xref: /dpdk/examples/ipsec-secgw/ipsec-secgw.c (revision b922dbd38cedc41e5791ab290b43fcfbbcf2259c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016 Intel Corporation
3  */
4 
5 #include <stdbool.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <stdint.h>
9 #include <inttypes.h>
10 #include <sys/types.h>
11 #include <netinet/in.h>
12 #include <netinet/ip.h>
13 #include <netinet/ip6.h>
14 #include <string.h>
15 #include <sys/queue.h>
16 #include <stdarg.h>
17 #include <errno.h>
18 #include <signal.h>
19 #include <getopt.h>
20 
21 #include <rte_common.h>
22 #include <rte_bitmap.h>
23 #include <rte_byteorder.h>
24 #include <rte_log.h>
25 #include <rte_eal.h>
26 #include <rte_launch.h>
27 #include <rte_atomic.h>
28 #include <rte_cycles.h>
29 #include <rte_prefetch.h>
30 #include <rte_lcore.h>
31 #include <rte_per_lcore.h>
32 #include <rte_branch_prediction.h>
33 #include <rte_interrupts.h>
34 #include <rte_random.h>
35 #include <rte_debug.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_mempool.h>
39 #include <rte_mbuf.h>
40 #include <rte_acl.h>
41 #include <rte_lpm.h>
42 #include <rte_lpm6.h>
43 #include <rte_hash.h>
44 #include <rte_jhash.h>
45 #include <rte_cryptodev.h>
46 #include <rte_security.h>
47 #include <rte_eventdev.h>
48 #include <rte_ip.h>
49 #include <rte_ip_frag.h>
50 
51 #include "event_helper.h"
52 #include "ipsec.h"
53 #include "ipsec_worker.h"
54 #include "parser.h"
55 #include "sad.h"
56 
57 volatile bool force_quit;
58 
59 #define MAX_JUMBO_PKT_LEN  9600
60 
61 #define MEMPOOL_CACHE_SIZE 256
62 
63 #define CDEV_QUEUE_DESC 2048
64 #define CDEV_MAP_ENTRIES 16384
65 #define CDEV_MP_CACHE_SZ 64
66 #define MAX_QUEUE_PAIRS 1
67 
68 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
69 
70 /* Configure how many packets ahead to prefetch, when reading packets */
71 #define PREFETCH_OFFSET	3
72 
73 #define MAX_RX_QUEUE_PER_LCORE 16
74 
75 #define MAX_LCORE_PARAMS 1024
76 
77 /*
78  * Configurable number of RX/TX ring descriptors
79  */
80 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024
81 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024
82 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
83 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
84 
85 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
86 		(addr)->addr_bytes[0], (addr)->addr_bytes[1], \
87 		(addr)->addr_bytes[2], (addr)->addr_bytes[3], \
88 		(addr)->addr_bytes[4], (addr)->addr_bytes[5], \
89 		0, 0)
90 
91 #define	FRAG_TBL_BUCKET_ENTRIES	4
92 #define	MAX_FRAG_TTL_NS		(10LL * NS_PER_S)
93 
94 #define MTU_TO_FRAMELEN(x)	((x) + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN)
95 
96 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
97 	{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
98 	{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
99 	{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
100 	{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
101 };
102 
103 struct flow_info flow_info_tbl[RTE_MAX_ETHPORTS];
104 
105 #define CMD_LINE_OPT_CONFIG		"config"
106 #define CMD_LINE_OPT_SINGLE_SA		"single-sa"
107 #define CMD_LINE_OPT_CRYPTODEV_MASK	"cryptodev_mask"
108 #define CMD_LINE_OPT_TRANSFER_MODE	"transfer-mode"
109 #define CMD_LINE_OPT_SCHEDULE_TYPE	"event-schedule-type"
110 #define CMD_LINE_OPT_RX_OFFLOAD		"rxoffload"
111 #define CMD_LINE_OPT_TX_OFFLOAD		"txoffload"
112 #define CMD_LINE_OPT_REASSEMBLE		"reassemble"
113 #define CMD_LINE_OPT_MTU		"mtu"
114 #define CMD_LINE_OPT_FRAG_TTL		"frag-ttl"
115 
116 #define CMD_LINE_ARG_EVENT	"event"
117 #define CMD_LINE_ARG_POLL	"poll"
118 #define CMD_LINE_ARG_ORDERED	"ordered"
119 #define CMD_LINE_ARG_ATOMIC	"atomic"
120 #define CMD_LINE_ARG_PARALLEL	"parallel"
121 
122 enum {
123 	/* long options mapped to a short option */
124 
125 	/* first long only option value must be >= 256, so that we won't
126 	 * conflict with short options
127 	 */
128 	CMD_LINE_OPT_MIN_NUM = 256,
129 	CMD_LINE_OPT_CONFIG_NUM,
130 	CMD_LINE_OPT_SINGLE_SA_NUM,
131 	CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
132 	CMD_LINE_OPT_TRANSFER_MODE_NUM,
133 	CMD_LINE_OPT_SCHEDULE_TYPE_NUM,
134 	CMD_LINE_OPT_RX_OFFLOAD_NUM,
135 	CMD_LINE_OPT_TX_OFFLOAD_NUM,
136 	CMD_LINE_OPT_REASSEMBLE_NUM,
137 	CMD_LINE_OPT_MTU_NUM,
138 	CMD_LINE_OPT_FRAG_TTL_NUM,
139 };
140 
141 static const struct option lgopts[] = {
142 	{CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
143 	{CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
144 	{CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
145 	{CMD_LINE_OPT_TRANSFER_MODE, 1, 0, CMD_LINE_OPT_TRANSFER_MODE_NUM},
146 	{CMD_LINE_OPT_SCHEDULE_TYPE, 1, 0, CMD_LINE_OPT_SCHEDULE_TYPE_NUM},
147 	{CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM},
148 	{CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM},
149 	{CMD_LINE_OPT_REASSEMBLE, 1, 0, CMD_LINE_OPT_REASSEMBLE_NUM},
150 	{CMD_LINE_OPT_MTU, 1, 0, CMD_LINE_OPT_MTU_NUM},
151 	{CMD_LINE_OPT_FRAG_TTL, 1, 0, CMD_LINE_OPT_FRAG_TTL_NUM},
152 	{NULL, 0, 0, 0}
153 };
154 
155 uint32_t unprotected_port_mask;
156 uint32_t single_sa_idx;
157 /* mask of enabled ports */
158 static uint32_t enabled_port_mask;
159 static uint64_t enabled_cryptodev_mask = UINT64_MAX;
160 static int32_t promiscuous_on = 1;
161 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
162 static uint32_t nb_lcores;
163 static uint32_t single_sa;
164 static uint32_t nb_bufs_in_pool;
165 
166 /*
167  * RX/TX HW offload capabilities to enable/use on ethernet ports.
168  * By default all capabilities are enabled.
169  */
170 static uint64_t dev_rx_offload = UINT64_MAX;
171 static uint64_t dev_tx_offload = UINT64_MAX;
172 
173 /*
174  * global values that determine multi-seg policy
175  */
176 static uint32_t frag_tbl_sz;
177 static uint32_t frame_buf_size = RTE_MBUF_DEFAULT_BUF_SIZE;
178 static uint32_t mtu_size = RTE_ETHER_MTU;
179 static uint64_t frag_ttl_ns = MAX_FRAG_TTL_NS;
180 
181 /* application wide librte_ipsec/SA parameters */
182 struct app_sa_prm app_sa_prm = {
183 			.enable = 0,
184 			.cache_sz = SA_CACHE_SZ
185 		};
186 static const char *cfgfile;
187 
188 struct lcore_rx_queue {
189 	uint16_t port_id;
190 	uint8_t queue_id;
191 } __rte_cache_aligned;
192 
193 struct lcore_params {
194 	uint16_t port_id;
195 	uint8_t queue_id;
196 	uint8_t lcore_id;
197 } __rte_cache_aligned;
198 
199 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
200 
201 static struct lcore_params *lcore_params;
202 static uint16_t nb_lcore_params;
203 
204 static struct rte_hash *cdev_map_in;
205 static struct rte_hash *cdev_map_out;
206 
207 struct buffer {
208 	uint16_t len;
209 	struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
210 };
211 
212 struct lcore_conf {
213 	uint16_t nb_rx_queue;
214 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
215 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
216 	struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
217 	struct ipsec_ctx inbound;
218 	struct ipsec_ctx outbound;
219 	struct rt_ctx *rt4_ctx;
220 	struct rt_ctx *rt6_ctx;
221 	struct {
222 		struct rte_ip_frag_tbl *tbl;
223 		struct rte_mempool *pool_dir;
224 		struct rte_mempool *pool_indir;
225 		struct rte_ip_frag_death_row dr;
226 	} frag;
227 } __rte_cache_aligned;
228 
229 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
230 
231 static struct rte_eth_conf port_conf = {
232 	.rxmode = {
233 		.mq_mode	= ETH_MQ_RX_RSS,
234 		.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
235 		.split_hdr_size = 0,
236 		.offloads = DEV_RX_OFFLOAD_CHECKSUM,
237 	},
238 	.rx_adv_conf = {
239 		.rss_conf = {
240 			.rss_key = NULL,
241 			.rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
242 				ETH_RSS_TCP | ETH_RSS_SCTP,
243 		},
244 	},
245 	.txmode = {
246 		.mq_mode = ETH_MQ_TX_NONE,
247 	},
248 };
249 
250 struct socket_ctx socket_ctx[NB_SOCKETS];
251 
252 /*
253  * Determine is multi-segment support required:
254  *  - either frame buffer size is smaller then mtu
255  *  - or reassmeble support is requested
256  */
257 static int
258 multi_seg_required(void)
259 {
260 	return (MTU_TO_FRAMELEN(mtu_size) + RTE_PKTMBUF_HEADROOM >
261 		frame_buf_size || frag_tbl_sz != 0);
262 }
263 
264 static inline void
265 adjust_ipv4_pktlen(struct rte_mbuf *m, const struct rte_ipv4_hdr *iph,
266 	uint32_t l2_len)
267 {
268 	uint32_t plen, trim;
269 
270 	plen = rte_be_to_cpu_16(iph->total_length) + l2_len;
271 	if (plen < m->pkt_len) {
272 		trim = m->pkt_len - plen;
273 		rte_pktmbuf_trim(m, trim);
274 	}
275 }
276 
277 static inline void
278 adjust_ipv6_pktlen(struct rte_mbuf *m, const struct rte_ipv6_hdr *iph,
279 	uint32_t l2_len)
280 {
281 	uint32_t plen, trim;
282 
283 	plen = rte_be_to_cpu_16(iph->payload_len) + sizeof(*iph) + l2_len;
284 	if (plen < m->pkt_len) {
285 		trim = m->pkt_len - plen;
286 		rte_pktmbuf_trim(m, trim);
287 	}
288 }
289 
290 static inline void
291 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
292 {
293 	const struct rte_ether_hdr *eth;
294 	const struct rte_ipv4_hdr *iph4;
295 	const struct rte_ipv6_hdr *iph6;
296 
297 	eth = rte_pktmbuf_mtod(pkt, const struct rte_ether_hdr *);
298 	if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
299 
300 		iph4 = (const struct rte_ipv4_hdr *)rte_pktmbuf_adj(pkt,
301 			RTE_ETHER_HDR_LEN);
302 		adjust_ipv4_pktlen(pkt, iph4, 0);
303 
304 		if (iph4->next_proto_id == IPPROTO_ESP)
305 			t->ipsec.pkts[(t->ipsec.num)++] = pkt;
306 		else {
307 			t->ip4.data[t->ip4.num] = &iph4->next_proto_id;
308 			t->ip4.pkts[(t->ip4.num)++] = pkt;
309 		}
310 		pkt->l2_len = 0;
311 		pkt->l3_len = sizeof(*iph4);
312 		pkt->packet_type |= RTE_PTYPE_L3_IPV4;
313 	} else if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
314 		int next_proto;
315 		size_t l3len, ext_len;
316 		uint8_t *p;
317 
318 		/* get protocol type */
319 		iph6 = (const struct rte_ipv6_hdr *)rte_pktmbuf_adj(pkt,
320 			RTE_ETHER_HDR_LEN);
321 		adjust_ipv6_pktlen(pkt, iph6, 0);
322 
323 		next_proto = iph6->proto;
324 
325 		/* determine l3 header size up to ESP extension */
326 		l3len = sizeof(struct ip6_hdr);
327 		p = rte_pktmbuf_mtod(pkt, uint8_t *);
328 		while (next_proto != IPPROTO_ESP && l3len < pkt->data_len &&
329 			(next_proto = rte_ipv6_get_next_ext(p + l3len,
330 						next_proto, &ext_len)) >= 0)
331 			l3len += ext_len;
332 
333 		/* drop packet when IPv6 header exceeds first segment length */
334 		if (unlikely(l3len > pkt->data_len)) {
335 			rte_pktmbuf_free(pkt);
336 			return;
337 		}
338 
339 		if (next_proto == IPPROTO_ESP)
340 			t->ipsec.pkts[(t->ipsec.num)++] = pkt;
341 		else {
342 			t->ip6.data[t->ip6.num] = &iph6->proto;
343 			t->ip6.pkts[(t->ip6.num)++] = pkt;
344 		}
345 		pkt->l2_len = 0;
346 		pkt->l3_len = l3len;
347 		pkt->packet_type |= RTE_PTYPE_L3_IPV6;
348 	} else {
349 		/* Unknown/Unsupported type, drop the packet */
350 		RTE_LOG(ERR, IPSEC, "Unsupported packet type 0x%x\n",
351 			rte_be_to_cpu_16(eth->ether_type));
352 		rte_pktmbuf_free(pkt);
353 		return;
354 	}
355 
356 	/* Check if the packet has been processed inline. For inline protocol
357 	 * processed packets, the metadata in the mbuf can be used to identify
358 	 * the security processing done on the packet. The metadata will be
359 	 * used to retrieve the application registered userdata associated
360 	 * with the security session.
