xref: /dpdk/examples/ipsec-secgw/ipsec-secgw.c (revision 2d0c29a37a9c080c1cccb1ad7941aba2ccf5437e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <netinet/in.h>
11 #include <netinet/ip.h>
12 #include <netinet/ip6.h>
13 #include <string.h>
14 #include <sys/queue.h>
15 #include <stdarg.h>
16 #include <errno.h>
17 #include <getopt.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_log.h>
22 #include <rte_eal.h>
23 #include <rte_launch.h>
24 #include <rte_atomic.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
36 #include <rte_mbuf.h>
37 #include <rte_acl.h>
38 #include <rte_lpm.h>
39 #include <rte_lpm6.h>
40 #include <rte_hash.h>
41 #include <rte_jhash.h>
42 #include <rte_cryptodev.h>
43 #include <rte_security.h>
44 
45 #include "ipsec.h"
46 #include "parser.h"
47 
48 #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
49 
50 #define MAX_JUMBO_PKT_LEN  9600
51 
52 #define MEMPOOL_CACHE_SIZE 256
53 
54 #define NB_MBUF	(32000)
55 
56 #define CDEV_QUEUE_DESC 2048
57 #define CDEV_MAP_ENTRIES 16384
58 #define CDEV_MP_NB_OBJS 1024
59 #define CDEV_MP_CACHE_SZ 64
60 #define MAX_QUEUE_PAIRS 1
61 
62 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
63 
64 #define NB_SOCKETS 4
65 
66 /* Configure how many packets ahead to prefetch, when reading packets */
67 #define PREFETCH_OFFSET	3
68 
69 #define MAX_RX_QUEUE_PER_LCORE 16
70 
71 #define MAX_LCORE_PARAMS 1024
72 
73 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid))
74 
75 /*
76  * Configurable number of RX/TX ring descriptors
77  */
78 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024
79 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024
80 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
81 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
82 
83 #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN
84 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
85 	(((uint64_t)((a) & 0xff) << 56) | \
86 	((uint64_t)((b) & 0xff) << 48) | \
87 	((uint64_t)((c) & 0xff) << 40) | \
88 	((uint64_t)((d) & 0xff) << 32) | \
89 	((uint64_t)((e) & 0xff) << 24) | \
90 	((uint64_t)((f) & 0xff) << 16) | \
91 	((uint64_t)((g) & 0xff) << 8)  | \
92 	((uint64_t)(h) & 0xff))
93 #else
94 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
95 	(((uint64_t)((h) & 0xff) << 56) | \
96 	((uint64_t)((g) & 0xff) << 48) | \
97 	((uint64_t)((f) & 0xff) << 40) | \
98 	((uint64_t)((e) & 0xff) << 32) | \
99 	((uint64_t)((d) & 0xff) << 24) | \
100 	((uint64_t)((c) & 0xff) << 16) | \
101 	((uint64_t)((b) & 0xff) << 8) | \
102 	((uint64_t)(a) & 0xff))
103 #endif
104 #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0))
105 
106 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
107 		(addr)->addr_bytes[0], (addr)->addr_bytes[1], \
108 		(addr)->addr_bytes[2], (addr)->addr_bytes[3], \
109 		(addr)->addr_bytes[4], (addr)->addr_bytes[5], \
110 		0, 0)
111 
112 /* port/source ethernet addr and destination ethernet addr */
113 struct ethaddr_info {
114 	uint64_t src, dst;
115 };
116 
117 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
118 	{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
119 	{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
120 	{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
121 	{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
122 };
123 
124 #define CMD_LINE_OPT_CONFIG		"config"
125 #define CMD_LINE_OPT_SINGLE_SA		"single-sa"
126 #define CMD_LINE_OPT_CRYPTODEV_MASK	"cryptodev_mask"
127 #define CMD_LINE_OPT_RX_OFFLOAD		"rxoffload"
128 #define CMD_LINE_OPT_TX_OFFLOAD		"txoffload"
129 
130 enum {
131 	/* long options mapped to a short option */
132 
133 	/* first long only option value must be >= 256, so that we won't
134 	 * conflict with short options
135 	 */
136 	CMD_LINE_OPT_MIN_NUM = 256,
137 	CMD_LINE_OPT_CONFIG_NUM,
138 	CMD_LINE_OPT_SINGLE_SA_NUM,
139 	CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
140 	CMD_LINE_OPT_RX_OFFLOAD_NUM,
141 	CMD_LINE_OPT_TX_OFFLOAD_NUM,
142 };
143 
144 static const struct option lgopts[] = {
145 	{CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
146 	{CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
147 	{CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
148 	{CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM},
149 	{CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM},
150 	{NULL, 0, 0, 0}
151 };
152 
153 /* mask of enabled ports */
154 static uint32_t enabled_port_mask;
155 static uint64_t enabled_cryptodev_mask = UINT64_MAX;
156 static uint32_t unprotected_port_mask;
157 static int32_t promiscuous_on = 1;
158 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
159 static uint32_t nb_lcores;
160 static uint32_t single_sa;
161 static uint32_t single_sa_idx;
162 static uint32_t frame_size;
163 
164 /*
165  * RX/TX HW offload capabilities to enable/use on ethernet ports.
166  * By default all capabilities are enabled.
167  */
168 static uint64_t dev_rx_offload = UINT64_MAX;
169 static uint64_t dev_tx_offload = UINT64_MAX;
170 
171 /* application wide librte_ipsec/SA parameters */
172 struct app_sa_prm app_sa_prm = {.enable = 0};
173 
174 struct lcore_rx_queue {
175 	uint16_t port_id;
176 	uint8_t queue_id;
177 } __rte_cache_aligned;
178 
179 struct lcore_params {
180 	uint16_t port_id;
181 	uint8_t queue_id;
182 	uint8_t lcore_id;
183 } __rte_cache_aligned;
184 
185 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
186 
187 static struct lcore_params *lcore_params;
188 static uint16_t nb_lcore_params;
189 
190 static struct rte_hash *cdev_map_in;
191 static struct rte_hash *cdev_map_out;
192 
193 struct buffer {
194 	uint16_t len;
195 	struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
196 };
197 
198 struct lcore_conf {
199 	uint16_t nb_rx_queue;
200 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
201 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
202 	struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
203 	struct ipsec_ctx inbound;
204 	struct ipsec_ctx outbound;
205 	struct rt_ctx *rt4_ctx;
206 	struct rt_ctx *rt6_ctx;
207 } __rte_cache_aligned;
208 
209 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
210 
211 static struct rte_eth_conf port_conf = {
212 	.rxmode = {
213 		.mq_mode	= ETH_MQ_RX_RSS,
214 		.max_rx_pkt_len = ETHER_MAX_LEN,
215 		.split_hdr_size = 0,
216 		.offloads = DEV_RX_OFFLOAD_CHECKSUM,
217 	},
218 	.rx_adv_conf = {
219 		.rss_conf = {
220 			.rss_key = NULL,
221 			.rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
222 				ETH_RSS_TCP | ETH_RSS_SCTP,
223 		},
224 	},
225 	.txmode = {
226 		.mq_mode = ETH_MQ_TX_NONE,
227 	},
228 };
229 
230 static struct socket_ctx socket_ctx[NB_SOCKETS];
231 
232 static inline void
233 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
234 {
235 	uint8_t *nlp;
236 	struct ether_hdr *eth;
237 
238 	eth = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
239 	if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
240 		nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
241 		nlp = RTE_PTR_ADD(nlp, offsetof(struct ip, ip_p));
242 		if (*nlp == IPPROTO_ESP)
243 			t->ipsec.pkts[(t->ipsec.num)++] = pkt;
244 		else {
245 			t->ip4.data[t->ip4.num] = nlp;
246 			t->ip4.pkts[(t->ip4.num)++] = pkt;
247 		}
248 		pkt->l2_len = 0;
249 		pkt->l3_len = sizeof(struct ip);
250 	} else if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) {
251 		nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
252 		nlp = RTE_PTR_ADD(nlp, offsetof(struct ip6_hdr, ip6_nxt));
253 		if (*nlp == IPPROTO_ESP)
254 			t->ipsec.pkts[(t->ipsec.num)++] = pkt;
255 		else {
256 			t->ip6.data[t->ip6.num] = nlp;
257 			t->ip6.pkts[(t->ip6.num)++] = pkt;
258 		}
259 		pkt->l2_len = 0;
260 		pkt->l3_len = sizeof(struct ip6_hdr);
261 	} else {
262 		/* Unknown/Unsupported type, drop the packet */
263 		RTE_LOG(ERR, IPSEC, "Unsupported packet type 0x%x\n",
264 			rte_be_to_cpu_16(eth->ether_type));
265 		rte_pktmbuf_free(pkt);
266 	}
267 
268 	/* Check if the packet has been processed inline. For inline protocol
269 	 * processed packets, the metadata in the mbuf can be used to identify
270 	 * the security processing done on the packet. The metadata will be
271 	 * used to retrieve the application registered userdata associated
272 	 * with the security session.
