xref: /dpdk/examples/ipsec-secgw/ipsec_process.c (revision 2d0c29a37a9c080c1cccb1ad7941aba2ccf5437e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 #include <sys/types.h>
5 #include <netinet/in.h>
6 #include <netinet/ip.h>
7 
8 #include <rte_branch_prediction.h>
9 #include <rte_log.h>
10 #include <rte_cryptodev.h>
11 #include <rte_ethdev.h>
12 #include <rte_mbuf.h>
13 
14 #include "ipsec.h"
15 
16 #define SATP_OUT_IPV4(t)	\
17 	((((t) & RTE_IPSEC_SATP_MODE_MASK) == RTE_IPSEC_SATP_MODE_TRANS && \
18 	(((t) & RTE_IPSEC_SATP_IPV_MASK) == RTE_IPSEC_SATP_IPV4)) || \
19 	((t) & RTE_IPSEC_SATP_MODE_MASK) == RTE_IPSEC_SATP_MODE_TUNLV4)
20 
21 
22 /* helper routine to free bulk of packets */
23 static inline void
24 free_pkts(struct rte_mbuf *mb[], uint32_t n)
25 {
26 	uint32_t i;
27 
28 	for (i = 0; i != n; i++)
29 		rte_pktmbuf_free(mb[i]);
30 }
31 
32 /* helper routine to free bulk of crypto-ops and related packets */
33 static inline void
34 free_cops(struct rte_crypto_op *cop[], uint32_t n)
35 {
36 	uint32_t i;
37 
38 	for (i = 0; i != n; i++)
39 		rte_pktmbuf_free(cop[i]->sym->m_src);
40 }
41 
42 /* helper routine to enqueue bulk of crypto ops */
43 static inline void
44 enqueue_cop_bulk(struct cdev_qp *cqp, struct rte_crypto_op *cop[], uint32_t num)
45 {
46 	uint32_t i, k, len, n;
47 
48 	len = cqp->len;
49 
50 	/*
51 	 * if cqp is empty and we have enough ops,
52 	 * then queue them to the PMD straightway.
53 	 */
54 	if (num >= RTE_DIM(cqp->buf) * 3 / 4 && len == 0) {
55 		n = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp, cop, num);
56 		cqp->in_flight += n;
57 		free_cops(cop + n, num - n);
58 		return;
59 	}
60 
61 	k = 0;
62 
63 	do {
64 		n = RTE_DIM(cqp->buf) - len;
65 		n = RTE_MIN(num - k, n);
66 
67 		/* put packets into cqp */
68 		for (i = 0; i != n; i++)
69 			cqp->buf[len + i] = cop[k + i];
70 
71 		len += n;
72 		k += n;
73 
74 		/* if cqp is full then, enqueue crypto-ops to PMD */
75 		if (len == RTE_DIM(cqp->buf)) {
76 			n = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp,
77 					cqp->buf, len);
78 			cqp->in_flight += n;
79 			free_cops(cqp->buf + n, len - n);
80 			len = 0;
81 		}
82 
83 
84 	} while (k != num);
85 
86 	cqp->len = len;
87 }
88 
89 static inline int
90 fill_ipsec_session(struct rte_ipsec_session *ss, struct ipsec_ctx *ctx,
91 	struct ipsec_sa *sa)
92 {
93 	int32_t rc;
94 
95 	/* setup crypto section */
96 	if (ss->type == RTE_SECURITY_ACTION_TYPE_NONE) {
97 		if (sa->crypto_session == NULL) {
98 			rc = create_session(ctx, sa);
99 			if (rc != 0)
100 				return rc;
101 		}
102 		ss->crypto.ses = sa->crypto_session;
103 	/* setup session action type */
104 	} else {
105 		if (sa->sec_session == NULL) {
106 			rc = create_session(ctx, sa);
107 			if (rc != 0)
108 				return rc;
109 		}
110 		ss->security.ses = sa->sec_session;
111 		ss->security.ctx = sa->security_ctx;
112 		ss->security.ol_flags = sa->ol_flags;
113 	}
114 
115 	rc = rte_ipsec_session_prepare(ss);
116 	if (rc != 0)
117 		memset(ss, 0, sizeof(*ss));
118 
119 	return rc;
120 }
121 
122 /*
123  * group input packets byt the SA they belong to.
