xref: /dpdk/examples/ipsec-secgw/ipsec.c (revision b42f3e2f5be63ccaeb60066011bc8430ab06ca0d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2020 Intel Corporation
3  */
4 #include <sys/types.h>
5 #include <netinet/in.h>
6 #include <netinet/ip.h>
7 
8 #include <rte_branch_prediction.h>
9 #include <rte_log.h>
10 #include <rte_crypto.h>
11 #include <rte_security.h>
12 #include <rte_cryptodev.h>
13 #include <rte_ipsec.h>
14 #include <rte_ethdev.h>
15 #include <rte_mbuf.h>
16 #include <rte_hash.h>
17 
18 #include "ipsec.h"
19 #include "esp.h"
20 
21 static inline void
22 set_ipsec_conf(struct ipsec_sa *sa, struct rte_security_ipsec_xform *ipsec)
23 {
24 	if (ipsec->mode == RTE_SECURITY_IPSEC_SA_MODE_TUNNEL) {
25 		struct rte_security_ipsec_tunnel_param *tunnel =
26 				&ipsec->tunnel;
27 		if (IS_IP4_TUNNEL(sa->flags)) {
28 			tunnel->type =
29 				RTE_SECURITY_IPSEC_TUNNEL_IPV4;
30 			tunnel->ipv4.ttl = IPDEFTTL;
31 
32 			memcpy((uint8_t *)&tunnel->ipv4.src_ip,
33 				(uint8_t *)&sa->src.ip.ip4, 4);
34 
35 			memcpy((uint8_t *)&tunnel->ipv4.dst_ip,
36 				(uint8_t *)&sa->dst.ip.ip4, 4);
37 		} else if (IS_IP6_TUNNEL(sa->flags)) {
38 			tunnel->type =
39 				RTE_SECURITY_IPSEC_TUNNEL_IPV6;
40 			tunnel->ipv6.hlimit = IPDEFTTL;
41 			tunnel->ipv6.dscp = 0;
42 			tunnel->ipv6.flabel = 0;
43 
44 			memcpy((uint8_t *)&tunnel->ipv6.src_addr,
45 				(uint8_t *)&sa->src.ip.ip6.ip6_b, 16);
46 
47 			memcpy((uint8_t *)&tunnel->ipv6.dst_addr,
48 				(uint8_t *)&sa->dst.ip.ip6.ip6_b, 16);
49 		}
50 		/* TODO support for Transport */
51 	}
52 	ipsec->replay_win_sz = app_sa_prm.window_size;
53 	ipsec->options.esn = app_sa_prm.enable_esn;
54 	ipsec->options.udp_encap = sa->udp_encap;
55 }
56 
57 int
58 create_lookaside_session(struct ipsec_ctx *ipsec_ctx_lcore[],
59 	struct socket_ctx *skt_ctx, struct ipsec_sa *sa,
60 	struct rte_ipsec_session *ips)
61 {
62 	uint16_t cdev_id = RTE_CRYPTO_MAX_DEVS;
63 	struct rte_cryptodev_info cdev_info;
64 	unsigned long cdev_id_qp = 0;
65 	struct cdev_key key = { 0 };
66 	struct ipsec_ctx *ipsec_ctx;
67 	uint32_t lcore_id;
68 	int32_t ret = 0;
69 
70 	RTE_LCORE_FOREACH(lcore_id) {
71 		ipsec_ctx = ipsec_ctx_lcore[lcore_id];
72 
73 		/* Core is not bound to any cryptodev, skip it */
74 		if (ipsec_ctx->cdev_map == NULL)
75 			continue;
76 
77 		/* Looking for cryptodev, which can handle this SA */
78 		key.lcore_id = (uint8_t)lcore_id;
79 		key.cipher_algo = (uint8_t)sa->cipher_algo;
80 		key.auth_algo = (uint8_t)sa->auth_algo;
81 		key.aead_algo = (uint8_t)sa->aead_algo;
82 
83 		ret = rte_hash_lookup_data(ipsec_ctx->cdev_map, &key,
84 				(void **)&cdev_id_qp);
85 		if (ret == -ENOENT)
86 			continue;
87 		if (ret < 0) {
88 			RTE_LOG(ERR, IPSEC,
89 					"No cryptodev: core %u, cipher_algo %u, "
90 					"auth_algo %u, aead_algo %u\n",
91 					key.lcore_id,
92 					key.cipher_algo,
93 					key.auth_algo,
94 					key.aead_algo);
95 			return ret;
96 		}
97 
98 		/* Verify that all cores are using same cryptodev for current
99 		 * algorithm combination, required by SA.