361 	 */
362 
363 	if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD) {
364 		struct ipsec_sa *sa;
365 		struct ipsec_mbuf_metadata *priv;
366 		struct rte_security_ctx *ctx = (struct rte_security_ctx *)
367 						rte_eth_dev_get_sec_ctx(
368 						pkt->port);
369 
370 		/* Retrieve the userdata registered. Here, the userdata
371 		 * registered is the SA pointer.
372 		 */
373 
374 		sa = (struct ipsec_sa *)
375 				rte_security_get_userdata(ctx, pkt->udata64);
376 
377 		if (sa == NULL) {
378 			/* userdata could not be retrieved */
379 			return;
380 		}
381 
382 		/* Save SA as priv member in mbuf. This will be used in the
383 		 * IPsec selector(SP-SA) check.
384 		 */
385 
386 		priv = get_priv(pkt);
387 		priv->sa = sa;
388 	}
389 }
390 
391 static inline void
392 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
393 		uint16_t nb_pkts)
394 {
395 	int32_t i;
396 
397 	t->ipsec.num = 0;
398 	t->ip4.num = 0;
399 	t->ip6.num = 0;
400 
401 	for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
402 		rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
403 					void *));
404 		prepare_one_packet(pkts[i], t);
405 	}
406 	/* Process left packets */
407 	for (; i < nb_pkts; i++)
408 		prepare_one_packet(pkts[i], t);
409 }
410 
411 static inline void
412 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port,
413 		const struct lcore_conf *qconf)
414 {
415 	struct ip *ip;
416 	struct rte_ether_hdr *ethhdr;
417 
418 	ip = rte_pktmbuf_mtod(pkt, struct ip *);
419 
420 	ethhdr = (struct rte_ether_hdr *)
421 		rte_pktmbuf_prepend(pkt, RTE_ETHER_HDR_LEN);
422 
423 	if (ip->ip_v == IPVERSION) {
424 		pkt->ol_flags |= qconf->outbound.ipv4_offloads;
425 		pkt->l3_len = sizeof(struct ip);
426 		pkt->l2_len = RTE_ETHER_HDR_LEN;
427 
428 		ip->ip_sum = 0;
429 
430 		/* calculate IPv4 cksum in SW */
431 		if ((pkt->ol_flags & PKT_TX_IP_CKSUM) == 0)
432 			ip->ip_sum = rte_ipv4_cksum((struct rte_ipv4_hdr *)ip);
433 
434 		ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
435 	} else {
436 		pkt->ol_flags |= qconf->outbound.ipv6_offloads;
437 		pkt->l3_len = sizeof(struct ip6_hdr);
438 		pkt->l2_len = RTE_ETHER_HDR_LEN;
439 
440 		ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
441 	}
442 
443 	memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
444 			sizeof(struct rte_ether_addr));
445 	memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
446 			sizeof(struct rte_ether_addr));
447 }
448 
449 static inline void
450 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port,
451 		const struct lcore_conf *qconf)
452 {
453 	int32_t i;
454 	const int32_t prefetch_offset = 2;
455 
456 	for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
457 		rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
458 		prepare_tx_pkt(pkts[i], port, qconf);
459 	}
460 	/* Process left packets */
461 	for (; i < nb_pkts; i++)
462 		prepare_tx_pkt(pkts[i], port, qconf);
463 }
464 
465 /* Send burst of packets on an output interface */
466 static inline int32_t
467 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
468 {
469 	struct rte_mbuf **m_table;
470 	int32_t ret;
471 	uint16_t queueid;
472 
473 	queueid = qconf->tx_queue_id[port];
474 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
475 
476 	prepare_tx_burst(m_table, n, port, qconf);
477 
478 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
479 	if (unlikely(ret < n)) {
480 		do {
481 			rte_pktmbuf_free(m_table[ret]);
482 		} while (++ret < n);
483 	}
484 
485 	return 0;
486 }
487 
488 /*
489  * Helper function to fragment and queue for TX one packet.
490  */
491 static inline uint32_t
492 send_fragment_packet(struct lcore_conf *qconf, struct rte_mbuf *m,
493 	uint16_t port, uint8_t proto)
494 {
495 	struct buffer *tbl;
496 	uint32_t len, n;
497 	int32_t rc;
498 
499 	tbl =  qconf->tx_mbufs + port;
500 	len = tbl->len;
501 
502 	/* free space for new fragments */
503 	if (len + RTE_LIBRTE_IP_FRAG_MAX_FRAG >=  RTE_DIM(tbl->m_table)) {
504 		send_burst(qconf, len, port);
505 		len = 0;
506 	}
507 
508 	n = RTE_DIM(tbl->m_table) - len;
509 
510 	if (proto == IPPROTO_IP)
511 		rc = rte_ipv4_fragment_packet(m, tbl->m_table + len,
512 			n, mtu_size, qconf->frag.pool_dir,
513 			qconf->frag.pool_indir);
514 	else
515 		rc = rte_ipv6_fragment_packet(m, tbl->m_table + len,
516 			n, mtu_size, qconf->frag.pool_dir,
517 			qconf->frag.pool_indir);
518 
519 	if (rc >= 0)
520 		len += rc;
521 	else
522 		RTE_LOG(ERR, IPSEC,
523 			"%s: failed to fragment packet with size %u, "
524 			"error code: %d\n",
525 			__func__, m->pkt_len, rte_errno);
526 
527 	rte_pktmbuf_free(m);
528 	return len;
529 }
530 
531 /* Enqueue a single packet, and send burst if queue is filled */
532 static inline int32_t
533 send_single_packet(struct rte_mbuf *m, uint16_t port, uint8_t proto)
534 {
535 	uint32_t lcore_id;
536 	uint16_t len;
537 	struct lcore_conf *qconf;
538 
539 	lcore_id = rte_lcore_id();
540 
541 	qconf = &lcore_conf[lcore_id];
542 	len = qconf->tx_mbufs[port].len;
543 
544 	if (m->pkt_len <= mtu_size) {
545 		qconf->tx_mbufs[port].m_table[len] = m;
546 		len++;
547 
548 	/* need to fragment the packet */
549 	} else if (frag_tbl_sz > 0)
550 		len = send_fragment_packet(qconf, m, port, proto);
551 	else
552 		rte_pktmbuf_free(m);
553 
554 	/* enough pkts to be sent */
555 	if (unlikely(len == MAX_PKT_BURST)) {
556 		send_burst(qconf, MAX_PKT_BURST, port);
557 		len = 0;
558 	}
559 
560 	qconf->tx_mbufs[port].len = len;
561 	return 0;
562 }
563 
564 static inline void
565 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
566 		uint16_t lim)
567 {
568 	struct rte_mbuf *m;
569 	uint32_t i, j, res, sa_idx;
570 
571 	if (ip->num == 0 || sp == NULL)
572 		return;
573 
574 	rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
575 			ip->num, DEFAULT_MAX_CATEGORIES);
576 
577 	j = 0;
578 	for (i = 0; i < ip->num; i++) {
579 		m = ip->pkts[i];
580 		res = ip->res[i];
581 		if (res == BYPASS) {
582 			ip->pkts[j++] = m;
583 			continue;
584 		}
585 		if (res == DISCARD) {
586 			rte_pktmbuf_free(m);
587 			continue;
588 		}
589 
590 		/* Only check SPI match for processed IPSec packets */
591 		if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) {
592 			rte_pktmbuf_free(m);
593 			continue;
594 		}
595 
596 		sa_idx = res - 1;
597 		if (!inbound_sa_check(sa, m, sa_idx)) {
598 			rte_pktmbuf_free(m);
599 			continue;
600 		}
601 		ip->pkts[j++] = m;
602 	}
603 	ip->num = j;
604 }
605 
606 static void
607 split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num)
608 {
609 	uint32_t i, n4, n6;
610 	struct ip *ip;
611 	struct rte_mbuf *m;
612 
613 	n4 = trf->ip4.num;
614 	n6 = trf->ip6.num;
615 
616 	for (i = 0; i < num; i++) {
617 
618 		m = mb[i];
619 		ip = rte_pktmbuf_mtod(m, struct ip *);
620 
621 		if (ip->ip_v == IPVERSION) {
622 			trf->ip4.pkts[n4] = m;
623 			trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m,
624 					uint8_t *, offsetof(struct ip, ip_p));
625 			n4++;
626 		} else if (ip->ip_v == IP6_VERSION) {
627 			trf->ip6.pkts[n6] = m;
628 			trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m,
629 					uint8_t *,
630 					offsetof(struct ip6_hdr, ip6_nxt));
631 			n6++;
632 		} else
633 			rte_pktmbuf_free(m);
634 	}
635 
636 	trf->ip4.num = n4;
637 	trf->ip6.num = n6;
638 }
639 
640 
641 static inline void
642 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
643 		struct ipsec_traffic *traffic)
644 {
645 	uint16_t nb_pkts_in, n_ip4, n_ip6;
646 
647 	n_ip4 = traffic->ip4.num;
648 	n_ip6 = traffic->ip6.num;
649 
650 	if (app_sa_prm.enable == 0) {
651 		nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
652 				traffic->ipsec.num, MAX_PKT_BURST);
653 		split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in);
654 	} else {
655 		inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
656 			traffic->ipsec.saptr, traffic->ipsec.num);
657 		ipsec_process(ipsec_ctx, traffic);
658 	}
659 
660 	inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
661 			n_ip4);
662 
663 	inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
664 			n_ip6);
665 }
666 
667 static inline void
668 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
669 		struct traffic_type *ipsec)
670 {
671 	struct rte_mbuf *m;
672 	uint32_t i, j, sa_idx;
673 
674 	if (ip->num == 0 || sp == NULL)
675 		return;
676 
677 	rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
678 			ip->num, DEFAULT_MAX_CATEGORIES);
679 
680 	j = 0;
681 	for (i = 0; i < ip->num; i++) {
682 		m = ip->pkts[i];
683 		sa_idx = ip->res[i] - 1;
684 		if (ip->res[i] == DISCARD)
685 			rte_pktmbuf_free(m);
686 		else if (ip->res[i] == BYPASS)
687 			ip->pkts[j++] = m;
688 		else {
689 			ipsec->res[ipsec->num] = sa_idx;
690 			ipsec->pkts[ipsec->num++] = m;
691 		}
692 	}
693 	ip->num = j;
694 }
695 
696 static inline void
697 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
698 		struct ipsec_traffic *traffic)
699 {
700 	struct rte_mbuf *m;
701 	uint16_t idx, nb_pkts_out, i;
702 
703 	/* Drop any IPsec traffic from protected ports */
704 	for (i = 0; i < traffic->ipsec.num; i++)
705 		rte_pktmbuf_free(traffic->ipsec.pkts[i]);
706 
707 	traffic->ipsec.num = 0;
708 
709 	outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
710 
711 	outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
712 
713 	if (app_sa_prm.enable == 0) {
714 
715 		nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
716 				traffic->ipsec.res, traffic->ipsec.num,
717 				MAX_PKT_BURST);
718 
719 		for (i = 0; i < nb_pkts_out; i++) {
720 			m = traffic->ipsec.pkts[i];
721 			struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
722 			if (ip->ip_v == IPVERSION) {
723 				idx = traffic->ip4.num++;
724 				traffic->ip4.pkts[idx] = m;
725 			} else {
726 				idx = traffic->ip6.num++;
727 				traffic->ip6.pkts[idx] = m;
728 			}
729 		}
730 	} else {
731 		outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
732 			traffic->ipsec.saptr, traffic->ipsec.num);
733 		ipsec_process(ipsec_ctx, traffic);
734 	}
735 }
736 
737 static inline void
738 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
739 		struct ipsec_traffic *traffic)
740 {
741 	struct rte_mbuf *m;
742 	uint32_t nb_pkts_in, i, idx;
743 
744 	/* Drop any IPv4 traffic from unprotected ports */
745 	for (i = 0; i < traffic->ip4.num; i++)
746 		rte_pktmbuf_free(traffic->ip4.pkts[i]);
747 
748 	traffic->ip4.num = 0;
749 
750 	/* Drop any IPv6 traffic from unprotected ports */
751 	for (i = 0; i < traffic->ip6.num; i++)
752 		rte_pktmbuf_free(traffic->ip6.pkts[i]);
753 
754 	traffic->ip6.num = 0;
755 
756 	if (app_sa_prm.enable == 0) {
757 
758 		nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
759 				traffic->ipsec.num, MAX_PKT_BURST);
760 
761 		for (i = 0; i < nb_pkts_in; i++) {
762 			m = traffic->ipsec.pkts[i];
763 			struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
764 			if (ip->ip_v == IPVERSION) {
765 				idx = traffic->ip4.num++;
766 				traffic->ip4.pkts[idx] = m;
767 			} else {
768 				idx = traffic->ip6.num++;
769 				traffic->ip6.pkts[idx] = m;
770 			}
771 		}
772 	} else {
773 		inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
774 			traffic->ipsec.saptr, traffic->ipsec.num);
775 		ipsec_process(ipsec_ctx, traffic);
776 	}
777 }
778 
779 static inline void
780 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
781 		struct ipsec_traffic *traffic)
782 {
783 	struct rte_mbuf *m;
784 	uint32_t nb_pkts_out, i, n;
785 	struct ip *ip;
786 
787 	/* Drop any IPsec traffic from protected ports */
788 	for (i = 0; i < traffic->ipsec.num; i++)
789 		rte_pktmbuf_free(traffic->ipsec.pkts[i]);
790 
791 	n = 0;
792 