273 	 */
274 
275 	if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD) {
276 		struct ipsec_sa *sa;
277 		struct ipsec_mbuf_metadata *priv;
278 		struct rte_security_ctx *ctx = (struct rte_security_ctx *)
279 						rte_eth_dev_get_sec_ctx(
280 						pkt->port);
281 
282 		/* Retrieve the userdata registered. Here, the userdata
283 		 * registered is the SA pointer.
284 		 */
285 
286 		sa = (struct ipsec_sa *)
287 				rte_security_get_userdata(ctx, pkt->udata64);
288 
289 		if (sa == NULL) {
290 			/* userdata could not be retrieved */
291 			return;
292 		}
293 
294 		/* Save SA as priv member in mbuf. This will be used in the
295 		 * IPsec selector(SP-SA) check.
296 		 */
297 
298 		priv = get_priv(pkt);
299 		priv->sa = sa;
300 	}
301 }
302 
303 static inline void
304 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
305 		uint16_t nb_pkts)
306 {
307 	int32_t i;
308 
309 	t->ipsec.num = 0;
310 	t->ip4.num = 0;
311 	t->ip6.num = 0;
312 
313 	for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
314 		rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
315 					void *));
316 		prepare_one_packet(pkts[i], t);
317 	}
318 	/* Process left packets */
319 	for (; i < nb_pkts; i++)
320 		prepare_one_packet(pkts[i], t);
321 }
322 
323 static inline void
324 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port,
325 		const struct lcore_conf *qconf)
326 {
327 	struct ip *ip;
328 	struct ether_hdr *ethhdr;
329 
330 	ip = rte_pktmbuf_mtod(pkt, struct ip *);
331 
332 	ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, ETHER_HDR_LEN);
333 
334 	if (ip->ip_v == IPVERSION) {
335 		pkt->ol_flags |= qconf->outbound.ipv4_offloads;
336 		pkt->l3_len = sizeof(struct ip);
337 		pkt->l2_len = ETHER_HDR_LEN;
338 
339 		ip->ip_sum = 0;
340 
341 		/* calculate IPv4 cksum in SW */
342 		if ((pkt->ol_flags & PKT_TX_IP_CKSUM) == 0)
343 			ip->ip_sum = rte_ipv4_cksum((struct ipv4_hdr *)ip);
344 
345 		ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
346 	} else {
347 		pkt->ol_flags |= qconf->outbound.ipv6_offloads;
348 		pkt->l3_len = sizeof(struct ip6_hdr);
349 		pkt->l2_len = ETHER_HDR_LEN;
350 
351 		ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
352 	}
353 
354 	memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
355 			sizeof(struct ether_addr));
356 	memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
357 			sizeof(struct ether_addr));
358 }
359 
360 static inline void
361 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port,
362 		const struct lcore_conf *qconf)
363 {
364 	int32_t i;
365 	const int32_t prefetch_offset = 2;
366 
367 	for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
368 		rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
369 		prepare_tx_pkt(pkts[i], port, qconf);
370 	}
371 	/* Process left packets */
372 	for (; i < nb_pkts; i++)
373 		prepare_tx_pkt(pkts[i], port, qconf);
374 }
375 
376 /* Send burst of packets on an output interface */
377 static inline int32_t
378 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
379 {
380 	struct rte_mbuf **m_table;
381 	int32_t ret;
382 	uint16_t queueid;
383 
384 	queueid = qconf->tx_queue_id[port];
385 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
386 
387 	prepare_tx_burst(m_table, n, port, qconf);
388 
389 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
390 	if (unlikely(ret < n)) {
391 		do {
392 			rte_pktmbuf_free(m_table[ret]);
393 		} while (++ret < n);
394 	}
395 
396 	return 0;
397 }
398 
399 /* Enqueue a single packet, and send burst if queue is filled */
400 static inline int32_t
401 send_single_packet(struct rte_mbuf *m, uint16_t port)
402 {
403 	uint32_t lcore_id;
404 	uint16_t len;
405 	struct lcore_conf *qconf;
406 
407 	lcore_id = rte_lcore_id();
408 
409 	qconf = &lcore_conf[lcore_id];
410 	len = qconf->tx_mbufs[port].len;
411 	qconf->tx_mbufs[port].m_table[len] = m;
412 	len++;
413 
414 	/* enough pkts to be sent */
415 	if (unlikely(len == MAX_PKT_BURST)) {
416 		send_burst(qconf, MAX_PKT_BURST, port);
417 		len = 0;
418 	}
419 
420 	qconf->tx_mbufs[port].len = len;
421 	return 0;
422 }
423 
424 static inline void
425 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
426 		uint16_t lim)
427 {
428 	struct rte_mbuf *m;
429 	uint32_t i, j, res, sa_idx;
430 
431 	if (ip->num == 0 || sp == NULL)
432 		return;
433 
434 	rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
435 			ip->num, DEFAULT_MAX_CATEGORIES);
436 
437 	j = 0;
438 	for (i = 0; i < ip->num; i++) {
439 		m = ip->pkts[i];
440 		res = ip->res[i];
441 		if (res & BYPASS) {
442 			ip->pkts[j++] = m;
443 			continue;
444 		}
445 		if (res & DISCARD) {
446 			rte_pktmbuf_free(m);
447 			continue;
448 		}
449 
450 		/* Only check SPI match for processed IPSec packets */
451 		if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) {
452 			rte_pktmbuf_free(m);
453 			continue;
454 		}
455 
456 		sa_idx = ip->res[i] & PROTECT_MASK;
457 		if (sa_idx >= IPSEC_SA_MAX_ENTRIES ||
458 				!inbound_sa_check(sa, m, sa_idx)) {
459 			rte_pktmbuf_free(m);
460 			continue;
461 		}
462 		ip->pkts[j++] = m;
463 	}
464 	ip->num = j;
465 }
466 
467 static void
468 split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num)
469 {
470 	uint32_t i, n4, n6;
471 	struct ip *ip;
472 	struct rte_mbuf *m;
473 
474 	n4 = trf->ip4.num;
475 	n6 = trf->ip6.num;
476 
477 	for (i = 0; i < num; i++) {
478 
479 		m = mb[i];
480 		ip = rte_pktmbuf_mtod(m, struct ip *);
481 
482 		if (ip->ip_v == IPVERSION) {
483 			trf->ip4.pkts[n4] = m;
484 			trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m,
485 					uint8_t *, offsetof(struct ip, ip_p));
486 			n4++;
487 		} else if (ip->ip_v == IP6_VERSION) {
488 			trf->ip6.pkts[n6] = m;
489 			trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m,
490 					uint8_t *,
491 					offsetof(struct ip6_hdr, ip6_nxt));
492 			n6++;
493 		} else
494 			rte_pktmbuf_free(m);
495 	}
496 
497 	trf->ip4.num = n4;
498 	trf->ip6.num = n6;
499 }
500 
501 
502 static inline void
503 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
504 		struct ipsec_traffic *traffic)
505 {
506 	uint16_t nb_pkts_in, n_ip4, n_ip6;
507 
508 	n_ip4 = traffic->ip4.num;
509 	n_ip6 = traffic->ip6.num;
510 
511 	if (app_sa_prm.enable == 0) {
512 		nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
513 				traffic->ipsec.num, MAX_PKT_BURST);
514 		split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in);
515 	} else {
516 		inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
517 			traffic->ipsec.saptr, traffic->ipsec.num);
518 		ipsec_process(ipsec_ctx, traffic);
519 	}
520 
521 	inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
522 			n_ip4);
523 
524 	inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
525 			n_ip6);
526 }
527 
528 static inline void
529 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
530 		struct traffic_type *ipsec)
531 {
532 	struct rte_mbuf *m;
533 	uint32_t i, j, sa_idx;
534 
535 	if (ip->num == 0 || sp == NULL)
536 		return;
537 
538 	rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
539 			ip->num, DEFAULT_MAX_CATEGORIES);
540 
541 	j = 0;
542 	for (i = 0; i < ip->num; i++) {
543 		m = ip->pkts[i];
544 		sa_idx = ip->res[i] & PROTECT_MASK;
545 		if (ip->res[i] & DISCARD)
546 			rte_pktmbuf_free(m);
547 		else if (ip->res[i] & BYPASS)
548 			ip->pkts[j++] = m;
549 		else if (sa_idx < IPSEC_SA_MAX_ENTRIES) {
550 			ipsec->res[ipsec->num] = sa_idx;
551 			ipsec->pkts[ipsec->num++] = m;
552 		} else /* invalid SA idx */
553 			rte_pktmbuf_free(m);
554 	}
555 	ip->num = j;
556 }
557 
558 static inline void
559 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
560 		struct ipsec_traffic *traffic)
561 {
562 	struct rte_mbuf *m;
563 	uint16_t idx, nb_pkts_out, i;
564 
565 	/* Drop any IPsec traffic from protected ports */
566 	for (i = 0; i < traffic->ipsec.num; i++)
567 		rte_pktmbuf_free(traffic->ipsec.pkts[i]);
568 
569 	traffic->ipsec.num = 0;
570 
571 	outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
572 
573 	outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
574 
575 	if (app_sa_prm.enable == 0) {
576 