100 		 * Current cryptodev mapping process will map SA to the first
101 		 * cryptodev that matches requirements, so it's a double check,
102 		 * not an additional restriction.
103 		 */
104 		if (cdev_id == RTE_CRYPTO_MAX_DEVS)
105 			cdev_id = ipsec_ctx->tbl[cdev_id_qp].id;
106 		else if (cdev_id != ipsec_ctx->tbl[cdev_id_qp].id) {
107 			RTE_LOG(ERR, IPSEC,
108 					"SA mapping to multiple cryptodevs is "
109 					"not supported!");
110 			return -EINVAL;
111 		}
112 
113 		/* Store per core queue pair information */
114 		sa->cqp[lcore_id] = &ipsec_ctx->tbl[cdev_id_qp];
115 	}
116 	if (cdev_id == RTE_CRYPTO_MAX_DEVS) {
117 		RTE_LOG(WARNING, IPSEC, "No cores found to handle SA\n");
118 		return 0;
119 	}
120 
121 	RTE_LOG(DEBUG, IPSEC, "Create session for SA spi %u on cryptodev "
122 			"%u\n", sa->spi, cdev_id);
123 
124 	if (ips->type != RTE_SECURITY_ACTION_TYPE_NONE &&
125 		ips->type != RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) {
126 		struct rte_security_session_conf sess_conf = {
127 			.action_type = ips->type,
128 			.protocol = RTE_SECURITY_PROTOCOL_IPSEC,
129 			{.ipsec = {
130 				.spi = sa->spi,
131 				.salt = sa->salt,
132 				.options = { 0 },
133 				.replay_win_sz = 0,
134 				.direction = sa->direction,
135 				.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,
136 				.mode = (IS_TUNNEL(sa->flags)) ?
137 					RTE_SECURITY_IPSEC_SA_MODE_TUNNEL :
138 					RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT,
139 			} },
140 			.crypto_xform = sa->xforms,
141 			.userdata = NULL,
142 
143 		};
144 
145 		if (ips->type == RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL) {
146 			struct rte_security_ctx *ctx = (struct rte_security_ctx *)
147 							rte_cryptodev_get_sec_ctx(
148 							cdev_id);
149 
150 			/* Set IPsec parameters in conf */
151 			set_ipsec_conf(sa, &(sess_conf.ipsec));
152 
153 			ips->security.ses = rte_security_session_create(ctx,
154 					&sess_conf, skt_ctx->session_pool);
155 			if (ips->security.ses == NULL) {
156 				RTE_LOG(ERR, IPSEC,
157 				"SEC Session init failed: err: %d\n", ret);
158 				return -1;
159 			}
160 			ips->security.ctx = ctx;
161 		} else {
162 			RTE_LOG(ERR, IPSEC, "Inline not supported\n");
163 			return -1;
164 		}
165 	} else {
166 		if (ips->type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) {
167 			struct rte_cryptodev_info info;
168 
169 			rte_cryptodev_info_get(cdev_id, &info);
170 			if (!(info.feature_flags &
171 				RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO))
172 				return -ENOTSUP;
173 
174 		}
175 		ips->crypto.dev_id = cdev_id;
176 		ips->crypto.ses = rte_cryptodev_sym_session_create(cdev_id,
177 				sa->xforms, skt_ctx->session_pool);
178 
179 		rte_cryptodev_info_get(cdev_id, &cdev_info);
180 	}
181 
182 	return 0;
183 }
184 
185 int
186 create_inline_session(struct socket_ctx *skt_ctx, struct ipsec_sa *sa,
187 		struct rte_ipsec_session *ips)
188 {
189 	int32_t ret = 0;
190 	struct rte_security_ctx *sec_ctx;
191 	struct rte_security_session_conf sess_conf = {
192 		.action_type = ips->type,
193 		.protocol = RTE_SECURITY_PROTOCOL_IPSEC,
194 		{.ipsec = {
195 			.spi = sa->spi,
196 			.salt = sa->salt,
197 			.options = { 0 },