793 	for (i = 0; i < traffic->ip4.num; i++) {
794 		traffic->ipsec.pkts[n] = traffic->ip4.pkts[i];
795 		traffic->ipsec.res[n++] = single_sa_idx;
796 	}
797 
798 	for (i = 0; i < traffic->ip6.num; i++) {
799 		traffic->ipsec.pkts[n] = traffic->ip6.pkts[i];
800 		traffic->ipsec.res[n++] = single_sa_idx;
801 	}
802 
803 	traffic->ip4.num = 0;
804 	traffic->ip6.num = 0;
805 	traffic->ipsec.num = n;
806 
807 	if (app_sa_prm.enable == 0) {
808 
809 		nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
810 				traffic->ipsec.res, traffic->ipsec.num,
811 				MAX_PKT_BURST);
812 
813 		/* They all sue the same SA (ip4 or ip6 tunnel) */
814 		m = traffic->ipsec.pkts[0];
815 		ip = rte_pktmbuf_mtod(m, struct ip *);
816 		if (ip->ip_v == IPVERSION) {
817 			traffic->ip4.num = nb_pkts_out;
818 			for (i = 0; i < nb_pkts_out; i++)
819 				traffic->ip4.pkts[i] = traffic->ipsec.pkts[i];
820 		} else {
821 			traffic->ip6.num = nb_pkts_out;
822 			for (i = 0; i < nb_pkts_out; i++)
823 				traffic->ip6.pkts[i] = traffic->ipsec.pkts[i];
824 		}
825 	} else {
826 		outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
827 			traffic->ipsec.saptr, traffic->ipsec.num);
828 		ipsec_process(ipsec_ctx, traffic);
829 	}
830 }
831 
832 static inline int32_t
833 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
834 {
835 	struct ipsec_mbuf_metadata *priv;
836 	struct ipsec_sa *sa;
837 
838 	priv = get_priv(pkt);
839 
840 	sa = priv->sa;
841 	if (unlikely(sa == NULL)) {
842 		RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
843 		goto fail;
844 	}
845 
846 	if (is_ipv6)
847 		return sa->portid;
848 
849 	/* else */
850 	return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
851 
852 fail:
853 	if (is_ipv6)
854 		return -1;
855 
856 	/* else */
857 	return 0;
858 }
859 
860 static inline void
861 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
862 {
863 	uint32_t hop[MAX_PKT_BURST * 2];
864 	uint32_t dst_ip[MAX_PKT_BURST * 2];
865 	int32_t pkt_hop = 0;
866 	uint16_t i, offset;
867 	uint16_t lpm_pkts = 0;
868 
869 	if (nb_pkts == 0)
870 		return;
871 
872 	/* Need to do an LPM lookup for non-inline packets. Inline packets will
873 	 * have port ID in the SA
874 	 */
875 
876 	for (i = 0; i < nb_pkts; i++) {
877 		if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
878 			/* Security offload not enabled. So an LPM lookup is
879 			 * required to get the hop
880 			 */
881 			offset = offsetof(struct ip, ip_dst);
882 			dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
883 					uint32_t *, offset);
884 			dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
885 			lpm_pkts++;
886 		}
887 	}
888 
889 	rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
890 
891 	lpm_pkts = 0;
892 
893 	for (i = 0; i < nb_pkts; i++) {
894 		if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
895 			/* Read hop from the SA */
896 			pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
897 		} else {
898 			/* Need to use hop returned by lookup */
899 			pkt_hop = hop[lpm_pkts++];
900 		}
901 
902 		if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
903 			rte_pktmbuf_free(pkts[i]);
904 			continue;
905 		}
906 		send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IP);
907 	}
908 }
909 
910 static inline void
911 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
912 {
913 	int32_t hop[MAX_PKT_BURST * 2];
914 	uint8_t dst_ip[MAX_PKT_BURST * 2][16];
915 	uint8_t *ip6_dst;
916 	int32_t pkt_hop = 0;
917 	uint16_t i, offset;
918 	uint16_t lpm_pkts = 0;
919 
920 	if (nb_pkts == 0)
921 		return;
922 
923 	/* Need to do an LPM lookup for non-inline packets. Inline packets will
924 	 * have port ID in the SA
925 	 */
926 
927 	for (i = 0; i < nb_pkts; i++) {
928 		if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
929 			/* Security offload not enabled. So an LPM lookup is
930 			 * required to get the hop
931 			 */
932 			offset = offsetof(struct ip6_hdr, ip6_dst);
933 			ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
934 					offset);
935 			memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
936 			lpm_pkts++;
937 		}
938 	}
939 
940 	rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
941 			lpm_pkts);
942 
943 	lpm_pkts = 0;
944 
945 	for (i = 0; i < nb_pkts; i++) {
946 		if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
947 			/* Read hop from the SA */
948 			pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
949 		} else {
950 			/* Need to use hop returned by lookup */
951 			pkt_hop = hop[lpm_pkts++];
952 		}
953 
954 		if (pkt_hop == -1) {
955 			rte_pktmbuf_free(pkts[i]);
956 			continue;
957 		}
958 		send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IPV6);
959 	}
960 }
961 
962 static inline void
963 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
964 		uint8_t nb_pkts, uint16_t portid)
965 {
966 	struct ipsec_traffic traffic;
967 
968 	prepare_traffic(pkts, &traffic, nb_pkts);
969 
970 	if (unlikely(single_sa)) {
971 		if (is_unprotected_port(portid))
972 			process_pkts_inbound_nosp(&qconf->inbound, &traffic);
973 		else
974 			process_pkts_outbound_nosp(&qconf->outbound, &traffic);
975 	} else {
976 		if (is_unprotected_port(portid))
977 			process_pkts_inbound(&qconf->inbound, &traffic);
978 		else
979 			process_pkts_outbound(&qconf->outbound, &traffic);
980 	}
981 
982 	route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
983 	route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
984 }
985 
986 static inline void
987 drain_tx_buffers(struct lcore_conf *qconf)
988 {
989 	struct buffer *buf;
990 	uint32_t portid;
991 
992 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
993 		buf = &qconf->tx_mbufs[portid];
994 		if (buf->len == 0)
995 			continue;
996 		send_burst(qconf, buf->len, portid);
997 		buf->len = 0;
998 	}
999 }
1000 
1001 static inline void
1002 drain_crypto_buffers(struct lcore_conf *qconf)
1003 {
1004 	uint32_t i;
1005 	struct ipsec_ctx *ctx;
1006 
1007 	/* drain inbound buffers*/
1008 	ctx = &qconf->inbound;
1009 	for (i = 0; i != ctx->nb_qps; i++) {
1010 		if (ctx->tbl[i].len != 0)
1011 			enqueue_cop_burst(ctx->tbl  + i);
1012 	}
1013 
1014 	/* drain outbound buffers*/
1015 	ctx = &qconf->outbound;
1016 	for (i = 0; i != ctx->nb_qps; i++) {
1017 		if (ctx->tbl[i].len != 0)
1018 			enqueue_cop_burst(ctx->tbl  + i);
1019 	}
1020 }
1021 
1022 static void
1023 drain_inbound_crypto_queues(const struct lcore_conf *qconf,
1024 		struct ipsec_ctx *ctx)
1025 {
1026 	uint32_t n;
1027 	struct ipsec_traffic trf;
1028 
1029 	if (app_sa_prm.enable == 0) {
1030 
1031 		/* dequeue packets from crypto-queue */
1032 		n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1033 			RTE_DIM(trf.ipsec.pkts));
1034 
1035 		trf.ip4.num = 0;
1036 		trf.ip6.num = 0;
1037 
1038 		/* split traffic by ipv4-ipv6 */
1039 		split46_traffic(&trf, trf.ipsec.pkts, n);
1040 	} else
1041 		ipsec_cqp_process(ctx, &trf);
1042 
1043 	/* process ipv4 packets */
1044 	if (trf.ip4.num != 0) {
1045 		inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0);
1046 		route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1047 	}
1048 
1049 	/* process ipv6 packets */
1050 	if (trf.ip6.num != 0) {
1051 		inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0);
1052 		route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1053 	}
1054 }
1055 
1056 static void
1057 drain_outbound_crypto_queues(const struct lcore_conf *qconf,
1058 		struct ipsec_ctx *ctx)
1059 {
1060 	uint32_t n;
1061 	struct ipsec_traffic trf;
1062 
1063 	if (app_sa_prm.enable == 0) {
1064 
1065 		/* dequeue packets from crypto-queue */
1066 		n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts,
1067 			RTE_DIM(trf.ipsec.pkts));
1068 
1069 		trf.ip4.num = 0;
1070 		trf.ip6.num = 0;
1071 
1072 		/* split traffic by ipv4-ipv6 */
1073 		split46_traffic(&trf, trf.ipsec.pkts, n);
1074 	} else
1075 		ipsec_cqp_process(ctx, &trf);
1076 
1077 	/* process ipv4 packets */
1078 	if (trf.ip4.num != 0)
1079 		route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
1080 
1081 	/* process ipv6 packets */
1082 	if (trf.ip6.num != 0)
1083 		route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
1084 }
1085 
1086 /* main processing loop */
1087 void
1088 ipsec_poll_mode_worker(void)
1089 {
1090 	struct rte_mbuf *pkts[MAX_PKT_BURST];
1091 	uint32_t lcore_id;
1092 	uint64_t prev_tsc, diff_tsc, cur_tsc;
1093 	int32_t i, nb_rx;
1094 	uint16_t portid;
1095 	uint8_t queueid;
1096 	struct lcore_conf *qconf;
1097 	int32_t rc, socket_id;
1098 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
1099 			/ US_PER_S * BURST_TX_DRAIN_US;
1100 	struct lcore_rx_queue *rxql;
1101 
1102 	prev_tsc = 0;
1103 	lcore_id = rte_lcore_id();
1104 	qconf = &lcore_conf[lcore_id];
1105 	rxql = qconf->rx_queue_list;
1106 	socket_id = rte_lcore_to_socket_id(lcore_id);
1107 
1108 	qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
1109 	qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
1110 	qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
1111 	qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
1112 	qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
1113 	qconf->inbound.cdev_map = cdev_map_in;
1114 	qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
1115 	qconf->inbound.session_priv_pool =
1116 			socket_ctx[socket_id].session_priv_pool;
1117 	qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
1118 	qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
1119 	qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
1120 	qconf->outbound.cdev_map = cdev_map_out;
1121 	qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
1122 	qconf->outbound.session_priv_pool =
1123 			socket_ctx[socket_id].session_priv_pool;
1124 	qconf->frag.pool_dir = socket_ctx[socket_id].mbuf_pool;
1125 	qconf->frag.pool_indir = socket_ctx[socket_id].mbuf_pool_indir;
1126 
1127 	rc = ipsec_sad_lcore_cache_init(app_sa_prm.cache_sz);
1128 	if (rc != 0) {
1129 		RTE_LOG(ERR, IPSEC,
1130 			"SAD cache init on lcore %u, failed with code: %d\n",
1131 			lcore_id, rc);
1132 		return;
1133 	}
1134 
1135 	if (qconf->nb_rx_queue == 0) {
1136 		RTE_LOG(DEBUG, IPSEC, "lcore %u has nothing to do\n",
1137 			lcore_id);
1138 		return;
1139 	}
1140 
1141 	RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
1142 
1143 	for (i = 0; i < qconf->nb_rx_queue; i++) {
1144 		portid = rxql[i].port_id;
1145 		queueid = rxql[i].queue_id;
1146 		RTE_LOG(INFO, IPSEC,
1147 			" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
1148 			lcore_id, portid, queueid);
1149 	}
1150 
1151 	while (!force_quit) {
1152 		cur_tsc = rte_rdtsc();
1153 
1154 		/* TX queue buffer drain */
1155 		diff_tsc = cur_tsc - prev_tsc;
1156 
1157 		if (unlikely(diff_tsc > drain_tsc)) {
1158 			drain_tx_buffers(qconf);
1159 			drain_crypto_buffers(qconf);
1160 			prev_tsc = cur_tsc;
1161 		}
1162 
1163 		for (i = 0; i < qconf->nb_rx_queue; ++i) {
1164 
1165 			/* Read packets from RX queues */
1166 			portid = rxql[i].port_id;
1167 			queueid = rxql[i].queue_id;
1168 			nb_rx = rte_eth_rx_burst(portid, queueid,
1169 					pkts, MAX_PKT_BURST);
1170 
1171 			if (nb_rx > 0)
1172 				process_pkts(qconf, pkts, nb_rx, portid);
1173 
1174 			/* dequeue and process completed crypto-ops */
1175 			if (is_unprotected_port(portid))
1176 				drain_inbound_crypto_queues(qconf,
1177 					&qconf->inbound);
1178 			else
1179 				drain_outbound_crypto_queues(qconf,
1180 					&qconf->outbound);
1181 		}
1182 	}
1183 }
1184 
1185 int
1186 check_flow_params(uint16_t fdir_portid, uint8_t fdir_qid)
1187 {
1188 	uint16_t i;
1189 	uint16_t portid;
1190 	uint8_t queueid;
1191 
1192 	for (i = 0; i < nb_lcore_params; ++i) {
