xref: /dpdk/examples/ipsec-secgw/ipsec-secgw.c (revision 2a7bb4fdf61e9edfb7adbaecb50e728b82da9e23)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <netinet/in.h>
11 #include <netinet/ip.h>
12 #include <netinet/ip6.h>
13 #include <string.h>
14 #include <sys/queue.h>
15 #include <stdarg.h>
16 #include <errno.h>
17 #include <getopt.h>
18 
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_log.h>
22 #include <rte_eal.h>
23 #include <rte_launch.h>
24 #include <rte_atomic.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
36 #include <rte_mbuf.h>
37 #include <rte_acl.h>
38 #include <rte_lpm.h>
39 #include <rte_lpm6.h>
40 #include <rte_hash.h>
41 #include <rte_jhash.h>
42 #include <rte_cryptodev.h>
43 #include <rte_security.h>
44 
45 #include "ipsec.h"
46 #include "parser.h"
47 
48 #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
49 
50 #define MAX_JUMBO_PKT_LEN  9600
51 
52 #define MEMPOOL_CACHE_SIZE 256
53 
54 #define NB_MBUF	(32000)
55 
56 #define CDEV_QUEUE_DESC 2048
57 #define CDEV_MAP_ENTRIES 16384
58 #define CDEV_MP_NB_OBJS 1024
59 #define CDEV_MP_CACHE_SZ 64
60 #define MAX_QUEUE_PAIRS 1
61 
62 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
63 
64 #define NB_SOCKETS 4
65 
66 /* Configure how many packets ahead to prefetch, when reading packets */
67 #define PREFETCH_OFFSET	3
68 
69 #define MAX_RX_QUEUE_PER_LCORE 16
70 
71 #define MAX_LCORE_PARAMS 1024
72 
73 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid))
74 
75 /*
76  * Configurable number of RX/TX ring descriptors
77  */
78 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024
79 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024
80 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT;
81 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
82 
83 #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN
84 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
85 	(((uint64_t)((a) & 0xff) << 56) | \
86 	((uint64_t)((b) & 0xff) << 48) | \
87 	((uint64_t)((c) & 0xff) << 40) | \
88 	((uint64_t)((d) & 0xff) << 32) | \
89 	((uint64_t)((e) & 0xff) << 24) | \
90 	((uint64_t)((f) & 0xff) << 16) | \
91 	((uint64_t)((g) & 0xff) << 8)  | \
92 	((uint64_t)(h) & 0xff))
93 #else
94 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \
95 	(((uint64_t)((h) & 0xff) << 56) | \
96 	((uint64_t)((g) & 0xff) << 48) | \
97 	((uint64_t)((f) & 0xff) << 40) | \
98 	((uint64_t)((e) & 0xff) << 32) | \
99 	((uint64_t)((d) & 0xff) << 24) | \
100 	((uint64_t)((c) & 0xff) << 16) | \
101 	((uint64_t)((b) & 0xff) << 8) | \
102 	((uint64_t)(a) & 0xff))
103 #endif
104 #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0))
105 
106 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
107 		(addr)->addr_bytes[0], (addr)->addr_bytes[1], \
108 		(addr)->addr_bytes[2], (addr)->addr_bytes[3], \
109 		(addr)->addr_bytes[4], (addr)->addr_bytes[5], \
110 		0, 0)
111 
112 /* port/source ethernet addr and destination ethernet addr */
113 struct ethaddr_info {
114 	uint64_t src, dst;
115 };
116 
117 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = {
118 	{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) },
119 	{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) },
120 	{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) },
121 	{ 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) }
122 };
123 
124 #define CMD_LINE_OPT_CONFIG		"config"
125 #define CMD_LINE_OPT_SINGLE_SA		"single-sa"
126 #define CMD_LINE_OPT_CRYPTODEV_MASK	"cryptodev_mask"
127 #define CMD_LINE_OPT_RX_OFFLOAD		"rxoffload"
128 #define CMD_LINE_OPT_TX_OFFLOAD		"txoffload"
129 
130 enum {
131 	/* long options mapped to a short option */
132 
133 	/* first long only option value must be >= 256, so that we won't
134 	 * conflict with short options
135 	 */
136 	CMD_LINE_OPT_MIN_NUM = 256,
137 	CMD_LINE_OPT_CONFIG_NUM,
138 	CMD_LINE_OPT_SINGLE_SA_NUM,
139 	CMD_LINE_OPT_CRYPTODEV_MASK_NUM,
140 	CMD_LINE_OPT_RX_OFFLOAD_NUM,
141 	CMD_LINE_OPT_TX_OFFLOAD_NUM,
142 };
143 
144 static const struct option lgopts[] = {
145 	{CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM},
146 	{CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM},
147 	{CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM},
148 	{CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM},
149 	{CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM},
150 	{NULL, 0, 0, 0}
151 };
152 
153 /* mask of enabled ports */
154 static uint32_t enabled_port_mask;
155 static uint64_t enabled_cryptodev_mask = UINT64_MAX;
156 static uint32_t unprotected_port_mask;
157 static int32_t promiscuous_on = 1;
158 static int32_t numa_on = 1; /**< NUMA is enabled by default. */
159 static uint32_t nb_lcores;
160 static uint32_t single_sa;
161 static uint32_t single_sa_idx;
162 static uint32_t frame_size;
163 
164 /*
165  * RX/TX HW offload capabilities to enable/use on ethernet ports.
166  * By default all capabilities are enabled.
167  */
168 static uint64_t dev_rx_offload = UINT64_MAX;
169 static uint64_t dev_tx_offload = UINT64_MAX;
170 
171 /* application wide librte_ipsec/SA parameters */
172 struct app_sa_prm app_sa_prm = {.enable = 0};
173 
174 struct lcore_rx_queue {
175 	uint16_t port_id;
176 	uint8_t queue_id;
177 } __rte_cache_aligned;
178 
179 struct lcore_params {
180 	uint16_t port_id;
181 	uint8_t queue_id;
182 	uint8_t lcore_id;
183 } __rte_cache_aligned;
184 
185 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
186 
187 static struct lcore_params *lcore_params;
188 static uint16_t nb_lcore_params;
189 
190 static struct rte_hash *cdev_map_in;
191 static struct rte_hash *cdev_map_out;
192 
193 struct buffer {
194 	uint16_t len;
195 	struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
196 };
197 
198 struct lcore_conf {
199 	uint16_t nb_rx_queue;
200 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
201 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
202 	struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
203 	struct ipsec_ctx inbound;
204 	struct ipsec_ctx outbound;
205 	struct rt_ctx *rt4_ctx;
206 	struct rt_ctx *rt6_ctx;
207 } __rte_cache_aligned;
208 
209 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
210 
211 static struct rte_eth_conf port_conf = {
212 	.rxmode = {
213 		.mq_mode	= ETH_MQ_RX_RSS,
214 		.max_rx_pkt_len = ETHER_MAX_LEN,
215 		.split_hdr_size = 0,
216 		.offloads = DEV_RX_OFFLOAD_CHECKSUM,
217 	},
218 	.rx_adv_conf = {
219 		.rss_conf = {
220 			.rss_key = NULL,
221 			.rss_hf = ETH_RSS_IP | ETH_RSS_UDP |
222 				ETH_RSS_TCP | ETH_RSS_SCTP,
223 		},
224 	},
225 	.txmode = {
226 		.mq_mode = ETH_MQ_TX_NONE,
227 	},
228 };
229 
230 static struct socket_ctx socket_ctx[NB_SOCKETS];
231 
232 static inline void
233 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
234 {
235 	uint8_t *nlp;
236 	struct ether_hdr *eth;
237 
238 	eth = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
239 	if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
240 		nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
241 		nlp = RTE_PTR_ADD(nlp, offsetof(struct ip, ip_p));
242 		if (*nlp == IPPROTO_ESP)
243 			t->ipsec.pkts[(t->ipsec.num)++] = pkt;
244 		else {
245 			t->ip4.data[t->ip4.num] = nlp;
246 			t->ip4.pkts[(t->ip4.num)++] = pkt;
247 		}
248 		pkt->l2_len = 0;
249 		pkt->l3_len = sizeof(struct ip);
250 	} else if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) {
251 		nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
252 		nlp = RTE_PTR_ADD(nlp, offsetof(struct ip6_hdr, ip6_nxt));
253 		if (*nlp == IPPROTO_ESP)
254 			t->ipsec.pkts[(t->ipsec.num)++] = pkt;
255 		else {
256 			t->ip6.data[t->ip6.num] = nlp;
257 			t->ip6.pkts[(t->ip6.num)++] = pkt;
258 		}
259 		pkt->l2_len = 0;
260 		pkt->l3_len = sizeof(struct ip6_hdr);
261 	} else {
262 		/* Unknown/Unsupported type, drop the packet */
263 		RTE_LOG(ERR, IPSEC, "Unsupported packet type\n");
264 		rte_pktmbuf_free(pkt);
265 	}
266 
267 	/* Check if the packet has been processed inline. For inline protocol
268 	 * processed packets, the metadata in the mbuf can be used to identify
269 	 * the security processing done on the packet. The metadata will be
270 	 * used to retrieve the application registered userdata associated
271 	 * with the security session.