124  */
125 static uint32_t
126 sa_group(struct ipsec_sa *sa_ptr[], struct rte_mbuf *pkts[],
127 	struct rte_ipsec_group grp[], uint32_t num)
128 {
129 	uint32_t i, n, spi;
130 	void *sa;
131 	void * const nosa = &spi;
132 
133 	sa = nosa;
134 	for (i = 0, n = 0; i != num; i++) {
135 
136 		if (sa != sa_ptr[i]) {
137 			grp[n].cnt = pkts + i - grp[n].m;
138 			n += (sa != nosa);
139 			grp[n].id.ptr = sa_ptr[i];
140 			grp[n].m = pkts + i;
141 			sa = sa_ptr[i];
142 		}
143 	}
144 
145 	/* terminate last group */
146 	if (sa != nosa) {
147 		grp[n].cnt = pkts + i - grp[n].m;
148 		n++;
149 	}
150 
151 	return n;
152 }
153 
154 /*
155  * helper function, splits processed packets into ipv4/ipv6 traffic.
156  */
157 static inline void
158 copy_to_trf(struct ipsec_traffic *trf, uint64_t satp, struct rte_mbuf *mb[],
159 	uint32_t num)
160 {
161 	uint32_t j, ofs, s;
162 	struct traffic_type *out;
163 
164 	/*
165 	 * determine traffic type(ipv4/ipv6) and offset for ACL classify
166 	 * based on SA type
167 	 */
168 	if ((satp & RTE_IPSEC_SATP_DIR_MASK) == RTE_IPSEC_SATP_DIR_IB) {
169 		if ((satp & RTE_IPSEC_SATP_IPV_MASK) == RTE_IPSEC_SATP_IPV4) {
170 			out = &trf->ip4;
171 			ofs = offsetof(struct ip, ip_p);
172 		} else {
173 			out = &trf->ip6;
174 			ofs = offsetof(struct ip6_hdr, ip6_nxt);
175 		}
176 	} else if (SATP_OUT_IPV4(satp)) {
177 		out = &trf->ip4;
178 		ofs = offsetof(struct ip, ip_p);
179 	} else {
180 		out = &trf->ip6;
181 		ofs = offsetof(struct ip6_hdr, ip6_nxt);
182 	}
183 
184 	for (j = 0, s = out->num; j != num; j++) {
185 		out->data[s + j] = rte_pktmbuf_mtod_offset(mb[j],
186 				void *, ofs);
187 		out->pkts[s + j] = mb[j];
188 	}
189 
190 	out->num += num;
191 }
192 
193 /*
194  * Process ipsec packets.
195  * If packet belong to SA that is subject of inline-crypto,
196  * then process it immediately.
197  * Otherwise do necessary preparations and queue it to related
198  * crypto-dev queue.
199  */
200 void
201 ipsec_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf)
202 {
203 	uint64_t satp;
204 	uint32_t i, j, k, n;
205 	struct ipsec_sa *sa;
206 	struct ipsec_mbuf_metadata *priv;
207 	struct rte_ipsec_group *pg;
208 	struct rte_ipsec_session *ips;
209 	struct cdev_qp *cqp;
210 	struct rte_crypto_op *cop[RTE_DIM(trf->ipsec.pkts)];
211 	struct rte_ipsec_group grp[RTE_DIM(trf->ipsec.pkts)];
212 
213 	n = sa_group(trf->ipsec.saptr, trf->ipsec.pkts, grp, trf->ipsec.num);
214 
215 	for (i = 0; i != n; i++) {
216 
217 		pg = grp + i;
218 		sa = pg->id.ptr;
219 
220 		ips = &sa->ips;
221 
222 		/* no valid HW session for that SA, try to create one */
223 		if (sa == NULL || (ips->crypto.ses == NULL &&
224 				fill_ipsec_session(ips, ctx, sa) != 0))
225 			k = 0;
226 
227 		/* process packets inline */
228 		else if (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO ||
229 				sa->type ==
230 				RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL) {
231 
232 			satp = rte_ipsec_sa_type(ips->sa);
233 
234 			/*
235 			 * This is just to satisfy inbound_sa_check()
236 			 * and get_hop_for_offload_pkt().
237 			 * Should be removed in future.
