable != 0) {
1300 			rc = ipsec_satbl_init(ctx->sa_out, sa_out, nb_sa_out,
1301 				socket_id);
1302 			if (rc != 0)
1303 				rte_exit(EXIT_FAILURE,
1304 					"failed to init outbound SAs\n");
1305 		}
1306 	} else
1307 		RTE_LOG(WARNING, IPSEC, "No SA Outbound rule "
1308 			"specified\n");
1309 }
1310 
1311 int
1312 inbound_sa_check(struct sa_ctx *sa_ctx, struct rte_mbuf *m, uint32_t sa_idx)
1313 {
1314 	struct ipsec_mbuf_metadata *priv;
1315 	struct ipsec_sa *sa;
1316 
1317 	priv = get_priv(m);
1318 	sa = priv->sa;
1319 	if (sa != NULL)
1320 		return (sa_ctx->sa[sa_idx].spi == sa->spi);
1321 
1322 	RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
1323 	return 0;
1324 }
1325 
1326 static inline void
1327 single_inbound_lookup(struct ipsec_sa *sadb, struct rte_mbuf *pkt,
1328 		struct ipsec_sa **sa_ret)
1329 {
1330 	struct rte_esp_hdr *esp;
1331 	struct ip *ip;
1332 	uint32_t *src4_addr;
1333 	uint8_t *src6_addr;
1334 	struct ipsec_sa *sa;
1335 
1336 	*sa_ret = NULL;
1337 
1338 	ip = rte_pktmbuf_mtod(pkt, struct ip *);
1339 	esp = rte_pktmbuf_mtod_offset(pkt, struct rte_esp_hdr *, pkt->l3_len);
1340 
1341 	if (esp->spi == INVALID_SPI)
1342 		return;
1343 
1344 	sa = &sadb[SPI2IDX(rte_be_to_cpu_32(esp->spi))];
1345 	if (rte_be_to_cpu_32(esp->spi) != sa->spi)
1346 		return;
1347 
1348 	switch (WITHOUT_TRANSPORT_VERSION(sa->flags)) {
1349 	case IP4_TUNNEL:
1350 		src4_addr = RTE_PTR_ADD(ip, offsetof(struct ip, ip_src));
1351 		if ((ip->ip_v == IPVERSION) &&
1352 				(sa->src.ip.ip4 == *src4_addr) &&
1353 				(sa->dst.ip.ip4 == *(src4_addr + 1)))
1354 			*sa_ret = sa;
1355 		break;
1356 	case IP6_TUNNEL:
1357 		src6_addr = RTE_PTR_ADD(ip, offsetof(struct ip6_hdr, ip6_src));
1358 		if ((ip->ip_v == IP6_VERSION) &&
1359 				!memcmp(&sa->src.ip.ip6.ip6, src6_addr, 16) &&
1360 				!memcmp(&sa->dst.ip.ip6.ip6, src6_addr + 16, 16))
1361 			*sa_ret = sa;
1362 		break;
1363 	case TRANSPORT:
1364 		*sa_ret = sa;
1365 	}
1366 }
1367 
1368 void
1369 inbound_sa_lookup(struct sa_ctx *sa_ctx, struct rte_mbuf *pkts[],
1370 		struct ipsec_sa *sa[], uint16_t nb_pkts)
1371 {
1372 	uint32_t i;
1373 
1374 	for (i = 0; i < nb_pkts; i++)
1375 		single_inbound_lookup(sa_ctx->sa, pkts[i], &sa[i]);
1376 }
1377 
1378 void
1379 outbound_sa_lookup(struct sa_ctx *sa_ctx, uint32_t sa_idx[],
1380 		struct ipsec_sa *sa[], uint16_t nb_pkts)
1381 {
1382 	uint32_t i;
1383 
1384 	for (i = 0; i < nb_pkts; i++)
1385 		sa[i] = &sa_ctx->sa[sa_idx[i]];
1386 }
1387 
1388 /*
1389  * Select HW offloads to be used.
1390  */
1391 int
1392 sa_check_offloads(uint16_t port_id, uint64_t *rx_offloads,
1393 		uint64_t *tx_offloads)
1394 {
1395 	struct ipsec_sa *rule;
1396 	uint32_t idx_sa;
1397 
1398 	*rx_offloads = 0;
1399 	*tx_offloads = 0;
1400 
1401 	/* Check for inbound rules that use offloads and use this port */
1402 	for (idx_sa = 0; idx_sa < nb_sa_in; idx_sa++) {
1403 		rule = &sa_in[idx_sa];
1404 		if ((rule->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO ||
1405 				rule->type ==
1406 				RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL)
1407 				&& rule->portid == port_id)
1408 			*rx_offloads |= DEV_RX_OFFLOAD_SECURITY;
1409 	}
1410 
1411 	/* Check for outbound rules that use offloads and use this port */
1412 	for (idx_sa = 0; idx_sa < nb_sa_out; idx_sa++) {
1413 		rule = &sa_out[idx_sa];
1414 		if ((rule->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO ||
1415 				rule->type ==
1416 				RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL)
1417 				&& rule->portid == port_id)
1418 			*tx_offloads |= DEV_TX_OFFLOAD_SECURITY;
1419 	}
1420 	return 0;
1421 }
1422