1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016-2020 Intel Corporation 3 */ 4 #include <sys/types.h> 5 #include <netinet/in.h> 6 #include <netinet/ip.h> 7 8 #include <rte_branch_prediction.h> 9 #include <rte_event_crypto_adapter.h> 10 #include <rte_log.h> 11 #include <rte_crypto.h> 12 #include <rte_security.h> 13 #include <rte_cryptodev.h> 14 #include <rte_ipsec.h> 15 #include <rte_ethdev.h> 16 #include <rte_mbuf.h> 17 #include <rte_hash.h> 18 19 #include "ipsec.h" 20 #include "esp.h" 21 22 static inline void 23 set_ipsec_conf(struct ipsec_sa *sa, struct rte_security_ipsec_xform *ipsec) 24 { 25 if (ipsec->mode == RTE_SECURITY_IPSEC_SA_MODE_TUNNEL) { 26 struct rte_security_ipsec_tunnel_param *tunnel = 27 &ipsec->tunnel; 28 if (IS_IP4_TUNNEL(sa->flags)) { 29 tunnel->type = 30 RTE_SECURITY_IPSEC_TUNNEL_IPV4; 31 tunnel->ipv4.ttl = IPDEFTTL; 32 33 memcpy((uint8_t *)&tunnel->ipv4.src_ip, 34 (uint8_t *)&sa->src.ip.ip4, 4); 35 36 memcpy((uint8_t *)&tunnel->ipv4.dst_ip, 37 (uint8_t *)&sa->dst.ip.ip4, 4); 38 } else if (IS_IP6_TUNNEL(sa->flags)) { 39 tunnel->type = 40 RTE_SECURITY_IPSEC_TUNNEL_IPV6; 41 tunnel->ipv6.hlimit = IPDEFTTL; 42 tunnel->ipv6.dscp = 0; 43 tunnel->ipv6.flabel = 0; 44 45 memcpy((uint8_t *)&tunnel->ipv6.src_addr, 46 (uint8_t *)&sa->src.ip.ip6.ip6_b, 16); 47 48 memcpy((uint8_t *)&tunnel->ipv6.dst_addr, 49 (uint8_t *)&sa->dst.ip.ip6.ip6_b, 16); 50 } 51 /* TODO support for Transport */ 52 } 53 ipsec->replay_win_sz = app_sa_prm.window_size; 54 ipsec->options.esn = app_sa_prm.enable_esn; 55 ipsec->options.udp_encap = sa->udp_encap; 56 if (IS_HW_REASSEMBLY_EN(sa->flags)) 57 ipsec->options.ip_reassembly_en = 1; 58 } 59 60 int 61 create_lookaside_session(struct ipsec_ctx *ipsec_ctx_lcore[], 62 struct socket_ctx *skt_ctx, const struct eventmode_conf *em_conf, 63 struct ipsec_sa *sa, struct rte_ipsec_session *ips) 64 { 65 uint16_t cdev_id = RTE_CRYPTO_MAX_DEVS; 66 enum rte_crypto_op_sess_type sess_type; 67 struct rte_cryptodev_info cdev_info; 68 enum rte_crypto_op_type op_type; 69 unsigned long cdev_id_qp = 0; 70 struct ipsec_ctx *ipsec_ctx; 71 struct cdev_key key = { 0 }; 72 void *sess = NULL; 73 uint32_t lcore_id; 74 int32_t ret = 0; 75 76 RTE_LCORE_FOREACH(lcore_id) { 77 ipsec_ctx = ipsec_ctx_lcore[lcore_id]; 78 79 /* Core is not bound to any cryptodev, skip it */ 80 if (ipsec_ctx->cdev_map == NULL) 81 continue; 82 83 /* Looking for cryptodev, which can handle this SA */ 84 key.lcore_id = (uint8_t)lcore_id; 85 key.cipher_algo = (uint8_t)sa->cipher_algo; 86 key.auth_algo = (uint8_t)sa->auth_algo; 87 key.aead_algo = (uint8_t)sa->aead_algo; 88 89 ret = rte_hash_lookup_data(ipsec_ctx->cdev_map, &key, 90 (void **)&cdev_id_qp); 91 if (ret == -ENOENT) 92 continue; 93 if (ret < 0) { 94 RTE_LOG(ERR, IPSEC, 95 "No cryptodev: core %u, cipher_algo %u, " 96 "auth_algo %u, aead_algo %u\n", 97 key.lcore_id, 98 key.cipher_algo, 99 key.auth_algo, 100 key.aead_algo); 101 return ret; 102 } 103 104 /* Verify that all cores are using same cryptodev for current 105 * algorithm combination, required by SA. 106 * Current cryptodev mapping process will map SA to the first 107 * cryptodev that matches requirements, so it's a double check, 108 * not an additional restriction. 