xref: /dpdk/examples/ipsec-secgw/ipsec_process.c (revision 2a7bb4fdf61e9edfb7adbaecb50e728b82da9e23)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 #include <sys/types.h>
5 #include <netinet/in.h>
6 #include <netinet/ip.h>
7 
8 #include <rte_branch_prediction.h>
9 #include <rte_log.h>
10 #include <rte_cryptodev.h>
11 #include <rte_ethdev.h>
12 #include <rte_mbuf.h>
13 
14 #include "ipsec.h"
15 
16 #define SATP_OUT_IPV4(t)	\
17 	((((t) & RTE_IPSEC_SATP_MODE_MASK) == RTE_IPSEC_SATP_MODE_TRANS && \
18 	(((t) & RTE_IPSEC_SATP_IPV_MASK) == RTE_IPSEC_SATP_IPV4)) || \
19 	((t) & RTE_IPSEC_SATP_MODE_MASK) == RTE_IPSEC_SATP_MODE_TUNLV4)
20 
21 
22 /* helper routine to free bulk of packets */
23 static inline void
24 free_pkts(struct rte_mbuf *mb[], uint32_t n)
25 {
26 	uint32_t i;
27 
28 	for (i = 0; i != n; i++)
29 		rte_pktmbuf_free(mb[i]);
30 }
31 
32 /* helper routine to free bulk of crypto-ops and related packets */
33 static inline void
34 free_cops(struct rte_crypto_op *cop[], uint32_t n)
35 {
36 	uint32_t i;
37 
38 	for (i = 0; i != n; i++)
39 		rte_pktmbuf_free(cop[i]->sym->m_src);
40 }
41 
42 /* helper routine to enqueue bulk of crypto ops */
43 static inline void
44 enqueue_cop_bulk(struct cdev_qp *cqp, struct rte_crypto_op *cop[], uint32_t num)
45 {
46 	uint32_t i, k, len, n;
47 
48 	len = cqp->len;
49 
50 	/*
51 	 * if cqp is empty and we have enough ops,
52 	 * then queue them to the PMD straightway.
53 	 */
54 	if (num >= RTE_DIM(cqp->buf) * 3 / 4 && len == 0) {
55 		n = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp, cop, num);
56 		cqp->in_flight += n;
57 		free_cops(cop + n, num - n);
58 		return;
59 	}
60 
61 	k = 0;
62 
63 	do {
64 		n = RTE_DIM(cqp->buf) - len;
65 		n = RTE_MIN(num - k, n);
66 
67 		/* put packets into cqp */
68 		for (i = 0; i != n; i++)
69 			cqp->buf[len + i] = cop[k + i];
70 
71 		len += n;
72 		k += n;
73 
74 		/* if cqp is full then, enqueue crypto-ops to PMD */
75 		if (len == RTE_DIM(cqp->buf)) {
76 			n = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp,
77 					cqp->buf, len);
78 			cqp->in_flight += n;
79 			free_cops(cqp->buf + n, len - n);
80 			len = 0;
81 		}
82 
83 
84 	} while (k != num);
85 
86 	cqp->len = len;
87 }
88 
89 static inline int
90 fill_ipsec_session(struct rte_ipsec_session *ss, struct ipsec_ctx *ctx,
91 	struct ipsec_sa *sa)
92 {
93 	int32_t rc;
94 
95 	/* setup crypto section */
96 	if (ss->type == RTE_SECURITY_ACTION_TYPE_NONE) {
97 		if (sa->crypto_session == NULL) {
98 			rc = create_session(ctx, sa);
99 			if (rc != 0)
100 				return rc;
101 		}
102 		ss->crypto.ses = sa->crypto_session;
103 	/* setup session action type */
104 	} else {
105 		if (sa->sec_session == NULL) {
106 			rc = create_session(ctx, sa);
107 			if (rc != 0)
108 				return rc;
109 		}
110 		ss->security.ses = sa->sec_session;
111 		ss->security.ctx = sa->security_ctx;
112 		ss->security.ol_flags = sa->ol_flags;
113 	}
114 
115 	rc = rte_ipsec_session_prepare(ss);
116 	if (rc != 0)
117 		memset(ss, 0, sizeof(*ss));
118 
119 	return rc;
120 }
121 
122 /*
123  * group input packets byt the SA they belong to.