1193 		portid = lcore_params_array[i].port_id;
1194 		if (portid == fdir_portid) {
1195 			queueid = lcore_params_array[i].queue_id;
1196 			if (queueid == fdir_qid)
1197 				break;
1198 		}
1199 
1200 		if (i == nb_lcore_params - 1)
1201 			return -1;
1202 	}
1203 
1204 	return 1;
1205 }
1206 
1207 static int32_t
1208 check_poll_mode_params(struct eh_conf *eh_conf)
1209 {
1210 	uint8_t lcore;
1211 	uint16_t portid;
1212 	uint16_t i;
1213 	int32_t socket_id;
1214 
1215 	if (!eh_conf)
1216 		return -EINVAL;
1217 
1218 	if (eh_conf->mode != EH_PKT_TRANSFER_MODE_POLL)
1219 		return 0;
1220 
1221 	if (lcore_params == NULL) {
1222 		printf("Error: No port/queue/core mappings\n");
1223 		return -1;
1224 	}
1225 
1226 	for (i = 0; i < nb_lcore_params; ++i) {
1227 		lcore = lcore_params[i].lcore_id;
1228 		if (!rte_lcore_is_enabled(lcore)) {
1229 			printf("error: lcore %hhu is not enabled in "
1230 				"lcore mask\n", lcore);
1231 			return -1;
1232 		}
1233 		socket_id = rte_lcore_to_socket_id(lcore);
1234 		if (socket_id != 0 && numa_on == 0) {
1235 			printf("warning: lcore %hhu is on socket %d "
1236 				"with numa off\n",
1237 				lcore, socket_id);
1238 		}
1239 		portid = lcore_params[i].port_id;
1240 		if ((enabled_port_mask & (1 << portid)) == 0) {
1241 			printf("port %u is not enabled in port mask\n", portid);
1242 			return -1;
1243 		}
1244 		if (!rte_eth_dev_is_valid_port(portid)) {
1245 			printf("port %u is not present on the board\n", portid);
1246 			return -1;
1247 		}
1248 	}
1249 	return 0;
1250 }
1251 
1252 static uint8_t
1253 get_port_nb_rx_queues(const uint16_t port)
1254 {
1255 	int32_t queue = -1;
1256 	uint16_t i;
1257 
1258 	for (i = 0; i < nb_lcore_params; ++i) {
1259 		if (lcore_params[i].port_id == port &&
1260 				lcore_params[i].queue_id > queue)
1261 			queue = lcore_params[i].queue_id;
1262 	}
1263 	return (uint8_t)(++queue);
1264 }
1265 
1266 static int32_t
1267 init_lcore_rx_queues(void)
1268 {
1269 	uint16_t i, nb_rx_queue;
1270 	uint8_t lcore;
1271 
1272 	for (i = 0; i < nb_lcore_params; ++i) {
1273 		lcore = lcore_params[i].lcore_id;
1274 		nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
1275 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1276 			printf("error: too many queues (%u) for lcore: %u\n",
1277 					nb_rx_queue + 1, lcore);
1278 			return -1;
1279 		}
1280 		lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1281 			lcore_params[i].port_id;
1282 		lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1283 			lcore_params[i].queue_id;
1284 		lcore_conf[lcore].nb_rx_queue++;
1285 	}
1286 	return 0;
1287 }
1288 
1289 /* display usage */
1290 static void
1291 print_usage(const char *prgname)
1292 {
1293 	fprintf(stderr, "%s [EAL options] --"
1294 		" -p PORTMASK"
1295 		" [-P]"
1296 		" [-u PORTMASK]"
1297 		" [-j FRAMESIZE]"
1298 		" [-l]"
1299 		" [-w REPLAY_WINDOW_SIZE]"
1300 		" [-e]"
1301 		" [-a]"
1302 		" [-c]"
1303 		" [-s NUMBER_OF_MBUFS_IN_PKT_POOL]"
1304 		" -f CONFIG_FILE"
1305 		" --config (port,queue,lcore)[,(port,queue,lcore)]"
1306 		" [--single-sa SAIDX]"
1307 		" [--cryptodev_mask MASK]"
1308 		" [--transfer-mode MODE]"
1309 		" [--event-schedule-type TYPE]"
1310 		" [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]"
1311 		" [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]"
1312 		" [--" CMD_LINE_OPT_REASSEMBLE " REASSEMBLE_TABLE_SIZE]"
1313 		" [--" CMD_LINE_OPT_MTU " MTU]"
1314 		"\n\n"
1315 		"  -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
1316 		"  -P : Enable promiscuous mode\n"
1317 		"  -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
1318 		"  -j FRAMESIZE: Data buffer size, minimum (and default)\n"
1319 		"     value: RTE_MBUF_DEFAULT_BUF_SIZE\n"
1320 		"  -l enables code-path that uses librte_ipsec\n"
1321 		"  -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n"
1322 		"     size for each SA\n"
1323 		"  -e enables ESN\n"
1324 		"  -a enables SA SQN atomic behaviour\n"
1325 		"  -c specifies inbound SAD cache size,\n"
1326 		"     zero value disables the cache (default value: 128)\n"
1327 		"  -s number of mbufs in packet pool, if not specified number\n"
1328 		"     of mbufs will be calculated based on number of cores,\n"
1329 		"     ports and crypto queues\n"
1330 		"  -f CONFIG_FILE: Configuration file\n"
1331 		"  --config (port,queue,lcore): Rx queue configuration. In poll\n"
1332 		"                               mode determines which queues from\n"
1333 		"                               which ports are mapped to which cores.\n"
1334 		"                               In event mode this option is not used\n"
1335 		"                               as packets are dynamically scheduled\n"
1336 		"                               to cores by HW.\n"
1337 		"  --single-sa SAIDX: In poll mode use single SA index for\n"
1338 		"                     outbound traffic, bypassing the SP\n"
1339 		"                     In event mode selects driver submode,\n"
1340 		"                     SA index value is ignored\n"
1341 		"  --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
1342 		"                         devices to configure\n"
1343 		"  --transfer-mode MODE\n"
1344 		"               \"poll\"  : Packet transfer via polling (default)\n"
1345 		"               \"event\" : Packet transfer via event device\n"
1346 		"  --event-schedule-type TYPE queue schedule type, used only when\n"
1347 		"                             transfer mode is set to event\n"
1348 		"               \"ordered\"  : Ordered (default)\n"
1349 		"               \"atomic\"   : Atomic\n"
1350 		"               \"parallel\" : Parallel\n"
1351 		"  --" CMD_LINE_OPT_RX_OFFLOAD
1352 		": bitmask of the RX HW offload capabilities to enable/use\n"
1353 		"                         (DEV_RX_OFFLOAD_*)\n"
1354 		"  --" CMD_LINE_OPT_TX_OFFLOAD
1355 		": bitmask of the TX HW offload capabilities to enable/use\n"
1356 		"                         (DEV_TX_OFFLOAD_*)\n"
1357 		"  --" CMD_LINE_OPT_REASSEMBLE " NUM"
1358 		": max number of entries in reassemble(fragment) table\n"
1359 		"    (zero (default value) disables reassembly)\n"
1360 		"  --" CMD_LINE_OPT_MTU " MTU"
1361 		": MTU value on all ports (default value: 1500)\n"
1362 		"    outgoing packets with bigger size will be fragmented\n"
1363 		"    incoming packets with bigger size will be discarded\n"
1364 		"  --" CMD_LINE_OPT_FRAG_TTL " FRAG_TTL_NS"
1365 		": fragments lifetime in nanoseconds, default\n"
1366 		"    and maximum value is 10.000.000.000 ns (10 s)\n"
1367 		"\n",
1368 		prgname);
1369 }
1370 
1371 static int
1372 parse_mask(const char *str, uint64_t *val)
1373 {
1374 	char *end;
1375 	unsigned long t;
1376 
1377 	errno = 0;
1378 	t = strtoul(str, &end, 0);
1379 	if (errno != 0 || end[0] != 0)
1380 		return -EINVAL;
1381 
1382 	*val = t;
1383 	return 0;
1384 }
1385 
1386 static int32_t
1387 parse_portmask(const char *portmask)
1388 {
1389 	char *end = NULL;
1390 	unsigned long pm;
1391 
1392 	/* parse hexadecimal string */
1393 	pm = strtoul(portmask, &end, 16);
1394 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1395 		return -1;
1396 
1397 	if ((pm == 0) && errno)
1398 		return -1;
1399 
1400 	return pm;
1401 }
1402 
1403 static int64_t
1404 parse_decimal(const char *str)
1405 {
1406 	char *end = NULL;
1407 	uint64_t num;
1408 
1409 	num = strtoull(str, &end, 10);
1410 	if ((str[0] == '\0') || (end == NULL) || (*end != '\0')
1411 		|| num > INT64_MAX)
1412 		return -1;
1413 
1414 	return num;
1415 }
1416 
1417 static int32_t
1418 parse_config(const char *q_arg)
1419 {
1420 	char s[256];
1421 	const char *p, *p0 = q_arg;
1422 	char *end;
1423 	enum fieldnames {
1424 		FLD_PORT = 0,
1425 		FLD_QUEUE,
1426 		FLD_LCORE,
1427 		_NUM_FLD
1428 	};
1429 	unsigned long int_fld[_NUM_FLD];
1430 	char *str_fld[_NUM_FLD];
1431 	int32_t i;
1432 	uint32_t size;
1433 
1434 	nb_lcore_params = 0;
1435 
1436 	while ((p = strchr(p0, '(')) != NULL) {
1437 		++p;
1438 		p0 = strchr(p, ')');
1439 		if (p0 == NULL)
1440 			return -1;
1441 
1442 		size = p0 - p;
1443 		if (size >= sizeof(s))
1444 			return -1;
1445 
1446 		snprintf(s, sizeof(s), "%.*s", size, p);
1447 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1448 				_NUM_FLD)
1449 			return -1;
1450 		for (i = 0; i < _NUM_FLD; i++) {
1451 			errno = 0;
1452 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1453 			if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1454 				return -1;
1455 		}
1456 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1457 			printf("exceeded max number of lcore params: %hu\n",
1458 				nb_lcore_params);
1459 			return -1;
1460 		}
1461 		lcore_params_array[nb_lcore_params].port_id =
1462 			(uint8_t)int_fld[FLD_PORT];
1463 		lcore_params_array[nb_lcore_params].queue_id =
1464 			(uint8_t)int_fld[FLD_QUEUE];
1465 		lcore_params_array[nb_lcore_params].lcore_id =
1466 			(uint8_t)int_fld[FLD_LCORE];
1467 		++nb_lcore_params;
1468 	}
1469 	lcore_params = lcore_params_array;
1470 	return 0;
1471 }
1472 
1473 static void
1474 print_app_sa_prm(const struct app_sa_prm *prm)
1475 {
1476 	printf("librte_ipsec usage: %s\n",
1477 		(prm->enable == 0) ? "disabled" : "enabled");
1478 
1479 	printf("replay window size: %u\n", prm->window_size);
1480 	printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled");
1481 	printf("SA flags: %#" PRIx64 "\n", prm->flags);
1482 	printf("Frag TTL: %" PRIu64 " ns\n", frag_ttl_ns);
1483 }
1484 
1485 static int
1486 parse_transfer_mode(struct eh_conf *conf, const char *optarg)
1487 {
1488 	if (!strcmp(CMD_LINE_ARG_POLL, optarg))
1489 		conf->mode = EH_PKT_TRANSFER_MODE_POLL;
1490 	else if (!strcmp(CMD_LINE_ARG_EVENT, optarg))
1491 		conf->mode = EH_PKT_TRANSFER_MODE_EVENT;
1492 	else {
1493 		printf("Unsupported packet transfer mode\n");
1494 		return -EINVAL;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static int
1501 parse_schedule_type(struct eh_conf *conf, const char *optarg)
1502 {
1503 	struct eventmode_conf *em_conf = NULL;
1504 
1505 	/* Get eventmode conf */
1506 	em_conf = conf->mode_params;
1507 
1508 	if (!strcmp(CMD_LINE_ARG_ORDERED, optarg))
1509 		em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
1510 	else if (!strcmp(CMD_LINE_ARG_ATOMIC, optarg))
1511 		em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ATOMIC;
1512 	else if (!strcmp(CMD_LINE_ARG_PARALLEL, optarg))
1513 		em_conf->ext_params.sched_type = RTE_SCHED_TYPE_PARALLEL;
1514 	else {
1515 		printf("Unsupported queue schedule type\n");
1516 		return -EINVAL;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 static int32_t
1523 parse_args(int32_t argc, char **argv, struct eh_conf *eh_conf)
1524 {
1525 	int opt;
1526 	int64_t ret;
1527 	char **argvopt;
1528 	int32_t option_index;
1529 	char *prgname = argv[0];
1530 	int32_t f_present = 0;
1531 
1532 	argvopt = argv;
1533 
1534 	while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:c:s:",
1535 				lgopts, &option_index)) != EOF) {
1536 
1537 		switch (opt) {
1538 		case 'p':
1539 			enabled_port_mask = parse_portmask(optarg);
1540 			if (enabled_port_mask == 0) {
1541 				printf("invalid portmask\n");
1542 				print_usage(prgname);
1543 				return -1;
1544 			}
1545 			break;
1546 		case 'P':
1547 			printf("Promiscuous mode selected\n");
1548 			promiscuous_on = 1;
1549 			break;
1550 		case 'u':
1551 			unprotected_port_mask = parse_portmask(optarg);
1552 			if (unprotected_port_mask == 0) {
1553 				printf("invalid unprotected portmask\n");
1554 				print_usage(prgname);
1555 				return -1;
1556 			}
1557 			break;
1558 		case 'f':
1559 			if (f_present == 1) {
1560 				printf("\"-f\" option present more than "
1561 					"once!\n");