272 	 */
273 
274 	if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD) {
275 		struct ipsec_sa *sa;
276 		struct ipsec_mbuf_metadata *priv;
277 		struct rte_security_ctx *ctx = (struct rte_security_ctx *)
278 						rte_eth_dev_get_sec_ctx(
279 						pkt->port);
280 
281 		/* Retrieve the userdata registered. Here, the userdata
282 		 * registered is the SA pointer.
283 		 */
284 
285 		sa = (struct ipsec_sa *)
286 				rte_security_get_userdata(ctx, pkt->udata64);
287 
288 		if (sa == NULL) {
289 			/* userdata could not be retrieved */
290 			return;
291 		}
292 
293 		/* Save SA as priv member in mbuf. This will be used in the
294 		 * IPsec selector(SP-SA) check.
295 		 */
296 
297 		priv = get_priv(pkt);
298 		priv->sa = sa;
299 	}
300 }
301 
302 static inline void
303 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
304 		uint16_t nb_pkts)
305 {
306 	int32_t i;
307 
308 	t->ipsec.num = 0;
309 	t->ip4.num = 0;
310 	t->ip6.num = 0;
311 
312 	for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
313 		rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
314 					void *));
315 		prepare_one_packet(pkts[i], t);
316 	}
317 	/* Process left packets */
318 	for (; i < nb_pkts; i++)
319 		prepare_one_packet(pkts[i], t);
320 }
321 
322 static inline void
323 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port,
324 		const struct lcore_conf *qconf)
325 {
326 	struct ip *ip;
327 	struct ether_hdr *ethhdr;
328 
329 	ip = rte_pktmbuf_mtod(pkt, struct ip *);
330 
331 	ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, ETHER_HDR_LEN);
332 
333 	if (ip->ip_v == IPVERSION) {
334 		pkt->ol_flags |= qconf->outbound.ipv4_offloads;
335 		pkt->l3_len = sizeof(struct ip);
336 		pkt->l2_len = ETHER_HDR_LEN;
337 
338 		ip->ip_sum = 0;
339 
340 		/* calculate IPv4 cksum in SW */
341 		if ((pkt->ol_flags & PKT_TX_IP_CKSUM) == 0)
342 			ip->ip_sum = rte_ipv4_cksum((struct ipv4_hdr *)ip);
343 
344 		ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
345 	} else {
346 		pkt->ol_flags |= qconf->outbound.ipv6_offloads;
347 		pkt->l3_len = sizeof(struct ip6_hdr);
348 		pkt->l2_len = ETHER_HDR_LEN;
349 
350 		ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
351 	}
352 
353 	memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
354 			sizeof(struct ether_addr));
355 	memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
356 			sizeof(struct ether_addr));
357 }
358 
359 static inline void
360 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port,
361 		const struct lcore_conf *qconf)
362 {
363 	int32_t i;
364 	const int32_t prefetch_offset = 2;
365 
366 	for (i = 0; i < (nb_pkts - prefetch_offset); i++) {
367 		rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]);
368 		prepare_tx_pkt(pkts[i], port, qconf);
369 	}
370 	/* Process left packets */
371 	for (; i < nb_pkts; i++)
372 		prepare_tx_pkt(pkts[i], port, qconf);
373 }
374 
375 /* Send burst of packets on an output interface */
376 static inline int32_t
377 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port)
378 {
379 	struct rte_mbuf **m_table;
380 	int32_t ret;
381 	uint16_t queueid;
382 
383 	queueid = qconf->tx_queue_id[port];
384 	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
385 
386 	prepare_tx_burst(m_table, n, port, qconf);
387 
388 	ret = rte_eth_tx_burst(port, queueid, m_table, n);
389 	if (unlikely(ret < n)) {
390 		do {
391 			rte_pktmbuf_free(m_table[ret]);
392 		} while (++ret < n);
393 	}
394 
395 	return 0;
396 }
397 
398 /* Enqueue a single packet, and send burst if queue is filled */
399 static inline int32_t
400 send_single_packet(struct rte_mbuf *m, uint16_t port)
401 {
402 	uint32_t lcore_id;
403 	uint16_t len;
404 	struct lcore_conf *qconf;
405 
406 	lcore_id = rte_lcore_id();
407 
408 	qconf = &lcore_conf[lcore_id];
409 	len = qconf->tx_mbufs[port].len;
410 	qconf->tx_mbufs[port].m_table[len] = m;
411 	len++;
412 
413 	/* enough pkts to be sent */
414 	if (unlikely(len == MAX_PKT_BURST)) {
415 		send_burst(qconf, MAX_PKT_BURST, port);
416 		len = 0;
417 	}
418 
419 	qconf->tx_mbufs[port].len = len;
420 	return 0;
421 }
422 
423 static inline void
424 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip,
425 		uint16_t lim)
426 {
427 	struct rte_mbuf *m;
428 	uint32_t i, j, res, sa_idx;
429 
430 	if (ip->num == 0 || sp == NULL)
431 		return;
432 
433 	rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
434 			ip->num, DEFAULT_MAX_CATEGORIES);
435 
436 	j = 0;
437 	for (i = 0; i < ip->num; i++) {
438 		m = ip->pkts[i];
439 		res = ip->res[i];
440 		if (res & BYPASS) {
441 			ip->pkts[j++] = m;
442 			continue;
443 		}
444 		if (res & DISCARD) {
445 			rte_pktmbuf_free(m);
446 			continue;
447 		}
448 
449 		/* Only check SPI match for processed IPSec packets */
450 		if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) {
451 			rte_pktmbuf_free(m);
452 			continue;
453 		}
454 
455 		sa_idx = ip->res[i] & PROTECT_MASK;
456 		if (sa_idx >= IPSEC_SA_MAX_ENTRIES ||
457 				!inbound_sa_check(sa, m, sa_idx)) {
458 			rte_pktmbuf_free(m);
459 			continue;
460 		}
461 		ip->pkts[j++] = m;
462 	}
463 	ip->num = j;
464 }
465 
466 static void
467 split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num)
468 {
469 	uint32_t i, n4, n6;
470 	struct ip *ip;
471 	struct rte_mbuf *m;
472 
473 	n4 = trf->ip4.num;
474 	n6 = trf->ip6.num;
475 
476 	for (i = 0; i < num; i++) {
477 
478 		m = mb[i];
479 		ip = rte_pktmbuf_mtod(m, struct ip *);
480 
481 		if (ip->ip_v == IPVERSION) {
482 			trf->ip4.pkts[n4] = m;
483 			trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m,
484 					uint8_t *, offsetof(struct ip, ip_p));
485 			n4++;
486 		} else if (ip->ip_v == IP6_VERSION) {
487 			trf->ip6.pkts[n6] = m;
488 			trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m,
489 					uint8_t *,
490 					offsetof(struct ip6_hdr, ip6_nxt));
491 			n6++;
492 		} else
493 			rte_pktmbuf_free(m);
494 	}
495 
496 	trf->ip4.num = n4;
497 	trf->ip6.num = n6;
498 }
499 
500 
501 static inline void
502 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
503 		struct ipsec_traffic *traffic)
504 {
505 	uint16_t nb_pkts_in, n_ip4, n_ip6;
506 
507 	n_ip4 = traffic->ip4.num;
508 	n_ip6 = traffic->ip6.num;
509 
510 	if (app_sa_prm.enable == 0) {
511 		nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
512 				traffic->ipsec.num, MAX_PKT_BURST);
513 		split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in);
514 	} else {
515 		inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
516 			traffic->ipsec.saptr, traffic->ipsec.num);
517 		ipsec_process(ipsec_ctx, traffic);
518 	}
519 
520 	inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4,
521 			n_ip4);
522 
523 	inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6,
524 			n_ip6);
525 }
526 
527 static inline void
528 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
529 		struct traffic_type *ipsec)
530 {
531 	struct rte_mbuf *m;
532 	uint32_t i, j, sa_idx;
533 
534 	if (ip->num == 0 || sp == NULL)
535 		return;
536 
537 	rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
538 			ip->num, DEFAULT_MAX_CATEGORIES);
539 
540 	j = 0;
541 	for (i = 0; i < ip->num; i++) {
542 		m = ip->pkts[i];
543 		sa_idx = ip->res[i] & PROTECT_MASK;
544 		if (ip->res[i] & DISCARD)
545 			rte_pktmbuf_free(m);
546 		else if (ip->res[i] & BYPASS)
547 			ip->pkts[j++] = m;
548 		else if (sa_idx < IPSEC_SA_MAX_ENTRIES) {
549 			ipsec->res[ipsec->num] = sa_idx;
550 			ipsec->pkts[ipsec->num++] = m;
551 		} else /* invalid SA idx */
552 			rte_pktmbuf_free(m);
553 	}
554 	ip->num = j;
555 }
556 
557 static inline void
558 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
559 		struct ipsec_traffic *traffic)
560 {
561 	struct rte_mbuf *m;
562 	uint16_t idx, nb_pkts_out, i;
563 
564 	/* Drop any IPsec traffic from protected ports */
565 	for (i = 0; i < traffic->ipsec.num; i++)
566 		rte_pktmbuf_free(traffic->ipsec.pkts[i]);
567 
568 	traffic->ipsec.num = 0;
569 
570 	outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
571 
572 	outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
573 
574 	if (app_sa_prm.enable == 0) {
575 
