xref: /dpdk/examples/ipsec-secgw/ipsec_process.c (revision 1f41d98c207aee8982ced709864c96c463d4503a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 #include <sys/types.h>
5 #include <netinet/in.h>
6 #include <netinet/ip.h>
7 
8 #include <rte_branch_prediction.h>
9 #include <rte_log.h>
10 #include <rte_cryptodev.h>
11 #include <rte_ethdev.h>
12 #include <rte_mbuf.h>
13 
14 #include "ipsec.h"
15 
16 #define SATP_OUT_IPV4(t)	\
17 	((((t) & RTE_IPSEC_SATP_MODE_MASK) == RTE_IPSEC_SATP_MODE_TRANS && \
18 	(((t) & RTE_IPSEC_SATP_IPV_MASK) == RTE_IPSEC_SATP_IPV4)) || \
19 	((t) & RTE_IPSEC_SATP_MODE_MASK) == RTE_IPSEC_SATP_MODE_TUNLV4)
20 
21 /* helper routine to free bulk of packets */
22 static inline void
23 free_pkts(struct rte_mbuf *mb[], uint32_t n)
24 {
25 	uint32_t i;
26 
27 	for (i = 0; i != n; i++)
28 		rte_pktmbuf_free(mb[i]);
29 }
30 
31 /* helper routine to free bulk of crypto-ops and related packets */
32 static inline void
33 free_cops(struct rte_crypto_op *cop[], uint32_t n)
34 {
35 	uint32_t i;
36 
37 	for (i = 0; i != n; i++)
38 		rte_pktmbuf_free(cop[i]->sym->m_src);
39 }
40 
41 /* helper routine to enqueue bulk of crypto ops */
42 static inline void
43 enqueue_cop_bulk(struct cdev_qp *cqp, struct rte_crypto_op *cop[], uint32_t num)
44 {
45 	uint32_t i, k, len, n;
46 
47 	len = cqp->len;
48 
49 	/*
50 	 * if cqp is empty and we have enough ops,
51 	 * then queue them to the PMD straightway.
52 	 */
53 	if (num >= RTE_DIM(cqp->buf) * 3 / 4 && len == 0) {
54 		n = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp, cop, num);
55 		cqp->in_flight += n;
56 		free_cops(cop + n, num - n);
57 		return;
58 	}
59 
60 	k = 0;
61 
62 	do {
63 		n = RTE_DIM(cqp->buf) - len;
64 		n = RTE_MIN(num - k, n);
65 
66 		/* put packets into cqp */
67 		for (i = 0; i != n; i++)
68 			cqp->buf[len + i] = cop[k + i];
69 
70 		len += n;
71 		k += n;
72 
73 		/* if cqp is full then, enqueue crypto-ops to PMD */
74 		if (len == RTE_DIM(cqp->buf)) {
75 			n = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp,
76 					cqp->buf, len);
77 			cqp->in_flight += n;
78 			free_cops(cqp->buf + n, len - n);
79 			len = 0;
80 		}
81 
82 
83 	} while (k != num);
84 
85 	cqp->len = len;
86 }
87 
88 static inline int
89 fill_ipsec_session(struct rte_ipsec_session *ss, struct ipsec_ctx *ctx,
90 	struct ipsec_sa *sa)
91 {
92 	int32_t rc;
93 
94 	/* setup crypto section */
95 	if (ss->type == RTE_SECURITY_ACTION_TYPE_NONE) {
96 		RTE_ASSERT(ss->crypto.ses == NULL);
97 		rc = create_lookaside_session(ctx, sa, ss);
98 		if (rc != 0)
99 			return rc;
100 	/* setup session action type */
101 	} else if (ss->type == RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL) {
102 		RTE_ASSERT(ss->security.ses == NULL);
103 		rc = create_lookaside_session(ctx, sa, ss);
104 		if (rc != 0)
105 			return rc;
106 	} else
107 		RTE_ASSERT(0);
108 
109 	rc = rte_ipsec_session_prepare(ss);
110 	if (rc != 0)
111 		memset(ss, 0, sizeof(*ss));
112 
113 	return rc;
114 }
115 
116 /*
117  * group input packets byt the SA they belong to.