198 			.replay_win_sz = 0,
199 			.direction = sa->direction,
200 			.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP
201 		} },
202 		.crypto_xform = sa->xforms,
203 		.userdata = NULL,
204 	};
205 
206 	if (IS_TRANSPORT(sa->flags)) {
207 		sess_conf.ipsec.mode = RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT;
208 		if (IS_IP4(sa->flags)) {
209 			sess_conf.ipsec.tunnel.type =
210 				RTE_SECURITY_IPSEC_TUNNEL_IPV4;
211 
212 			sess_conf.ipsec.tunnel.ipv4.src_ip.s_addr =
213 				sa->src.ip.ip4;
214 			sess_conf.ipsec.tunnel.ipv4.dst_ip.s_addr =
215 				sa->dst.ip.ip4;
216 		} else if (IS_IP6(sa->flags)) {
217 			sess_conf.ipsec.tunnel.type =
218 				RTE_SECURITY_IPSEC_TUNNEL_IPV6;
219 
220 			memcpy(sess_conf.ipsec.tunnel.ipv6.src_addr.s6_addr,
221 				sa->src.ip.ip6.ip6_b, 16);
222 			memcpy(sess_conf.ipsec.tunnel.ipv6.dst_addr.s6_addr,
223 				sa->dst.ip.ip6.ip6_b, 16);
224 		}
225 	} else if (IS_TUNNEL(sa->flags)) {
226 		sess_conf.ipsec.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL;
227 
228 		if (IS_IP4(sa->flags)) {
229 			sess_conf.ipsec.tunnel.type =
230 				RTE_SECURITY_IPSEC_TUNNEL_IPV4;
231 
232 			sess_conf.ipsec.tunnel.ipv4.src_ip.s_addr =
233 				sa->src.ip.ip4;
234 			sess_conf.ipsec.tunnel.ipv4.dst_ip.s_addr =
235 				sa->dst.ip.ip4;
236 		} else if (IS_IP6(sa->flags)) {
237 			sess_conf.ipsec.tunnel.type =
238 				RTE_SECURITY_IPSEC_TUNNEL_IPV6;
239 
240 			memcpy(sess_conf.ipsec.tunnel.ipv6.src_addr.s6_addr,
241 				sa->src.ip.ip6.ip6_b, 16);
242 			memcpy(sess_conf.ipsec.tunnel.ipv6.dst_addr.s6_addr,
243 				sa->dst.ip.ip6.ip6_b, 16);
244 		} else {
245 			RTE_LOG(ERR, IPSEC, "invalid tunnel type\n");
246 			return -1;
247 		}
248 	}
249 
250 	if (sa->udp_encap) {
251 		sess_conf.ipsec.options.udp_encap = 1;
252 		sess_conf.ipsec.udp.sport = htons(sa->udp.sport);
253 		sess_conf.ipsec.udp.dport = htons(sa->udp.dport);
254 	}
255 
256 	if (sa->esn > 0) {
257 		sess_conf.ipsec.options.esn = 1;
258 		sess_conf.ipsec.esn.value = sa->esn;
259 	}
260 
261 
262 	RTE_LOG_DP(DEBUG, IPSEC, "Create session for SA spi %u on port %u\n",
263 		sa->spi, sa->portid);
264 
265 	if (ips->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) {
266 		struct rte_flow_error err;
267 		const struct rte_security_capability *sec_cap;
268 		int ret = 0;
269 
270 		sec_ctx = (struct rte_security_ctx *)
271 					rte_eth_dev_get_sec_ctx(
272 					sa->portid);
273 		if (sec_ctx == NULL) {
274 			RTE_LOG(ERR, IPSEC,
275 				" rte_eth_dev_get_sec_ctx failed\n");
276 			return -1;
277 		}
278 
279 		ips->security.ses = rte_security_session_create(sec_ctx,
280 				&sess_conf, skt_ctx->session_pool);
281 		if (ips->security.ses == NULL) {
282 			RTE_LOG(ERR, IPSEC,
283 				"SEC Session init failed: err: %d\n", ret);
284 			return -1;
285 		}
286 
287 		sec_cap = rte_security_capabilities_get(sec_ctx);
288 
289 		/* iterate until ESP tunnel*/
290 		while (sec_cap->action != RTE_SECURITY_ACTION_TYPE_NONE) {
291 			if (sec_cap->action == ips->type &&
292 			    sec_cap->protocol ==
293 				RTE_SECURITY_PROTOCOL_IPSEC &&
294 			    sec_cap->ipsec.mode ==
295 				RTE_SECURITY_IPSEC_SA_MODE_TUNNEL &&
296 			    sec_cap->ipsec.direction == sa->direction)