576 		nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
577 				traffic->ipsec.res, traffic->ipsec.num,
578 				MAX_PKT_BURST);
579 
580 		for (i = 0; i < nb_pkts_out; i++) {
581 			m = traffic->ipsec.pkts[i];
582 			struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
583 			if (ip->ip_v == IPVERSION) {
584 				idx = traffic->ip4.num++;
585 				traffic->ip4.pkts[idx] = m;
586 			} else {
587 				idx = traffic->ip6.num++;
588 				traffic->ip6.pkts[idx] = m;
589 			}
590 		}
591 	} else {
592 		outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
593 			traffic->ipsec.saptr, traffic->ipsec.num);
594 		ipsec_process(ipsec_ctx, traffic);
595 	}
596 }
597 
598 static inline void
599 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
600 		struct ipsec_traffic *traffic)
601 {
602 	struct rte_mbuf *m;
603 	uint32_t nb_pkts_in, i, idx;
604 
605 	/* Drop any IPv4 traffic from unprotected ports */
606 	for (i = 0; i < traffic->ip4.num; i++)
607 		rte_pktmbuf_free(traffic->ip4.pkts[i]);
608 
609 	traffic->ip4.num = 0;
610 
611 	/* Drop any IPv6 traffic from unprotected ports */
612 	for (i = 0; i < traffic->ip6.num; i++)
613 		rte_pktmbuf_free(traffic->ip6.pkts[i]);
614 
615 	traffic->ip6.num = 0;
616 
617 	if (app_sa_prm.enable == 0) {
618 
619 		nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
620 				traffic->ipsec.num, MAX_PKT_BURST);
621 
622 		for (i = 0; i < nb_pkts_in; i++) {
623 			m = traffic->ipsec.pkts[i];
624 			struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
625 			if (ip->ip_v == IPVERSION) {
626 				idx = traffic->ip4.num++;
627 				traffic->ip4.pkts[idx] = m;
628 			} else {
629 				idx = traffic->ip6.num++;
630 				traffic->ip6.pkts[idx] = m;
631 			}
632 		}
633 	} else {
634 		inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts,
635 			traffic->ipsec.saptr, traffic->ipsec.num);
636 		ipsec_process(ipsec_ctx, traffic);
637 	}
638 }
639 
640 static inline void
641 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
642 		struct ipsec_traffic *traffic)
643 {
644 	struct rte_mbuf *m;
645 	uint32_t nb_pkts_out, i, n;
646 	struct ip *ip;
647 
648 	/* Drop any IPsec traffic from protected ports */
649 	for (i = 0; i < traffic->ipsec.num; i++)
650 		rte_pktmbuf_free(traffic->ipsec.pkts[i]);
651 
652 	n = 0;
653 
654 	for (i = 0; i < traffic->ip4.num; i++) {
655 		traffic->ipsec.pkts[n] = traffic->ip4.pkts[i];
656 		traffic->ipsec.res[n++] = single_sa_idx;
657 	}
658 
659 	for (i = 0; i < traffic->ip6.num; i++) {
660 		traffic->ipsec.pkts[n] = traffic->ip6.pkts[i];
661 		traffic->ipsec.res[n++] = single_sa_idx;
662 	}
663 
664 	traffic->ip4.num = 0;
665 	traffic->ip6.num = 0;
666 	traffic->ipsec.num = n;
667 
668 	if (app_sa_prm.enable == 0) {
669 
670 		nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
671 				traffic->ipsec.res, traffic->ipsec.num,
672 				MAX_PKT_BURST);
673 
674 		/* They all sue the same SA (ip4 or ip6 tunnel) */
675 		m = traffic->ipsec.pkts[0];
676 		ip = rte_pktmbuf_mtod(m, struct ip *);
677 		if (ip->ip_v == IPVERSION) {
678 			traffic->ip4.num = nb_pkts_out;
679 			for (i = 0; i < nb_pkts_out; i++)
680 				traffic->ip4.pkts[i] = traffic->ipsec.pkts[i];
681 		} else {
682 			traffic->ip6.num = nb_pkts_out;
683 			for (i = 0; i < nb_pkts_out; i++)
684 				traffic->ip6.pkts[i] = traffic->ipsec.pkts[i];
685 		}
686 	} else {
687 		outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res,
688 			traffic->ipsec.saptr, traffic->ipsec.num);
689 		ipsec_process(ipsec_ctx, traffic);
690 	}
691 }
692 
693 static inline int32_t
694 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6)
695 {
696 	struct ipsec_mbuf_metadata *priv;
697 	struct ipsec_sa *sa;
698 
699 	priv = get_priv(pkt);
700 
701 	sa = priv->sa;
702 	if (unlikely(sa == NULL)) {
703 		RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
704 		goto fail;
705 	}
706 
707 	if (is_ipv6)
708 		return sa->portid;
709 
710 	/* else */
711 	return (sa->portid | RTE_LPM_LOOKUP_SUCCESS);
712 
713 fail:
714 	if (is_ipv6)
715 		return -1;
716 
717 	/* else */
718 	return 0;
719 }
720 
721 static inline void
722 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
723 {
724 	uint32_t hop[MAX_PKT_BURST * 2];
725 	uint32_t dst_ip[MAX_PKT_BURST * 2];
726 	int32_t pkt_hop = 0;
727 	uint16_t i, offset;
728 	uint16_t lpm_pkts = 0;
729 
730 	if (nb_pkts == 0)
731 		return;
732 
733 	/* Need to do an LPM lookup for non-inline packets. Inline packets will
734 	 * have port ID in the SA
735 	 */
736 
737 	for (i = 0; i < nb_pkts; i++) {
738 		if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
739 			/* Security offload not enabled. So an LPM lookup is
740 			 * required to get the hop
741 			 */
742 			offset = offsetof(struct ip, ip_dst);
743 			dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i],
744 					uint32_t *, offset);
745 			dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]);
746 			lpm_pkts++;
747 		}
748 	}
749 
750 	rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts);
751 
752 	lpm_pkts = 0;
753 
754 	for (i = 0; i < nb_pkts; i++) {
755 		if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
756 			/* Read hop from the SA */
757 			pkt_hop = get_hop_for_offload_pkt(pkts[i], 0);
758 		} else {
759 			/* Need to use hop returned by lookup */
760 			pkt_hop = hop[lpm_pkts++];
761 		}
762 
763 		if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) {
764 			rte_pktmbuf_free(pkts[i]);
765 			continue;
766 		}
767 		send_single_packet(pkts[i], pkt_hop & 0xff);
768 	}
769 }
770 
771 static inline void
772 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
773 {
774 	int32_t hop[MAX_PKT_BURST * 2];
775 	uint8_t dst_ip[MAX_PKT_BURST * 2][16];
776 	uint8_t *ip6_dst;
777 	int32_t pkt_hop = 0;
778 	uint16_t i, offset;
779 	uint16_t lpm_pkts = 0;
780 
781 	if (nb_pkts == 0)
782 		return;
783 
784 	/* Need to do an LPM lookup for non-inline packets. Inline packets will
785 	 * have port ID in the SA
786 	 */
787 
788 	for (i = 0; i < nb_pkts; i++) {
789 		if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) {
790 			/* Security offload not enabled. So an LPM lookup is
791 			 * required to get the hop
792 			 */
793 			offset = offsetof(struct ip6_hdr, ip6_dst);
794 			ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *,
795 					offset);
796 			memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16);
797 			lpm_pkts++;
798 		}
799 	}
800 
801 	rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop,
802 			lpm_pkts);
803 
804 	lpm_pkts = 0;
805 
806 	for (i = 0; i < nb_pkts; i++) {
807 		if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) {
808 			/* Read hop from the SA */
809 			pkt_hop = get_hop_for_offload_pkt(pkts[i], 1);
810 		} else {
811 			/* Need to use hop returned by lookup */
812 			pkt_hop = hop[lpm_pkts++];
813 		}
814 
815 		if (pkt_hop == -1) {
816 			rte_pktmbuf_free(pkts[i]);
817 			continue;
818 		}
819 		send_single_packet(pkts[i], pkt_hop & 0xff);
820 	}
821 }
822 
823 static inline void
824 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
825 		uint8_t nb_pkts, uint16_t portid)
826 {
827 	struct ipsec_traffic traffic;
828 
829 	prepare_traffic(pkts, &traffic, nb_pkts);
830 
831 	if (unlikely(single_sa)) {
832 		if (UNPROTECTED_PORT(portid))
833 			process_pkts_inbound_nosp(&qconf->inbound, &traffic);
834 		else
835 			process_pkts_outbound_nosp(&qconf->outbound, &traffic);
836 	} else {
837 		if (UNPROTECTED_PORT(portid))
838 			process_pkts_inbound(&qconf->inbound, &traffic);
839 		else
840 			process_pkts_outbound(&qconf->outbound, &traffic);
841 	}
842 
843 	route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
844 	route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
845 }
846 
847 static inline void
848 drain_tx_buffers(struct lcore_conf *qconf)
849 {
850 	struct buffer *buf;
851 	uint32_t portid;
852 
853 	for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
854 		buf = &qconf->tx_mbufs[portid];
855 		if (buf->len == 0)
856 			continue;
857 		send_burst(qconf, buf->len, portid);
858 		buf->len = 0;
859 	}
860 }
861 
862 static inline void
863 drain_crypto_buffers(struct lcore_conf *qconf)
864 {
865 	uint32_t i;
