xref: /dpdk/examples/ipsec-secgw/ipsec_process.c (revision 0dff3f26d6faad4e51f75e5245f0387ee9bb0c6d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2020 Intel Corporation
3  */
4 #include <sys/types.h>
5 #include <netinet/in.h>
6 #include <netinet/ip.h>
7 
8 #include <rte_branch_prediction.h>
9 #include <rte_log.h>
10 #include <rte_cryptodev.h>
11 #include <rte_ethdev.h>
12 #include <rte_mbuf.h>
13 
14 #include "ipsec.h"
15 #include "ipsec-secgw.h"
16 
17 #define SATP_OUT_IPV4(t)	\
18 	((((t) & RTE_IPSEC_SATP_MODE_MASK) == RTE_IPSEC_SATP_MODE_TRANS && \
19 	(((t) & RTE_IPSEC_SATP_IPV_MASK) == RTE_IPSEC_SATP_IPV4)) || \
20 	((t) & RTE_IPSEC_SATP_MODE_MASK) == RTE_IPSEC_SATP_MODE_TUNLV4)
21 
22 /* helper routine to free bulk of crypto-ops and related packets */
23 static inline void
24 free_cops(struct rte_crypto_op *cop[], uint32_t n)
25 {
26 	uint32_t i;
27 
28 	for (i = 0; i != n; i++)
29 		rte_pktmbuf_free(cop[i]->sym->m_src);
30 }
31 
32 /* helper routine to enqueue bulk of crypto ops */
33 static inline void
34 enqueue_cop_bulk(struct cdev_qp *cqp, struct rte_crypto_op *cop[], uint32_t num)
35 {
36 	uint32_t i, k, len, n;
37 
38 	len = cqp->len;
39 
40 	/*
41 	 * if cqp is empty and we have enough ops,
42 	 * then queue them to the PMD straightway.
43 	 */
44 	if (num >= RTE_DIM(cqp->buf) * 3 / 4 && len == 0) {
45 		n = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp, cop, num);
46 		cqp->in_flight += n;
47 		free_cops(cop + n, num - n);
48 		return;
49 	}
50 
51 	k = 0;
52 
53 	do {
54 		n = RTE_DIM(cqp->buf) - len;
55 		n = RTE_MIN(num - k, n);
56 
57 		/* put packets into cqp */
58 		for (i = 0; i != n; i++)
59 			cqp->buf[len + i] = cop[k + i];
60 
61 		len += n;
62 		k += n;
63 
64 		/* if cqp is full then, enqueue crypto-ops to PMD */
65 		if (len == RTE_DIM(cqp->buf)) {
66 			n = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp,
67 					cqp->buf, len);
68 			cqp->in_flight += n;
69 			free_cops(cqp->buf + n, len - n);
70 			len = 0;
71 		}
72 
73 
74 	} while (k != num);
75 
76 	cqp->len = len;
77 }
78 
79 static inline int
80 fill_ipsec_session(struct rte_ipsec_session *ss, struct ipsec_ctx *ctx,
81 	struct ipsec_sa *sa)
82 {
83 	int32_t rc;
84 
85 	/* setup crypto section */
86 	if (ss->type == RTE_SECURITY_ACTION_TYPE_NONE ||
87 			ss->type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) {
88 		RTE_ASSERT(ss->crypto.ses == NULL);
89 		rc = create_lookaside_session(ctx, sa, ss);
90 		if (rc != 0)
91 			return rc;
92 	/* setup session action type */
93 	} else if (ss->type == RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL) {
94 		RTE_ASSERT(ss->security.ses == NULL);
95 		rc = create_lookaside_session(ctx, sa, ss);
96 		if (rc != 0)
97 			return rc;
98 	} else
99 		RTE_ASSERT(0);
100 
101 	rc = rte_ipsec_session_prepare(ss);
102 	if (rc != 0)
103 		memset(ss, 0, sizeof(*ss));
104 
105 	return rc;
106 }
107 
108 /*
109  * group input packets byt the SA they belong to.