297 				break;
298 			sec_cap++;
299 		}
300 
301 		if (sec_cap->action == RTE_SECURITY_ACTION_TYPE_NONE) {
302 			RTE_LOG(ERR, IPSEC,
303 				"No suitable security capability found\n");
304 			return -1;
305 		}
306 
307 		ips->security.ol_flags = sec_cap->ol_flags;
308 		ips->security.ctx = sec_ctx;
309 		sa->pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
310 
311 		if (IS_IP6(sa->flags)) {
312 			sa->pattern[1].mask = &rte_flow_item_ipv6_mask;
313 			sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV6;
314 			sa->pattern[1].spec = &sa->ipv6_spec;
315 
316 			memcpy(sa->ipv6_spec.hdr.dst_addr,
317 				sa->dst.ip.ip6.ip6_b, 16);
318 			memcpy(sa->ipv6_spec.hdr.src_addr,
319 			       sa->src.ip.ip6.ip6_b, 16);
320 		} else if (IS_IP4(sa->flags)) {
321 			sa->pattern[1].mask = &rte_flow_item_ipv4_mask;
322 			sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV4;
323 			sa->pattern[1].spec = &sa->ipv4_spec;
324 
325 			sa->ipv4_spec.hdr.dst_addr = sa->dst.ip.ip4;
326 			sa->ipv4_spec.hdr.src_addr = sa->src.ip.ip4;
327 		}
328 
329 		sa->esp_spec.hdr.spi = rte_cpu_to_be_32(sa->spi);
330 
331 		if (sa->udp_encap) {
332 
333 			sa->udp_spec.hdr.dst_port =
334 					rte_cpu_to_be_16(sa->udp.dport);
335 			sa->udp_spec.hdr.src_port =
336 					rte_cpu_to_be_16(sa->udp.sport);
337 
338 			sa->pattern[2].mask = &rte_flow_item_udp_mask;
339 			sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_UDP;
340 			sa->pattern[2].spec = &sa->udp_spec;
341 
342 			sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_ESP;
343 			sa->pattern[3].spec = &sa->esp_spec;
344 			sa->pattern[3].mask = &rte_flow_item_esp_mask;
345 
346 			sa->pattern[4].type = RTE_FLOW_ITEM_TYPE_END;
347 		} else {
348 			sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_ESP;
349 			sa->pattern[2].spec = &sa->esp_spec;
350 			sa->pattern[2].mask = &rte_flow_item_esp_mask;
351 
352 			sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_END;
353 		}
354 
355 		sa->action[0].type = RTE_FLOW_ACTION_TYPE_SECURITY;
356 		sa->action[0].conf = ips->security.ses;
357 
358 		sa->action[1].type = RTE_FLOW_ACTION_TYPE_END;
359 
360 		sa->attr.egress = (sa->direction ==
361 				RTE_SECURITY_IPSEC_SA_DIR_EGRESS);
362 		sa->attr.ingress = (sa->direction ==
363 				RTE_SECURITY_IPSEC_SA_DIR_INGRESS);
364 		if (sa->attr.ingress) {
365 			uint8_t rss_key[64];
366 			struct rte_eth_rss_conf rss_conf = {
367 				.rss_key = rss_key,
368 				.rss_key_len = sizeof(rss_key),
369 			};
370 			struct rte_eth_dev_info dev_info;
371 			uint16_t queue[RTE_MAX_QUEUES_PER_PORT];
372 			struct rte_flow_action_rss action_rss;
373 			unsigned int i;
374 			unsigned int j;
375 
376 			/* Don't create flow if default flow is created */
377 			if (flow_info_tbl[sa->portid].rx_def_flow)
378 				return 0;
379 
380 			ret = rte_eth_dev_info_get(sa->portid, &dev_info);
381 			if (ret != 0) {
382 				RTE_LOG(ERR, IPSEC,
383 					"Error during getting device (port %u) info: %s\n",
384 					sa->portid, strerror(-ret));
385 				return ret;
386 			}
387 
388 			sa->action[2].type = RTE_FLOW_ACTION_TYPE_END;
389 			/* Try RSS. */
390 			sa->action[1].type = RTE_FLOW_ACTION_TYPE_RSS;
391 			sa->action[1].conf = &action_rss;