866 	struct ipsec_ctx *ctx;
867 
868 	/* drain inbound buffers*/
869 	ctx = &qconf->inbound;
870 	for (i = 0; i != ctx->nb_qps; i++) {
871 		if (ctx->tbl[i].len != 0)
872 			enqueue_cop_burst(ctx->tbl  + i);
873 	}
874 
875 	/* drain outbound buffers*/
876 	ctx = &qconf->outbound;
877 	for (i = 0; i != ctx->nb_qps; i++) {
878 		if (ctx->tbl[i].len != 0)
879 			enqueue_cop_burst(ctx->tbl  + i);
880 	}
881 }
882 
883 static void
884 drain_inbound_crypto_queues(const struct lcore_conf *qconf,
885 		struct ipsec_ctx *ctx)
886 {
887 	uint32_t n;
888 	struct ipsec_traffic trf;
889 
890 	if (app_sa_prm.enable == 0) {
891 
892 		/* dequeue packets from crypto-queue */
893 		n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts,
894 			RTE_DIM(trf.ipsec.pkts));
895 
896 		trf.ip4.num = 0;
897 		trf.ip6.num = 0;
898 
899 		/* split traffic by ipv4-ipv6 */
900 		split46_traffic(&trf, trf.ipsec.pkts, n);
901 	} else
902 		ipsec_cqp_process(ctx, &trf);
903 
904 	/* process ipv4 packets */
905 	if (trf.ip4.num != 0) {
906 		inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0);
907 		route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
908 	}
909 
910 	/* process ipv6 packets */
911 	if (trf.ip6.num != 0) {
912 		inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0);
913 		route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
914 	}
915 }
916 
917 static void
918 drain_outbound_crypto_queues(const struct lcore_conf *qconf,
919 		struct ipsec_ctx *ctx)
920 {
921 	uint32_t n;
922 	struct ipsec_traffic trf;
923 
924 	if (app_sa_prm.enable == 0) {
925 
926 		/* dequeue packets from crypto-queue */
927 		n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts,
928 			RTE_DIM(trf.ipsec.pkts));
929 
930 		trf.ip4.num = 0;
931 		trf.ip6.num = 0;
932 
933 		/* split traffic by ipv4-ipv6 */
934 		split46_traffic(&trf, trf.ipsec.pkts, n);
935 	} else
936 		ipsec_cqp_process(ctx, &trf);
937 
938 	/* process ipv4 packets */
939 	if (trf.ip4.num != 0)
940 		route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num);
941 
942 	/* process ipv6 packets */
943 	if (trf.ip6.num != 0)
944 		route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num);
945 }
946 
947 /* main processing loop */
948 static int32_t
949 main_loop(__attribute__((unused)) void *dummy)
950 {
951 	struct rte_mbuf *pkts[MAX_PKT_BURST];
952 	uint32_t lcore_id;
953 	uint64_t prev_tsc, diff_tsc, cur_tsc;
954 	int32_t i, nb_rx;
955 	uint16_t portid;
956 	uint8_t queueid;
957 	struct lcore_conf *qconf;
958 	int32_t socket_id;
959 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
960 			/ US_PER_S * BURST_TX_DRAIN_US;
961 	struct lcore_rx_queue *rxql;
962 
963 	prev_tsc = 0;
964 	lcore_id = rte_lcore_id();
965 	qconf = &lcore_conf[lcore_id];
966 	rxql = qconf->rx_queue_list;
967 	socket_id = rte_lcore_to_socket_id(lcore_id);
968 
969 	qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
970 	qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
971 	qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
972 	qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
973 	qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
974 	qconf->inbound.cdev_map = cdev_map_in;
975 	qconf->inbound.session_pool = socket_ctx[socket_id].session_pool;
976 	qconf->inbound.session_priv_pool =
977 			socket_ctx[socket_id].session_priv_pool;
978 	qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
979 	qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
980 	qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
981 	qconf->outbound.cdev_map = cdev_map_out;
982 	qconf->outbound.session_pool = socket_ctx[socket_id].session_pool;
983 	qconf->outbound.session_priv_pool =
984 			socket_ctx[socket_id].session_priv_pool;
985 
986 	if (qconf->nb_rx_queue == 0) {
987 		RTE_LOG(INFO, IPSEC, "lcore %u has nothing to do\n", lcore_id);
988 		return 0;
989 	}
990 
991 	RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id);
992 
993 	for (i = 0; i < qconf->nb_rx_queue; i++) {
994 		portid = rxql[i].port_id;
995 		queueid = rxql[i].queue_id;
996 		RTE_LOG(INFO, IPSEC,
997 			" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
998 			lcore_id, portid, queueid);
999 	}
1000 
1001 	while (1) {
1002 		cur_tsc = rte_rdtsc();
1003 
1004 		/* TX queue buffer drain */
1005 		diff_tsc = cur_tsc - prev_tsc;
1006 
1007 		if (unlikely(diff_tsc > drain_tsc)) {
1008 			drain_tx_buffers(qconf);
1009 			drain_crypto_buffers(qconf);
1010 			prev_tsc = cur_tsc;
1011 		}
1012 
1013 		for (i = 0; i < qconf->nb_rx_queue; ++i) {
1014 
1015 			/* Read packets from RX queues */
1016 			portid = rxql[i].port_id;
1017 			queueid = rxql[i].queue_id;
1018 			nb_rx = rte_eth_rx_burst(portid, queueid,
1019 					pkts, MAX_PKT_BURST);
1020 
1021 			if (nb_rx > 0)
1022 				process_pkts(qconf, pkts, nb_rx, portid);
1023 
1024 			/* dequeue and process completed crypto-ops */
1025 			if (UNPROTECTED_PORT(portid))
1026 				drain_inbound_crypto_queues(qconf,
1027 					&qconf->inbound);
1028 			else
1029 				drain_outbound_crypto_queues(qconf,
1030 					&qconf->outbound);
1031 		}
1032 	}
1033 }
1034 
1035 static int32_t
1036 check_params(void)
1037 {
1038 	uint8_t lcore;
1039 	uint16_t portid;
1040 	uint16_t i;
1041 	int32_t socket_id;
1042 
1043 	if (lcore_params == NULL) {
1044 		printf("Error: No port/queue/core mappings\n");
1045 		return -1;
1046 	}
1047 
1048 	for (i = 0; i < nb_lcore_params; ++i) {
1049 		lcore = lcore_params[i].lcore_id;
1050 		if (!rte_lcore_is_enabled(lcore)) {
1051 			printf("error: lcore %hhu is not enabled in "
1052 				"lcore mask\n", lcore);
1053 			return -1;
1054 		}
1055 		socket_id = rte_lcore_to_socket_id(lcore);
1056 		if (socket_id != 0 && numa_on == 0) {
1057 			printf("warning: lcore %hhu is on socket %d "
1058 				"with numa off\n",
1059 				lcore, socket_id);
1060 		}
1061 		portid = lcore_params[i].port_id;
1062 		if ((enabled_port_mask & (1 << portid)) == 0) {
1063 			printf("port %u is not enabled in port mask\n", portid);
1064 			return -1;
1065 		}
1066 		if (!rte_eth_dev_is_valid_port(portid)) {
1067 			printf("port %u is not present on the board\n", portid);
1068 			return -1;
1069 		}
1070 	}
1071 	return 0;
1072 }
1073 
1074 static uint8_t
1075 get_port_nb_rx_queues(const uint16_t port)
1076 {
1077 	int32_t queue = -1;
1078 	uint16_t i;
1079 
1080 	for (i = 0; i < nb_lcore_params; ++i) {
1081 		if (lcore_params[i].port_id == port &&
1082 				lcore_params[i].queue_id > queue)
1083 			queue = lcore_params[i].queue_id;
1084 	}
1085 	return (uint8_t)(++queue);
1086 }
1087 
1088 static int32_t
1089 init_lcore_rx_queues(void)
1090 {
1091 	uint16_t i, nb_rx_queue;
1092 	uint8_t lcore;
1093 
1094 	for (i = 0; i < nb_lcore_params; ++i) {
1095 		lcore = lcore_params[i].lcore_id;
1096 		nb_rx_queue = lcore_conf[lcore].nb_rx_queue;
1097 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
1098 			printf("error: too many queues (%u) for lcore: %u\n",
1099 					nb_rx_queue + 1, lcore);
1100 			return -1;
1101 		}
1102 		lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
1103 			lcore_params[i].port_id;
1104 		lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
1105 			lcore_params[i].queue_id;
1106 		lcore_conf[lcore].nb_rx_queue++;
1107 	}
1108 	return 0;
1109 }
1110 
1111 /* display usage */
1112 static void
1113 print_usage(const char *prgname)
1114 {
1115 	fprintf(stderr, "%s [EAL options] --"
1116 		" -p PORTMASK"
1117 		" [-P]"
1118 		" [-u PORTMASK]"
1119 		" [-j FRAMESIZE]"
1120 		" [-l]"
1121 		" [-w REPLAY_WINDOW_SIZE]"
1122 		" [-e]"
1123 		" [-a]"
1124 		" -f CONFIG_FILE"
1125 		" --config (port,queue,lcore)[,(port,queue,lcore)]"
1126 		" [--single-sa SAIDX]"
1127 		" [--cryptodev_mask MASK]"
1128 		" [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]"
1129 		" [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]"
1130 		"\n\n"
1131 		"  -p PORTMASK: Hexadecimal bitmask of ports to configure\n"
1132 		"  -P : Enable promiscuous mode\n"
1133 		"  -u PORTMASK: Hexadecimal bitmask of unprotected ports\n"
1134 		"  -j FRAMESIZE: Enable jumbo frame with 'FRAMESIZE' as maximum\n"
1135 		"                packet size\n"