109 */ 110 if (cdev_id == RTE_CRYPTO_MAX_DEVS) 111 cdev_id = ipsec_ctx->tbl[cdev_id_qp].id; 112 else if (cdev_id != ipsec_ctx->tbl[cdev_id_qp].id) { 113 RTE_LOG(ERR, IPSEC, 114 "SA mapping to multiple cryptodevs is " 115 "not supported!"); 116 return -EINVAL; 117 } 118 119 /* Store per core queue pair information */ 120 sa->cqp[lcore_id] = &ipsec_ctx->tbl[cdev_id_qp]; 121 } 122 if (cdev_id == RTE_CRYPTO_MAX_DEVS) { 123 RTE_LOG(WARNING, IPSEC, "No cores found to handle SA\n"); 124 return 0; 125 } 126 127 RTE_LOG(DEBUG, IPSEC, "Create session for SA spi %u on cryptodev " 128 "%u\n", sa->spi, cdev_id); 129 130 if (ips->type != RTE_SECURITY_ACTION_TYPE_NONE && 131 ips->type != RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) { 132 struct rte_security_session_conf sess_conf = { 133 .action_type = ips->type, 134 .protocol = RTE_SECURITY_PROTOCOL_IPSEC, 135 {.ipsec = { 136 .spi = sa->spi, 137 .salt = sa->salt, 138 .options = { 0 }, 139 .replay_win_sz = 0, 140 .direction = sa->direction, 141 .proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP, 142 .mode = (IS_TUNNEL(sa->flags)) ? 143 RTE_SECURITY_IPSEC_SA_MODE_TUNNEL : 144 RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT, 145 } }, 146 .crypto_xform = sa->xforms, 147 .userdata = NULL, 148 149 }; 150 151 if (ips->type == RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL) { 152 struct rte_security_ctx *ctx = (struct rte_security_ctx *) 153 rte_cryptodev_get_sec_ctx( 154 cdev_id); 155 156 /* Set IPsec parameters in conf */ 157 set_ipsec_conf(sa, &(sess_conf.ipsec)); 158 159 ips->security.ses = rte_security_session_create(ctx, 160 &sess_conf, skt_ctx->session_pool); 161 if (ips->security.ses == NULL) { 162 RTE_LOG(ERR, IPSEC, 163 "SEC Session init failed: err: %d\n", ret); 164 return -1; 165 } 166 ips->security.ctx = ctx; 167 168 sess = ips->security.ses; 169 op_type = RTE_CRYPTO_OP_TYPE_SYMMETRIC; 170 sess_type = RTE_CRYPTO_OP_SECURITY_SESSION; 171 } else { 172 RTE_LOG(ERR, IPSEC, "Inline not supported\n"); 173 return -1; 174 } 175 } else { 176 if (ips->type == RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO) { 177 struct rte_cryptodev_info info; 178 179 rte_cryptodev_info_get(cdev_id, &info); 180 if (!(info.feature_flags & 181 RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO)) 182 return -ENOTSUP; 183 184 } 185 ips->crypto.dev_id = cdev_id; 186 ips->crypto.ses = rte_cryptodev_sym_session_create(cdev_id, 187 sa->xforms, skt_ctx->session_pool); 188 189 rte_cryptodev_info_get(cdev_id, &cdev_info); 190 } 191 192 /* Setup meta data required by event crypto adapter */ 193 if (em_conf->enable_event_crypto_adapter && sess != NULL) { 194 union rte_event_crypto_metadata m_data; 195 const struct eventdev_params *eventdev_conf; 196 197 eventdev_conf = &(em_conf->eventdev_config[0]); 198 memset(&m_data, 0, sizeof(m_data)); 199 200 /* Fill in response information */ 201 m_data.response_info.sched_type = em_conf->ext_params.sched_type; 202 m_data.response_info.op = RTE_EVENT_OP_NEW; 203 m_data.response_info.queue_id = eventdev_conf->ev_cpt_queue_id; 204 205 /* Fill in request information */ 206 m_data.request_info.cdev_id = cdev_id; 207 m_data.request_info.queue_pair_id = 0; 208 209 /* Attach meta info to session */ 210 