124  */
125 static uint32_t
126 sa_group(struct ipsec_sa *sa_ptr[], struct rte_mbuf *pkts[],
127 	struct rte_ipsec_group grp[], uint32_t num)
128 {
129 	uint32_t i, n, spi;
130 	void *sa;
131 	void * const nosa = &spi;
132 
133 	sa = nosa;
134 	for (i = 0, n = 0; i != num; i++) {
135 
136 		if (sa != sa_ptr[i]) {
137 			grp[n].cnt = pkts + i - grp[n].m;
138 			n += (sa != nosa);
139 			grp[n].id.ptr = sa_ptr[i];
140 			grp[n].m = pkts + i;
141 			sa = sa_ptr[i];
142 		}
143 	}
144 
145 	/* terminate last group */
146 	if (sa != nosa) {
147 		grp[n].cnt = pkts + i - grp[n].m;
148 		n++;
149 	}
150 
151 	return n;
152 }
153 
154 /*
155  * helper function, splits processed packets into ipv4/ipv6 traffic.
156  */
157 static inline void
158 copy_to_trf(struct ipsec_traffic *trf, uint64_t satp, struct rte_mbuf *mb[],
159 	uint32_t num)
160 {
161 	uint32_t j, ofs, s;
162 	struct traffic_type *out;
163 
164 	/*
165 	 * determine traffic type(ipv4/ipv6) and offset for ACL classify
166 	 * based on SA type
167 	 */
168 	if ((satp & RTE_IPSEC_SATP_DIR_MASK) == RTE_IPSEC_SATP_DIR_IB) {
169 		if ((satp & RTE_IPSEC_SATP_IPV_MASK) == RTE_IPSEC_SATP_IPV4) {
170 			out = &trf->ip4;
171 			ofs = offsetof(struct ip, ip_p);
172 		} else {
173 			out = &trf->ip6;
174 			ofs = offsetof(struct ip6_hdr, ip6_nxt);
175 		}
176 	} else if (SATP_OUT_IPV4(satp)) {
177 		out = &trf->ip4;
178 		ofs = offsetof(struct ip, ip_p);
179 	} else {
180 		out = &trf->ip6;
181 		ofs = offsetof(struct ip6_hdr, ip6_nxt);
182 	}
183 
184 	for (j = 0, s = out->num; j != num; j++) {
185 		out->data[s + j] = rte_pktmbuf_mtod_offset(mb[j],
186 				void *, ofs);
187 		out->pkts[s + j] = mb[j];
188 	}
189 
190 	out->num += num;
191 }
192 
193 /*
194  * Process ipsec packets.
195  * If packet belong to SA that is subject of inline-crypto,
196  * then process it immediately.
197  * Otherwise do necessary preparations and queue it to related
198  * crypto-dev queue.
199  */
200 void
201 ipsec_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf)
202 {
203 	uint64_t satp;
204 	uint32_t i, j, k, n;
205 	struct ipsec_sa *sa;
206 	struct ipsec_mbuf_metadata *priv;
207 	struct rte_ipsec_group *pg;
208 	struct rte_ipsec_session *ips;
209 	struct cdev_qp *cqp;
210 	struct rte_crypto_op *cop[RTE_DIM(trf->ipsec.pkts)];
211 	struct rte_ipsec_group grp[RTE_DIM(trf->ipsec.pkts)];
212 
213 	n = sa_group(trf->ipsec.saptr, trf->ipsec.pkts, grp, trf->ipsec.num);
214 
215 	for (i = 0; i != n; i++) {
216 
217 		pg = grp + i;
218 		sa = pg->id.ptr;
219 
220 		/* no valid SA found */
221 		if (sa == NULL)
222 			k = 0;
223 
224 		ips = &sa->ips;
225 		satp = rte_ipsec_sa_type(ips->sa);
226 
227 		/* no valid HW session for that SA, try to create one */
228 		if (ips->crypto.ses == NULL &&
229 				fill_ipsec_session(ips, ctx, sa) != 0)
230 			k = 0;
231 
232 		/* process packets inline */
233 		else if (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO ||
234 				sa->type ==
235 				RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL) {
236 
237 			/*
238 			 * This is just to satisfy inbound_sa_check()
239 			 * and get_hop_for_offload_pkt().