577 		nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
578 				traffic->ipsec.res, traffic->ipsec.num,
579 				MAX_PKT_BURST);
580 
581 		for (i = 0; i < nb_pkts_out; i++) {
582 			m = traffic->ipsec.pkts[i];
583 			struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
584 			if (ip->ip_v == IPVERSION) {
585 				idx = traffic->ip4.num++;
586 				traffic->ip4.pkts[idx] = m;
587 			} else {
588 				idx = traffic->ip6.num++;
589 				traffic->ip6.pkts[idx] = m;
590 			}
591 		}
592 	} else {
593 		outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
594 			traffic->ipsec.saptr, traffic->ipsec.num);
595 		ipsec_process(ipsec_ctx, traffic);
596 	}
597 }
598 
599 static inline void
600 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
601 		struct ipsec_traffic *traffic)
602 {
603 	struct rte_mbuf *m;
604 	uint32_t nb_pkts_in, i, idx;
605 
606 	/* Drop any IPv4 traffic from unprotected ports */
607 	for (i = 0; i < traffic->ip4.num; i++)
608 		rte_pktmbuf_free(traffic->ip4.pkts[i]);
609 
610 	traffic->ip4.num = 0;
611 
612 	/* Drop any IPv6 traffic from unprotected ports */
613 	for (i = 0; i < traffic->ip6.num; i++)
614 		rte_pktmbuf_free(traffic->ip6.pkts[i]);
615 
616 	traffic->ip6.num = 0;
617 
618 	if (app_sa_prm.enable == 0) {
619 
620 		nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
621 				traffic->ipsec.num, MAX_PKT_BURST);
622 
623 		for (i = 0; i < nb_pkts_in; i++) {
624 			m = traffic->ipsec.pkts[i];
625 			struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
626 			if (ip->ip_v == IPVERSION) {
627 				idx = traffic->ip4.num++;
628 				traffic->ip4.pkts[idx] = m;
629 			} else {
630 				idx = traffic->ip6.num++;
631 				traffic->ip6.pkts[idx] = m;
632 			}
633 		}
634 	} else {
635 		inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
636 			traffic->ipsec.saptr, traffic->ipsec.num);
637 		ipsec_process(ipsec_ctx, traffic);
638 	}
639 }
640 
641 static inline void
642 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
643 		struct ipsec_traffic *traffic)
644 {
645 	struct rte_mbuf *m;
646 	uint32_t nb_pkts_out, i, n;
647 	struct ip *ip;
648 
649 	/* Drop any IPsec traffic from protected ports */
650 	for (i = 0; i < traffic->ipsec.num; i++)
651 		rte_pktmbuf_free(traffic->ipsec.pkts[i]);
652 
653 	n = 0;
654 
655 	for (i = 0; i < traffic->ip4.num; i++) {
656 		traffic->ipsec.pkts[n] = traffic->ip4.pkts[i];
657 		traffic->ipsec.res[n++] = single_sa_idx;
658 	}
659 
660 	for (i = 0; i < traffic->ip6.num; i++) {
661 		traffic->ipsec.pkts[n] = traffic->ip6.pkts[i];
662 		traffic->ipsec.res[n++] = single_sa_idx;
663 	}
664 
665 	traffic->ip4.num = 0;
666 	traffic->ip6.num = 0;
667 	traffic->ipsec.num = n;
668 
669 	if (app_sa_prm.enable == 0) {
670 
671 		nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
672 				traffic->ipsec.res, traffic->ipsec.num,
673 				MAX_PKT_BURST);
674 
675 		/* They all sue the same SA (ip4 or ip6 tunnel) */
676 		m = traffic->ipsec.pkts[0];
677 		ip = rte_pktmbuf_mtod(m, struct ip *);
678 		if (ip->ip_v == IPVERSION) {
679 			traffic->ip4.num = nb_pkts_out;
680 			for (i = 0; i < nb_pkts_out; i++)
681 				traffic->ip4.pkts[i] = traffic->ipsec.pkts[i];
682 		} else {
683 			traffic->ip6.num = nb_pkts_out;
684 			for (i = 0; i < nb_pkts_out; i++)
685 				traffic->ip6.pkts[i] = traffic->ipsec.pkts[i];
686 		}
687 	} else {
688 		outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
689 			traffic->ipsec.saptr, traffic->ipsec.num);
690 		ipsec_process(ipsec_ctx, traffic);
691 	}
692 }
693 
694 static inline int32_t
695 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
696 {
697 	struct ipsec_mbuf_metadata *priv;
698 	struct ipsec_sa *sa;
699 
700 	priv = get_priv(pkt);
701 
702 	sa = priv->sa;
703 	if (unlikely(sa == NULL)) {
704 		RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
705 		goto fail;
706 	}
707 
708 	if (is_ipv6)
709 		return sa->portid;
710 
711 	/* else */
712 	return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
713 
714 fail:
715 	if (is_ipv6)
716 		return -1;
717 
718 	/* else */
719 	return 0;
720 }
721 
722 static inline void
723 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
724 {
725 	uint32_t hop[MAX_PKT_BURST * 2];
726 	uint32_t dst_ip[MAX_PKT_BURST * 2];
727 	int32_t pkt_hop = 0;
728 	uint16_t i, offset;
729 	uint16_t lpm_pkts = 0;
730 
731 	if (nb_pkts == 0)
732 		return;
733 
734 	/* Need to do an LPM lookup for non-inline packets. Inline packets will
735 	 * have port ID in the SA
736 	 */
737 
738 	for (i = 0; i < nb_pkts; i++) {
739 		if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
740 			/* Security offload not enabled. So an LPM lookup is
741 			 * required to get the hop
742 			 */
743 			offset = offsetof(struct ip, ip_dst);
744 			dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
745 					uint32_t *, offset);
746 			dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
747 			lpm_pkts++;
748 		}
749 	}
750 
751 	rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
752 
753 	lpm_pkts = 0;
754 
755 	for (i = 0; i < nb_pkts; i++) {
756 		if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
757 			/* Read hop from the SA */
758 			pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
759 		} else {
760 			/* Need to use hop returned by lookup */
761 			pkt_hop = hop[lpm_pkts++];
762 		}
763 
764 		if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
765 			rte_pktmbuf_free(pkts[i]);
766 			continue;
767 		}
768 		send_single_packet(pkts[i], pkt_hop & 0xff);
769 	}
770 }
771 
772 static inline void
773 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
774 {
775 	int32_t hop[MAX_PKT_BURST * 2];
776 	uint8_t dst_ip[MAX_PKT_BURST * 2][16];
777 	uint8_t *ip6_dst;
778 	int32_t pkt_hop = 0;
779 	uint16_t i, offset;
780 	uint16_t lpm_pkts = 0;
781 
782 	if (nb_pkts == 0)
783 		return;
784 
785 	/* Need to do an LPM lookup for non-inline packets. Inline packets will
786 	 * have port ID in the SA
787 	 */
788 
789 	for (i = 0; i < nb_pkts; i++) {
790 		if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
791 			/* Security offload not enabled. So an LPM lookup is
792 			 * required to get the hop
793 			 */
794 			offset = offsetof(struct ip6_hdr, ip6_dst);
795 			ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
796 					offset);
797 			memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
798 			lpm_pkts++;
799 		}
800 	}
801 
802 	rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
803 			lpm_pkts);
804 
805 	lpm_pkts = 0;
806 
807 	for (i = 0; i < nb_pkts; i++) {
808 		if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
809 			/* Read hop from the SA */
810 			pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
811 		} else {
812 			/* Need to use hop returned by lookup */
813 			pkt_hop = hop[lpm_pkts++];
814 		}
815 
816 		if (pkt_hop == -1) {
817 			rte_pktmbuf_free(pkts[i]);
818 			continue;
819 		}
820 		send_single_packet(pkts[i], pkt_hop & 0xff);
821 	}
822 }
823 
824 static inline void
825 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
826 		uint8_t nb_pkts, uint16_t portid)
827 {
828 	struct ipsec_traffic traffic;
829 
830 	prepare_traffic(pkts, &traffic, nb_pkts);
831 
832 	if (unlikely(single_sa)) {
833 		if (UNPROTECTED_PORT(portid))
834 			process_pkts_inbound_nosp(&qconf->inbound, &traffic);
835 		else
836 			process_pkts_outbound_nosp(&qconf->outbound, &traffic);
837 	} else {
838 		if (UNPROTECTED_PORT(portid))
839 			process_pkts_inbound(&qconf->inbound, &traffic);
840 		else
841 			process_pkts_outbound(&qconf->outbound, &traffic);
842 	}
843 
844 	route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
845 	route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
846 }
847 
848 static inline void
849 drain_tx_buffers(struct lcore_conf *qconf)
850 {
851 	struct buffer *buf;
852 	uint32_t portid;
853 
854 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
855 		buf = &qconf->tx_mbufs[portid];
856 		if (buf->len == 0)
857 			continue;
858 		send_burst(qconf, buf->len, portid);
859 		buf->len = 0;
860 	}
861 }
862 
863 static inline void
864 drain_crypto_buffers(struct lcore_conf *qconf)
865 {
866 	uint32_t i;