110  */
111 static uint32_t
112 sa_group(void *sa_ptr[], struct rte_mbuf *pkts[],
113 	struct rte_ipsec_group grp[], uint32_t num)
114 {
115 	uint32_t i, n, spi;
116 	void *sa;
117 	void * const nosa = &spi;
118 
119 	sa = nosa;
120 	grp[0].m = pkts;
121 	for (i = 0, n = 0; i != num; i++) {
122 
123 		if (sa != sa_ptr[i]) {
124 			grp[n].cnt = pkts + i - grp[n].m;
125 			n += (sa != nosa);
126 			grp[n].id.ptr = sa_ptr[i];
127 			grp[n].m = pkts + i;
128 			sa = sa_ptr[i];
129 		}
130 	}
131 
132 	/* terminate last group */
133 	if (sa != nosa) {
134 		grp[n].cnt = pkts + i - grp[n].m;
135 		n++;
136 	}
137 
138 	return n;
139 }
140 
141 /*
142  * helper function, splits processed packets into ipv4/ipv6 traffic.
143  */
144 static inline void
145 copy_to_trf(struct ipsec_traffic *trf, uint64_t satp, struct rte_mbuf *mb[],
146 	uint32_t num)
147 {
148 	uint32_t j, ofs, s;
149 	struct traffic_type *out;
150 
151 	/*
152 	 * determine traffic type(ipv4/ipv6) and offset for ACL classify
153 	 * based on SA type
154 	 */
155 	if ((satp & RTE_IPSEC_SATP_DIR_MASK) == RTE_IPSEC_SATP_DIR_IB) {
156 		if ((satp & RTE_IPSEC_SATP_IPV_MASK) == RTE_IPSEC_SATP_IPV4) {
157 			out = &trf->ip4;
158 			ofs = offsetof(struct ip, ip_p);
159 		} else {
160 			out = &trf->ip6;
161 			ofs = offsetof(struct ip6_hdr, ip6_nxt);
162 		}
163 	} else if (SATP_OUT_IPV4(satp)) {
164 		out = &trf->ip4;
165 		ofs = offsetof(struct ip, ip_p);
166 	} else {
167 		out = &trf->ip6;
168 		ofs = offsetof(struct ip6_hdr, ip6_nxt);
169 	}
170 
171 	for (j = 0, s = out->num; j != num; j++) {
172 		out->data[s + j] = rte_pktmbuf_mtod_offset(mb[j],
173 				void *, ofs);
174 		out->pkts[s + j] = mb[j];
175 	}
176 
177 	out->num += num;
178 }
179 
180 static uint32_t
181 ipsec_prepare_crypto_group(struct ipsec_ctx *ctx, struct ipsec_sa *sa,
182 		struct rte_ipsec_session *ips, struct rte_mbuf **m,
183 		unsigned int cnt)
184 {
185 	struct cdev_qp *cqp;
186 	struct rte_crypto_op *cop[cnt];
187 	uint32_t j, k;
188 	struct ipsec_mbuf_metadata *priv;
189 
190 	cqp = &ctx->tbl[sa->cdev_id_qp];
191 
192 	/* for that app each mbuf has it's own crypto op */
193 	for (j = 0; j != cnt; j++) {
194 		priv = get_priv(m[j]);
195 		cop[j] = &priv->cop;
196 		/*
197 		 * this is just to satisfy inbound_sa_check()
198 		 * should be removed in future.
199 		 */
200 		priv->sa = sa;
201 	}
202 
203 	/* prepare and enqueue crypto ops */
204 	k = rte_ipsec_pkt_crypto_prepare(ips, m, cop, cnt);
205 	if (k != 0)
206 		enqueue_cop_bulk(cqp, cop, k);
207 
208 	return k;
209 }
210 
211 /*
212  * helper routine for inline and cpu(synchronous) processing
213  * this is just to satisfy inbound_sa_check() and get_hop_for_offload_pkt().
214  * Should be removed in future.