rte_cryptodev_session_event_mdata_set(cdev_id, sess, op_type, 211 sess_type, &m_data, sizeof(m_data)); 212 } 213 214 return 0; 215 } 216 217 int 218 create_inline_session(struct socket_ctx *skt_ctx, struct ipsec_sa *sa, 219 struct rte_ipsec_session *ips) 220 { 221 int32_t ret = 0; 222 struct rte_security_ctx *sec_ctx; 223 struct rte_security_session_conf sess_conf = { 224 .action_type = ips->type, 225 .protocol = RTE_SECURITY_PROTOCOL_IPSEC, 226 {.ipsec = { 227 .spi = sa->spi, 228 .salt = sa->salt, 229 .options = { 0 }, 230 .replay_win_sz = 0, 231 .direction = sa->direction, 232 .proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP 233 } }, 234 .crypto_xform = sa->xforms, 235 .userdata = NULL, 236 }; 237 238 if (IS_TRANSPORT(sa->flags)) { 239 sess_conf.ipsec.mode = RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT; 240 if (IS_IP4(sa->flags)) { 241 sess_conf.ipsec.tunnel.type = 242 RTE_SECURITY_IPSEC_TUNNEL_IPV4; 243 244 sess_conf.ipsec.tunnel.ipv4.src_ip.s_addr = 245 sa->src.ip.ip4; 246 sess_conf.ipsec.tunnel.ipv4.dst_ip.s_addr = 247 sa->dst.ip.ip4; 248 } else if (IS_IP6(sa->flags)) { 249 sess_conf.ipsec.tunnel.type = 250 RTE_SECURITY_IPSEC_TUNNEL_IPV6; 251 252 memcpy(sess_conf.ipsec.tunnel.ipv6.src_addr.s6_addr, 253 sa->src.ip.ip6.ip6_b, 16); 254 memcpy(sess_conf.ipsec.tunnel.ipv6.dst_addr.s6_addr, 255 sa->dst.ip.ip6.ip6_b, 16); 256 } 257 } else if (IS_TUNNEL(sa->flags)) { 258 sess_conf.ipsec.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL; 259 260 if (IS_IP4(sa->flags)) { 261 sess_conf.ipsec.tunnel.type = 262 RTE_SECURITY_IPSEC_TUNNEL_IPV4; 263 264 sess_conf.ipsec.tunnel.ipv4.src_ip.s_addr = 265 sa->src.ip.ip4; 266 sess_conf.ipsec.tunnel.ipv4.dst_ip.s_addr = 267 sa->dst.ip.ip4; 268 } else if (IS_IP6(sa->flags)) { 269 sess_conf.ipsec.tunnel.type = 270 RTE_SECURITY_IPSEC_TUNNEL_IPV6; 271 272 memcpy(sess_conf.ipsec.tunnel.ipv6.src_addr.s6_addr, 273 sa->src.ip.ip6.ip6_b, 16); 274 memcpy(sess_conf.ipsec.tunnel.ipv6.dst_addr.s6_addr, 275 sa->dst.ip.ip6.ip6_b, 16); 276 } else { 277 RTE_LOG(ERR, IPSEC, "invalid tunnel type\n"); 278 return -1; 279 } 280 } 281 282 if (sa->udp_encap) { 283 sess_conf.ipsec.options.udp_encap = 1; 284 sess_conf.ipsec.udp.sport = htons(sa->udp.sport); 285 sess_conf.ipsec.udp.dport = htons(sa->udp.dport); 286 } 287 288 if (sa->esn > 0) { 289 sess_conf.ipsec.options.esn = 1; 290 sess_conf.ipsec.esn.value = sa->esn; 291 } 292 293 294 RTE_LOG_DP(DEBUG, IPSEC, "Create session for SA spi %u on port %u\n", 295 sa->spi, sa->portid); 296 297 if (ips->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) { 298 struct rte_flow_error err; 299 const struct rte_security_capability *sec_cap; 300 int ret = 0; 301 302 sec_ctx = (struct rte_security_ctx *) 303 rte_eth_dev_get_sec_ctx( 304 sa->portid); 305 if (sec_ctx == NULL) { 306 RTE_LOG(ERR, IPSEC, 307 " rte_eth_dev_get_sec_ctx failed\n"); 308 return -1; 309 } 310 311 ips->security.ses = rte_security_session_create(sec_ctx, 312 &sess_conf, skt_ctx->session_pool); 313 if (ips->security.ses == NULL) { 314 RTE_LOG(ERR, IPSEC, 315 "SEC Session init failed: err: %d\n", ret); 316 return -1; 317 } 318 319 sec_cap = rte_security_capabilities_get(sec_ctx); 320 321 /* iterate until ESP tunnel*/ 322 while (sec_cap->action != RTE_SECURITY_ACTION_TYPE_NONE) { 