867 	struct ipsec_ctx *ctx;
868 
869 	/* drain inbound buffers*/
870 	ctx = &qconf->inbound;
871 	for (i = 0; i != ctx->nb_qps; i++) {
872 		if (ctx->tbl[i].len != 0)
873 			enqueue_cop_burst(ctx->tbl  + i);
874 	}
875 
876 	/* drain outbound buffers*/
877 	ctx = &qconf->outbound;
878 	for (i = 0; i != ctx->nb_qps; i++) {
879 		if (ctx->tbl[i].len != 0)
880 			enqueue_cop_burst(ctx->tbl  + i);
881 	}
882 }
883 
884 static void
885 drain_inbound_crypto_queues(const struct lcore_conf *qconf,
886 		struct ipsec_ctx *ctx)
887 {
888 	uint32_t n;
889 	struct ipsec_traffic trf;
890 
891 	if (app_sa_prm.enable == 0) {
892 
893 		/* dequeue packets from crypto-queue */
894 		n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts,
895 			RTE_DIM(trf.ipsec.pkts));
896 
897 		trf.ip4.num = 0;
898 		trf.ip6.num = 0;
899 
900 		/* split traffic by ipv4-ipv6 */
901 		split46_traffic(&trf, trf.ipsec.pkts, n);
902 	} else
903 		ipsec_cqp_process(ctx, &trf);
904 
905 	/* process ipv4 packets */
906 	if (trf.ip4.num != 0) {
907 		inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0);
908 		route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
909 	}
910 
911 	/* process ipv6 packets */
912 	if (trf.ip6.num != 0) {
913 		inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0);
914 		route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
915 	}
916 }
917 
918 static void
919 drain_outbound_crypto_queues(const struct lcore_conf *qconf,
920 		struct ipsec_ctx *ctx)
921 {
922 	uint32_t n;
923 	struct ipsec_traffic trf;
924 
925 	if (app_sa_prm.enable == 0) {
926 
927 		/* dequeue packets from crypto-queue */
928 		n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts,
929 			RTE_DIM(trf.ipsec.pkts));
930 
931 		trf.ip4.num = 0;
932 		trf.ip6.num = 0;
933 
934 		/* split traffic by ipv4-ipv6 */
935 		split46_traffic(&trf, trf.ipsec.pkts, n);
936 	} else
937 		ipsec_cqp_process(ctx, &trf);
938 
939 	/* process ipv4 packets */
940 	if (trf.ip4.num != 0)
941 		route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
942 
943 	/* process ipv6 packets */
944 	if (trf.ip6.num != 0)
945 		route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
946 }
947 
948 /* main processing loop */
949 static int32_t
950 main_loop(__attribute__((unused)) void *dummy)
951 {
952 	struct rte_mbuf *pkts[MAX_PKT_BURST];
953 	uint32_t lcore_id;
954 	uint64_t prev_tsc, diff_tsc, cur_tsc;
955 	int32_t i, nb_rx;
956 	uint16_t portid;
957 	uint8_t queueid;
958 	struct lcore_conf *qconf;
959 	int32_t socket_id;
960 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
961 			/ US_PER_S * BURST_TX_DRAIN_US;
962 	struct lcore_rx_queue *rxql;
963 
964 	prev_tsc = 0;
965 	lcore_id = rte_lcore_id();
966 	qconf = &lcore_conf[lcore_id];
967 	rxql = qconf->rx_queue_list;
968 	socket_id = rte_lcore_to_socket_id(lcore_id);
969 
970 	qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
971 	qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
972 	qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
973 	qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
974 	qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
975 	qconf->inbound.cdev_map = cdev_map_in;
976 	qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
977 	qconf->inbound.session_priv_pool =
978 			socket_ctx[socket_id].session_priv_pool;
979 	qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
980 	qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
981 	qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
982 	qconf->outbound.cdev_map = cdev_map_out;
983 	qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
984 	qconf->outbound.session_priv_pool =
985 			socket_ctx[socket_id].session_priv_pool;
986 
987 	if (qconf->nb_rx_queue == 0) {
988 		RTE_LOG(DEBUG, IPSEC, "lcore %u has nothing to do\n",
989 			lcore_id);
990 		return 0;
991 	}
992 
993 	RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
994 
995 	for (i = 0; i < qconf->nb_rx_queue; i++) {
996 		portid = rxql[i].port_id;
997 		queueid = rxql[i].queue_id;
998 		RTE_LOG(INFO, IPSEC,
999 			" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
1000 			lcore_id, portid, queueid);
1001 	}
1002 
1003 	while (1) {
1004 		cur_tsc = rte_rdtsc();
1005 
1006 		/* TX queue buffer drain */
1007 		diff_tsc = cur_tsc - prev_tsc;
1008 
1009 		if (unlikely(diff_tsc > drain_tsc)) {
1010 			drain_tx_buffers(qconf);
1011 			drain_crypto_buffers(qconf);
1012 			prev_tsc = cur_tsc;
1013 		}
1014 
1015 		for (i = 0; i < qconf->nb_rx_queue; ++i) {
1016 
1017 			/* Read packets from RX queues */
1018 			portid = rxql[i].port_id;
1019 			queueid = rxql[i].queue_id;
1020 			nb_rx = rte_eth_rx_burst(portid, queueid,
1021 					pkts, MAX_PKT_BURST);
1022 
1023 			if (nb_rx > 0)
1024 				process_pkts(qconf, pkts, nb_rx, portid);
1025 
1026 			/* dequeue and process completed crypto-ops */
1027 			if (UNPROTECTED_PORT(portid))
1028 				drain_inbound_crypto_queues(qconf,
1029 					&qconf->inbound);
1030 			else
1031 				drain_outbound_crypto_queues(qconf,
1032 					&qconf->outbound);
1033 		}
1034 	}
1035 }
1036 
1037 static int32_t
1038 check_params(void)
1039 {
1040 	uint8_t lcore;
1041 	uint16_t portid;
1042 	uint16_t i;
1043 	int32_t socket_id;
1044 
1045 	if (lcore_params == NULL) {
1046 		printf("Error: No port/queue/core mappings\n");
1047 		return -1;
1048 	}
1049 
1050 	for (i = 0; i < nb_lcore_params; ++i) {
1051 		lcore = lcore_params[i].lcore_id;
1052 		if (!rte_lcore_is_enabled(lcore)) {
1053 			printf("error: lcore %hhu is not enabled in "
1054 				"lcore mask\n", lcore);
1055 			return -1;
1056 		}
1057 		socket_id = rte_lcore_to_socket_id(lcore);
1058 		if (socket_id != 0 && numa_on == 0) {
1059 			printf("warning: lcore %hhu is on socket %d "
1060 				"with numa off\n",
1061 				lcore, socket_id);
1062 		}
1063 		portid = lcore_params[i].port_id;
1064 		if ((enabled_port_mask & (1 << portid)) == 0) {
1065 			printf("port %u is not enabled in port mask\n", portid);
1066 			return -1;
1067 		}
1068 		if (!rte_eth_dev_is_valid_port(portid)) {
1069 			printf("port %u is not present on the board\n", portid);
1070 			return -1;
1071 		}
1072 	}
1073 	return 0;
1074 }
1075 
1076 static uint8_t
1077 get_port_nb_rx_queues(const uint16_t port)
1078 {
1079 	int32_t queue = -1;
1080 	uint16_t i;
1081 
1082 	for (i = 0; i < nb_lcore_params; ++i) {
1083 		if (lcore_params[i].port_id == port &&
1084 				lcore_params[i].queue_id > queue)
1085 			queue = lcore_params[i].queue_id;
1086 	}
1087 	return (uint8_t)(++queue);
1088 }
1089 
1090 static int32_t
1091 init_lcore_rx_queues(void)
1092 {
1093 	uint16_t i, nb_rx_queue;
1094 	uint8_t lcore;
1095 
1096 	for (i = 0; i < nb_lcore_params; ++i) {
1097 		lcore = lcore_params[i].lcore_id;
1098 		nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
1099 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1100 			printf("error: too many queues (%u) for lcore: %u\n",
1101 					nb_rx_queue + 1, lcore);
1102 			return -1;
1103 		}
1104 		lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1105 			lcore_params[i].port_id;
1106 		lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1107 			lcore_params[i].queue_id;
1108 		lcore_conf[lcore].nb_rx_queue++;
1109 	}
1110 	return 0;
1111 }
1112 
1113 /* display usage */
1114 static void
1115 print_usage(const char *prgname)
1116 {
1117 	fprintf(stderr, "%s [EAL options] --"
1118 		" -p PORTMASK"
1119 		" [-P]"
1120 		" [-u PORTMASK]"
1121 		" [-j FRAMESIZE]"
1122 		" [-l]"
1123 		" [-w REPLAY_WINDOW_SIZE]"
1124 		" [-e]"
1125 		" [-a]"
1126 		" -f CONFIG_FILE"
1127 		" --config (port,queue,lcore)[,(port,queue,lcore)]"
1128 		" [--single-sa SAIDX]"
1129 		" [--cryptodev_mask MASK]"
1130 		" [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]"
1131 		" [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]"
1132 		"\n\n"
1133 		"  -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
1134 		"  -P : Enable promiscuous mode\n"
1135 		"  -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
1136 		"  -j FRAMESIZE: Enable jumbo frame with 'FRAMESIZE' as maximum\n"
1137 		"                packet size\n"
1138 		"  -l enables code-path that uses librte_ipsec\n"