215  */
216 static inline void
217 prep_process_group(void *sa, struct rte_mbuf *mb[], uint32_t cnt)
218 {
219 	uint32_t j;
220 	struct ipsec_mbuf_metadata *priv;
221 
222 	for (j = 0; j != cnt; j++) {
223 		priv = get_priv(mb[j]);
224 		priv->sa = sa;
225 		/* setup TSO related fields if TSO enabled*/
226 		if (priv->sa->mss) {
227 			uint32_t ptype = mb[j]->packet_type;
228 			/* only TCP is supported */
229 			if ((ptype & RTE_PTYPE_L4_MASK) == RTE_PTYPE_L4_TCP) {
230 				mb[j]->tso_segsz = priv->sa->mss;
231 				if ((IS_TUNNEL(priv->sa->flags))) {
232 					mb[j]->outer_l3_len = mb[j]->l3_len;
233 					mb[j]->outer_l2_len = mb[j]->l2_len;
234 					mb[j]->ol_flags |=
235 					(RTE_MBUF_F_TX_OUTER_IP_CKSUM |
236 						RTE_MBUF_F_TX_TUNNEL_ESP);
237 				}
238 				mb[j]->l4_len = sizeof(struct rte_tcp_hdr);
239 				mb[j]->ol_flags |= (RTE_MBUF_F_TX_TCP_SEG |
240 						RTE_MBUF_F_TX_TCP_CKSUM);
241 				if (RTE_ETH_IS_IPV4_HDR(ptype))
242 					mb[j]->ol_flags |=
243 						RTE_MBUF_F_TX_OUTER_IPV4;
244 				else
245 					mb[j]->ol_flags |=
246 						RTE_MBUF_F_TX_OUTER_IPV6;
247 			}
248 		}
249 	}
250 }
251 
252 /*
253  * finish processing of packets successfully decrypted by an inline processor
254  */
255 static uint32_t
256 ipsec_process_inline_group(struct rte_ipsec_session *ips, void *sa,
257 	struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t cnt)
258 {
259 	uint64_t satp;
260 	uint32_t k;
261 
262 	/* get SA type */
263 	satp = rte_ipsec_sa_type(ips->sa);
264 	prep_process_group(sa, mb, cnt);
265 
266 	k = rte_ipsec_pkt_process(ips, mb, cnt);
267 	copy_to_trf(trf, satp, mb, k);
268 	return k;
269 }
270 
271 /*
272  * process packets synchronously
273  */
274 static uint32_t
275 ipsec_process_cpu_group(struct rte_ipsec_session *ips, void *sa,
276 	struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t cnt)
277 {
278 	uint64_t satp;
279 	uint32_t k;
280 
281 	/* get SA type */
282 	satp = rte_ipsec_sa_type(ips->sa);
283 	prep_process_group(sa, mb, cnt);
284 
285 	k = rte_ipsec_pkt_cpu_prepare(ips, mb, cnt);
286 	k = rte_ipsec_pkt_process(ips, mb, k);
287 	copy_to_trf(trf, satp, mb, k);
288 	return k;
289 }
290 
291 /*
292  * Process ipsec packets.
293  * If packet belong to SA that is subject of inline-crypto,
294  * then process it immediately.
295  * Otherwise do necessary preparations and queue it to related
296  * crypto-dev queue.
297  */
298 void
299 ipsec_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf)
300 {
301 	uint32_t i, k, n;
302 	struct ipsec_sa *sa;
303 	struct rte_ipsec_group *pg;
304 	struct rte_ipsec_session *ips;
305 	struct rte_ipsec_group grp[RTE_DIM(trf->ipsec.pkts)];
306 
307 	n = sa_group(trf->ipsec.saptr, trf->ipsec.pkts, grp, trf->ipsec.num);
308 
309 	for (i = 0; i != n; i++) {
310 
311 		pg = grp + i;
312 		sa = ipsec_mask_saptr(pg->id.ptr);
313 
314 		/* fallback to cryptodev with RX packets which inline
315 		 * processor was unable to process
316 		 */
317 		if (sa != NULL)
318 			ips = (pg->id.val & IPSEC_SA_OFFLOAD_FALLBACK_FLAG) ?