323 if (sec_cap->action == ips->type && 324 sec_cap->protocol == 325 RTE_SECURITY_PROTOCOL_IPSEC && 326 sec_cap->ipsec.mode == 327 RTE_SECURITY_IPSEC_SA_MODE_TUNNEL && 328 sec_cap->ipsec.direction == sa->direction) 329 break; 330 sec_cap++; 331 } 332 333 if (sec_cap->action == RTE_SECURITY_ACTION_TYPE_NONE) { 334 RTE_LOG(ERR, IPSEC, 335 "No suitable security capability found\n"); 336 return -1; 337 } 338 339 ips->security.ol_flags = sec_cap->ol_flags; 340 ips->security.ctx = sec_ctx; 341 sa->pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH; 342 343 if (IS_IP6(sa->flags)) { 344 sa->pattern[1].mask = &rte_flow_item_ipv6_mask; 345 sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV6; 346 sa->pattern[1].spec = &sa->ipv6_spec; 347 348 memcpy(sa->ipv6_spec.hdr.dst_addr, 349 sa->dst.ip.ip6.ip6_b, 16); 350 memcpy(sa->ipv6_spec.hdr.src_addr, 351 sa->src.ip.ip6.ip6_b, 16); 352 } else if (IS_IP4(sa->flags)) { 353 sa->pattern[1].mask = &rte_flow_item_ipv4_mask; 354 sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV4; 355 sa->pattern[1].spec = &sa->ipv4_spec; 356 357 sa->ipv4_spec.hdr.dst_addr = sa->dst.ip.ip4; 358 sa->ipv4_spec.hdr.src_addr = sa->src.ip.ip4; 359 } 360 361 sa->esp_spec.hdr.spi = rte_cpu_to_be_32(sa->spi); 362 363 if (sa->udp_encap) { 364 365 sa->udp_spec.hdr.dst_port = 366 rte_cpu_to_be_16(sa->udp.dport); 367 sa->udp_spec.hdr.src_port = 368 rte_cpu_to_be_16(sa->udp.sport); 369 370 sa->pattern[2].mask = &rte_flow_item_udp_mask; 371 sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_UDP; 372 sa->pattern[2].spec = &sa->udp_spec; 373 374 sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_ESP; 375 sa->pattern[3].spec = &sa->esp_spec; 376 sa->pattern[3].mask = &rte_flow_item_esp_mask; 377 378 sa->pattern[4].type = RTE_FLOW_ITEM_TYPE_END; 379 } else { 380 sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_ESP; 381 sa->pattern[2].spec = &sa->esp_spec; 382 sa->pattern[2].mask = &rte_flow_item_esp_mask; 383 384 sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_END; 385 } 386 387 sa->action[0].type = RTE_FLOW_ACTION_TYPE_SECURITY; 388 sa->action[0].conf = ips->security.ses; 389 390 sa->action[1].type = RTE_FLOW_ACTION_TYPE_END; 391 392 sa->attr.egress = (sa->direction == 393 RTE_SECURITY_IPSEC_SA_DIR_EGRESS); 394 sa->attr.ingress = (sa->direction == 395 RTE_SECURITY_IPSEC_SA_DIR_INGRESS); 396 if (sa->attr.ingress) { 397 uint8_t rss_key[64]; 398 struct rte_eth_rss_conf rss_conf = { 399 .rss_key = rss_key, 400 .rss_key_len = sizeof(rss_key), 401 }; 402 struct rte_eth_dev_info dev_info; 403 uint16_t queue[RTE_MAX_QUEUES_PER_PORT]; 404 struct rte_flow_action_rss action_rss; 405 unsigned int i; 406 unsigned int j; 407 408 /* Don't create flow if default flow is created */ 409 if (flow_info_tbl[sa->portid].rx_def_flow) 410 return 0; 411 412 ret = rte_eth_dev_info_get(sa->portid, &dev_info); 413 if (ret != 0) { 414 RTE_LOG(ERR, IPSEC, 415 "Error during getting device (port %u) info: %s\n", 416 sa->portid, strerror(-ret)); 417 return ret; 418 } 419 420 sa->action[2].type = RTE_FLOW_ACTION_TYPE_END; 421 /* Try RSS. */ 422 sa->action[1].type = RTE_FLOW_ACTION_TYPE_RSS; 423 sa->action[1].conf = &action_rss; 424 ret = rte_eth_dev_rss_hash_conf_get(sa->portid, 425 &rss_conf); 