392 			ret = rte_eth_dev_rss_hash_conf_get(sa->portid,
393 					&rss_conf);
394 			if (ret != 0) {
395 				RTE_LOG(ERR, IPSEC,
396 					"rte_eth_dev_rss_hash_conf_get:ret=%d\n",
397 					ret);
398 				return -1;
399 			}
400 			for (i = 0, j = 0; i < dev_info.nb_rx_queues; ++i)
401 				queue[j++] = i;
402 
403 			action_rss = (struct rte_flow_action_rss){
404 					.types = rss_conf.rss_hf,
405 					.key_len = rss_conf.rss_key_len,
406 					.queue_num = j,
407 					.key = rss_key,
408 					.queue = queue,
409 			};
410 			ret = rte_flow_validate(sa->portid, &sa->attr,
411 						sa->pattern, sa->action,
412 						&err);
413 			if (!ret)
414 				goto flow_create;
415 			/* Try Queue. */
416 			sa->action[1].type = RTE_FLOW_ACTION_TYPE_QUEUE;
417 			sa->action[1].conf =
418 				&(struct rte_flow_action_queue){
419 				.index = 0,
420 			};
421 			ret = rte_flow_validate(sa->portid, &sa->attr,
422 						sa->pattern, sa->action,
423 						&err);
424 			/* Try End. */
425 			sa->action[1].type = RTE_FLOW_ACTION_TYPE_END;
426 			sa->action[1].conf = NULL;
427 			ret = rte_flow_validate(sa->portid, &sa->attr,
428 						sa->pattern, sa->action,
429 						&err);
430 			if (ret)
431 				goto flow_create_failure;
432 		} else if (sa->attr.egress &&
433 				(ips->security.ol_flags &
434 					RTE_SECURITY_TX_HW_TRAILER_OFFLOAD)) {
435 			sa->action[1].type =
436 					RTE_FLOW_ACTION_TYPE_PASSTHRU;
437 			sa->action[2].type =
438 					RTE_FLOW_ACTION_TYPE_END;
439 		}
440 flow_create:
441 		sa->flow = rte_flow_create(sa->portid,
442 				&sa->attr, sa->pattern, sa->action, &err);
443 		if (sa->flow == NULL) {
444 flow_create_failure:
445 			RTE_LOG(ERR, IPSEC,
446 				"Failed to create ipsec flow msg: %s\n",
447 				err.message);
448 			return -1;
449 		}
450 	} else if (ips->type ==	RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL) {
451 		const struct rte_security_capability *sec_cap;
452 
453 		sec_ctx = (struct rte_security_ctx *)
454 				rte_eth_dev_get_sec_ctx(sa->portid);
455 
456 		if (sec_ctx == NULL) {
457 			RTE_LOG(ERR, IPSEC,
458 				"Ethernet device doesn't have security features registered\n");
459 			return -1;
460 		}
461 
462 		/* Set IPsec parameters in conf */
463 		set_ipsec_conf(sa, &(sess_conf.ipsec));
464 
465 		/* Save SA as userdata for the security session. When
466 		 * the packet is received, this userdata will be
467 		 * retrieved using the metadata from the packet.
468 		 *
469 		 * The PMD is expected to set similar metadata for other
470 		 * operations, like rte_eth_event, which are tied to
471 		 * security session. In such cases, the userdata could
472 		 * be obtained to uniquely identify the security
473 		 * parameters denoted.
474 		 */
475 
476 		sess_conf.userdata = (void *) sa;
477 
478 		ips->security.ses = rte_security_session_create(sec_ctx,
479 					&sess_conf, skt_ctx->session_pool);
480 		if (ips->security.ses == NULL) {
481 			RTE_LOG(ERR, IPSEC,
482 				"SEC Session init failed: err: %d\n", ret);
483 			return -1;
484 		}
485 
486 		sec_cap = rte_security_capabilities_get(sec_ctx);
487 		if (sec_cap == NULL) {
488 			RTE_LOG(ERR, IPSEC,
489 				"No capabilities registered\n");
490 			return -1;
491 		}