1139 		"  -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n"
1140 		"     size for each SA\n"
1141 		"  -e enables ESN\n"
1142 		"  -a enables SA SQN atomic behaviour\n"
1143 		"  -f CONFIG_FILE: Configuration file\n"
1144 		"  --config (port,queue,lcore): Rx queue configuration\n"
1145 		"  --single-sa SAIDX: Use single SA index for outbound traffic,\n"
1146 		"                     bypassing the SP\n"
1147 		"  --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
1148 		"                         devices to configure\n"
1149 		"  --" CMD_LINE_OPT_RX_OFFLOAD
1150 		": bitmask of the RX HW offload capabilities to enable/use\n"
1151 		"                         (DEV_RX_OFFLOAD_*)\n"
1152 		"  --" CMD_LINE_OPT_TX_OFFLOAD
1153 		": bitmask of the TX HW offload capabilities to enable/use\n"
1154 		"                         (DEV_TX_OFFLOAD_*)\n"
1155 		"\n",
1156 		prgname);
1157 }
1158 
1159 static int
1160 parse_mask(const char *str, uint64_t *val)
1161 {
1162 	char *end;
1163 	unsigned long t;
1164 
1165 	errno = 0;
1166 	t = strtoul(str, &end, 0);
1167 	if (errno != 0 || end[0] != 0)
1168 		return -EINVAL;
1169 
1170 	*val = t;
1171 	return 0;
1172 }
1173 
1174 static int32_t
1175 parse_portmask(const char *portmask)
1176 {
1177 	char *end = NULL;
1178 	unsigned long pm;
1179 
1180 	/* parse hexadecimal string */
1181 	pm = strtoul(portmask, &end, 16);
1182 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1183 		return -1;
1184 
1185 	if ((pm == 0) && errno)
1186 		return -1;
1187 
1188 	return pm;
1189 }
1190 
1191 static int32_t
1192 parse_decimal(const char *str)
1193 {
1194 	char *end = NULL;
1195 	unsigned long num;
1196 
1197 	num = strtoul(str, &end, 10);
1198 	if ((str[0] == '\0') || (end == NULL) || (*end != '\0'))
1199 		return -1;
1200 
1201 	return num;
1202 }
1203 
1204 static int32_t
1205 parse_config(const char *q_arg)
1206 {
1207 	char s[256];
1208 	const char *p, *p0 = q_arg;
1209 	char *end;
1210 	enum fieldnames {
1211 		FLD_PORT = 0,
1212 		FLD_QUEUE,
1213 		FLD_LCORE,
1214 		_NUM_FLD
1215 	};
1216 	unsigned long int_fld[_NUM_FLD];
1217 	char *str_fld[_NUM_FLD];
1218 	int32_t i;
1219 	uint32_t size;
1220 
1221 	nb_lcore_params = 0;
1222 
1223 	while ((p = strchr(p0, '(')) != NULL) {
1224 		++p;
1225 		p0 = strchr(p, ')');
1226 		if (p0 == NULL)
1227 			return -1;
1228 
1229 		size = p0 - p;
1230 		if (size >= sizeof(s))
1231 			return -1;
1232 
1233 		snprintf(s, sizeof(s), "%.*s", size, p);
1234 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1235 				_NUM_FLD)
1236 			return -1;
1237 		for (i = 0; i < _NUM_FLD; i++) {
1238 			errno = 0;
1239 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1240 			if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1241 				return -1;
1242 		}
1243 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1244 			printf("exceeded max number of lcore params: %hu\n",
1245 				nb_lcore_params);
1246 			return -1;
1247 		}
1248 		lcore_params_array[nb_lcore_params].port_id =
1249 			(uint8_t)int_fld[FLD_PORT];
1250 		lcore_params_array[nb_lcore_params].queue_id =
1251 			(uint8_t)int_fld[FLD_QUEUE];
1252 		lcore_params_array[nb_lcore_params].lcore_id =
1253 			(uint8_t)int_fld[FLD_LCORE];
1254 		++nb_lcore_params;
1255 	}
1256 	lcore_params = lcore_params_array;
1257 	return 0;
1258 }
1259 
1260 static void
1261 print_app_sa_prm(const struct app_sa_prm *prm)
1262 {
1263 	printf("librte_ipsec usage: %s\n",
1264 		(prm->enable == 0) ? "disabled" : "enabled");
1265 
1266 	if (prm->enable == 0)
1267 		return;
1268 
1269 	printf("replay window size: %u\n", prm->window_size);
1270 	printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled");
1271 	printf("SA flags: %#" PRIx64 "\n", prm->flags);
1272 }
1273 
1274 static int32_t
1275 parse_args(int32_t argc, char **argv)
1276 {
1277 	int32_t opt, ret;
1278 	char **argvopt;
1279 	int32_t option_index;
1280 	char *prgname = argv[0];
1281 	int32_t f_present = 0;
1282 
1283 	argvopt = argv;
1284 
1285 	while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:",
1286 				lgopts, &option_index)) != EOF) {
1287 
1288 		switch (opt) {
1289 		case 'p':
1290 			enabled_port_mask = parse_portmask(optarg);
1291 			if (enabled_port_mask == 0) {
1292 				printf("invalid portmask\n");
1293 				print_usage(prgname);
1294 				return -1;
1295 			}
1296 			break;
1297 		case 'P':
1298 			printf("Promiscuous mode selected\n");
1299 			promiscuous_on = 1;
1300 			break;
1301 		case 'u':
1302 			unprotected_port_mask = parse_portmask(optarg);
1303 			if (unprotected_port_mask == 0) {
1304 				printf("invalid unprotected portmask\n");
1305 				print_usage(prgname);
1306 				return -1;
1307 			}
1308 			break;
1309 		case 'f':
1310 			if (f_present == 1) {
1311 				printf("\"-f\" option present more than "
1312 					"once!\n");
1313 				print_usage(prgname);
1314 				return -1;
1315 			}
1316 			if (parse_cfg_file(optarg) < 0) {
1317 				printf("parsing file \"%s\" failed\n",
1318 					optarg);
1319 				print_usage(prgname);
1320 				return -1;
1321 			}
1322 			f_present = 1;
1323 			break;
1324 		case 'j':
1325 			{
1326 				int32_t size = parse_decimal(optarg);
1327 				if (size <= 1518) {
1328 					printf("Invalid jumbo frame size\n");
1329 					if (size < 0) {
1330 						print_usage(prgname);
1331 						return -1;
1332 					}
1333 					printf("Using default value 9000\n");
1334 					frame_size = 9000;
1335 				} else {
1336 					frame_size = size;
1337 				}
1338 			}
1339 			printf("Enabled jumbo frames size %u\n", frame_size);
1340 			break;
1341 		case 'l':
1342 			app_sa_prm.enable = 1;
1343 			break;
1344 		case 'w':
1345 			app_sa_prm.enable = 1;
1346 			app_sa_prm.window_size = parse_decimal(optarg);
1347 			break;
1348 		case 'e':
1349 			app_sa_prm.enable = 1;
1350 			app_sa_prm.enable_esn = 1;
1351 			break;
1352 		case 'a':
1353 			app_sa_prm.enable = 1;
1354 			app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM;
1355 			break;
1356 		case CMD_LINE_OPT_CONFIG_NUM:
1357 			ret = parse_config(optarg);
1358 			if (ret) {
1359 				printf("Invalid config\n");
1360 				print_usage(prgname);
1361 				return -1;
1362 			}
1363 			break;
1364 		case CMD_LINE_OPT_SINGLE_SA_NUM:
1365 			ret = parse_decimal(optarg);
1366 			if (ret == -1) {
1367 				printf("Invalid argument[sa_idx]\n");
1368 				print_usage(prgname);
1369 				return -1;
1370 			}
1371 
1372 			/* else */
1373 			single_sa = 1;
1374 			single_sa_idx = ret;
1375 			printf("Configured with single SA index %u\n",
1376 					single_sa_idx);
1377 			break;
1378 		case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
1379 			ret = parse_portmask(optarg);
1380 			if (ret == -1) {
1381 				printf("Invalid argument[portmask]\n");
1382 				print_usage(prgname);
1383 				return -1;
1384 			}
1385 
1386 			/* else */
1387 			enabled_cryptodev_mask = ret;
1388 			break;
1389 		case CMD_LINE_OPT_RX_OFFLOAD_NUM:
1390 			ret = parse_mask(optarg, &dev_rx_offload);
1391 			if (ret != 0) {
1392 				printf("Invalid argument for \'%s\': %s\n",
1393 					CMD_LINE_OPT_RX_OFFLOAD, optarg);
1394 				print_usage(prgname);
1395 				return -1;
1396 			}
1397 			break;
1398 		case CMD_LINE_OPT_TX_OFFLOAD_NUM:
1399 			ret = parse_mask(optarg, &dev_tx_offload);
1400 			if (ret != 0) {
1401 				printf("Invalid argument for \'%s\': %s\n",
1402 					CMD_LINE_OPT_TX_OFFLOAD, optarg);
1403 				print_usage(prgname);
1404 				return -1;
1405 			}
1406 			break;
1407 		default:
1408 			print_usage(prgname);
1409 			return -1;
1410 		}
1411 	}
1412 
1413 	if (f_present == 0) {
1414 		printf("Mandatory option \"-f\" not present\n");
1415 		return -1;
1416 	}
1417 
1418 	print_app_sa_prm(&app_sa_prm);
1419 
1420 	if (optind >= 0)
1421 		argv[optind-1] = prgname;
1422 
1423 	ret = optind-1;
1424 	optind = 1; /* reset getopt lib */
1425 	return ret;
1426 }
1427 
1428 static void
1429 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1430 {
1431 	char buf[ETHER_ADDR_FMT_SIZE];
1432 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1433 	printf("%s%s", name, buf);
1434 }
1435 
1436 /*
1437  * Update destination ethaddr for the port.