426 if (ret != 0) { 427 RTE_LOG(ERR, IPSEC, 428 "rte_eth_dev_rss_hash_conf_get:ret=%d\n", 429 ret); 430 return -1; 431 } 432 for (i = 0, j = 0; i < dev_info.nb_rx_queues; ++i) 433 queue[j++] = i; 434 435 action_rss = (struct rte_flow_action_rss){ 436 .types = rss_conf.rss_hf, 437 .key_len = rss_conf.rss_key_len, 438 .queue_num = j, 439 .key = rss_key, 440 .queue = queue, 441 }; 442 ret = rte_flow_validate(sa->portid, &sa->attr, 443 sa->pattern, sa->action, 444 &err); 445 if (!ret) 446 goto flow_create; 447 /* Try Queue. */ 448 sa->action[1].type = RTE_FLOW_ACTION_TYPE_QUEUE; 449 sa->action[1].conf = 450 &(struct rte_flow_action_queue){ 451 .index = 0, 452 }; 453 ret = rte_flow_validate(sa->portid, &sa->attr, 454 sa->pattern, sa->action, 455 &err); 456 /* Try End. */ 457 sa->action[1].type = RTE_FLOW_ACTION_TYPE_END; 458 sa->action[1].conf = NULL; 459 ret = rte_flow_validate(sa->portid, &sa->attr, 460 sa->pattern, sa->action, 461 &err); 462 if (ret) 463 goto flow_create_failure; 464 } else if (sa->attr.egress && 465 (ips->security.ol_flags & 466 RTE_SECURITY_TX_HW_TRAILER_OFFLOAD)) { 467 sa->action[1].type = 468 RTE_FLOW_ACTION_TYPE_PASSTHRU; 469 sa->action[2].type = 470 RTE_FLOW_ACTION_TYPE_END; 471 } 472 flow_create: 473 sa->flow = rte_flow_create(sa->portid, 474 &sa->attr, sa->pattern, sa->action, &err); 475 if (sa->flow == NULL) { 476 flow_create_failure: 477 RTE_LOG(ERR, IPSEC, 478 "Failed to create ipsec flow msg: %s\n", 479 err.message); 480 return -1; 481 } 482 } else if (ips->type == RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL) { 483 const struct rte_security_capability *sec_cap; 484 485 sec_ctx = (struct rte_security_ctx *) 486 rte_eth_dev_get_sec_ctx(sa->portid); 487 488 if (sec_ctx == NULL) { 489 RTE_LOG(ERR, IPSEC, 490 "Ethernet device doesn't have security features registered\n"); 491 return -1; 492 } 493 494 /* Set IPsec parameters in conf */ 495 set_ipsec_conf(sa, &(sess_conf.ipsec)); 496 497 /* Save SA as userdata for the security session. When 498 * the packet is received, this userdata will be 499 * retrieved using the metadata from the packet. 500 * 501 * The PMD is expected to set similar metadata for other 502 * operations, like rte_eth_event, which are tied to 503 * security session. In such cases, the userdata could 504 * be obtained to uniquely identify the security 505 * parameters denoted. 506 */ 507 508 sess_conf.userdata = (void *) sa; 509 510 ips->security.ses = rte_security_session_create(sec_ctx, 511 &sess_conf, skt_ctx->session_pool); 512 if (ips->security.ses == NULL) { 513 RTE_LOG(ERR, IPSEC, 514 "SEC Session init failed: err: %d\n", ret); 515 return -1; 516 } 517 518 sec_cap = rte_security_capabilities_get(sec_ctx); 519 if (sec_cap == NULL) { 520 RTE_LOG(ERR, IPSEC, 521 "No capabilities registered\n"); 522 return -1; 523 } 524 525 /* iterate until ESP tunnel*/ 526 while (sec_cap->action != 527 RTE_SECURITY_ACTION_TYPE_NONE) { 528 if (sec_cap->action == ips->type && 529 sec_cap->protocol == 530 RTE_SECURITY_PROTOCOL_IPSEC && 531 sec_cap->ipsec.mode == 532 sess_conf.ipsec.mode && 533 sec_cap->ipsec.direction == sa->direction) 534 break; 535 sec_cap++; 536 } 537 538 if (sec_cap->action == RTE_SECURITY_ACTION_TYPE_NONE) { 539 RTE_LOG(ERR, IPSEC, 