240 			 * Should be removed in future.
241 			 */
242 			for (j = 0; j != pg->cnt; j++) {
243 				priv = get_priv(pg->m[j]);
244 				priv->sa = sa;
245 			}
246 
247 			k = rte_ipsec_pkt_process(ips, pg->m, pg->cnt);
248 			copy_to_trf(trf, satp, pg->m, k);
249 
250 		/* enqueue packets to crypto dev */
251 		} else {
252 
253 			cqp = &ctx->tbl[sa->cdev_id_qp];
254 
255 			/* for that app each mbuf has it's own crypto op */
256 			for (j = 0; j != pg->cnt; j++) {
257 				priv = get_priv(pg->m[j]);
258 				cop[j] = &priv->cop;
259 				/*
260 				 * this is just to satisfy inbound_sa_check()
261 				 * should be removed in future.
262 				 */
263 				priv->sa = sa;
264 			}
265 
266 			/* prepare and enqueue crypto ops */
267 			k = rte_ipsec_pkt_crypto_prepare(ips, pg->m, cop,
268 				pg->cnt);
269 			if (k != 0)
270 				enqueue_cop_bulk(cqp, cop, k);
271 		}
272 
273 		/* drop packets that cannot be enqueued/processed */
274 		if (k != pg->cnt)
275 			free_pkts(pg->m + k, pg->cnt - k);
276 	}
277 }
278 
279 static inline uint32_t
280 cqp_dequeue(struct cdev_qp *cqp, struct rte_crypto_op *cop[], uint32_t num)
281 {
282 	uint32_t n;
283 
284 	if (cqp->in_flight == 0)
285 		return 0;
286 
287 	n = rte_cryptodev_dequeue_burst(cqp->id, cqp->qp, cop, num);
288 	RTE_ASSERT(cqp->in_flight >= n);
289 	cqp->in_flight -= n;
290 
291 	return n;
292 }
293 
294 static inline uint32_t
295 ctx_dequeue(struct ipsec_ctx *ctx, struct rte_crypto_op *cop[], uint32_t num)
296 {
297 	uint32_t i, n;
298 
299 	n = 0;
300 
301 	for (i = ctx->last_qp; n != num && i != ctx->nb_qps; i++)
302 		n += cqp_dequeue(ctx->tbl + i, cop + n, num - n);
303 
304 	for (i = 0; n != num && i != ctx->last_qp; i++)
305 		n += cqp_dequeue(ctx->tbl + i, cop + n, num - n);
306 
307 	ctx->last_qp = i;
308 	return n;
309 }
310 
311 /*
312  * dequeue packets from crypto-queues and finalize processing.
313  */
314 void
315 ipsec_cqp_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf)
316 {
317 	uint64_t satp;
318 	uint32_t i, k, n, ng;
319 	struct rte_ipsec_session *ss;
320 	struct traffic_type *out;
321 	struct rte_ipsec_group *pg;
322 	struct rte_crypto_op *cop[RTE_DIM(trf->ipsec.pkts)];
323 	struct rte_ipsec_group grp[RTE_DIM(trf->ipsec.pkts)];
324 
325 	trf->ip4.num = 0;
326 	trf->ip6.num = 0;
327 
328 	out = &trf->ipsec;
329 
330 	/* dequeue completed crypto-ops */
331 	n = ctx_dequeue(ctx, cop, RTE_DIM(cop));
332 	if (n == 0)
333 		return;
334 
335 	/* group them by ipsec session */
336 	ng = rte_ipsec_pkt_crypto_group((const struct rte_crypto_op **)
337 		(uintptr_t)cop, out->pkts, grp, n);
338 
339 	/* process each group of packets */
340 	for (i = 0; i != ng; i++) {
341 
342 		pg = grp + i;
343 		ss = pg->id.ptr;
344 		satp = rte_ipsec_sa_type(ss->sa);
345 
346 		k = rte_ipsec_pkt_process(ss, pg->m, pg->cnt);
347 		copy_to_trf(trf, satp, pg->m, k);
348 
349 		/* free bad packets, if any */
350 		free_pkts(pg->m + k, pg->cnt - k);
351 
352 		n -= pg->cnt;
353 	}
354 
355 	/* we should never have packet with unknown SA here */
356 	RTE_VERIFY(n == 0);
357 }
358