1562 				print_usage(prgname);
1563 				return -1;
1564 			}
1565 			cfgfile = optarg;
1566 			f_present = 1;
1567 			break;
1568 
1569 		case 's':
1570 			ret = parse_decimal(optarg);
1571 			if (ret < 0) {
1572 				printf("Invalid number of buffers in a pool: "
1573 					"%s\n", optarg);
1574 				print_usage(prgname);
1575 				return -1;
1576 			}
1577 
1578 			nb_bufs_in_pool = ret;
1579 			break;
1580 
1581 		case 'j':
1582 			ret = parse_decimal(optarg);
1583 			if (ret < RTE_MBUF_DEFAULT_BUF_SIZE ||
1584 					ret > UINT16_MAX) {
1585 				printf("Invalid frame buffer size value: %s\n",
1586 					optarg);
1587 				print_usage(prgname);
1588 				return -1;
1589 			}
1590 			frame_buf_size = ret;
1591 			printf("Custom frame buffer size %u\n", frame_buf_size);
1592 			break;
1593 		case 'l':
1594 			app_sa_prm.enable = 1;
1595 			break;
1596 		case 'w':
1597 			app_sa_prm.window_size = parse_decimal(optarg);
1598 			break;
1599 		case 'e':
1600 			app_sa_prm.enable_esn = 1;
1601 			break;
1602 		case 'a':
1603 			app_sa_prm.enable = 1;
1604 			app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM;
1605 			break;
1606 		case 'c':
1607 			ret = parse_decimal(optarg);
1608 			if (ret < 0) {
1609 				printf("Invalid SA cache size: %s\n", optarg);
1610 				print_usage(prgname);
1611 				return -1;
1612 			}
1613 			app_sa_prm.cache_sz = ret;
1614 			break;
1615 		case CMD_LINE_OPT_CONFIG_NUM:
1616 			ret = parse_config(optarg);
1617 			if (ret) {
1618 				printf("Invalid config\n");
1619 				print_usage(prgname);
1620 				return -1;
1621 			}
1622 			break;
1623 		case CMD_LINE_OPT_SINGLE_SA_NUM:
1624 			ret = parse_decimal(optarg);
1625 			if (ret == -1 || ret > UINT32_MAX) {
1626 				printf("Invalid argument[sa_idx]\n");
1627 				print_usage(prgname);
1628 				return -1;
1629 			}
1630 
1631 			/* else */
1632 			single_sa = 1;
1633 			single_sa_idx = ret;
1634 			eh_conf->ipsec_mode = EH_IPSEC_MODE_TYPE_DRIVER;
1635 			printf("Configured with single SA index %u\n",
1636 					single_sa_idx);
1637 			break;
1638 		case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
1639 			ret = parse_portmask(optarg);
1640 			if (ret == -1) {
1641 				printf("Invalid argument[portmask]\n");
1642 				print_usage(prgname);
1643 				return -1;
1644 			}
1645 
1646 			/* else */
1647 			enabled_cryptodev_mask = ret;
1648 			break;
1649 
1650 		case CMD_LINE_OPT_TRANSFER_MODE_NUM:
1651 			ret = parse_transfer_mode(eh_conf, optarg);
1652 			if (ret < 0) {
1653 				printf("Invalid packet transfer mode\n");
1654 				print_usage(prgname);
1655 				return -1;
1656 			}
1657 			break;
1658 
1659 		case CMD_LINE_OPT_SCHEDULE_TYPE_NUM:
1660 			ret = parse_schedule_type(eh_conf, optarg);
1661 			if (ret < 0) {
1662 				printf("Invalid queue schedule type\n");
1663 				print_usage(prgname);
1664 				return -1;
1665 			}
1666 			break;
1667 
1668 		case CMD_LINE_OPT_RX_OFFLOAD_NUM:
1669 			ret = parse_mask(optarg, &dev_rx_offload);
1670 			if (ret != 0) {
1671 				printf("Invalid argument for \'%s\': %s\n",
1672 					CMD_LINE_OPT_RX_OFFLOAD, optarg);
1673 				print_usage(prgname);
1674 				return -1;
1675 			}
1676 			break;
1677 		case CMD_LINE_OPT_TX_OFFLOAD_NUM:
1678 			ret = parse_mask(optarg, &dev_tx_offload);
1679 			if (ret != 0) {
1680 				printf("Invalid argument for \'%s\': %s\n",
1681 					CMD_LINE_OPT_TX_OFFLOAD, optarg);
1682 				print_usage(prgname);
1683 				return -1;
1684 			}
1685 			break;
1686 		case CMD_LINE_OPT_REASSEMBLE_NUM:
1687 			ret = parse_decimal(optarg);
1688 			if (ret < 0 || ret > UINT32_MAX) {
1689 				printf("Invalid argument for \'%s\': %s\n",
1690 					CMD_LINE_OPT_REASSEMBLE, optarg);
1691 				print_usage(prgname);
1692 				return -1;
1693 			}
1694 			frag_tbl_sz = ret;
1695 			break;
1696 		case CMD_LINE_OPT_MTU_NUM:
1697 			ret = parse_decimal(optarg);
1698 			if (ret < 0 || ret > RTE_IPV4_MAX_PKT_LEN) {
1699 				printf("Invalid argument for \'%s\': %s\n",
1700 					CMD_LINE_OPT_MTU, optarg);
1701 				print_usage(prgname);
1702 				return -1;
1703 			}
1704 			mtu_size = ret;
1705 			break;
1706 		case CMD_LINE_OPT_FRAG_TTL_NUM:
1707 			ret = parse_decimal(optarg);
1708 			if (ret < 0 || ret > MAX_FRAG_TTL_NS) {
1709 				printf("Invalid argument for \'%s\': %s\n",
1710 					CMD_LINE_OPT_MTU, optarg);
1711 				print_usage(prgname);
1712 				return -1;
1713 			}
1714 			frag_ttl_ns = ret;
1715 			break;
1716 		default:
1717 			print_usage(prgname);
1718 			return -1;
1719 		}
1720 	}
1721 
1722 	if (f_present == 0) {
1723 		printf("Mandatory option \"-f\" not present\n");
1724 		return -1;
1725 	}
1726 
1727 	/* check do we need to enable multi-seg support */
1728 	if (multi_seg_required()) {
1729 		/* legacy mode doesn't support multi-seg */
1730 		app_sa_prm.enable = 1;
1731 		printf("frame buf size: %u, mtu: %u, "
1732 			"number of reassemble entries: %u\n"
1733 			"multi-segment support is required\n",
1734 			frame_buf_size, mtu_size, frag_tbl_sz);
1735 	}
1736 
1737 	print_app_sa_prm(&app_sa_prm);
1738 
1739 	if (optind >= 0)
1740 		argv[optind-1] = prgname;
1741 
1742 	ret = optind-1;
1743 	optind = 1; /* reset getopt lib */
1744 	return ret;
1745 }
1746 
1747 static void
1748 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
1749 {
1750 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
1751 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
1752 	printf("%s%s", name, buf);
1753 }
1754 
1755 /*
1756  * Update destination ethaddr for the port.
1757  */
1758 int
1759 add_dst_ethaddr(uint16_t port, const struct rte_ether_addr *addr)
1760 {
1761 	if (port >= RTE_DIM(ethaddr_tbl))
1762 		return -EINVAL;
1763 
1764 	ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr);
1765 	return 0;
1766 }
1767 
1768 /* Check the link status of all ports in up to 9s, and print them finally */
1769 static void
1770 check_all_ports_link_status(uint32_t port_mask)
1771 {
1772 #define CHECK_INTERVAL 100 /* 100ms */
1773 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1774 	uint16_t portid;
1775 	uint8_t count, all_ports_up, print_flag = 0;
1776 	struct rte_eth_link link;
1777 	int ret;
1778 
1779 	printf("\nChecking link status");
1780 	fflush(stdout);
1781 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1782 		all_ports_up = 1;
1783 		RTE_ETH_FOREACH_DEV(portid) {
1784 			if ((port_mask & (1 << portid)) == 0)
1785 				continue;
1786 			memset(&link, 0, sizeof(link));
1787 			ret = rte_eth_link_get_nowait(portid, &link);
1788 			if (ret < 0) {
1789 				all_ports_up = 0;
1790 				if (print_flag == 1)
1791 					printf("Port %u link get failed: %s\n",
1792 						portid, rte_strerror(-ret));
1793 				continue;
1794 			}
1795 			/* print link status if flag set */
1796 			if (print_flag == 1) {
1797 				if (link.link_status)
1798 					printf(
1799 					"Port%d Link Up - speed %u Mbps -%s\n",
1800 						portid, link.link_speed,
1801 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1802 					("full-duplex") : ("half-duplex\n"));
1803 				else
1804 					printf("Port %d Link Down\n", portid);
1805 				continue;
1806 			}
1807 			/* clear all_ports_up flag if any link down */
1808 			if (link.link_status == ETH_LINK_DOWN) {
1809 				all_ports_up = 0;
1810 				break;
1811 			}
1812 		}
1813 		/* after finally printing all link status, get out */
1814 		if (print_flag == 1)
1815 			break;
1816 
1817 		if (all_ports_up == 0) {
1818 			printf(".");
1819 			fflush(stdout);
1820 			rte_delay_ms(CHECK_INTERVAL);
1821 		}
1822 
1823 		/* set the print_flag if all ports up or timeout */
1824 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1825 			print_flag = 1;
1826 			printf("done\n");
1827 		}
1828 	}
1829 }
1830 
1831 static int32_t
1832 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1833 		uint16_t qp, struct lcore_params *params,
1834 		struct ipsec_ctx *ipsec_ctx,
1835 		const struct rte_cryptodev_capabilities *cipher,
1836 		const struct rte_cryptodev_capabilities *auth,
1837 		const struct rte_cryptodev_capabilities *aead)
1838 {
1839 	int32_t ret = 0;
1840 	unsigned long i;
1841 	struct cdev_key key = { 0 };
1842 
1843 	key.lcore_id = params->lcore_id;
1844 	if (cipher)
1845 		key.cipher_algo = cipher->sym.cipher.algo;
1846 	if (auth)
1847 		key.auth_algo = auth->sym.auth.algo;
1848 	if (aead)
1849 		key.aead_algo = aead->sym.aead.algo;
1850 
1851 	ret = rte_hash_lookup(map, &key);
1852 	if (ret != -ENOENT)
1853 		return 0;
1854 
1855 	for (i = 0; i < ipsec_ctx->nb_qps; i++)
1856 		if (ipsec_ctx->tbl[i].id == cdev_id)
1857 			break;
1858 
1859 	if (i == ipsec_ctx->nb_qps) {
1860 		if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1861 			printf("Maximum number of crypto devices assigned to "
1862 				"a core, increase MAX_QP_PER_LCORE value\n");
1863 			return 0;
1864 		}
1865 		ipsec_ctx->tbl[i].id = cdev_id;
1866 		ipsec_ctx->tbl[i].qp = qp;
1867 		ipsec_ctx->nb_qps++;
1868 		printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1869 				"(cdev_id_qp %lu)\n", str, key.lcore_id,
1870 				cdev_id, qp, i);
1871 	}
1872 
1873 	ret = rte_hash_add_key_data(map, &key, (void *)i);
1874 	if (ret < 0) {
1875 		printf("Faled to insert cdev mapping for (lcore %u, "
1876 				"cdev %u, qp %u), errno %d\n",
1877 				key.lcore_id, ipsec_ctx->tbl[i].id,
1878 				ipsec_ctx->tbl[i].qp, ret);
1879 		return 0;
1880 	}
1881 
1882 	return 1;
1883 }
1884 
1885 static int32_t
1886 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1887 		uint16_t qp, struct lcore_params *params)
1888 {
1889 	int32_t ret = 0;
1890 	const struct rte_cryptodev_capabilities *i, *j;
1891 	struct rte_hash *map;
1892 	struct lcore_conf *qconf;
1893 	struct ipsec_ctx *ipsec_ctx;
1894 	const char *str;
1895 
1896 	qconf = &lcore_conf[params->lcore_id];
1897 
1898 	if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1899 		map = cdev_map_out;
1900 		ipsec_ctx = &qconf->outbound;
1901 		str = "Outbound";
1902 	} else {
1903 		map = cdev_map_in;
1904 		ipsec_ctx = &qconf->inbound;
1905 		str = "Inbound";
1906 	}
1907 
1908 	/* Required cryptodevs with operation chainning */
1909 	if (!(dev_info->feature_flags &
1910 				RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1911 		return ret;
1912 
1913 	for (i = dev_info->capabilities;
1914 			i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1915 		if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1916 			continue;
1917 
1918 		if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1919 			ret |= add_mapping(map, str, cdev_id, qp, params,
1920 					ipsec_ctx, NULL, NULL, i);
1921 			continue;
1922 		}
1923 
1924 		if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1925 			continue;
1926 
1927 		for (j = dev_info->capabilities;
1928 				j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1929 			if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1930 				continue;
1931 
1932 			if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1933 				continue;
1934 
1935 			ret |= add_mapping(map, str, cdev_id, qp, params,
1936 						ipsec_ctx, i, j, NULL);
1937 		}
1938 	}
1939 
1940 	return ret;
1941 }
1942 
1943 /* Check if the device is enabled by cryptodev_mask */
1944 static int
1945 check_cryptodev_mask(uint8_t cdev_id)
1946 {
1947 	if (enabled_cryptodev_mask & (1 << cdev_id))
1948 		return 0;
1949 
1950 	return -1;
1951 }
1952 
1953 static uint16_t
1954 cryptodevs_init(uint16_t req_queue_num)
1955 {
1956 	struct rte_cryptodev_config dev_conf;
1957 	struct rte_cryptodev_qp_conf qp_conf;
1958 	uint16_t idx, max_nb_qps, qp, total_nb_qps, i;
1959 	int16_t cdev_id;
1960 	struct rte_hash_parameters params = { 0 };
1961 
1962 	const uint64_t mseg_flag = multi_seg_required() ?