540 "No suitable security capability found\n"); 541 return -1; 542 } 543 544 ips->security.ol_flags = sec_cap->ol_flags; 545 ips->security.ctx = sec_ctx; 546 } 547 548 return 0; 549 } 550 551 int 552 create_ipsec_esp_flow(struct ipsec_sa *sa) 553 { 554 int ret = 0; 555 struct rte_flow_error err = {}; 556 if (sa->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) { 557 RTE_LOG(ERR, IPSEC, 558 "No Flow director rule for Egress traffic\n"); 559 return -1; 560 } 561 if (sa->flags == TRANSPORT) { 562 RTE_LOG(ERR, IPSEC, 563 "No Flow director rule for transport mode\n"); 564 return -1; 565 } 566 sa->action[0].type = RTE_FLOW_ACTION_TYPE_QUEUE; 567 sa->pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH; 568 sa->action[0].conf = &(struct rte_flow_action_queue) { 569 .index = sa->fdir_qid, 570 }; 571 sa->attr.egress = 0; 572 sa->attr.ingress = 1; 573 if (IS_IP6(sa->flags)) { 574 sa->pattern[1].mask = &rte_flow_item_ipv6_mask; 575 sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV6; 576 sa->pattern[1].spec = &sa->ipv6_spec; 577 memcpy(sa->ipv6_spec.hdr.dst_addr, 578 sa->dst.ip.ip6.ip6_b, sizeof(sa->dst.ip.ip6.ip6_b)); 579 memcpy(sa->ipv6_spec.hdr.src_addr, 580 sa->src.ip.ip6.ip6_b, sizeof(sa->src.ip.ip6.ip6_b)); 581 sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_ESP; 582 sa->pattern[2].spec = &sa->esp_spec; 583 sa->pattern[2].mask = &rte_flow_item_esp_mask; 584 sa->esp_spec.hdr.spi = rte_cpu_to_be_32(sa->spi); 585 sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_END; 586 } else if (IS_IP4(sa->flags)) { 587 sa->pattern[1].mask = &rte_flow_item_ipv4_mask; 588 sa->pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV4; 589 sa->pattern[1].spec = &sa->ipv4_spec; 590 sa->ipv4_spec.hdr.dst_addr = sa->dst.ip.ip4; 591 sa->ipv4_spec.hdr.src_addr = sa->src.ip.ip4; 592 sa->pattern[2].type = RTE_FLOW_ITEM_TYPE_ESP; 593 sa->pattern[2].spec = &sa->esp_spec; 594 sa->pattern[2].mask = &rte_flow_item_esp_mask; 595 sa->esp_spec.hdr.spi = rte_cpu_to_be_32(sa->spi); 596 sa->pattern[3].type = RTE_FLOW_ITEM_TYPE_END; 597 } 598 sa->action[1].type = RTE_FLOW_ACTION_TYPE_END; 599 600 ret = rte_flow_validate(sa->portid, &sa->attr, sa->pattern, sa->action, 601 &err); 602 if (ret < 0) { 603 RTE_LOG(ERR, IPSEC, "Flow validation failed %s\n", err.message); 604 return ret; 605 } 606 607 sa->flow = rte_flow_create(sa->portid, &sa->attr, sa->pattern, 608 sa->action, &err); 609 if (!sa->flow) { 610 RTE_LOG(ERR, IPSEC, "Flow creation failed %s\n", err.message); 611 return -1; 612 } 613 614 return 0; 615 } 616 617 /* 618 * queue crypto-ops into PMD queue. 619 */ 620 void 621 enqueue_cop_burst(struct cdev_qp *cqp) 622 { 623 uint32_t i, len, ret; 624 625 len = cqp->len; 626 ret = rte_cryptodev_enqueue_burst(cqp->id, cqp->qp, cqp->buf, len); 627 if (ret < len) { 628 RTE_LOG_DP(DEBUG, IPSEC, "Cryptodev %u queue %u:" 629 " enqueued %u crypto ops out of %u\n", 630 cqp->id, cqp->qp, ret, len); 631 /* drop packets that we fail to enqueue */ 632 for (i = ret; i < len; i++) 633 free_pkts(&cqp->buf[i]->sym->m_src, 1); 634 } 635 cqp->in_flight += ret; 636 cqp->len = 0; 637 } 638 639 static inline void 640 enqueue_cop(struct cdev_qp *cqp, struct rte_crypto_op *cop) 641 { 642 cqp->buf[cqp->len++] = cop; 643 644 if (cqp->len == MAX_PKT_BURST) 645 enqueue_cop_burst(cqp); 646 } 647 648 static inline void 649 ipsec_enqueue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx, 650 struct rte_mbuf *pkts[], void *sas[], 651 uint16_t nb_pkts) 652 { 653 int32_t ret = 0, i; 654 struct ipsec_mbuf_metadata *priv; 655 struct rte_crypto_sym_op *sym_cop; 656 struct ipsec_sa *sa; 657 struct rte_ipsec_session *ips; 658 659 for (i = 0; i < nb_pkts; i++) { 660 if (unlikely(sas[i] == NULL)) { 661 free_pkts(&pkts[i], 1); 662 continue; 663 } 664 665 rte_prefetch0(sas[i]); 666 rte_prefetch0(pkts[i]); 667 668 priv = get_priv(pkts[i]); 669 sa = ipsec_mask_saptr(sas[i]); 670 priv->sa = sa; 671 ips = ipsec_get_primary_session(sa); 672 673 switch (ips->type) { 674 case RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL: 675 priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC; 676 priv->cop.status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 677 678 rte_prefetch0(&priv->sym_cop); 679 680 if (unlikely(ips->security.ses == NULL)) { 681 free_pkts(&pkts[i], 1); 682 continue; 683 } 684 685 if (unlikely((pkts[i]->packet_type & 686 (RTE_PTYPE_TUNNEL_MASK | 687 RTE_PTYPE_L4_MASK)) == 688 MBUF_PTYPE_TUNNEL_ESP_IN_UDP && 689 sa->udp_encap != 1)) { 690 free_pkts(&pkts[i], 1); 691 continue; 692 } 693 694 sym_cop = get_sym_cop(&priv->cop); 695 sym_cop->m_src = pkts[i]; 696 697 rte_security_attach_session(&priv->cop, 698 ips->security.ses); 699 break; 700 701 case RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO: 702 RTE_LOG(ERR, IPSEC, "CPU crypto is not supported by the" 703 " legacy mode."); 704 free_pkts(&pkts[i], 1); 705 continue; 706 707 case RTE_SECURITY_ACTION_TYPE_NONE: 708 709 priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC; 710 priv->cop.status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 711 712 rte_prefetch0(&priv->sym_cop); 713 714 if (unlikely(ips->crypto.ses == NULL)) { 715 free_pkts(&pkts[i], 1); 716 continue; 717 } 718 719 rte_crypto_op_attach_sym_session(&priv->cop, 720 ips->crypto.ses); 721 722 ret = xform_func(pkts[i], sa, &priv->cop); 723 if (unlikely(ret)) { 724 free_pkts(&pkts[i], 1); 725 continue; 726 } 727 break; 728 case RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL: 729 RTE_ASSERT(ips->security.ses != NULL); 730 ipsec_ctx->ol_pkts[ipsec_ctx->ol_pkts_cnt++] = pkts[i]; 731 if (ips->security.ol_flags & 732 RTE_SECURITY_TX_OLOAD_NEED_MDATA) 733 rte_security_set_pkt_metadata( 734 ips->security.ctx, ips->security.ses, 735 pkts[i], NULL); 736 continue; 737 case RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO: 738 RTE_ASSERT(ips->security.ses != NULL); 739 priv->cop.type = RTE_CRYPTO_OP_TYPE_SYMMETRIC; 740 priv->cop.status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 741 742 rte_prefetch0(&priv->sym_cop); 743 rte_security_attach_session(&priv->cop, 744 ips->security.ses); 745 746 ret = xform_func(pkts[i], sa, &priv->cop); 747 if (unlikely(ret)) { 748 free_pkts(&pkts[i], 1); 749 continue; 750 } 751 752 ipsec_ctx->ol_pkts[ipsec_ctx->ol_pkts_cnt++] = pkts[i]; 753 if (ips->security.ol_flags & 754 RTE_SECURITY_TX_OLOAD_NEED_MDATA) 755 rte_security_set_pkt_metadata( 756 ips->security.ctx, ips->security.ses, 757 pkts[i], NULL); 758 continue; 759 } 760 761 