1136 		"  -l enables code-path that uses librte_ipsec\n"
1137 		"  -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n"
1138 		"     size for each SA\n"
1139 		"  -e enables ESN\n"
1140 		"  -a enables SA SQN atomic behaviour\n"
1141 		"  -f CONFIG_FILE: Configuration file\n"
1142 		"  --config (port,queue,lcore): Rx queue configuration\n"
1143 		"  --single-sa SAIDX: Use single SA index for outbound traffic,\n"
1144 		"                     bypassing the SP\n"
1145 		"  --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n"
1146 		"                         devices to configure\n"
1147 		"  --" CMD_LINE_OPT_RX_OFFLOAD
1148 		": bitmask of the RX HW offload capabilities to enable/use\n"
1149 		"                         (DEV_RX_OFFLOAD_*)\n"
1150 		"  --" CMD_LINE_OPT_TX_OFFLOAD
1151 		": bitmask of the TX HW offload capabilities to enable/use\n"
1152 		"                         (DEV_TX_OFFLOAD_*)\n"
1153 		"\n",
1154 		prgname);
1155 }
1156 
1157 static int
1158 parse_mask(const char *str, uint64_t *val)
1159 {
1160 	char *end;
1161 	unsigned long t;
1162 
1163 	errno = 0;
1164 	t = strtoul(str, &end, 0);
1165 	if (errno != 0 || end[0] != 0)
1166 		return -EINVAL;
1167 
1168 	*val = t;
1169 	return 0;
1170 }
1171 
1172 static int32_t
1173 parse_portmask(const char *portmask)
1174 {
1175 	char *end = NULL;
1176 	unsigned long pm;
1177 
1178 	/* parse hexadecimal string */
1179 	pm = strtoul(portmask, &end, 16);
1180 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1181 		return -1;
1182 
1183 	if ((pm == 0) && errno)
1184 		return -1;
1185 
1186 	return pm;
1187 }
1188 
1189 static int32_t
1190 parse_decimal(const char *str)
1191 {
1192 	char *end = NULL;
1193 	unsigned long num;
1194 
1195 	num = strtoul(str, &end, 10);
1196 	if ((str[0] == '\0') || (end == NULL) || (*end != '\0'))
1197 		return -1;
1198 
1199 	return num;
1200 }
1201 
1202 static int32_t
1203 parse_config(const char *q_arg)
1204 {
1205 	char s[256];
1206 	const char *p, *p0 = q_arg;
1207 	char *end;
1208 	enum fieldnames {
1209 		FLD_PORT = 0,
1210 		FLD_QUEUE,
1211 		FLD_LCORE,
1212 		_NUM_FLD
1213 	};
1214 	unsigned long int_fld[_NUM_FLD];
1215 	char *str_fld[_NUM_FLD];
1216 	int32_t i;
1217 	uint32_t size;
1218 
1219 	nb_lcore_params = 0;
1220 
1221 	while ((p = strchr(p0, '(')) != NULL) {
1222 		++p;
1223 		p0 = strchr(p, ')');
1224 		if (p0 == NULL)
1225 			return -1;
1226 
1227 		size = p0 - p;
1228 		if (size >= sizeof(s))
1229 			return -1;
1230 
1231 		snprintf(s, sizeof(s), "%.*s", size, p);
1232 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
1233 				_NUM_FLD)
1234 			return -1;
1235 		for (i = 0; i < _NUM_FLD; i++) {
1236 			errno = 0;
1237 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1238 			if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1239 				return -1;
1240 		}
1241 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1242 			printf("exceeded max number of lcore params: %hu\n",
1243 				nb_lcore_params);
1244 			return -1;
1245 		}
1246 		lcore_params_array[nb_lcore_params].port_id =
1247 			(uint8_t)int_fld[FLD_PORT];
1248 		lcore_params_array[nb_lcore_params].queue_id =
1249 			(uint8_t)int_fld[FLD_QUEUE];
1250 		lcore_params_array[nb_lcore_params].lcore_id =
1251 			(uint8_t)int_fld[FLD_LCORE];
1252 		++nb_lcore_params;
1253 	}
1254 	lcore_params = lcore_params_array;
1255 	return 0;
1256 }
1257 
1258 static void
1259 print_app_sa_prm(const struct app_sa_prm *prm)
1260 {
1261 	printf("librte_ipsec usage: %s\n",
1262 		(prm->enable == 0) ? "disabled" : "enabled");
1263 
1264 	if (prm->enable == 0)
1265 		return;
1266 
1267 	printf("replay window size: %u\n", prm->window_size);
1268 	printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled");
1269 	printf("SA flags: %#" PRIx64 "\n", prm->flags);
1270 }
1271 
1272 static int32_t
1273 parse_args(int32_t argc, char **argv)
1274 {
1275 	int32_t opt, ret;
1276 	char **argvopt;
1277 	int32_t option_index;
1278 	char *prgname = argv[0];
1279 	int32_t f_present = 0;
1280 
1281 	argvopt = argv;
1282 
1283 	while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:",
1284 				lgopts, &option_index)) != EOF) {
1285 
1286 		switch (opt) {
1287 		case 'p':
1288 			enabled_port_mask = parse_portmask(optarg);
1289 			if (enabled_port_mask == 0) {
1290 				printf("invalid portmask\n");
1291 				print_usage(prgname);
1292 				return -1;
1293 			}
1294 			break;
1295 		case 'P':
1296 			printf("Promiscuous mode selected\n");
1297 			promiscuous_on = 1;
1298 			break;
1299 		case 'u':
1300 			unprotected_port_mask = parse_portmask(optarg);
1301 			if (unprotected_port_mask == 0) {
1302 				printf("invalid unprotected portmask\n");
1303 				print_usage(prgname);
1304 				return -1;
1305 			}
1306 			break;
1307 		case 'f':
1308 			if (f_present == 1) {
1309 				printf("\"-f\" option present more than "
1310 					"once!\n");
1311 				print_usage(prgname);
1312 				return -1;
1313 			}
1314 			if (parse_cfg_file(optarg) < 0) {
1315 				printf("parsing file \"%s\" failed\n",
1316 					optarg);
1317 				print_usage(prgname);
1318 				return -1;
1319 			}
1320 			f_present = 1;
1321 			break;
1322 		case 'j':
1323 			{
1324 				int32_t size = parse_decimal(optarg);
1325 				if (size <= 1518) {
1326 					printf("Invalid jumbo frame size\n");
1327 					if (size < 0) {
1328 						print_usage(prgname);
1329 						return -1;
1330 					}
1331 					printf("Using default value 9000\n");
1332 					frame_size = 9000;
1333 				} else {
1334 					frame_size = size;
1335 				}
1336 			}
1337 			printf("Enabled jumbo frames size %u\n", frame_size);
1338 			break;
1339 		case 'l':
1340 			app_sa_prm.enable = 1;
1341 			break;
1342 		case 'w':
1343 			app_sa_prm.enable = 1;
1344 			app_sa_prm.window_size = parse_decimal(optarg);
1345 			break;
1346 		case 'e':
1347 			app_sa_prm.enable = 1;
1348 			app_sa_prm.enable_esn = 1;
1349 			break;
1350 		case 'a':
1351 			app_sa_prm.enable = 1;
1352 			app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM;
1353 			break;
1354 		case CMD_LINE_OPT_CONFIG_NUM:
1355 			ret = parse_config(optarg);
1356 			if (ret) {
1357 				printf("Invalid config\n");
1358 				print_usage(prgname);
1359 				return -1;
1360 			}
1361 			break;
1362 		case CMD_LINE_OPT_SINGLE_SA_NUM:
1363 			ret = parse_decimal(optarg);
1364 			if (ret == -1) {
1365 				printf("Invalid argument[sa_idx]\n");
1366 				print_usage(prgname);
1367 				return -1;
1368 			}
1369 
1370 			/* else */
1371 			single_sa = 1;
1372 			single_sa_idx = ret;
1373 			printf("Configured with single SA index %u\n",
1374 					single_sa_idx);
1375 			break;
1376 		case CMD_LINE_OPT_CRYPTODEV_MASK_NUM:
1377 			ret = parse_portmask(optarg);
1378 			if (ret == -1) {
1379 				printf("Invalid argument[portmask]\n");
1380 				print_usage(prgname);
1381 				return -1;
1382 			}
1383 
1384 			/* else */
1385 			enabled_cryptodev_mask = ret;
1386 			break;
1387 		case CMD_LINE_OPT_RX_OFFLOAD_NUM:
1388 			ret = parse_mask(optarg, &dev_rx_offload);
1389 			if (ret != 0) {
1390 				printf("Invalid argument for \'%s\': %s\n",
1391 					CMD_LINE_OPT_RX_OFFLOAD, optarg);
1392 				print_usage(prgname);
1393 				return -1;
1394 			}
1395 			break;
1396 		case CMD_LINE_OPT_TX_OFFLOAD_NUM:
1397 			ret = parse_mask(optarg, &dev_tx_offload);
1398 			if (ret != 0) {
1399 				printf("Invalid argument for \'%s\': %s\n",
1400 					CMD_LINE_OPT_TX_OFFLOAD, optarg);
1401 				print_usage(prgname);
1402 				return -1;
1403 			}
1404 			break;
1405 		default:
1406 			print_usage(prgname);
1407 			return -1;
1408 		}
1409 	}
1410 
1411 	if (f_present == 0) {
1412 		printf("Mandatory option \"-f\" not present\n");
1413 		return -1;
1414 	}
1415 
1416 	print_app_sa_prm(&app_sa_prm);
1417 
1418 	if (optind >= 0)
1419 		argv[optind-1] = prgname;
1420 
1421 	ret = optind-1;
1422 	optind = 1; /* reset getopt lib */
1423 	return ret;
1424 }
1425 
1426 static void
1427 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1428 {
1429 	char buf[ETHER_ADDR_FMT_SIZE];
1430 	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
1431 	printf("%s%s", name, buf);
1432 }
1433 
1434 /*
1435  * Update destination ethaddr for the port.