1438  */
1439 int
1440 add_dst_ethaddr(uint16_t port, const struct ether_addr *addr)
1441 {
1442 	if (port >= RTE_DIM(ethaddr_tbl))
1443 		return -EINVAL;
1444 
1445 	ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr);
1446 	return 0;
1447 }
1448 
1449 /* Check the link status of all ports in up to 9s, and print them finally */
1450 static void
1451 check_all_ports_link_status(uint32_t port_mask)
1452 {
1453 #define CHECK_INTERVAL 100 /* 100ms */
1454 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1455 	uint16_t portid;
1456 	uint8_t count, all_ports_up, print_flag = 0;
1457 	struct rte_eth_link link;
1458 
1459 	printf("\nChecking link status");
1460 	fflush(stdout);
1461 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1462 		all_ports_up = 1;
1463 		RTE_ETH_FOREACH_DEV(portid) {
1464 			if ((port_mask & (1 << portid)) == 0)
1465 				continue;
1466 			memset(&link, 0, sizeof(link));
1467 			rte_eth_link_get_nowait(portid, &link);
1468 			/* print link status if flag set */
1469 			if (print_flag == 1) {
1470 				if (link.link_status)
1471 					printf(
1472 					"Port%d Link Up - speed %u Mbps -%s\n",
1473 						portid, link.link_speed,
1474 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1475 					("full-duplex") : ("half-duplex\n"));
1476 				else
1477 					printf("Port %d Link Down\n", portid);
1478 				continue;
1479 			}
1480 			/* clear all_ports_up flag if any link down */
1481 			if (link.link_status == ETH_LINK_DOWN) {
1482 				all_ports_up = 0;
1483 				break;
1484 			}
1485 		}
1486 		/* after finally printing all link status, get out */
1487 		if (print_flag == 1)
1488 			break;
1489 
1490 		if (all_ports_up == 0) {
1491 			printf(".");
1492 			fflush(stdout);
1493 			rte_delay_ms(CHECK_INTERVAL);
1494 		}
1495 
1496 		/* set the print_flag if all ports up or timeout */
1497 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1498 			print_flag = 1;
1499 			printf("done\n");
1500 		}
1501 	}
1502 }
1503 
1504 static int32_t
1505 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1506 		uint16_t qp, struct lcore_params *params,
1507 		struct ipsec_ctx *ipsec_ctx,
1508 		const struct rte_cryptodev_capabilities *cipher,
1509 		const struct rte_cryptodev_capabilities *auth,
1510 		const struct rte_cryptodev_capabilities *aead)
1511 {
1512 	int32_t ret = 0;
1513 	unsigned long i;
1514 	struct cdev_key key = { 0 };
1515 
1516 	key.lcore_id = params->lcore_id;
1517 	if (cipher)
1518 		key.cipher_algo = cipher->sym.cipher.algo;
1519 	if (auth)
1520 		key.auth_algo = auth->sym.auth.algo;
1521 	if (aead)
1522 		key.aead_algo = aead->sym.aead.algo;
1523 
1524 	ret = rte_hash_lookup(map, &key);
1525 	if (ret != -ENOENT)
1526 		return 0;
1527 
1528 	for (i = 0; i < ipsec_ctx->nb_qps; i++)
1529 		if (ipsec_ctx->tbl[i].id == cdev_id)
1530 			break;
1531 
1532 	if (i == ipsec_ctx->nb_qps) {
1533 		if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1534 			printf("Maximum number of crypto devices assigned to "
1535 				"a core, increase MAX_QP_PER_LCORE value\n");
1536 			return 0;
1537 		}
1538 		ipsec_ctx->tbl[i].id = cdev_id;
1539 		ipsec_ctx->tbl[i].qp = qp;
1540 		ipsec_ctx->nb_qps++;
1541 		printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1542 				"(cdev_id_qp %lu)\n", str, key.lcore_id,
1543 				cdev_id, qp, i);
1544 	}
1545 
1546 	ret = rte_hash_add_key_data(map, &key, (void *)i);
1547 	if (ret < 0) {
1548 		printf("Faled to insert cdev mapping for (lcore %u, "
1549 				"cdev %u, qp %u), errno %d\n",
1550 				key.lcore_id, ipsec_ctx->tbl[i].id,
1551 				ipsec_ctx->tbl[i].qp, ret);
1552 		return 0;
1553 	}
1554 
1555 	return 1;
1556 }
1557 
1558 static int32_t
1559 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1560 		uint16_t qp, struct lcore_params *params)
1561 {
1562 	int32_t ret = 0;
1563 	const struct rte_cryptodev_capabilities *i, *j;
1564 	struct rte_hash *map;
1565 	struct lcore_conf *qconf;
1566 	struct ipsec_ctx *ipsec_ctx;
1567 	const char *str;
1568 
1569 	qconf = &lcore_conf[params->lcore_id];
1570 
1571 	if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1572 		map = cdev_map_out;
1573 		ipsec_ctx = &qconf->outbound;
1574 		str = "Outbound";
1575 	} else {
1576 		map = cdev_map_in;
1577 		ipsec_ctx = &qconf->inbound;
1578 		str = "Inbound";
1579 	}
1580 
1581 	/* Required cryptodevs with operation chainning */
1582 	if (!(dev_info->feature_flags &
1583 				RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1584 		return ret;
1585 
1586 	for (i = dev_info->capabilities;
1587 			i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1588 		if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1589 			continue;
1590 
1591 		if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1592 			ret |= add_mapping(map, str, cdev_id, qp, params,
1593 					ipsec_ctx, NULL, NULL, i);
1594 			continue;
1595 		}
1596 
1597 		if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1598 			continue;
1599 
1600 		for (j = dev_info->capabilities;
1601 				j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1602 			if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1603 				continue;
1604 
1605 			if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1606 				continue;
1607 
1608 			ret |= add_mapping(map, str, cdev_id, qp, params,
1609 						ipsec_ctx, i, j, NULL);
1610 		}
1611 	}
1612 
1613 	return ret;
1614 }
1615 
1616 /* Check if the device is enabled by cryptodev_mask */
1617 static int
1618 check_cryptodev_mask(uint8_t cdev_id)
1619 {
1620 	if (enabled_cryptodev_mask & (1 << cdev_id))
1621 		return 0;
1622 
1623 	return -1;
1624 }
1625 
1626 static int32_t
1627 cryptodevs_init(void)
1628 {
1629 	struct rte_cryptodev_config dev_conf;
1630 	struct rte_cryptodev_qp_conf qp_conf;
1631 	uint16_t idx, max_nb_qps, qp, i;
1632 	int16_t cdev_id, port_id;
1633 	struct rte_hash_parameters params = { 0 };
1634 
1635 	params.entries = CDEV_MAP_ENTRIES;
1636 	params.key_len = sizeof(struct cdev_key);
1637 	params.hash_func = rte_jhash;
1638 	params.hash_func_init_val = 0;
1639 	params.socket_id = rte_socket_id();
1640 
1641 	params.name = "cdev_map_in";
1642 	cdev_map_in = rte_hash_create(&params);
1643 	if (cdev_map_in == NULL)
1644 		rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1645 				rte_errno);
1646 
1647 	params.name = "cdev_map_out";
1648 	cdev_map_out = rte_hash_create(&params);
1649 	if (cdev_map_out == NULL)
1650 		rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1651 				rte_errno);
1652 
1653 	printf("lcore/cryptodev/qp mappings:\n");
1654 
1655 	uint32_t max_sess_sz = 0, sess_sz;
1656 	for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1657 		void *sec_ctx;
1658 
1659 		/* Get crypto priv session size */
1660 		sess_sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
1661 		if (sess_sz > max_sess_sz)
1662 			max_sess_sz = sess_sz;
1663 
1664 		/*
1665 		 * If crypto device is security capable, need to check the
1666 		 * size of security session as well.