1963 				RTE_CRYPTODEV_FF_IN_PLACE_SGL : 0;
1964 
1965 	params.entries = CDEV_MAP_ENTRIES;
1966 	params.key_len = sizeof(struct cdev_key);
1967 	params.hash_func = rte_jhash;
1968 	params.hash_func_init_val = 0;
1969 	params.socket_id = rte_socket_id();
1970 
1971 	params.name = "cdev_map_in";
1972 	cdev_map_in = rte_hash_create(&params);
1973 	if (cdev_map_in == NULL)
1974 		rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1975 				rte_errno);
1976 
1977 	params.name = "cdev_map_out";
1978 	cdev_map_out = rte_hash_create(&params);
1979 	if (cdev_map_out == NULL)
1980 		rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1981 				rte_errno);
1982 
1983 	printf("lcore/cryptodev/qp mappings:\n");
1984 
1985 	idx = 0;
1986 	total_nb_qps = 0;
1987 	for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1988 		struct rte_cryptodev_info cdev_info;
1989 
1990 		if (check_cryptodev_mask((uint8_t)cdev_id))
1991 			continue;
1992 
1993 		rte_cryptodev_info_get(cdev_id, &cdev_info);
1994 
1995 		if ((mseg_flag & cdev_info.feature_flags) != mseg_flag)
1996 			rte_exit(EXIT_FAILURE,
1997 				"Device %hd does not support \'%s\' feature\n",
1998 				cdev_id,
1999 				rte_cryptodev_get_feature_name(mseg_flag));
2000 
2001 		if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
2002 			max_nb_qps = cdev_info.max_nb_queue_pairs;
2003 		else
2004 			max_nb_qps = nb_lcore_params;
2005 
2006 		qp = 0;
2007 		i = 0;
2008 		while (qp < max_nb_qps && i < nb_lcore_params) {
2009 			if (add_cdev_mapping(&cdev_info, cdev_id, qp,
2010 						&lcore_params[idx]))
2011 				qp++;
2012 			idx++;
2013 			idx = idx % nb_lcore_params;
2014 			i++;
2015 		}
2016 
2017 		qp = RTE_MIN(max_nb_qps, RTE_MAX(req_queue_num, qp));
2018 		if (qp == 0)
2019 			continue;
2020 
2021 		total_nb_qps += qp;
2022 		dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
2023 		dev_conf.nb_queue_pairs = qp;
2024 		dev_conf.ff_disable = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO;
2025 
2026 		uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
2027 		if (dev_max_sess != 0 &&
2028 				dev_max_sess < get_nb_crypto_sessions())
2029 			rte_exit(EXIT_FAILURE,
2030 				"Device does not support at least %u "
2031 				"sessions", get_nb_crypto_sessions());
2032 
2033 		if (rte_cryptodev_configure(cdev_id, &dev_conf))
2034 			rte_panic("Failed to initialize cryptodev %u\n",
2035 					cdev_id);
2036 
2037 		qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
2038 		qp_conf.mp_session =
2039 			socket_ctx[dev_conf.socket_id].session_pool;
2040 		qp_conf.mp_session_private =
2041 			socket_ctx[dev_conf.socket_id].session_priv_pool;
2042 		for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
2043 			if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
2044 					&qp_conf, dev_conf.socket_id))
2045 				rte_panic("Failed to setup queue %u for "
2046 						"cdev_id %u\n",	0, cdev_id);
2047 
2048 		if (rte_cryptodev_start(cdev_id))
2049 			rte_panic("Failed to start cryptodev %u\n",
2050 					cdev_id);
2051 	}
2052 
2053 	printf("\n");
2054 
2055 	return total_nb_qps;
2056 }
2057 
2058 static void
2059 port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads)
2060 {
2061 	uint32_t frame_size;
2062 	struct rte_eth_dev_info dev_info;
2063 	struct rte_eth_txconf *txconf;
2064 	uint16_t nb_tx_queue, nb_rx_queue;
2065 	uint16_t tx_queueid, rx_queueid, queue, lcore_id;
2066 	int32_t ret, socket_id;
2067 	struct lcore_conf *qconf;
2068 	struct rte_ether_addr ethaddr;
2069 	struct rte_eth_conf local_port_conf = port_conf;
2070 
2071 	ret = rte_eth_dev_info_get(portid, &dev_info);
2072 	if (ret != 0)
2073 		rte_exit(EXIT_FAILURE,
2074 			"Error during getting device (port %u) info: %s\n",
2075 			portid, strerror(-ret));
2076 
2077 	/* limit allowed HW offloafs, as user requested */
2078 	dev_info.rx_offload_capa &= dev_rx_offload;
2079 	dev_info.tx_offload_capa &= dev_tx_offload;
2080 
2081 	printf("Configuring device port %u:\n", portid);
2082 
2083 	ret = rte_eth_macaddr_get(portid, &ethaddr);
2084 	if (ret != 0)
2085 		rte_exit(EXIT_FAILURE,
2086 			"Error getting MAC address (port %u): %s\n",
2087 			portid, rte_strerror(-ret));
2088 
2089 	ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(&ethaddr);
2090 	print_ethaddr("Address: ", &ethaddr);
2091 	printf("\n");
2092 
2093 	nb_rx_queue = get_port_nb_rx_queues(portid);
2094 	nb_tx_queue = nb_lcores;
2095 
2096 	if (nb_rx_queue > dev_info.max_rx_queues)
2097 		rte_exit(EXIT_FAILURE, "Error: queue %u not available "
2098 				"(max rx queue is %u)\n",
2099 				nb_rx_queue, dev_info.max_rx_queues);
2100 
2101 	if (nb_tx_queue > dev_info.max_tx_queues)
2102 		rte_exit(EXIT_FAILURE, "Error: queue %u not available "
2103 				"(max tx queue is %u)\n",
2104 				nb_tx_queue, dev_info.max_tx_queues);
2105 
2106 	printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
2107 			nb_rx_queue, nb_tx_queue);
2108 
2109 	frame_size = MTU_TO_FRAMELEN(mtu_size);
2110 	if (frame_size > local_port_conf.rxmode.max_rx_pkt_len)
2111 		local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2112 	local_port_conf.rxmode.max_rx_pkt_len = frame_size;
2113 
2114 	if (multi_seg_required()) {
2115 		local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SCATTER;
2116 		local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS;
2117 	}
2118 
2119 	local_port_conf.rxmode.offloads |= req_rx_offloads;
2120 	local_port_conf.txmode.offloads |= req_tx_offloads;
2121 
2122 	/* Check that all required capabilities are supported */
2123 	if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) !=
2124 			local_port_conf.rxmode.offloads)
2125 		rte_exit(EXIT_FAILURE,
2126 			"Error: port %u required RX offloads: 0x%" PRIx64
2127 			", avaialbe RX offloads: 0x%" PRIx64 "\n",
2128 			portid, local_port_conf.rxmode.offloads,
2129 			dev_info.rx_offload_capa);
2130 
2131 	if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) !=
2132 			local_port_conf.txmode.offloads)
2133 		rte_exit(EXIT_FAILURE,
2134 			"Error: port %u required TX offloads: 0x%" PRIx64
2135 			", avaialbe TX offloads: 0x%" PRIx64 "\n",
2136 			portid, local_port_conf.txmode.offloads,
2137 			dev_info.tx_offload_capa);
2138 
2139 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
2140 		local_port_conf.txmode.offloads |=
2141 			DEV_TX_OFFLOAD_MBUF_FAST_FREE;
2142 
2143 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM)
2144 		local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM;
2145 
2146 	printf("port %u configurng rx_offloads=0x%" PRIx64
2147 		", tx_offloads=0x%" PRIx64 "\n",
2148 		portid, local_port_conf.rxmode.offloads,
2149 		local_port_conf.txmode.offloads);
2150 
2151 	local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
2152 		dev_info.flow_type_rss_offloads;
2153 	if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
2154 			port_conf.rx_adv_conf.rss_conf.rss_hf) {
2155 		printf("Port %u modified RSS hash function based on hardware support,"
2156 			"requested:%#"PRIx64" configured:%#"PRIx64"\n",
2157 			portid,
2158 			port_conf.rx_adv_conf.rss_conf.rss_hf,
2159 			local_port_conf.rx_adv_conf.rss_conf.rss_hf);
2160 	}
2161 
2162 	ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
2163 			&local_port_conf);
2164 	if (ret < 0)
2165 		rte_exit(EXIT_FAILURE, "Cannot configure device: "
2166 				"err=%d, port=%d\n", ret, portid);
2167 
2168 	ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
2169 	if (ret < 0)
2170 		rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
2171 				"err=%d, port=%d\n", ret, portid);
2172 
2173 	/* init one TX queue per lcore */
2174 	tx_queueid = 0;
2175 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2176 		if (rte_lcore_is_enabled(lcore_id) == 0)
2177 			continue;
2178 
2179 		if (numa_on)
2180 			socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2181 		else
2182 			socket_id = 0;
2183 
2184 		/* init TX queue */
2185 		printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
2186 
2187 		txconf = &dev_info.default_txconf;
2188 		txconf->offloads = local_port_conf.txmode.offloads;
2189 
2190 		ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
2191 				socket_id, txconf);
2192 		if (ret < 0)
2193 			rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
2194 					"err=%d, port=%d\n", ret, portid);
2195 
2196 		qconf = &lcore_conf[lcore_id];
2197 		qconf->tx_queue_id[portid] = tx_queueid;
2198 
2199 		/* Pre-populate pkt offloads based on capabilities */
2200 		qconf->outbound.ipv4_offloads = PKT_TX_IPV4;
2201 		qconf->outbound.ipv6_offloads = PKT_TX_IPV6;
2202 		if (local_port_conf.txmode.offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
2203 			qconf->outbound.ipv4_offloads |= PKT_TX_IP_CKSUM;
2204 
2205 		tx_queueid++;
2206 
2207 		/* init RX queues */
2208 		for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
2209 			struct rte_eth_rxconf rxq_conf;
2210 
2211 			if (portid != qconf->rx_queue_list[queue].port_id)
2212 				continue;
2213 
2214 			rx_queueid = qconf->rx_queue_list[queue].queue_id;
2215 
2216 			printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
2217 					socket_id);
2218 
2219 			rxq_conf = dev_info.default_rxconf;
2220 			rxq_conf.offloads = local_port_conf.rxmode.offloads;
2221 			ret = rte_eth_rx_queue_setup(portid, rx_queueid,
2222 					nb_rxd,	socket_id, &rxq_conf,
2223 					socket_ctx[socket_id].mbuf_pool);
2224 			if (ret < 0)
2225 				rte_exit(EXIT_FAILURE,
2226 					"rte_eth_rx_queue_setup: err=%d, "
2227 					"port=%d\n", ret, portid);
2228 		}
2229 	}
2230 	printf("\n");
2231 }
2232 
2233 static size_t
2234 max_session_size(void)
2235 {
2236 	size_t max_sz, sz;
2237 	void *sec_ctx;
2238 	int16_t cdev_id, port_id, n;
2239 
2240 	max_sz = 0;
2241 	n =  rte_cryptodev_count();
2242 	for (cdev_id = 0; cdev_id != n; cdev_id++) {
2243 		sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
2244 		if (sz > max_sz)
2245 			max_sz = sz;
2246 		/*
2247 		 * If crypto device is security capable, need to check the
2248 		 * size of security session as well.
2249 		 */
2250 
2251 		/* Get security context of the crypto device */
2252 		sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
2253 		if (sec_ctx == NULL)
2254 			continue;
2255 
2256 		/* Get size of security session */
2257 		sz = rte_security_session_get_size(sec_ctx);
2258 		if (sz > max_sz)
2259 			max_sz = sz;
2260 	}
2261 
2262 	RTE_ETH_FOREACH_DEV(port_id) {
2263 		if ((enabled_port_mask & (1 << port_id)) == 0)
2264 			continue;
2265 
2266 		sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
2267 		if (sec_ctx == NULL)
2268 			continue;
2269 
2270 		sz = rte_security_session_get_size(sec_ctx);
2271 		if (sz > max_sz)
2272 			max_sz = sz;
2273 	}
2274 
2275 	return max_sz;
2276 }
2277 
2278 static void
2279 session_pool_init(struct socket_ctx *ctx, int32_t socket_id, size_t sess_sz)
2280 {
2281 	char mp_name[RTE_MEMPOOL_NAMESIZE];
2282 	struct rte_mempool *sess_mp;
2283 	uint32_t nb_sess;
2284 
2285 	snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2286 			"sess_mp_%u", socket_id);
2287 	/*
2288 	 * Doubled due to rte_security_session_create() uses one mempool for
2289 	 * session and for session private data.