1436  */
1437 int
1438 add_dst_ethaddr(uint16_t port, const struct ether_addr *addr)
1439 {
1440 	if (port > RTE_DIM(ethaddr_tbl))
1441 		return -EINVAL;
1442 
1443 	ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr);
1444 	return 0;
1445 }
1446 
1447 /* Check the link status of all ports in up to 9s, and print them finally */
1448 static void
1449 check_all_ports_link_status(uint32_t port_mask)
1450 {
1451 #define CHECK_INTERVAL 100 /* 100ms */
1452 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1453 	uint16_t portid;
1454 	uint8_t count, all_ports_up, print_flag = 0;
1455 	struct rte_eth_link link;
1456 
1457 	printf("\nChecking link status");
1458 	fflush(stdout);
1459 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1460 		all_ports_up = 1;
1461 		RTE_ETH_FOREACH_DEV(portid) {
1462 			if ((port_mask & (1 << portid)) == 0)
1463 				continue;
1464 			memset(&link, 0, sizeof(link));
1465 			rte_eth_link_get_nowait(portid, &link);
1466 			/* print link status if flag set */
1467 			if (print_flag == 1) {
1468 				if (link.link_status)
1469 					printf(
1470 					"Port%d Link Up - speed %u Mbps -%s\n",
1471 						portid, link.link_speed,
1472 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1473 					("full-duplex") : ("half-duplex\n"));
1474 				else
1475 					printf("Port %d Link Down\n", portid);
1476 				continue;
1477 			}
1478 			/* clear all_ports_up flag if any link down */
1479 			if (link.link_status == ETH_LINK_DOWN) {
1480 				all_ports_up = 0;
1481 				break;
1482 			}
1483 		}
1484 		/* after finally printing all link status, get out */
1485 		if (print_flag == 1)
1486 			break;
1487 
1488 		if (all_ports_up == 0) {
1489 			printf(".");
1490 			fflush(stdout);
1491 			rte_delay_ms(CHECK_INTERVAL);
1492 		}
1493 
1494 		/* set the print_flag if all ports up or timeout */
1495 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1496 			print_flag = 1;
1497 			printf("done\n");
1498 		}
1499 	}
1500 }
1501 
1502 static int32_t
1503 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id,
1504 		uint16_t qp, struct lcore_params *params,
1505 		struct ipsec_ctx *ipsec_ctx,
1506 		const struct rte_cryptodev_capabilities *cipher,
1507 		const struct rte_cryptodev_capabilities *auth,
1508 		const struct rte_cryptodev_capabilities *aead)
1509 {
1510 	int32_t ret = 0;
1511 	unsigned long i;
1512 	struct cdev_key key = { 0 };
1513 
1514 	key.lcore_id = params->lcore_id;
1515 	if (cipher)
1516 		key.cipher_algo = cipher->sym.cipher.algo;
1517 	if (auth)
1518 		key.auth_algo = auth->sym.auth.algo;
1519 	if (aead)
1520 		key.aead_algo = aead->sym.aead.algo;
1521 
1522 	ret = rte_hash_lookup(map, &key);
1523 	if (ret != -ENOENT)
1524 		return 0;
1525 
1526 	for (i = 0; i < ipsec_ctx->nb_qps; i++)
1527 		if (ipsec_ctx->tbl[i].id == cdev_id)
1528 			break;
1529 
1530 	if (i == ipsec_ctx->nb_qps) {
1531 		if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) {
1532 			printf("Maximum number of crypto devices assigned to "
1533 				"a core, increase MAX_QP_PER_LCORE value\n");
1534 			return 0;
1535 		}
1536 		ipsec_ctx->tbl[i].id = cdev_id;
1537 		ipsec_ctx->tbl[i].qp = qp;
1538 		ipsec_ctx->nb_qps++;
1539 		printf("%s cdev mapping: lcore %u using cdev %u qp %u "
1540 				"(cdev_id_qp %lu)\n", str, key.lcore_id,
1541 				cdev_id, qp, i);
1542 	}
1543 
1544 	ret = rte_hash_add_key_data(map, &key, (void *)i);
1545 	if (ret < 0) {
1546 		printf("Faled to insert cdev mapping for (lcore %u, "
1547 				"cdev %u, qp %u), errno %d\n",
1548 				key.lcore_id, ipsec_ctx->tbl[i].id,
1549 				ipsec_ctx->tbl[i].qp, ret);
1550 		return 0;
1551 	}
1552 
1553 	return 1;
1554 }
1555 
1556 static int32_t
1557 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id,
1558 		uint16_t qp, struct lcore_params *params)
1559 {
1560 	int32_t ret = 0;
1561 	const struct rte_cryptodev_capabilities *i, *j;
1562 	struct rte_hash *map;
1563 	struct lcore_conf *qconf;
1564 	struct ipsec_ctx *ipsec_ctx;
1565 	const char *str;
1566 
1567 	qconf = &lcore_conf[params->lcore_id];
1568 
1569 	if ((unprotected_port_mask & (1 << params->port_id)) == 0) {
1570 		map = cdev_map_out;
1571 		ipsec_ctx = &qconf->outbound;
1572 		str = "Outbound";
1573 	} else {
1574 		map = cdev_map_in;
1575 		ipsec_ctx = &qconf->inbound;
1576 		str = "Inbound";
1577 	}
1578 
1579 	/* Required cryptodevs with operation chainning */
1580 	if (!(dev_info->feature_flags &
1581 				RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING))
1582 		return ret;
1583 
1584 	for (i = dev_info->capabilities;
1585 			i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) {
1586 		if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1587 			continue;
1588 
1589 		if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) {
1590 			ret |= add_mapping(map, str, cdev_id, qp, params,
1591 					ipsec_ctx, NULL, NULL, i);
1592 			continue;
1593 		}
1594 
1595 		if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER)
1596 			continue;
1597 
1598 		for (j = dev_info->capabilities;
1599 				j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) {
1600 			if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC)
1601 				continue;
1602 
1603 			if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH)
1604 				continue;
1605 
1606 			ret |= add_mapping(map, str, cdev_id, qp, params,
1607 						ipsec_ctx, i, j, NULL);
1608 		}
1609 	}
1610 
1611 	return ret;
1612 }
1613 
1614 /* Check if the device is enabled by cryptodev_mask */
1615 static int
1616 check_cryptodev_mask(uint8_t cdev_id)
1617 {
1618 	if (enabled_cryptodev_mask & (1 << cdev_id))
1619 		return 0;
1620 
1621 	return -1;
1622 }
1623 
1624 static int32_t
1625 cryptodevs_init(void)
1626 {
1627 	struct rte_cryptodev_config dev_conf;
1628 	struct rte_cryptodev_qp_conf qp_conf;
1629 	uint16_t idx, max_nb_qps, qp, i;
1630 	int16_t cdev_id, port_id;
1631 	struct rte_hash_parameters params = { 0 };
1632 
1633 	params.entries = CDEV_MAP_ENTRIES;
1634 	params.key_len = sizeof(struct cdev_key);
1635 	params.hash_func = rte_jhash;
1636 	params.hash_func_init_val = 0;
1637 	params.socket_id = rte_socket_id();
1638 
1639 	params.name = "cdev_map_in";
1640 	cdev_map_in = rte_hash_create(&params);
1641 	if (cdev_map_in == NULL)
1642 		rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1643 				rte_errno);
1644 
1645 	params.name = "cdev_map_out";
1646 	cdev_map_out = rte_hash_create(&params);
1647 	if (cdev_map_out == NULL)
1648 		rte_panic("Failed to create cdev_map hash table, errno = %d\n",
1649 				rte_errno);
1650 
1651 	printf("lcore/cryptodev/qp mappings:\n");
1652 
1653 	uint32_t max_sess_sz = 0, sess_sz;
1654 	for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1655 		void *sec_ctx;
1656 
1657 		/* Get crypto priv session size */
1658 		sess_sz = rte_cryptodev_sym_get_private_session_size(cdev_id);
1659 		if (sess_sz > max_sess_sz)
1660 			max_sess_sz = sess_sz;
1661 
1662 		/*
1663 		 * If crypto device is security capable, need to check the
1664 		 * size of security session as well.