118  */
119 static uint32_t
120 sa_group(void *sa_ptr[], struct rte_mbuf *pkts[],
121 	struct rte_ipsec_group grp[], uint32_t num)
122 {
123 	uint32_t i, n, spi;
124 	void *sa;
125 	void * const nosa = &spi;
126 
127 	sa = nosa;
128 	for (i = 0, n = 0; i != num; i++) {
129 
130 		if (sa != sa_ptr[i]) {
131 			grp[n].cnt = pkts + i - grp[n].m;
132 			n += (sa != nosa);
133 			grp[n].id.ptr = sa_ptr[i];
134 			grp[n].m = pkts + i;
135 			sa = sa_ptr[i];
136 		}
137 	}
138 
139 	/* terminate last group */
140 	if (sa != nosa) {
141 		grp[n].cnt = pkts + i - grp[n].m;
142 		n++;
143 	}
144 
145 	return n;
146 }
147 
148 /*
149  * helper function, splits processed packets into ipv4/ipv6 traffic.
150  */
151 static inline void
152 copy_to_trf(struct ipsec_traffic *trf, uint64_t satp, struct rte_mbuf *mb[],
153 	uint32_t num)
154 {
155 	uint32_t j, ofs, s;
156 	struct traffic_type *out;
157 
158 	/*
159 	 * determine traffic type(ipv4/ipv6) and offset for ACL classify
160 	 * based on SA type
161 	 */
162 	if ((satp & RTE_IPSEC_SATP_DIR_MASK) == RTE_IPSEC_SATP_DIR_IB) {
163 		if ((satp & RTE_IPSEC_SATP_IPV_MASK) == RTE_IPSEC_SATP_IPV4) {
164 			out = &trf->ip4;
165 			ofs = offsetof(struct ip, ip_p);
166 		} else {
167 			out = &trf->ip6;
168 			ofs = offsetof(struct ip6_hdr, ip6_nxt);
169 		}
170 	} else if (SATP_OUT_IPV4(satp)) {
171 		out = &trf->ip4;
172 		ofs = offsetof(struct ip, ip_p);
173 	} else {
174 		out = &trf->ip6;
175 		ofs = offsetof(struct ip6_hdr, ip6_nxt);
176 	}
177 
178 	for (j = 0, s = out->num; j != num; j++) {
179 		out->data[s + j] = rte_pktmbuf_mtod_offset(mb[j],
180 				void *, ofs);
181 		out->pkts[s + j] = mb[j];
182 	}
183 
184 	out->num += num;
185 }
186 
187 static uint32_t
188 ipsec_prepare_crypto_group(struct ipsec_ctx *ctx, struct ipsec_sa *sa,
189 		struct rte_ipsec_session *ips, struct rte_mbuf **m,
190 		unsigned int cnt)
191 {
192 	struct cdev_qp *cqp;
193 	struct rte_crypto_op *cop[cnt];
194 	uint32_t j, k;
195 	struct ipsec_mbuf_metadata *priv;
196 
197 	cqp = &ctx->tbl[sa->cdev_id_qp];
198 
199 	/* for that app each mbuf has it's own crypto op */
200 	for (j = 0; j != cnt; j++) {
201 		priv = get_priv(m[j]);
202 		cop[j] = &priv->cop;
203 		/*
204 		 * this is just to satisfy inbound_sa_check()
205 		 * should be removed in future.
206 		 */
207 		priv->sa = sa;
208 	}
209 
210 	/* prepare and enqueue crypto ops */
211 	k = rte_ipsec_pkt_crypto_prepare(ips, m, cop, cnt);
212 	if (k != 0)
213 		enqueue_cop_bulk(cqp, cop, k);
214 
215 	return k;
216 }
217 
218 /*
219  * Process ipsec packets.
220  * If packet belong to SA that is subject of inline-crypto,
221  * then process it immediately.
222  * Otherwise do necessary preparations and queue it to related
223  * crypto-dev queue.
224  */
225 void
226 ipsec_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf)
227 {
228 	uint64_t satp;
229 	uint32_t i, j, k, n;
230 	struct ipsec_sa *sa;
231 	struct ipsec_mbuf_metadata *priv;
232 	struct rte_ipsec_group *pg;
233 	struct rte_ipsec_session *ips;
234 	struct rte_ipsec_group grp[RTE_DIM(trf->ipsec.pkts)];
235 
236 	n = sa_group(trf->ipsec.saptr, trf->ipsec.pkts, grp, trf->ipsec.num);
237 
238 	for (i = 0; i != n; i++) {
239 		pg = grp + i;
240 		sa = ipsec_mask_saptr(pg->id.ptr);
241 
242 		ips = ipsec_get_primary_session(sa);
243 
244 		/* no valid HW session for that SA, try to create one */
245 		if (sa == NULL || (ips->crypto.ses == NULL &&
246 				fill_ipsec_session(ips, ctx, sa) != 0))
247 			k = 0;
248 
249 		/* process packets inline */
250 		else if (ips->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO ||
251 				ips->type ==
252 				RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL) {
253 
254 			/* get SA type */
255 			satp = rte_ipsec_sa_type(ips->sa);
256 
257 			/*
258 			 * This is just to satisfy inbound_sa_check()
259 			 * and get_hop_for_offload_pkt().