492 
493 		/* iterate until ESP tunnel*/
494 		while (sec_cap->action !=
495 				RTE_SECURITY_ACTION_TYPE_NONE) {
496 			if (sec_cap->action == ips->type &&
497 			    sec_cap->protocol ==
498 				RTE_SECURITY_PROTOCOL_IPSEC &&
499 			    sec_cap->ipsec.mode ==
500 				sess_conf.ipsec.mode &&
501 			    sec_cap->ipsec.direction == sa->direction)
502 				break;
503 			sec_cap++;
504 		}
505 
506 		if (sec_cap->action == RTE_SECURITY_ACTION_TYPE_NONE) {
507 			RTE_LOG(ERR, IPSEC,
508 				"No suitable security capability found\n");
509 			return -1;
510 		}
511 
512 		ips->security.ol_flags = sec_cap->ol_flags;
513 		ips->security.ctx = sec_ctx;
514 	}
515 
516 	return 0;
517 }
518 
519 int
520 create_ipsec_esp_flow(struct ipsec_sa *sa)
521 {
522 	int ret = 0;
523 	struct rte_flow_error err = {};
524 	if (sa->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
525 		RTE_LOG(ERR, IPSEC,
526 			"No Flow director rule for Egress traffic\n");
527 		return -1;
528 	}
529 	if (sa->flags == TRANSPORT) {
530 		RTE_LOG(ERR, IPSEC,
531 			"No Flow director rule for transport mode\n");
532 		return -1;
533 	}
534 	sa->action[0].type = RTE_FLOW_ACTION_TYPE_QUEUE;
535 	sa->pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
536 	sa->action[0].conf = &(struct rte_flow_action_queue) {
537 				.index = sa->fdir_qid,
538 	};
539 	sa->attr.egress = 0;
540 	sa->attr.ingress = 1;
541 	if (IS_IP6(sa->flags)) {
542 		sa->pattern[1].mask = &rte_flow_item_ipv6_mask;
543 		sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV6;
544 		sa->pattern[1].spec = &sa->ipv6_spec;
545 		memcpy(sa->ipv6_spec.hdr.dst_addr,
546 			sa->dst.ip.ip6.ip6_b, sizeof(sa->dst.ip.ip6.ip6_b));
547 		memcpy(sa->ipv6_spec.hdr.src_addr,
548 			sa->src.ip.ip6.ip6_b, sizeof(sa->src.ip.ip6.ip6_b));
549 		sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_ESP;
550 		sa->pattern[2].spec = &sa->esp_spec;
551 		sa->pattern[2].mask = &rte_flow_item_esp_mask;
552 		sa->esp_spec.hdr.spi = rte_cpu_to_be_32(sa->spi);
553 		sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_END;
554 	} else if (IS_IP4(sa->flags)) {
555 		sa->pattern[1].mask = &rte_flow_item_ipv4_mask;
556 		sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV4;
557 		sa->pattern[1].spec = &sa->ipv4_spec;
558 		sa->ipv4_spec.hdr.dst_addr = sa->dst.ip.ip4;
559 		sa->ipv4_spec.hdr.src_addr = sa->src.ip.ip4;
560 		sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_ESP;
561 		sa->pattern[2].spec = &sa->esp_spec;
562 		sa->pattern[2].mask = &rte_flow_item_esp_mask;
563 		sa->esp_spec.hdr.spi = rte_cpu_to_be_32(sa->spi);
564 		sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_END;
565 	}
566 	sa->action[1].type = RTE_FLOW_ACTION_TYPE_END;
567 
568 	ret = rte_flow_validate(sa->portid, &sa->attr, sa->pattern, sa->action,
569 				&err);
570 	if (ret < 0) {
571 		RTE_LOG(ERR, IPSEC, "Flow validation failed %s\n", err.message);
572 		return ret;
573 	}
574 
575 	sa->flow = rte_flow_create(sa->portid, &sa->attr, sa->pattern,
576 					sa->action, &err);
577 	if (!sa->flow) {
578 		RTE_LOG(ERR, IPSEC, "Flow creation failed %s\n", err.message);
579 		return -1;
580 	}
581 
582 	return 0;
583 }
584 
585 /*
586  * queue crypto-ops into PMD queue.