enqueue_cop(sa->cqp[ipsec_ctx->lcore_id], &priv->cop); 762 } 763 } 764 765 static inline int32_t 766 ipsec_inline_dequeue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx, 767 struct rte_mbuf *pkts[], uint16_t max_pkts) 768 { 769 int32_t nb_pkts, ret; 770 struct ipsec_mbuf_metadata *priv; 771 struct ipsec_sa *sa; 772 struct rte_mbuf *pkt; 773 774 nb_pkts = 0; 775 while (ipsec_ctx->ol_pkts_cnt > 0 && nb_pkts < max_pkts) { 776 pkt = ipsec_ctx->ol_pkts[--ipsec_ctx->ol_pkts_cnt]; 777 rte_prefetch0(pkt); 778 priv = get_priv(pkt); 779 sa = priv->sa; 780 ret = xform_func(pkt, sa, &priv->cop); 781 if (unlikely(ret)) { 782 free_pkts(&pkt, 1); 783 continue; 784 } 785 pkts[nb_pkts++] = pkt; 786 } 787 788 return nb_pkts; 789 } 790 791 static inline int 792 ipsec_dequeue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx, 793 struct rte_mbuf *pkts[], uint16_t max_pkts) 794 { 795 int32_t nb_pkts = 0, ret = 0, i, j, nb_cops; 796 struct ipsec_mbuf_metadata *priv; 797 struct rte_crypto_op *cops[max_pkts]; 798 struct ipsec_sa *sa; 799 struct rte_mbuf *pkt; 800 801 for (i = 0; i < ipsec_ctx->nb_qps && nb_pkts < max_pkts; i++) { 802 struct cdev_qp *cqp; 803 804 cqp = &ipsec_ctx->tbl[ipsec_ctx->last_qp++]; 805 if (ipsec_ctx->last_qp == ipsec_ctx->nb_qps) 806 ipsec_ctx->last_qp %= ipsec_ctx->nb_qps; 807 808 if (cqp->in_flight == 0) 809 continue; 810 811 nb_cops = rte_cryptodev_dequeue_burst(cqp->id, cqp->qp, 812 cops, max_pkts - nb_pkts); 813 814 cqp->in_flight -= nb_cops; 815 816 for (j = 0; j < nb_cops; j++) { 817 pkt = cops[j]->sym->m_src; 818 rte_prefetch0(pkt); 819 820 priv = get_priv(pkt); 821 sa = priv->sa; 822 823 RTE_ASSERT(sa != NULL); 824 825 if (ipsec_get_action_type(sa) == 826 RTE_SECURITY_ACTION_TYPE_NONE) { 827 ret = xform_func(pkt, sa, cops[j]); 828 if (unlikely(ret)) { 829 free_pkts(&pkt, 1); 830 continue; 831 } 832 } else if (ipsec_get_action_type(sa) == 833 RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL) { 834 if (cops[j]->status) { 835 free_pkts(&pkt, 1); 836 continue; 837 } 838 } 839 pkts[nb_pkts++] = pkt; 840 } 841 } 842 843 /* return packets */ 844 return nb_pkts; 845 } 846 847 uint16_t 848 ipsec_inbound(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[], 849 uint16_t nb_pkts, uint16_t len) 850 { 851 void *sas[nb_pkts]; 852 853 inbound_sa_lookup(ctx->sa_ctx, pkts, sas, nb_pkts); 854 855 ipsec_enqueue(esp_inbound, ctx, pkts, sas, nb_pkts); 856 857 return ipsec_inline_dequeue(esp_inbound_post, ctx, pkts, len); 858 } 859 860 uint16_t 861 ipsec_inbound_cqp_dequeue(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[], 862 uint16_t len) 863 { 864 return ipsec_dequeue(esp_inbound_post, ctx, pkts, len); 865 } 866 867 uint16_t 868 ipsec_outbound(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[], 869 uint32_t sa_idx[], uint16_t nb_pkts, uint16_t len) 870 { 871 void *sas[nb_pkts]; 872 873 outbound_sa_lookup(ctx->sa_ctx, sa_idx, sas, nb_pkts); 874 875 ipsec_enqueue(esp_outbound, ctx, pkts, sas, nb_pkts); 876 877 return ipsec_inline_dequeue(esp_outbound_post, ctx, pkts, len); 878 } 879 880 uint16_t 881 ipsec_outbound_cqp_dequeue(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[], 882 uint16_t len) 883 { 884 return ipsec_dequeue(esp_outbound_post, ctx, pkts, len); 885 } 886