319 				ipsec_get_fallback_session(sa) :
320 				ipsec_get_primary_session(sa);
321 
322 		/* no valid HW session for that SA, try to create one */
323 		if (sa == NULL || (ips->crypto.ses == NULL &&
324 				fill_ipsec_session(ips, ctx, sa) != 0))
325 			k = 0;
326 
327 		/* process packets inline */
328 		else {
329 			switch (ips->type) {
330 			/* enqueue packets to crypto dev */
331 			case RTE_SECURITY_ACTION_TYPE_NONE:
332 			case RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL:
333 				k = ipsec_prepare_crypto_group(ctx, sa, ips,
334 					pg->m, pg->cnt);
335 				break;
336 			case RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO:
337 			case RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL:
338 				k = ipsec_process_inline_group(ips, sa,
339 					trf, pg->m, pg->cnt);
340 				break;
341 			case RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO:
342 				k = ipsec_process_cpu_group(ips, sa,
343 					trf, pg->m, pg->cnt);
344 				break;
345 			default:
346 				k = 0;
347 			}
348 		}
349 
350 		/* drop packets that cannot be enqueued/processed */
351 		if (k != pg->cnt)
352 			free_pkts(pg->m + k, pg->cnt - k);
353 	}
354 }
355 
356 static inline uint32_t
357 cqp_dequeue(struct cdev_qp *cqp, struct rte_crypto_op *cop[], uint32_t num)
358 {
359 	uint32_t n;
360 
361 	if (cqp->in_flight == 0)
362 		return 0;
363 
364 	n = rte_cryptodev_dequeue_burst(cqp->id, cqp->qp, cop, num);
365 	RTE_ASSERT(cqp->in_flight >= n);
366 	cqp->in_flight -= n;
367 
368 	return n;
369 }
370 
371 static inline uint32_t
372 ctx_dequeue(struct ipsec_ctx *ctx, struct rte_crypto_op *cop[], uint32_t num)
373 {
374 	uint32_t i, n;
375 
376 	n = 0;
377 
378 	for (i = ctx->last_qp; n != num && i != ctx->nb_qps; i++)
379 		n += cqp_dequeue(ctx->tbl + i, cop + n, num - n);
380 
381 	for (i = 0; n != num && i != ctx->last_qp; i++)
382 		n += cqp_dequeue(ctx->tbl + i, cop + n, num - n);
383 
384 	ctx->last_qp = i;
385 	return n;
386 }
387 
388 /*
389  * dequeue packets from crypto-queues and finalize processing.
390  */
391 void
392 ipsec_cqp_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf)
393 {
394 	uint64_t satp;
395 	uint32_t i, k, n, ng;
396 	struct rte_ipsec_session *ss;
397 	struct traffic_type *out;
398 	struct rte_ipsec_group *pg;
399 	struct rte_crypto_op *cop[RTE_DIM(trf->ipsec.pkts)];
400 	struct rte_ipsec_group grp[RTE_DIM(trf->ipsec.pkts)];
401 
402 	trf->ip4.num = 0;
403 	trf->ip6.num = 0;
404 
405 	out = &trf->ipsec;
406 
407 	/* dequeue completed crypto-ops */
408 	n = ctx_dequeue(ctx, cop, RTE_DIM(cop));
409 	if (n == 0)
410 		return;
411 
412 	/* group them by ipsec session */
413 	ng = rte_ipsec_pkt_crypto_group((const struct rte_crypto_op **)
414 		(uintptr_t)cop, out->pkts, grp, n);
415 
416 	/* process each group of packets */
417 	for (i = 0; i != ng; i++) {
418 
419 		pg = grp + i;
420 		ss = pg->id.ptr;
421 		satp = rte_ipsec_sa_type(ss->sa);
422 
423 		k = rte_ipsec_pkt_process(ss, pg->m, pg->cnt);
424 		copy_to_trf(trf, satp, pg->m, k);
425 
426 		/* free bad packets, if any */
427 		free_pkts(pg->m + k, pg->cnt - k);
428 
429 		n -= pg->cnt;
430 	}
431 
432 	/* we should never have packet with unknown SA here */
433 	RTE_VERIFY(n == 0);
434 }
435