2290 	 */
2291 	nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
2292 		rte_lcore_count()) * 2;
2293 	sess_mp = rte_cryptodev_sym_session_pool_create(
2294 			mp_name, nb_sess, sess_sz, CDEV_MP_CACHE_SZ, 0,
2295 			socket_id);
2296 	ctx->session_pool = sess_mp;
2297 
2298 	if (ctx->session_pool == NULL)
2299 		rte_exit(EXIT_FAILURE,
2300 			"Cannot init session pool on socket %d\n", socket_id);
2301 	else
2302 		printf("Allocated session pool on socket %d\n",	socket_id);
2303 }
2304 
2305 static void
2306 session_priv_pool_init(struct socket_ctx *ctx, int32_t socket_id,
2307 	size_t sess_sz)
2308 {
2309 	char mp_name[RTE_MEMPOOL_NAMESIZE];
2310 	struct rte_mempool *sess_mp;
2311 	uint32_t nb_sess;
2312 
2313 	snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
2314 			"sess_mp_priv_%u", socket_id);
2315 	/*
2316 	 * Doubled due to rte_security_session_create() uses one mempool for
2317 	 * session and for session private data.
2318 	 */
2319 	nb_sess = (get_nb_crypto_sessions() + CDEV_MP_CACHE_SZ *
2320 		rte_lcore_count()) * 2;
2321 	sess_mp = rte_mempool_create(mp_name,
2322 			nb_sess,
2323 			sess_sz,
2324 			CDEV_MP_CACHE_SZ,
2325 			0, NULL, NULL, NULL,
2326 			NULL, socket_id,
2327 			0);
2328 	ctx->session_priv_pool = sess_mp;
2329 
2330 	if (ctx->session_priv_pool == NULL)
2331 		rte_exit(EXIT_FAILURE,
2332 			"Cannot init session priv pool on socket %d\n",
2333 			socket_id);
2334 	else
2335 		printf("Allocated session priv pool on socket %d\n",
2336 			socket_id);
2337 }
2338 
2339 static void
2340 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
2341 {
2342 	char s[64];
2343 	int32_t ms;
2344 
2345 	snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
2346 	ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
2347 			MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
2348 			frame_buf_size, socket_id);
2349 
2350 	/*
2351 	 * if multi-segment support is enabled, then create a pool
2352 	 * for indirect mbufs.
2353 	 */
2354 	ms = multi_seg_required();
2355 	if (ms != 0) {
2356 		snprintf(s, sizeof(s), "mbuf_pool_indir_%d", socket_id);
2357 		ctx->mbuf_pool_indir = rte_pktmbuf_pool_create(s, nb_mbuf,
2358 			MEMPOOL_CACHE_SIZE, 0, 0, socket_id);
2359 	}
2360 
2361 	if (ctx->mbuf_pool == NULL || (ms != 0 && ctx->mbuf_pool_indir == NULL))
2362 		rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
2363 				socket_id);
2364 	else
2365 		printf("Allocated mbuf pool on socket %d\n", socket_id);
2366 }
2367 
2368 static inline int
2369 inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
2370 {
2371 	struct ipsec_sa *sa;
2372 
2373 	/* For inline protocol processing, the metadata in the event will
2374 	 * uniquely identify the security session which raised the event.
2375 	 * Application would then need the userdata it had registered with the
2376 	 * security session to process the event.
2377 	 */
2378 
2379 	sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
2380 
2381 	if (sa == NULL) {
2382 		/* userdata could not be retrieved */
2383 		return -1;
2384 	}
2385 
2386 	/* Sequence number over flow. SA need to be re-established */
2387 	RTE_SET_USED(sa);
2388 	return 0;
2389 }
2390 
2391 static int
2392 inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
2393 		 void *param, void *ret_param)
2394 {
2395 	uint64_t md;
2396 	struct rte_eth_event_ipsec_desc *event_desc = NULL;
2397 	struct rte_security_ctx *ctx = (struct rte_security_ctx *)
2398 					rte_eth_dev_get_sec_ctx(port_id);
2399 
2400 	RTE_SET_USED(param);
2401 
2402 	if (type != RTE_ETH_EVENT_IPSEC)
2403 		return -1;
2404 
2405 	event_desc = ret_param;
2406 	if (event_desc == NULL) {
2407 		printf("Event descriptor not set\n");
2408 		return -1;
2409 	}
2410 
2411 	md = event_desc->metadata;
2412 
2413 	if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW)
2414 		return inline_ipsec_event_esn_overflow(ctx, md);
2415 	else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
2416 		printf("Invalid IPsec event reported\n");
2417 		return -1;
2418 	}
2419 
2420 	return -1;
2421 }
2422 
2423 static uint16_t
2424 rx_callback(__rte_unused uint16_t port, __rte_unused uint16_t queue,
2425 	struct rte_mbuf *pkt[], uint16_t nb_pkts,
2426 	__rte_unused uint16_t max_pkts, void *user_param)
2427 {
2428 	uint64_t tm;
2429 	uint32_t i, k;
2430 	struct lcore_conf *lc;
2431 	struct rte_mbuf *mb;
2432 	struct rte_ether_hdr *eth;
2433 
2434 	lc = user_param;
2435 	k = 0;
2436 	tm = 0;
2437 
2438 	for (i = 0; i != nb_pkts; i++) {
2439 
2440 		mb = pkt[i];
2441 		eth = rte_pktmbuf_mtod(mb, struct rte_ether_hdr *);
2442 		if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
2443 
2444 			struct rte_ipv4_hdr *iph;
2445 
2446 			iph = (struct rte_ipv4_hdr *)(eth + 1);
2447 			if (rte_ipv4_frag_pkt_is_fragmented(iph)) {
2448 
2449 				mb->l2_len = sizeof(*eth);
2450 				mb->l3_len = sizeof(*iph);
2451 				tm = (tm != 0) ? tm : rte_rdtsc();
2452 				mb = rte_ipv4_frag_reassemble_packet(
2453 					lc->frag.tbl, &lc->frag.dr,
2454 					mb, tm, iph);
2455 
2456 				if (mb != NULL) {
2457 					/* fix ip cksum after reassemble. */
2458 					iph = rte_pktmbuf_mtod_offset(mb,
2459 						struct rte_ipv4_hdr *,
2460 						mb->l2_len);
2461 					iph->hdr_checksum = 0;
2462 					iph->hdr_checksum = rte_ipv4_cksum(iph);
2463 				}
2464 			}
2465 		} else if (eth->ether_type ==
2466 				rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
2467 
2468 			struct rte_ipv6_hdr *iph;
2469 			struct ipv6_extension_fragment *fh;
2470 
2471 			iph = (struct rte_ipv6_hdr *)(eth + 1);
2472 			fh = rte_ipv6_frag_get_ipv6_fragment_header(iph);
2473 			if (fh != NULL) {
2474 				mb->l2_len = sizeof(*eth);
2475 				mb->l3_len = (uintptr_t)fh - (uintptr_t)iph +
2476 					sizeof(*fh);
2477 				tm = (tm != 0) ? tm : rte_rdtsc();
2478 				mb = rte_ipv6_frag_reassemble_packet(
2479 					lc->frag.tbl, &lc->frag.dr,
2480 					mb, tm, iph, fh);
2481 				if (mb != NULL)
2482 					/* fix l3_len after reassemble. */
2483 					mb->l3_len = mb->l3_len - sizeof(*fh);
2484 			}
2485 		}
2486 
2487 		pkt[k] = mb;
2488 		k += (mb != NULL);
2489 	}
2490 
2491 	/* some fragments were encountered, drain death row */
2492 	if (tm != 0)
2493 		rte_ip_frag_free_death_row(&lc->frag.dr, 0);
2494 
2495 	return k;
2496 }
2497 
2498 
2499 static int
2500 reassemble_lcore_init(struct lcore_conf *lc, uint32_t cid)
2501 {
2502 	int32_t sid;
2503 	uint32_t i;
2504 	uint64_t frag_cycles;
2505 	const struct lcore_rx_queue *rxq;
2506 	const struct rte_eth_rxtx_callback *cb;
2507 
2508 	/* create fragment table */
2509 	sid = rte_lcore_to_socket_id(cid);
2510 	frag_cycles = (rte_get_tsc_hz() + NS_PER_S - 1) /
2511 		NS_PER_S * frag_ttl_ns;
2512 
2513 	lc->frag.tbl = rte_ip_frag_table_create(frag_tbl_sz,
2514 		FRAG_TBL_BUCKET_ENTRIES, frag_tbl_sz, frag_cycles, sid);
2515 	if (lc->frag.tbl == NULL) {
2516 		printf("%s(%u): failed to create fragment table of size: %u, "
2517 			"error code: %d\n",
2518 			__func__, cid, frag_tbl_sz, rte_errno);
2519 		return -ENOMEM;
2520 	}
2521 
2522 	/* setup reassemble RX callbacks for all queues */
2523 	for (i = 0; i != lc->nb_rx_queue; i++) {
2524 
2525 		rxq = lc->rx_queue_list + i;
2526 		cb = rte_eth_add_rx_callback(rxq->port_id, rxq->queue_id,
2527 			rx_callback, lc);
2528 		if (cb == NULL) {
2529 			printf("%s(%u): failed to install RX callback for "
2530 				"portid=%u, queueid=%u, error code: %d\n",
2531 				__func__, cid,
2532 				rxq->port_id, rxq->queue_id, rte_errno);
2533 			return -ENOMEM;
2534 		}
2535 	}
2536 
2537 	return 0;
2538 }
2539 
2540 static int
2541 reassemble_init(void)
2542 {
2543 	int32_t rc;
2544 	uint32_t i, lc;
2545 
2546 	rc = 0;
2547 	for (i = 0; i != nb_lcore_params; i++) {
2548 		lc = lcore_params[i].lcore_id;
2549 		rc = reassemble_lcore_init(lcore_conf + lc, lc);
2550 		if (rc != 0)
2551 			break;
2552 	}
2553 
2554 	return rc;
2555 }
2556 
2557 static void
2558 create_default_ipsec_flow(uint16_t port_id, uint64_t rx_offloads)
2559 {
2560 	struct rte_flow_action action[2];
2561 	struct rte_flow_item pattern[2];
2562 	struct rte_flow_attr attr = {0};
2563 	struct rte_flow_error err;
2564 	struct rte_flow *flow;
2565 	int ret;
2566 
2567 	if (!(rx_offloads & DEV_RX_OFFLOAD_SECURITY))
2568 		return;
2569 
2570 	/* Add the default rte_flow to enable SECURITY for all ESP packets */
2571 
2572 	pattern[0].type = RTE_FLOW_ITEM_TYPE_ESP;
2573 	pattern[0].spec = NULL;
2574 	pattern[0].mask = NULL;
2575 	pattern[0].last = NULL;
2576 	pattern[1].type = RTE_FLOW_ITEM_TYPE_END;
2577 
2578 	action[0].type = RTE_FLOW_ACTION_TYPE_SECURITY;
2579 	action[0].conf = NULL;
2580 	action[1].type = RTE_FLOW_ACTION_TYPE_END;
2581 	action[1].conf = NULL;
2582 
2583 	attr.ingress = 1;
2584 
2585 	ret = rte_flow_validate(port_id, &attr, pattern, action, &err);
2586 	if (ret)
2587 		return;
2588 
2589 	flow = rte_flow_create(port_id, &attr, pattern, action, &err);
2590 	if (flow == NULL)
2591 		return;
2592 
2593 	flow_info_tbl[port_id].rx_def_flow = flow;
2594 	RTE_LOG(INFO, IPSEC,
2595 		"Created default flow enabling SECURITY for all ESP traffic on port %d\n",
2596 		port_id);
2597 }
2598 
2599 static void
2600 signal_handler(int signum)
2601 {
2602 	if (signum == SIGINT || signum == SIGTERM) {
2603 		printf("\n\nSignal %d received, preparing to exit...\n",
2604 				signum);
2605 		force_quit = true;
2606 	}
2607 }
2608 
2609 static void
2610 ev_mode_sess_verify(struct ipsec_sa *sa, int nb_sa)
2611 {
2612 	struct rte_ipsec_session *ips;
2613 	int32_t i;
2614 
2615 	if (!sa || !nb_sa)
2616 		return;
2617 
2618 	for (i = 0; i < nb_sa; i++) {
2619 		ips = ipsec_get_primary_session(&sa[i]);
2620 		if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL)
2621 			rte_exit(EXIT_FAILURE, "Event mode supports only "
2622 				 "inline protocol sessions\n");
2623 	}
2624 
2625 }
2626 
2627 static int32_t
2628 check_event_mode_params(struct eh_conf *eh_conf)
2629 {
2630 	struct eventmode_conf *em_conf = NULL;
2631 	struct lcore_params *params;
2632 	uint16_t portid;
2633 
2634 	if (!eh_conf || !eh_conf->mode_params)
2635 		return -EINVAL;
2636 
2637 	/* Get eventmode conf */
2638 	em_conf = eh_conf->mode_params;
2639 
2640 	if (eh_conf->mode == EH_PKT_TRANSFER_MODE_POLL &&
2641 	    em_conf->ext_params.sched_type != SCHED_TYPE_NOT_SET) {
2642 		printf("error: option --event-schedule-type applies only to "
2643 		       "event mode\n");
2644 		return -EINVAL;
2645 	}
2646 
2647 	if (eh_conf->mode != EH_PKT_TRANSFER_MODE_EVENT)
2648 		return 0;
2649 
2650 	/* Set schedule type to ORDERED if it wasn't explicitly set by user */
2651 	if (em_conf->ext_params.sched_type == SCHED_TYPE_NOT_SET)
2652 		em_conf->ext_params.sched_type = RTE_SCHED_TYPE_ORDERED;
2653 
2654 	/*
2655 	 * Event mode currently supports only inline protocol sessions.