238 			 */
239 			for (j = 0; j != pg->cnt; j++) {
240 				priv = get_priv(pg->m[j]);
241 				priv->sa = sa;
242 			}
243 
244 			k = rte_ipsec_pkt_process(ips, pg->m, pg->cnt);
245 			copy_to_trf(trf, satp, pg->m, k);
246 
247 		/* enqueue packets to crypto dev */
248 		} else {
249 
250 			cqp = &ctx->tbl[sa->cdev_id_qp];
251 
252 			/* for that app each mbuf has it's own crypto op */
253 			for (j = 0; j != pg->cnt; j++) {
254 				priv = get_priv(pg->m[j]);
255 				cop[j] = &priv->cop;
256 				/*
257 				 * this is just to satisfy inbound_sa_check()
258 				 * should be removed in future.
259 				 */
260 				priv->sa = sa;
261 			}
262 
263 			/* prepare and enqueue crypto ops */
264 			k = rte_ipsec_pkt_crypto_prepare(ips, pg->m, cop,
265 				pg->cnt);
266 			if (k != 0)
267 				enqueue_cop_bulk(cqp, cop, k);
268 		}
269 
270 		/* drop packets that cannot be enqueued/processed */
271 		if (k != pg->cnt)
272 			free_pkts(pg->m + k, pg->cnt - k);
273 	}
274 }
275 
276 static inline uint32_t
277 cqp_dequeue(struct cdev_qp *cqp, struct rte_crypto_op *cop[], uint32_t num)
278 {
279 	uint32_t n;
280 
281 	if (cqp->in_flight == 0)
282 		return 0;
283 
284 	n = rte_cryptodev_dequeue_burst(cqp->id, cqp->qp, cop, num);
285 	RTE_ASSERT(cqp->in_flight >= n);
286 	cqp->in_flight -= n;
287 
288 	return n;
289 }
290 
291 static inline uint32_t
292 ctx_dequeue(struct ipsec_ctx *ctx, struct rte_crypto_op *cop[], uint32_t num)
293 {
294 	uint32_t i, n;
295 
296 	n = 0;
297 
298 	for (i = ctx->last_qp; n != num && i != ctx->nb_qps; i++)
299 		n += cqp_dequeue(ctx->tbl + i, cop + n, num - n);
300 
301 	for (i = 0; n != num && i != ctx->last_qp; i++)
302 		n += cqp_dequeue(ctx->tbl + i, cop + n, num - n);
303 
304 	ctx->last_qp = i;
305 	return n;
306 }
307 
308 /*
309  * dequeue packets from crypto-queues and finalize processing.
310  */
311 void
312 ipsec_cqp_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf)
313 {
314 	uint64_t satp;
315 	uint32_t i, k, n, ng;
316 	struct rte_ipsec_session *ss;
317 	struct traffic_type *out;
318 	struct rte_ipsec_group *pg;
319 	struct rte_crypto_op *cop[RTE_DIM(trf->ipsec.pkts)];
320 	struct rte_ipsec_group grp[RTE_DIM(trf->ipsec.pkts)];
321 
322 	trf->ip4.num = 0;
323 	trf->ip6.num = 0;
324 
325 	out = &trf->ipsec;
326 
327 	/* dequeue completed crypto-ops */
328 	n = ctx_dequeue(ctx, cop, RTE_DIM(cop));
329 	if (n == 0)
330 		return;
331 
332 	/* group them by ipsec session */
333 	ng = rte_ipsec_pkt_crypto_group((const struct rte_crypto_op **)
334 		(uintptr_t)cop, out->pkts, grp, n);
335 
336 	/* process each group of packets */
337 	for (i = 0; i != ng; i++) {
338 
339 		pg = grp + i;
340 		ss = pg->id.ptr;
341 		satp = rte_ipsec_sa_type(ss->sa);
342 
343 		k = rte_ipsec_pkt_process(ss, pg->m, pg->cnt);
344 		copy_to_trf(trf, satp, pg->m, k);
345 
346 		/* free bad packets, if any */
347 		free_pkts(pg->m + k, pg->cnt - k);
348 
349 		n -= pg->cnt;
350 	}
351 
352 	/* we should never have packet with unknown SA here */
353 	RTE_VERIFY(n == 0);
354 }
355