1667 		 */
1668 
1669 		/* Get security context of the crypto device */
1670 		sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
1671 		if (sec_ctx == NULL)
1672 			continue;
1673 
1674 		/* Get size of security session */
1675 		sess_sz = rte_security_session_get_size(sec_ctx);
1676 		if (sess_sz > max_sess_sz)
1677 			max_sess_sz = sess_sz;
1678 	}
1679 	RTE_ETH_FOREACH_DEV(port_id) {
1680 		void *sec_ctx;
1681 
1682 		if ((enabled_port_mask & (1 << port_id)) == 0)
1683 			continue;
1684 
1685 		sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
1686 		if (sec_ctx == NULL)
1687 			continue;
1688 
1689 		sess_sz = rte_security_session_get_size(sec_ctx);
1690 		if (sess_sz > max_sess_sz)
1691 			max_sess_sz = sess_sz;
1692 	}
1693 
1694 	idx = 0;
1695 	for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1696 		struct rte_cryptodev_info cdev_info;
1697 
1698 		if (check_cryptodev_mask((uint8_t)cdev_id))
1699 			continue;
1700 
1701 		rte_cryptodev_info_get(cdev_id, &cdev_info);
1702 
1703 		if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
1704 			max_nb_qps = cdev_info.max_nb_queue_pairs;
1705 		else
1706 			max_nb_qps = nb_lcore_params;
1707 
1708 		qp = 0;
1709 		i = 0;
1710 		while (qp < max_nb_qps && i < nb_lcore_params) {
1711 			if (add_cdev_mapping(&cdev_info, cdev_id, qp,
1712 						&lcore_params[idx]))
1713 				qp++;
1714 			idx++;
1715 			idx = idx % nb_lcore_params;
1716 			i++;
1717 		}
1718 
1719 		if (qp == 0)
1720 			continue;
1721 
1722 		dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
1723 		dev_conf.nb_queue_pairs = qp;
1724 
1725 		uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
1726 		if (dev_max_sess != 0 && dev_max_sess < CDEV_MP_NB_OBJS)
1727 			rte_exit(EXIT_FAILURE,
1728 				"Device does not support at least %u "
1729 				"sessions", CDEV_MP_NB_OBJS);
1730 
1731 		if (!socket_ctx[dev_conf.socket_id].session_pool) {
1732 			char mp_name[RTE_MEMPOOL_NAMESIZE];
1733 			struct rte_mempool *sess_mp;
1734 
1735 			snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1736 					"sess_mp_%u", dev_conf.socket_id);
1737 			sess_mp = rte_cryptodev_sym_session_pool_create(
1738 					mp_name, CDEV_MP_NB_OBJS,
1739 					0, CDEV_MP_CACHE_SZ, 0,
1740 					dev_conf.socket_id);
1741 			socket_ctx[dev_conf.socket_id].session_pool = sess_mp;
1742 		}
1743 
1744 		if (!socket_ctx[dev_conf.socket_id].session_priv_pool) {
1745 			char mp_name[RTE_MEMPOOL_NAMESIZE];
1746 			struct rte_mempool *sess_mp;
1747 
1748 			snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1749 					"sess_mp_priv_%u", dev_conf.socket_id);
1750 			sess_mp = rte_mempool_create(mp_name,
1751 					CDEV_MP_NB_OBJS,
1752 					max_sess_sz,
1753 					CDEV_MP_CACHE_SZ,
1754 					0, NULL, NULL, NULL,
1755 					NULL, dev_conf.socket_id,
1756 					0);
1757 			socket_ctx[dev_conf.socket_id].session_priv_pool =
1758 					sess_mp;
1759 		}
1760 
1761 		if (!socket_ctx[dev_conf.socket_id].session_priv_pool ||
1762 				!socket_ctx[dev_conf.socket_id].session_pool)
1763 			rte_exit(EXIT_FAILURE,
1764 				"Cannot create session pool on socket %d\n",
1765 				dev_conf.socket_id);
1766 		else
1767 			printf("Allocated session pool on socket %d\n",
1768 					dev_conf.socket_id);
1769 
1770 		if (rte_cryptodev_configure(cdev_id, &dev_conf))
1771 			rte_panic("Failed to initialize cryptodev %u\n",
1772 					cdev_id);
1773 
1774 		qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
1775 		qp_conf.mp_session =
1776 			socket_ctx[dev_conf.socket_id].session_pool;
1777 		qp_conf.mp_session_private =
1778 			socket_ctx[dev_conf.socket_id].session_priv_pool;
1779 		for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
1780 			if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
1781 					&qp_conf, dev_conf.socket_id))
1782 				rte_panic("Failed to setup queue %u for "
1783 						"cdev_id %u\n",	0, cdev_id);
1784 
1785 		if (rte_cryptodev_start(cdev_id))
1786 			rte_panic("Failed to start cryptodev %u\n",
1787 					cdev_id);
1788 	}
1789 
1790 	/* create session pools for eth devices that implement security */
1791 	RTE_ETH_FOREACH_DEV(port_id) {
1792 		if ((enabled_port_mask & (1 << port_id)) &&
1793 				rte_eth_dev_get_sec_ctx(port_id)) {
1794 			int socket_id = rte_eth_dev_socket_id(port_id);
1795 
1796 			if (!socket_ctx[socket_id].session_pool) {
1797 				char mp_name[RTE_MEMPOOL_NAMESIZE];
1798 				struct rte_mempool *sess_mp;
1799 
1800 				snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1801 						"sess_mp_%u", socket_id);
1802 				sess_mp = rte_mempool_create(mp_name,
1803 						(CDEV_MP_NB_OBJS * 2),
1804 						max_sess_sz,
1805 						CDEV_MP_CACHE_SZ,
1806 						0, NULL, NULL, NULL,
1807 						NULL, socket_id,
1808 						0);
1809 				if (sess_mp == NULL)
1810 					rte_exit(EXIT_FAILURE,
1811 						"Cannot create session pool "
1812 						"on socket %d\n", socket_id);
1813 				else
1814 					printf("Allocated session pool "
1815 						"on socket %d\n", socket_id);
1816 				socket_ctx[socket_id].session_pool = sess_mp;
1817 			}
1818 		}
1819 	}
1820 
1821 
1822 	printf("\n");
1823 
1824 	return 0;
1825 }
1826 
1827 static void
1828 port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads)
1829 {
1830 	struct rte_eth_dev_info dev_info;
1831 	struct rte_eth_txconf *txconf;
1832 	uint16_t nb_tx_queue, nb_rx_queue;
1833 	uint16_t tx_queueid, rx_queueid, queue, lcore_id;
1834 	int32_t ret, socket_id;
1835 	struct lcore_conf *qconf;
1836 	struct ether_addr ethaddr;
1837 	struct rte_eth_conf local_port_conf = port_conf;
1838 
1839 	rte_eth_dev_info_get(portid, &dev_info);
1840 
1841 	/* limit allowed HW offloafs, as user requested */
1842 	dev_info.rx_offload_capa &= dev_rx_offload;
1843 	dev_info.tx_offload_capa &= dev_tx_offload;
1844 
1845 	printf("Configuring device port %u:\n", portid);
1846 
1847 	rte_eth_macaddr_get(portid, &ethaddr);
1848 	ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(&ethaddr);
1849 	print_ethaddr("Address: ", &ethaddr);
1850 	printf("\n");
1851 
1852 	nb_rx_queue = get_port_nb_rx_queues(portid);
1853 	nb_tx_queue = nb_lcores;
1854 
1855 	if (nb_rx_queue > dev_info.max_rx_queues)
1856 		rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1857 				"(max rx queue is %u)\n",
1858 				nb_rx_queue, dev_info.max_rx_queues);
1859 
1860 	if (nb_tx_queue > dev_info.max_tx_queues)
1861 		rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1862 				"(max tx queue is %u)\n",
1863 				nb_tx_queue, dev_info.max_tx_queues);
1864 
1865 	printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
1866 			nb_rx_queue, nb_tx_queue);
1867 
1868 	if (frame_size) {
1869 		local_port_conf.rxmode.max_rx_pkt_len = frame_size;
1870 		local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1871 	}
1872 
1873 	local_port_conf.rxmode.offloads |= req_rx_offloads;
1874 	local_port_conf.txmode.offloads |= req_tx_offloads;
1875 
1876 	/* Check that all required capabilities are supported */
1877 	if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) !=
1878 			local_port_conf.rxmode.offloads)
1879 		rte_exit(EXIT_FAILURE,
1880 			"Error: port %u required RX offloads: 0x%" PRIx64
1881 			", avaialbe RX offloads: 0x%" PRIx64 "\n",
1882 			portid, local_port_conf.rxmode.offloads,
1883 			dev_info.rx_offload_capa);
1884 
1885 	if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) !=
1886 			local_port_conf.txmode.offloads)
1887 		rte_exit(EXIT_FAILURE,
1888 			"Error: port %u required TX offloads: 0x%" PRIx64
1889 			", avaialbe TX offloads: 0x%" PRIx64 "\n",
1890 			portid, local_port_conf.txmode.offloads,
1891 			dev_info.tx_offload_capa);
1892 
1893 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
1894 		local_port_conf.txmode.offloads |=
1895 			DEV_TX_OFFLOAD_MBUF_FAST_FREE;
1896 
1897 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM)
1898 		local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM;
1899 
1900 	printf("port %u configurng rx_offloads=0x%" PRIx64
1901 		", tx_offloads=0x%" PRIx64 "\n",
1902 		portid, local_port_conf.rxmode.offloads,
1903 		local_port_conf.txmode.offloads);
1904 
1905 	local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