587  */
588 void
589 enqueue_cop_burst(struct cdev_qp *cqp)
590 {
591 	uint32_t i, len, ret;
592 
593 	len = cqp->len;
594 	ret = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp, cqp->buf, len);
595 	if (ret < len) {
596 		RTE_LOG_DP(DEBUG, IPSEC, "Cryptodev %u queue %u:"
597 			" enqueued %u crypto ops out of %u\n",
598 			cqp->id, cqp->qp, ret, len);
599 			/* drop packets that we fail to enqueue */
600 			for (i = ret; i < len; i++)
601 				free_pkts(&cqp->buf[i]->sym->m_src, 1);
602 	}
603 	cqp->in_flight += ret;
604 	cqp->len = 0;
605 }
606 
607 static inline void
608 enqueue_cop(struct cdev_qp *cqp, struct rte_crypto_op *cop)
609 {
610 	cqp->buf[cqp->len++] = cop;
611 
612 	if (cqp->len == MAX_PKT_BURST)
613 		enqueue_cop_burst(cqp);
614 }
615 
616 static inline void
617 ipsec_enqueue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
618 		struct rte_mbuf *pkts[], void *sas[],
619 		uint16_t nb_pkts)
620 {
621 	int32_t ret = 0, i;
622 	struct ipsec_mbuf_metadata *priv;
623 	struct rte_crypto_sym_op *sym_cop;
624 	struct ipsec_sa *sa;
625 	struct rte_ipsec_session *ips;
626 
627 	for (i = 0; i < nb_pkts; i++) {
628 		if (unlikely(sas[i] == NULL)) {
629 			free_pkts(&pkts[i], 1);
630 			continue;
631 		}
632 
633 		rte_prefetch0(sas[i]);
634 		rte_prefetch0(pkts[i]);
635 
636 		priv = get_priv(pkts[i]);
637 		sa = ipsec_mask_saptr(sas[i]);
638 		priv->sa = sa;
639 		ips = ipsec_get_primary_session(sa);
640 
641 		switch (ips->type) {
642 		case RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL:
643 			priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
644 			priv->cop.status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
645 
646 			rte_prefetch0(&priv->sym_cop);
647 
648 			if (unlikely(ips->security.ses == NULL)) {
649 				free_pkts(&pkts[i], 1);
650 				continue;
651 			}
652 
653 			if (unlikely((pkts[i]->packet_type &
654 					(RTE_PTYPE_TUNNEL_MASK |
655 					RTE_PTYPE_L4_MASK)) ==
656 					MBUF_PTYPE_TUNNEL_ESP_IN_UDP &&
657 					sa->udp_encap != 1)) {
658 				free_pkts(&pkts[i], 1);
659 				continue;
660 			}
661 
662 			sym_cop = get_sym_cop(&priv->cop);
663 			sym_cop->m_src = pkts[i];
664 
665 			rte_security_attach_session(&priv->cop,
666 				ips->security.ses);
667 			break;
668 
669 		case RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO:
670 			RTE_LOG(ERR, IPSEC, "CPU crypto is not supported by the"
671 					" legacy mode.");
672 			free_pkts(&pkts[i], 1);
673 			continue;
674 
675 		case RTE_SECURITY_ACTION_TYPE_NONE:
676 
677 			priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
678 			priv->cop.status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
679 
680 			rte_prefetch0(&priv->sym_cop);
681 
682 			if (unlikely(ips->crypto.ses == NULL)) {
683 				free_pkts(&pkts[i], 1);
684 				continue;
685 			}
686 
687 			rte_crypto_op_attach_sym_session(&priv->cop,
688 					ips->crypto.ses);
689 
690 			ret = xform_func(pkts[i], sa, &priv->cop);
691 			if (unlikely(ret)) {
692 				free_pkts(&pkts[i], 1);
693 				continue;
694 			}
695 			break;
696 		case RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL:
697 			RTE_ASSERT(ips->security.ses != NULL);
698 			ipsec_ctx->ol_pkts[ipsec_ctx->ol_pkts_cnt++] = pkts[i];
699 			if (ips->security.ol_flags &
700 				RTE_SECURITY_TX_OLOAD_NEED_MDATA)
701 				rte_security_set_pkt_metadata(
702 					ips->security.ctx, ips->security.ses,
703 					pkts[i], NULL);
704 			continue;
705 		case RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO:
706 			RTE_ASSERT(ips->security.ses != NULL);
707 			priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
708 			priv->cop.status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
709 
710 			rte_prefetch0(&priv->sym_cop);
711 			rte_security_attach_session(&priv->cop,
712 					ips->security.ses);
713 