2656 	 * If there are other types of sessions configured then exit with
2657 	 * error.
2658 	 */
2659 	ev_mode_sess_verify(sa_in, nb_sa_in);
2660 	ev_mode_sess_verify(sa_out, nb_sa_out);
2661 
2662 
2663 	/* Option --config does not apply to event mode */
2664 	if (nb_lcore_params > 0) {
2665 		printf("error: option --config applies only to poll mode\n");
2666 		return -EINVAL;
2667 	}
2668 
2669 	/*
2670 	 * In order to use the same port_init routine for both poll and event
2671 	 * modes initialize lcore_params with one queue for each eth port
2672 	 */
2673 	lcore_params = lcore_params_array;
2674 	RTE_ETH_FOREACH_DEV(portid) {
2675 		if ((enabled_port_mask & (1 << portid)) == 0)
2676 			continue;
2677 
2678 		params = &lcore_params[nb_lcore_params++];
2679 		params->port_id = portid;
2680 		params->queue_id = 0;
2681 		params->lcore_id = rte_get_next_lcore(0, 0, 1);
2682 	}
2683 
2684 	return 0;
2685 }
2686 
2687 static void
2688 inline_sessions_free(struct sa_ctx *sa_ctx)
2689 {
2690 	struct rte_ipsec_session *ips;
2691 	struct ipsec_sa *sa;
2692 	int32_t ret;
2693 	uint32_t i;
2694 
2695 	if (!sa_ctx)
2696 		return;
2697 
2698 	for (i = 0; i < sa_ctx->nb_sa; i++) {
2699 
2700 		sa = &sa_ctx->sa[i];
2701 		if (!sa->spi)
2702 			continue;
2703 
2704 		ips = ipsec_get_primary_session(sa);
2705 		if (ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL &&
2706 		    ips->type != RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO)
2707 			continue;
2708 
2709 		if (!rte_eth_dev_is_valid_port(sa->portid))
2710 			continue;
2711 
2712 		ret = rte_security_session_destroy(
2713 				rte_eth_dev_get_sec_ctx(sa->portid),
2714 				ips->security.ses);
2715 		if (ret)
2716 			RTE_LOG(ERR, IPSEC, "Failed to destroy security "
2717 					    "session type %d, spi %d\n",
2718 					    ips->type, sa->spi);
2719 	}
2720 }
2721 
2722 static uint32_t
2723 calculate_nb_mbufs(uint16_t nb_ports, uint16_t nb_crypto_qp, uint32_t nb_rxq,
2724 		uint32_t nb_txq)
2725 {
2726 	return RTE_MAX((nb_rxq * nb_rxd +
2727 			nb_ports * nb_lcores * MAX_PKT_BURST +
2728 			nb_ports * nb_txq * nb_txd +
2729 			nb_lcores * MEMPOOL_CACHE_SIZE +
2730 			nb_crypto_qp * CDEV_QUEUE_DESC +
2731 			nb_lcores * frag_tbl_sz *
2732 			FRAG_TBL_BUCKET_ENTRIES),
2733 		       8192U);
2734 }
2735 
2736 int32_t
2737 main(int32_t argc, char **argv)
2738 {
2739 	int32_t ret;
2740 	uint32_t lcore_id, nb_txq, nb_rxq = 0;
2741 	uint32_t cdev_id;
2742 	uint32_t i;
2743 	uint8_t socket_id;
2744 	uint16_t portid, nb_crypto_qp, nb_ports = 0;
2745 	uint64_t req_rx_offloads[RTE_MAX_ETHPORTS];
2746 	uint64_t req_tx_offloads[RTE_MAX_ETHPORTS];
2747 	struct eh_conf *eh_conf = NULL;
2748 	size_t sess_sz;
2749 
2750 	nb_bufs_in_pool = 0;
2751 
2752 	/* init EAL */
2753 	ret = rte_eal_init(argc, argv);
2754 	if (ret < 0)
2755 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2756 	argc -= ret;
2757 	argv += ret;
2758 
2759 	force_quit = false;
2760 	signal(SIGINT, signal_handler);
2761 	signal(SIGTERM, signal_handler);
2762 
2763 	/* initialize event helper configuration */
2764 	eh_conf = eh_conf_init();
2765 	if (eh_conf == NULL)
2766 		rte_exit(EXIT_FAILURE, "Failed to init event helper config");
2767 
2768 	/* parse application arguments (after the EAL ones) */
2769 	ret = parse_args(argc, argv, eh_conf);
2770 	if (ret < 0)
2771 		rte_exit(EXIT_FAILURE, "Invalid parameters\n");
2772 
2773 	/* parse configuration file */
2774 	if (parse_cfg_file(cfgfile) < 0) {
2775 		printf("parsing file \"%s\" failed\n",
2776 			optarg);
2777 		print_usage(argv[0]);
2778 		return -1;
2779 	}
2780 
2781 	if ((unprotected_port_mask & enabled_port_mask) !=
2782 			unprotected_port_mask)
2783 		rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
2784 				unprotected_port_mask);
2785 
2786 	if (check_poll_mode_params(eh_conf) < 0)
2787 		rte_exit(EXIT_FAILURE, "check_poll_mode_params failed\n");
2788 
2789 	if (check_event_mode_params(eh_conf) < 0)
2790 		rte_exit(EXIT_FAILURE, "check_event_mode_params failed\n");
2791 
2792 	ret = init_lcore_rx_queues();
2793 	if (ret < 0)
2794 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2795 
2796 	nb_lcores = rte_lcore_count();
2797 
2798 	sess_sz = max_session_size();
2799 
2800 	/*
2801 	 * In event mode request minimum number of crypto queues
2802 	 * to be reserved equal to number of ports.
2803 	 */
2804 	if (eh_conf->mode == EH_PKT_TRANSFER_MODE_EVENT)
2805 		nb_crypto_qp = rte_eth_dev_count_avail();
2806 	else
2807 		nb_crypto_qp = 0;
2808 
2809 	nb_crypto_qp = cryptodevs_init(nb_crypto_qp);
2810 
2811 	if (nb_bufs_in_pool == 0) {
2812 		RTE_ETH_FOREACH_DEV(portid) {
2813 			if ((enabled_port_mask & (1 << portid)) == 0)
2814 				continue;
2815 			nb_ports++;
2816 			nb_rxq += get_port_nb_rx_queues(portid);
2817 		}
2818 
2819 		nb_txq = nb_lcores;
2820 
2821 		nb_bufs_in_pool = calculate_nb_mbufs(nb_ports, nb_crypto_qp,
2822 						nb_rxq, nb_txq);
2823 	}
2824 
2825 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2826 		if (rte_lcore_is_enabled(lcore_id) == 0)
2827 			continue;
2828 
2829 		if (numa_on)
2830 			socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2831 		else
2832 			socket_id = 0;
2833 
2834 		/* mbuf_pool is initialised by the pool_init() function*/
2835 		if (socket_ctx[socket_id].mbuf_pool)
2836 			continue;
2837 
2838 		pool_init(&socket_ctx[socket_id], socket_id, nb_bufs_in_pool);
2839 		session_pool_init(&socket_ctx[socket_id], socket_id, sess_sz);
2840 		session_priv_pool_init(&socket_ctx[socket_id], socket_id,
2841 			sess_sz);
2842 	}
2843 	printf("Number of mbufs in packet pool %d\n", nb_bufs_in_pool);
2844 
2845 	RTE_ETH_FOREACH_DEV(portid) {
2846 		if ((enabled_port_mask & (1 << portid)) == 0)
2847 			continue;
2848 
2849 		sa_check_offloads(portid, &req_rx_offloads[portid],
2850 				&req_tx_offloads[portid]);
2851 		port_init(portid, req_rx_offloads[portid],
2852 				req_tx_offloads[portid]);
2853 	}
2854 
2855 	/*
2856 	 * Set the enabled port mask in helper config for use by helper
2857 	 * sub-system. This will be used while initializing devices using
2858 	 * helper sub-system.
2859 	 */
2860 	eh_conf->eth_portmask = enabled_port_mask;
2861 
2862 	/* Initialize eventmode components */
2863 	ret = eh_devs_init(eh_conf);
2864 	if (ret < 0)
2865 		rte_exit(EXIT_FAILURE, "eh_devs_init failed, err=%d\n", ret);
2866 
2867 	/* start ports */
2868 	RTE_ETH_FOREACH_DEV(portid) {
2869 		if ((enabled_port_mask & (1 << portid)) == 0)
2870 			continue;
2871 
2872 		/* Create flow before starting the device */
2873 		create_default_ipsec_flow(portid, req_rx_offloads[portid]);
2874 
2875 		ret = rte_eth_dev_start(portid);
2876 		if (ret < 0)
2877 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
2878 					"err=%d, port=%d\n", ret, portid);
2879 		/*
2880 		 * If enabled, put device in promiscuous mode.
2881 		 * This allows IO forwarding mode to forward packets
2882 		 * to itself through 2 cross-connected  ports of the
2883 		 * target machine.
2884 		 */
2885 		if (promiscuous_on) {
2886 			ret = rte_eth_promiscuous_enable(portid);
2887 			if (ret != 0)
2888 				rte_exit(EXIT_FAILURE,
2889 					"rte_eth_promiscuous_enable: err=%s, port=%d\n",
2890 					rte_strerror(-ret), portid);
2891 		}
2892 
2893 		rte_eth_dev_callback_register(portid,
2894 			RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
2895 	}
2896 
2897 	/* fragment reassemble is enabled */
2898 	if (frag_tbl_sz != 0) {
2899 		ret = reassemble_init();
2900 		if (ret != 0)
2901 			rte_exit(EXIT_FAILURE, "failed at reassemble init");
2902 	}
2903 
2904 	/* Replicate each context per socket */
2905 	for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
2906 		socket_id = rte_socket_id_by_idx(i);
2907 		if ((socket_ctx[socket_id].mbuf_pool != NULL) &&
2908 			(socket_ctx[socket_id].sa_in == NULL) &&
2909 			(socket_ctx[socket_id].sa_out == NULL)) {
2910 			sa_init(&socket_ctx[socket_id], socket_id);
2911 			sp4_init(&socket_ctx[socket_id], socket_id);
2912 			sp6_init(&socket_ctx[socket_id], socket_id);
2913 			rt_init(&socket_ctx[socket_id], socket_id);
2914 		}
2915 	}
2916 
2917 	check_all_ports_link_status(enabled_port_mask);
2918 
2919 	/* launch per-lcore init on every lcore */
2920 	rte_eal_mp_remote_launch(ipsec_launch_one_lcore, eh_conf, CALL_MASTER);
2921 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2922 		if (rte_eal_wait_lcore(lcore_id) < 0)
2923 			return -1;
2924 	}
2925 
2926 	/* Uninitialize eventmode components */
2927 	ret = eh_devs_uninit(eh_conf);
2928 	if (ret < 0)
2929 		rte_exit(EXIT_FAILURE, "eh_devs_uninit failed, err=%d\n", ret);
2930 
2931 	/* Free eventmode configuration memory */
2932 	eh_conf_uninit(eh_conf);
2933 
2934 	/* Destroy inline inbound and outbound sessions */
2935 	for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) {
2936 		socket_id = rte_socket_id_by_idx(i);
2937 		inline_sessions_free(socket_ctx[socket_id].sa_in);
2938 		inline_sessions_free(socket_ctx[socket_id].sa_out);
2939 	}
2940 
2941 	for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
2942 		printf("Closing cryptodev %d...", cdev_id);
2943 		rte_cryptodev_stop(cdev_id);
2944 		rte_cryptodev_close(cdev_id);
2945 		printf(" Done\n");
2946 	}
2947 
2948 	RTE_ETH_FOREACH_DEV(portid) {
2949 		if ((enabled_port_mask & (1 << portid)) == 0)
2950 			continue;
2951 
2952 		printf("Closing port %d...", portid);
2953 		if (flow_info_tbl[portid].rx_def_flow) {
2954 			struct rte_flow_error err;
2955 
2956 			ret = rte_flow_destroy(portid,
2957 				flow_info_tbl[portid].rx_def_flow, &err);
2958 			if (ret)
2959 				RTE_LOG(ERR, IPSEC, "Failed to destroy flow "
2960 					" for port %u, err msg: %s\n", portid,
2961 					err.message);
2962 		}
2963 		rte_eth_dev_stop(portid);
2964 		rte_eth_dev_close(portid);
2965 		printf(" Done\n");
2966 	}
2967 	printf("Bye...\n");
2968 
2969 	return 0;
2970 }
2971