1906 		dev_info.flow_type_rss_offloads;
1907 	if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
1908 			port_conf.rx_adv_conf.rss_conf.rss_hf) {
1909 		printf("Port %u modified RSS hash function based on hardware support,"
1910 			"requested:%#"PRIx64" configured:%#"PRIx64"\n",
1911 			portid,
1912 			port_conf.rx_adv_conf.rss_conf.rss_hf,
1913 			local_port_conf.rx_adv_conf.rss_conf.rss_hf);
1914 	}
1915 
1916 	ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
1917 			&local_port_conf);
1918 	if (ret < 0)
1919 		rte_exit(EXIT_FAILURE, "Cannot configure device: "
1920 				"err=%d, port=%d\n", ret, portid);
1921 
1922 	ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
1923 	if (ret < 0)
1924 		rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
1925 				"err=%d, port=%d\n", ret, portid);
1926 
1927 	/* init one TX queue per lcore */
1928 	tx_queueid = 0;
1929 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1930 		if (rte_lcore_is_enabled(lcore_id) == 0)
1931 			continue;
1932 
1933 		if (numa_on)
1934 			socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1935 		else
1936 			socket_id = 0;
1937 
1938 		/* init TX queue */
1939 		printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
1940 
1941 		txconf = &dev_info.default_txconf;
1942 		txconf->offloads = local_port_conf.txmode.offloads;
1943 
1944 		ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
1945 				socket_id, txconf);
1946 		if (ret < 0)
1947 			rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1948 					"err=%d, port=%d\n", ret, portid);
1949 
1950 		qconf = &lcore_conf[lcore_id];
1951 		qconf->tx_queue_id[portid] = tx_queueid;
1952 
1953 		/* Pre-populate pkt offloads based on capabilities */
1954 		qconf->outbound.ipv4_offloads = PKT_TX_IPV4;
1955 		qconf->outbound.ipv6_offloads = PKT_TX_IPV6;
1956 		if (local_port_conf.txmode.offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
1957 			qconf->outbound.ipv4_offloads |= PKT_TX_IP_CKSUM;
1958 
1959 		tx_queueid++;
1960 
1961 		/* init RX queues */
1962 		for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
1963 			struct rte_eth_rxconf rxq_conf;
1964 
1965 			if (portid != qconf->rx_queue_list[queue].port_id)
1966 				continue;
1967 
1968 			rx_queueid = qconf->rx_queue_list[queue].queue_id;
1969 
1970 			printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
1971 					socket_id);
1972 
1973 			rxq_conf = dev_info.default_rxconf;
1974 			rxq_conf.offloads = local_port_conf.rxmode.offloads;
1975 			ret = rte_eth_rx_queue_setup(portid, rx_queueid,
1976 					nb_rxd,	socket_id, &rxq_conf,
1977 					socket_ctx[socket_id].mbuf_pool);
1978 			if (ret < 0)
1979 				rte_exit(EXIT_FAILURE,
1980 					"rte_eth_rx_queue_setup: err=%d, "
1981 					"port=%d\n", ret, portid);
1982 		}
1983 	}
1984 	printf("\n");
1985 }
1986 
1987 static void
1988 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
1989 {
1990 	char s[64];
1991 	uint32_t buff_size = frame_size ? (frame_size + RTE_PKTMBUF_HEADROOM) :
1992 			RTE_MBUF_DEFAULT_BUF_SIZE;
1993 
1994 
1995 	snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
1996 	ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
1997 			MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
1998 			buff_size,
1999 			socket_id);
2000 	if (ctx->mbuf_pool == NULL)
2001 		rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
2002 				socket_id);
2003 	else
2004 		printf("Allocated mbuf pool on socket %d\n", socket_id);
2005 }
2006 
2007 static inline int
2008 inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
2009 {
2010 	struct ipsec_sa *sa;
2011 
2012 	/* For inline protocol processing, the metadata in the event will
2013 	 * uniquely identify the security session which raised the event.
2014 	 * Application would then need the userdata it had registered with the
2015 	 * security session to process the event.
2016 	 */
2017 
2018 	sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
2019 
2020 	if (sa == NULL) {
2021 		/* userdata could not be retrieved */
2022 		return -1;
2023 	}
2024 
2025 	/* Sequence number over flow. SA need to be re-established */
2026 	RTE_SET_USED(sa);
2027 	return 0;
2028 }
2029 
2030 static int
2031 inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
2032 		 void *param, void *ret_param)
2033 {
2034 	uint64_t md;
2035 	struct rte_eth_event_ipsec_desc *event_desc = NULL;
2036 	struct rte_security_ctx *ctx = (struct rte_security_ctx *)
2037 					rte_eth_dev_get_sec_ctx(port_id);
2038 
2039 	RTE_SET_USED(param);
2040 
2041 	if (type != RTE_ETH_EVENT_IPSEC)
2042 		return -1;
2043 
2044 	event_desc = ret_param;
2045 	if (event_desc == NULL) {
2046 		printf("Event descriptor not set\n");
2047 		return -1;
2048 	}
2049 
2050 	md = event_desc->metadata;
2051 
2052 	if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW)
2053 		return inline_ipsec_event_esn_overflow(ctx, md);
2054 	else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
2055 		printf("Invalid IPsec event reported\n");
2056 		return -1;
2057 	}
2058 
2059 	return -1;
2060 }
2061 
2062 int32_t
2063 main(int32_t argc, char **argv)
2064 {
2065 	int32_t ret;
2066 	uint32_t lcore_id;
2067 	uint8_t socket_id;
2068 	uint16_t portid;
2069 	uint64_t req_rx_offloads, req_tx_offloads;
2070 
2071 	/* init EAL */
2072 	ret = rte_eal_init(argc, argv);
2073 	if (ret < 0)
2074 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2075 	argc -= ret;
2076 	argv += ret;
2077 
2078 	/* parse application arguments (after the EAL ones) */
2079 	ret = parse_args(argc, argv);
2080 	if (ret < 0)
2081 		rte_exit(EXIT_FAILURE, "Invalid parameters\n");
2082 
2083 	if ((unprotected_port_mask & enabled_port_mask) !=
2084 			unprotected_port_mask)
2085 		rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
2086 				unprotected_port_mask);
2087 
2088 	if (check_params() < 0)
2089 		rte_exit(EXIT_FAILURE, "check_params failed\n");
2090 
2091 	ret = init_lcore_rx_queues();
2092 	if (ret < 0)
2093 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2094 
2095 	nb_lcores = rte_lcore_count();
2096 
2097 	/* Replicate each context per socket */
2098 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2099 		if (rte_lcore_is_enabled(lcore_id) == 0)
2100 			continue;
2101 
2102 		if (numa_on)
2103 			socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2104 		else
2105 			socket_id = 0;
2106 
2107 		if (socket_ctx[socket_id].mbuf_pool)
2108 			continue;
2109 
2110 		/* initilaze SPD */
2111 		sp4_init(&socket_ctx[socket_id], socket_id);
2112 
2113 		sp6_init(&socket_ctx[socket_id], socket_id);
2114 
2115 		/* initilaze SAD */
2116 		sa_init(&socket_ctx[socket_id], socket_id);
2117 
2118 		rt_init(&socket_ctx[socket_id], socket_id);
2119 
2120 		pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF);
2121 	}
2122 
2123 	RTE_ETH_FOREACH_DEV(portid) {
2124 		if ((enabled_port_mask & (1 << portid)) == 0)
2125 			continue;
2126 
2127 		sa_check_offloads(portid, &req_rx_offloads, &req_tx_offloads);
2128 		port_init(portid, req_rx_offloads, req_tx_offloads);
2129 	}
2130 
2131 	cryptodevs_init();
2132 
2133 	/* start ports */
2134 	RTE_ETH_FOREACH_DEV(portid) {
2135 		if ((enabled_port_mask & (1 << portid)) == 0)
2136 			continue;
2137 
2138 		/* Start device */
2139 		ret = rte_eth_dev_start(portid);
2140 		if (ret < 0)
2141 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
2142 					"err=%d, port=%d\n", ret, portid);
2143 		/*
2144 		 * If enabled, put device in promiscuous mode.
2145 		 * This allows IO forwarding mode to forward packets
2146 		 * to itself through 2 cross-connected  ports of the
2147 		 * target machine.
2148 		 */
2149 		if (promiscuous_on)
2150 			rte_eth_promiscuous_enable(portid);
2151 
2152 		rte_eth_dev_callback_register(portid,
2153 			RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
2154 	}
2155 
2156 	check_all_ports_link_status(enabled_port_mask);
2157 
2158 	/* launch per-lcore init on every lcore */
2159 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
2160 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2161 		if (rte_eal_wait_lcore(lcore_id) < 0)
2162 			return -1;
2163 	}
2164 
2165 	return 0;
2166 }
2167