1665 		 */
1666 
1667 		/* Get security context of the crypto device */
1668 		sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id);
1669 		if (sec_ctx == NULL)
1670 			continue;
1671 
1672 		/* Get size of security session */
1673 		sess_sz = rte_security_session_get_size(sec_ctx);
1674 		if (sess_sz > max_sess_sz)
1675 			max_sess_sz = sess_sz;
1676 	}
1677 	RTE_ETH_FOREACH_DEV(port_id) {
1678 		void *sec_ctx;
1679 
1680 		if ((enabled_port_mask & (1 << port_id)) == 0)
1681 			continue;
1682 
1683 		sec_ctx = rte_eth_dev_get_sec_ctx(port_id);
1684 		if (sec_ctx == NULL)
1685 			continue;
1686 
1687 		sess_sz = rte_security_session_get_size(sec_ctx);
1688 		if (sess_sz > max_sess_sz)
1689 			max_sess_sz = sess_sz;
1690 	}
1691 
1692 	idx = 0;
1693 	for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
1694 		struct rte_cryptodev_info cdev_info;
1695 
1696 		if (check_cryptodev_mask((uint8_t)cdev_id))
1697 			continue;
1698 
1699 		rte_cryptodev_info_get(cdev_id, &cdev_info);
1700 
1701 		if (nb_lcore_params > cdev_info.max_nb_queue_pairs)
1702 			max_nb_qps = cdev_info.max_nb_queue_pairs;
1703 		else
1704 			max_nb_qps = nb_lcore_params;
1705 
1706 		qp = 0;
1707 		i = 0;
1708 		while (qp < max_nb_qps && i < nb_lcore_params) {
1709 			if (add_cdev_mapping(&cdev_info, cdev_id, qp,
1710 						&lcore_params[idx]))
1711 				qp++;
1712 			idx++;
1713 			idx = idx % nb_lcore_params;
1714 			i++;
1715 		}
1716 
1717 		if (qp == 0)
1718 			continue;
1719 
1720 		dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id);
1721 		dev_conf.nb_queue_pairs = qp;
1722 
1723 		uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions;
1724 		if (dev_max_sess != 0 && dev_max_sess < CDEV_MP_NB_OBJS)
1725 			rte_exit(EXIT_FAILURE,
1726 				"Device does not support at least %u "
1727 				"sessions", CDEV_MP_NB_OBJS);
1728 
1729 		if (!socket_ctx[dev_conf.socket_id].session_pool) {
1730 			char mp_name[RTE_MEMPOOL_NAMESIZE];
1731 			struct rte_mempool *sess_mp;
1732 
1733 			snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1734 					"sess_mp_%u", dev_conf.socket_id);
1735 			sess_mp = rte_cryptodev_sym_session_pool_create(
1736 					mp_name, CDEV_MP_NB_OBJS,
1737 					0, CDEV_MP_CACHE_SZ, 0,
1738 					dev_conf.socket_id);
1739 			socket_ctx[dev_conf.socket_id].session_pool = sess_mp;
1740 		}
1741 
1742 		if (!socket_ctx[dev_conf.socket_id].session_priv_pool) {
1743 			char mp_name[RTE_MEMPOOL_NAMESIZE];
1744 			struct rte_mempool *sess_mp;
1745 
1746 			snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1747 					"sess_mp_priv_%u", dev_conf.socket_id);
1748 			sess_mp = rte_mempool_create(mp_name,
1749 					CDEV_MP_NB_OBJS,
1750 					max_sess_sz,
1751 					CDEV_MP_CACHE_SZ,
1752 					0, NULL, NULL, NULL,
1753 					NULL, dev_conf.socket_id,
1754 					0);
1755 			socket_ctx[dev_conf.socket_id].session_priv_pool =
1756 					sess_mp;
1757 		}
1758 
1759 		if (!socket_ctx[dev_conf.socket_id].session_priv_pool ||
1760 				!socket_ctx[dev_conf.socket_id].session_pool)
1761 			rte_exit(EXIT_FAILURE,
1762 				"Cannot create session pool on socket %d\n",
1763 				dev_conf.socket_id);
1764 		else
1765 			printf("Allocated session pool on socket %d\n",
1766 					dev_conf.socket_id);
1767 
1768 		if (rte_cryptodev_configure(cdev_id, &dev_conf))
1769 			rte_panic("Failed to initialize cryptodev %u\n",
1770 					cdev_id);
1771 
1772 		qp_conf.nb_descriptors = CDEV_QUEUE_DESC;
1773 		qp_conf.mp_session =
1774 			socket_ctx[dev_conf.socket_id].session_pool;
1775 		qp_conf.mp_session_private =
1776 			socket_ctx[dev_conf.socket_id].session_priv_pool;
1777 		for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++)
1778 			if (rte_cryptodev_queue_pair_setup(cdev_id, qp,
1779 					&qp_conf, dev_conf.socket_id))
1780 				rte_panic("Failed to setup queue %u for "
1781 						"cdev_id %u\n",	0, cdev_id);
1782 
1783 		if (rte_cryptodev_start(cdev_id))
1784 			rte_panic("Failed to start cryptodev %u\n",
1785 					cdev_id);
1786 	}
1787 
1788 	/* create session pools for eth devices that implement security */
1789 	RTE_ETH_FOREACH_DEV(port_id) {
1790 		if ((enabled_port_mask & (1 << port_id)) &&
1791 				rte_eth_dev_get_sec_ctx(port_id)) {
1792 			int socket_id = rte_eth_dev_socket_id(port_id);
1793 
1794 			if (!socket_ctx[socket_id].session_pool) {
1795 				char mp_name[RTE_MEMPOOL_NAMESIZE];
1796 				struct rte_mempool *sess_mp;
1797 
1798 				snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
1799 						"sess_mp_%u", socket_id);
1800 				sess_mp = rte_mempool_create(mp_name,
1801 						(CDEV_MP_NB_OBJS * 2),
1802 						max_sess_sz,
1803 						CDEV_MP_CACHE_SZ,
1804 						0, NULL, NULL, NULL,
1805 						NULL, socket_id,
1806 						0);
1807 				if (sess_mp == NULL)
1808 					rte_exit(EXIT_FAILURE,
1809 						"Cannot create session pool "
1810 						"on socket %d\n", socket_id);
1811 				else
1812 					printf("Allocated session pool "
1813 						"on socket %d\n", socket_id);
1814 				socket_ctx[socket_id].session_pool = sess_mp;
1815 			}
1816 		}
1817 	}
1818 
1819 
1820 	printf("\n");
1821 
1822 	return 0;
1823 }
1824 
1825 static void
1826 port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads)
1827 {
1828 	struct rte_eth_dev_info dev_info;
1829 	struct rte_eth_txconf *txconf;
1830 	uint16_t nb_tx_queue, nb_rx_queue;
1831 	uint16_t tx_queueid, rx_queueid, queue, lcore_id;
1832 	int32_t ret, socket_id;
1833 	struct lcore_conf *qconf;
1834 	struct ether_addr ethaddr;
1835 	struct rte_eth_conf local_port_conf = port_conf;
1836 
1837 	rte_eth_dev_info_get(portid, &dev_info);
1838 
1839 	/* limit allowed HW offloafs, as user requested */
1840 	dev_info.rx_offload_capa &= dev_rx_offload;
1841 	dev_info.tx_offload_capa &= dev_tx_offload;
1842 
1843 	printf("Configuring device port %u:\n", portid);
1844 
1845 	rte_eth_macaddr_get(portid, &ethaddr);
1846 	ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(&ethaddr);
1847 	print_ethaddr("Address: ", &ethaddr);
1848 	printf("\n");
1849 
1850 	nb_rx_queue = get_port_nb_rx_queues(portid);
1851 	nb_tx_queue = nb_lcores;
1852 
1853 	if (nb_rx_queue > dev_info.max_rx_queues)
1854 		rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1855 				"(max rx queue is %u)\n",
1856 				nb_rx_queue, dev_info.max_rx_queues);
1857 
1858 	if (nb_tx_queue > dev_info.max_tx_queues)
1859 		rte_exit(EXIT_FAILURE, "Error: queue %u not available "
1860 				"(max tx queue is %u)\n",
1861 				nb_tx_queue, dev_info.max_tx_queues);
1862 
1863 	printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n",
1864 			nb_rx_queue, nb_tx_queue);
1865 
1866 	if (frame_size) {
1867 		local_port_conf.rxmode.max_rx_pkt_len = frame_size;
1868 		local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1869 	}
1870 
1871 	local_port_conf.rxmode.offloads |= req_rx_offloads;
1872 	local_port_conf.txmode.offloads |= req_tx_offloads;
1873 
1874 	/* Check that all required capabilities are supported */
1875 	if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) !=
1876 			local_port_conf.rxmode.offloads)
1877 		rte_exit(EXIT_FAILURE,
1878 			"Error: port %u required RX offloads: 0x%" PRIx64
1879 			", avaialbe RX offloads: 0x%" PRIx64 "\n",
1880 			portid, local_port_conf.rxmode.offloads,
1881 			dev_info.rx_offload_capa);
1882 
1883 	if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) !=
1884 			local_port_conf.txmode.offloads)
1885 		rte_exit(EXIT_FAILURE,
1886 			"Error: port %u required TX offloads: 0x%" PRIx64
1887 			", avaialbe TX offloads: 0x%" PRIx64 "\n",
1888 			portid, local_port_conf.txmode.offloads,
1889 			dev_info.tx_offload_capa);
1890 
1891 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
1892 		local_port_conf.txmode.offloads |=
1893 			DEV_TX_OFFLOAD_MBUF_FAST_FREE;
1894 
1895 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM)
1896 		local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM;
1897 
1898 	printf("port %u configurng rx_offloads=0x%" PRIx64
1899 		", tx_offloads=0x%" PRIx64 "\n",
1900 		portid, local_port_conf.rxmode.offloads,
1901 		local_port_conf.txmode.offloads);
1902 
1903 	local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
1904 		dev_info.flow_type_rss_offloads;