260 			 * Should be removed in future.
261 			 */
262 			for (j = 0; j != pg->cnt; j++) {
263 				priv = get_priv(pg->m[j]);
264 				priv->sa = sa;
265 			}
266 
267 			/* fallback to cryptodev with RX packets which inline
268 			 * processor was unable to process
269 			 */
270 			if (pg->id.val & IPSEC_SA_OFFLOAD_FALLBACK_FLAG) {
271 				/* offload packets to cryptodev */
272 				struct rte_ipsec_session *fallback;
273 
274 				fallback = ipsec_get_fallback_session(sa);
275 				if (fallback->crypto.ses == NULL &&
276 					fill_ipsec_session(fallback, ctx, sa)
277 					!= 0)
278 					k = 0;
279 				else
280 					k = ipsec_prepare_crypto_group(ctx, sa,
281 						fallback, pg->m, pg->cnt);
282 			} else {
283 				/* finish processing of packets successfully
284 				 * decrypted by an inline processor
285 				 */
286 				k = rte_ipsec_pkt_process(ips, pg->m, pg->cnt);
287 				copy_to_trf(trf, satp, pg->m, k);
288 
289 			}
290 		/* enqueue packets to crypto dev */
291 		} else {
292 			k = ipsec_prepare_crypto_group(ctx, sa, ips, pg->m,
293 				pg->cnt);
294 		}
295 
296 		/* drop packets that cannot be enqueued/processed */
297 		if (k != pg->cnt)
298 			free_pkts(pg->m + k, pg->cnt - k);
299 	}
300 }
301 
302 static inline uint32_t
303 cqp_dequeue(struct cdev_qp *cqp, struct rte_crypto_op *cop[], uint32_t num)
304 {
305 	uint32_t n;
306 
307 	if (cqp->in_flight == 0)
308 		return 0;
309 
310 	n = rte_cryptodev_dequeue_burst(cqp->id, cqp->qp, cop, num);
311 	RTE_ASSERT(cqp->in_flight >= n);
312 	cqp->in_flight -= n;
313 
314 	return n;
315 }
316 
317 static inline uint32_t
318 ctx_dequeue(struct ipsec_ctx *ctx, struct rte_crypto_op *cop[], uint32_t num)
319 {
320 	uint32_t i, n;
321 
322 	n = 0;
323 
324 	for (i = ctx->last_qp; n != num && i != ctx->nb_qps; i++)
325 		n += cqp_dequeue(ctx->tbl + i, cop + n, num - n);
326 
327 	for (i = 0; n != num && i != ctx->last_qp; i++)
328 		n += cqp_dequeue(ctx->tbl + i, cop + n, num - n);
329 
330 	ctx->last_qp = i;
331 	return n;
332 }
333 
334 /*
335  * dequeue packets from crypto-queues and finalize processing.
336  */
337 void
338 ipsec_cqp_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf)
339 {
340 	uint64_t satp;
341 	uint32_t i, k, n, ng;
342 	struct rte_ipsec_session *ss;
343 	struct traffic_type *out;
344 	struct rte_ipsec_group *pg;
345 	struct rte_crypto_op *cop[RTE_DIM(trf->ipsec.pkts)];
346 	struct rte_ipsec_group grp[RTE_DIM(trf->ipsec.pkts)];
347 
348 	trf->ip4.num = 0;
349 	trf->ip6.num = 0;
350 
351 	out = &trf->ipsec;
352 
353 	/* dequeue completed crypto-ops */
354 	n = ctx_dequeue(ctx, cop, RTE_DIM(cop));
355 	if (n == 0)
356 		return;
357 
358 	/* group them by ipsec session */
359 	ng = rte_ipsec_pkt_crypto_group((const struct rte_crypto_op **)
360 		(uintptr_t)cop, out->pkts, grp, n);
361 
362 	/* process each group of packets */
363 	for (i = 0; i != ng; i++) {
364 
365 		pg = grp + i;
366 		ss = pg->id.ptr;
367 		satp = rte_ipsec_sa_type(ss->sa);
368 
369 		k = rte_ipsec_pkt_process(ss, pg->m, pg->cnt);
370 		copy_to_trf(trf, satp, pg->m, k);
371 
372 		/* free bad packets, if any */
373 		free_pkts(pg->m + k, pg->cnt - k);
374 
375 		n -= pg->cnt;
376 	}
377 
378 	/* we should never have packet with unknown SA here */
379 	RTE_VERIFY(n == 0);
380 }
381