714 			ret = xform_func(pkts[i], sa, &priv->cop);
715 			if (unlikely(ret)) {
716 				free_pkts(&pkts[i], 1);
717 				continue;
718 			}
719 
720 			ipsec_ctx->ol_pkts[ipsec_ctx->ol_pkts_cnt++] = pkts[i];
721 			if (ips->security.ol_flags &
722 				RTE_SECURITY_TX_OLOAD_NEED_MDATA)
723 				rte_security_set_pkt_metadata(
724 					ips->security.ctx, ips->security.ses,
725 					pkts[i], NULL);
726 			continue;
727 		}
728 
729 		enqueue_cop(sa->cqp[ipsec_ctx->lcore_id], &priv->cop);
730 	}
731 }
732 
733 static inline int32_t
734 ipsec_inline_dequeue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
735 	      struct rte_mbuf *pkts[], uint16_t max_pkts)
736 {
737 	int32_t nb_pkts, ret;
738 	struct ipsec_mbuf_metadata *priv;
739 	struct ipsec_sa *sa;
740 	struct rte_mbuf *pkt;
741 
742 	nb_pkts = 0;
743 	while (ipsec_ctx->ol_pkts_cnt > 0 && nb_pkts < max_pkts) {
744 		pkt = ipsec_ctx->ol_pkts[--ipsec_ctx->ol_pkts_cnt];
745 		rte_prefetch0(pkt);
746 		priv = get_priv(pkt);
747 		sa = priv->sa;
748 		ret = xform_func(pkt, sa, &priv->cop);
749 		if (unlikely(ret)) {
750 			free_pkts(&pkt, 1);
751 			continue;
752 		}
753 		pkts[nb_pkts++] = pkt;
754 	}
755 
756 	return nb_pkts;
757 }
758 
759 static inline int
760 ipsec_dequeue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
761 	      struct rte_mbuf *pkts[], uint16_t max_pkts)
762 {
763 	int32_t nb_pkts = 0, ret = 0, i, j, nb_cops;
764 	struct ipsec_mbuf_metadata *priv;
765 	struct rte_crypto_op *cops[max_pkts];
766 	struct ipsec_sa *sa;
767 	struct rte_mbuf *pkt;
768 
769 	for (i = 0; i < ipsec_ctx->nb_qps && nb_pkts < max_pkts; i++) {
770 		struct cdev_qp *cqp;
771 
772 		cqp = &ipsec_ctx->tbl[ipsec_ctx->last_qp++];
773 		if (ipsec_ctx->last_qp == ipsec_ctx->nb_qps)
774 			ipsec_ctx->last_qp %= ipsec_ctx->nb_qps;
775 
776 		if (cqp->in_flight == 0)
777 			continue;
778 
779 		nb_cops = rte_cryptodev_dequeue_burst(cqp->id, cqp->qp,
780 				cops, max_pkts - nb_pkts);
781 
782 		cqp->in_flight -= nb_cops;
783 
784 		for (j = 0; j < nb_cops; j++) {
785 			pkt = cops[j]->sym->m_src;
786 			rte_prefetch0(pkt);
787 
788 			priv = get_priv(pkt);
789 			sa = priv->sa;
790 
791 			RTE_ASSERT(sa != NULL);
792 
793 			if (ipsec_get_action_type(sa) ==
794 				RTE_SECURITY_ACTION_TYPE_NONE) {
795 				ret = xform_func(pkt, sa, cops[j]);
796 				if (unlikely(ret)) {
797 					free_pkts(&pkt, 1);
798 					continue;
799 				}
800 			} else if (ipsec_get_action_type(sa) ==
801 				RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL) {
802 				if (cops[j]->status) {
803 					free_pkts(&pkt, 1);
804 					continue;
805 				}
806 			}
807 			pkts[nb_pkts++] = pkt;
808 		}
809 	}
810 
811 	/* return packets */
812 	return nb_pkts;
813 }
814 
815 uint16_t
816 ipsec_inbound(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
817 		uint16_t nb_pkts, uint16_t len)
818 {
819 	void *sas[nb_pkts];
820 
821 	inbound_sa_lookup(ctx->sa_ctx, pkts, sas, nb_pkts);
822 
823 	ipsec_enqueue(esp_inbound, ctx, pkts, sas, nb_pkts);
824 
825 	return ipsec_inline_dequeue(esp_inbound_post, ctx, pkts, len);
826 }
827 
828 uint16_t
829 ipsec_inbound_cqp_dequeue(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
830 		uint16_t len)
831 {
832 	return ipsec_dequeue(esp_inbound_post, ctx, pkts, len);
833 }
834 
835 uint16_t
836 ipsec_outbound(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
837 		uint32_t sa_idx[], uint16_t nb_pkts, uint16_t len)
838 {
839 	void *sas[nb_pkts];
840 
841 	outbound_sa_lookup(ctx->sa_ctx, sa_idx, sas, nb_pkts);
842 
843 	ipsec_enqueue(esp_outbound, ctx, pkts, sas, nb_pkts);
844 
845 	return ipsec_inline_dequeue(esp_outbound_post, ctx, pkts, len);
846 }
847 
848 uint16_t
849 ipsec_outbound_cqp_dequeue(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
850 		uint16_t len)
851 {
852 	return ipsec_dequeue(esp_outbound_post, ctx, pkts, len);
853 }
854