1905 	if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
1906 			port_conf.rx_adv_conf.rss_conf.rss_hf) {
1907 		printf("Port %u modified RSS hash function based on hardware support,"
1908 			"requested:%#"PRIx64" configured:%#"PRIx64"\n",
1909 			portid,
1910 			port_conf.rx_adv_conf.rss_conf.rss_hf,
1911 			local_port_conf.rx_adv_conf.rss_conf.rss_hf);
1912 	}
1913 
1914 	ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue,
1915 			&local_port_conf);
1916 	if (ret < 0)
1917 		rte_exit(EXIT_FAILURE, "Cannot configure device: "
1918 				"err=%d, port=%d\n", ret, portid);
1919 
1920 	ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd);
1921 	if (ret < 0)
1922 		rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: "
1923 				"err=%d, port=%d\n", ret, portid);
1924 
1925 	/* init one TX queue per lcore */
1926 	tx_queueid = 0;
1927 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1928 		if (rte_lcore_is_enabled(lcore_id) == 0)
1929 			continue;
1930 
1931 		if (numa_on)
1932 			socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1933 		else
1934 			socket_id = 0;
1935 
1936 		/* init TX queue */
1937 		printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id);
1938 
1939 		txconf = &dev_info.default_txconf;
1940 		txconf->offloads = local_port_conf.txmode.offloads;
1941 
1942 		ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd,
1943 				socket_id, txconf);
1944 		if (ret < 0)
1945 			rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
1946 					"err=%d, port=%d\n", ret, portid);
1947 
1948 		qconf = &lcore_conf[lcore_id];
1949 		qconf->tx_queue_id[portid] = tx_queueid;
1950 
1951 		/* Pre-populate pkt offloads based on capabilities */
1952 		qconf->outbound.ipv4_offloads = PKT_TX_IPV4;
1953 		qconf->outbound.ipv6_offloads = PKT_TX_IPV6;
1954 		if (local_port_conf.txmode.offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
1955 			qconf->outbound.ipv4_offloads |= PKT_TX_IP_CKSUM;
1956 
1957 		tx_queueid++;
1958 
1959 		/* init RX queues */
1960 		for (queue = 0; queue < qconf->nb_rx_queue; ++queue) {
1961 			struct rte_eth_rxconf rxq_conf;
1962 
1963 			if (portid != qconf->rx_queue_list[queue].port_id)
1964 				continue;
1965 
1966 			rx_queueid = qconf->rx_queue_list[queue].queue_id;
1967 
1968 			printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid,
1969 					socket_id);
1970 
1971 			rxq_conf = dev_info.default_rxconf;
1972 			rxq_conf.offloads = local_port_conf.rxmode.offloads;
1973 			ret = rte_eth_rx_queue_setup(portid, rx_queueid,
1974 					nb_rxd,	socket_id, &rxq_conf,
1975 					socket_ctx[socket_id].mbuf_pool);
1976 			if (ret < 0)
1977 				rte_exit(EXIT_FAILURE,
1978 					"rte_eth_rx_queue_setup: err=%d, "
1979 					"port=%d\n", ret, portid);
1980 		}
1981 	}
1982 	printf("\n");
1983 }
1984 
1985 static void
1986 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf)
1987 {
1988 	char s[64];
1989 	uint32_t buff_size = frame_size ? (frame_size + RTE_PKTMBUF_HEADROOM) :
1990 			RTE_MBUF_DEFAULT_BUF_SIZE;
1991 
1992 
1993 	snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id);
1994 	ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf,
1995 			MEMPOOL_CACHE_SIZE, ipsec_metadata_size(),
1996 			buff_size,
1997 			socket_id);
1998 	if (ctx->mbuf_pool == NULL)
1999 		rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n",
2000 				socket_id);
2001 	else
2002 		printf("Allocated mbuf pool on socket %d\n", socket_id);
2003 }
2004 
2005 static inline int
2006 inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md)
2007 {
2008 	struct ipsec_sa *sa;
2009 
2010 	/* For inline protocol processing, the metadata in the event will
2011 	 * uniquely identify the security session which raised the event.
2012 	 * Application would then need the userdata it had registered with the
2013 	 * security session to process the event.
2014 	 */
2015 
2016 	sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md);
2017 
2018 	if (sa == NULL) {
2019 		/* userdata could not be retrieved */
2020 		return -1;
2021 	}
2022 
2023 	/* Sequence number over flow. SA need to be re-established */
2024 	RTE_SET_USED(sa);
2025 	return 0;
2026 }
2027 
2028 static int
2029 inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type,
2030 		 void *param, void *ret_param)
2031 {
2032 	uint64_t md;
2033 	struct rte_eth_event_ipsec_desc *event_desc = NULL;
2034 	struct rte_security_ctx *ctx = (struct rte_security_ctx *)
2035 					rte_eth_dev_get_sec_ctx(port_id);
2036 
2037 	RTE_SET_USED(param);
2038 
2039 	if (type != RTE_ETH_EVENT_IPSEC)
2040 		return -1;
2041 
2042 	event_desc = ret_param;
2043 	if (event_desc == NULL) {
2044 		printf("Event descriptor not set\n");
2045 		return -1;
2046 	}
2047 
2048 	md = event_desc->metadata;
2049 
2050 	if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW)
2051 		return inline_ipsec_event_esn_overflow(ctx, md);
2052 	else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) {
2053 		printf("Invalid IPsec event reported\n");
2054 		return -1;
2055 	}
2056 
2057 	return -1;
2058 }
2059 
2060 int32_t
2061 main(int32_t argc, char **argv)
2062 {
2063 	int32_t ret;
2064 	uint32_t lcore_id;
2065 	uint8_t socket_id;
2066 	uint16_t portid;
2067 	uint64_t req_rx_offloads, req_tx_offloads;
2068 
2069 	/* init EAL */
2070 	ret = rte_eal_init(argc, argv);
2071 	if (ret < 0)
2072 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
2073 	argc -= ret;
2074 	argv += ret;
2075 
2076 	/* parse application arguments (after the EAL ones) */
2077 	ret = parse_args(argc, argv);
2078 	if (ret < 0)
2079 		rte_exit(EXIT_FAILURE, "Invalid parameters\n");
2080 
2081 	if ((unprotected_port_mask & enabled_port_mask) !=
2082 			unprotected_port_mask)
2083 		rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n",
2084 				unprotected_port_mask);
2085 
2086 	if (check_params() < 0)
2087 		rte_exit(EXIT_FAILURE, "check_params failed\n");
2088 
2089 	ret = init_lcore_rx_queues();
2090 	if (ret < 0)
2091 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
2092 
2093 	nb_lcores = rte_lcore_count();
2094 
2095 	/* Replicate each context per socket */
2096 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
2097 		if (rte_lcore_is_enabled(lcore_id) == 0)
2098 			continue;
2099 
2100 		if (numa_on)
2101 			socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id);
2102 		else
2103 			socket_id = 0;
2104 
2105 		if (socket_ctx[socket_id].mbuf_pool)
2106 			continue;
2107 
2108 		/* initilaze SPD */
2109 		sp4_init(&socket_ctx[socket_id], socket_id);
2110 
2111 		sp6_init(&socket_ctx[socket_id], socket_id);
2112 
2113 		/* initilaze SAD */
2114 		sa_init(&socket_ctx[socket_id], socket_id);
2115 
2116 		rt_init(&socket_ctx[socket_id], socket_id);
2117 
2118 		pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF);
2119 	}
2120 
2121 	RTE_ETH_FOREACH_DEV(portid) {
2122 		if ((enabled_port_mask & (1 << portid)) == 0)
2123 			continue;
2124 
2125 		sa_check_offloads(portid, &req_rx_offloads, &req_tx_offloads);
2126 		port_init(portid, req_rx_offloads, req_tx_offloads);
2127 	}
2128 
2129 	cryptodevs_init();
2130 
2131 	/* start ports */
2132 	RTE_ETH_FOREACH_DEV(portid) {
2133 		if ((enabled_port_mask & (1 << portid)) == 0)
2134 			continue;
2135 
2136 		/* Start device */
2137 		ret = rte_eth_dev_start(portid);
2138 		if (ret < 0)
2139 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
2140 					"err=%d, port=%d\n", ret, portid);
2141 		/*
2142 		 * If enabled, put device in promiscuous mode.
2143 		 * This allows IO forwarding mode to forward packets
2144 		 * to itself through 2 cross-connected  ports of the
2145 		 * target machine.
2146 		 */
2147 		if (promiscuous_on)
2148 			rte_eth_promiscuous_enable(portid);
2149 
2150 		rte_eth_dev_callback_register(portid,
2151 			RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL);
2152 	}
2153 
2154 	check_all_ports_link_status(enabled_port_mask);
2155 
2156 	/* launch per-lcore init on every lcore */
2157 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
2158 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
2159 		if (rte_eal_wait_lcore(lcore_id) < 0)
2160 			return -1;
2161 	}
2162 
2163 	return 0;
2164 }
2165