1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <netinet/in.h> 11 #include <netinet/ip.h> 12 #include <netinet/ip6.h> 13 #include <string.h> 14 #include <sys/queue.h> 15 #include <stdarg.h> 16 #include <errno.h> 17 #include <getopt.h> 18 19 #include <rte_common.h> 20 #include <rte_byteorder.h> 21 #include <rte_log.h> 22 #include <rte_eal.h> 23 #include <rte_launch.h> 24 #include <rte_atomic.h> 25 #include <rte_cycles.h> 26 #include <rte_prefetch.h> 27 #include <rte_lcore.h> 28 #include <rte_per_lcore.h> 29 #include <rte_branch_prediction.h> 30 #include <rte_interrupts.h> 31 #include <rte_random.h> 32 #include <rte_debug.h> 33 #include <rte_ether.h> 34 #include <rte_ethdev.h> 35 #include <rte_mempool.h> 36 #include <rte_mbuf.h> 37 #include <rte_acl.h> 38 #include <rte_lpm.h> 39 #include <rte_lpm6.h> 40 #include <rte_hash.h> 41 #include <rte_jhash.h> 42 #include <rte_cryptodev.h> 43 #include <rte_security.h> 44 #include <rte_ip.h> 45 #include <rte_ip_frag.h> 46 47 #include "ipsec.h" 48 #include "parser.h" 49 50 #define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1 51 52 #define MAX_JUMBO_PKT_LEN 9600 53 54 #define MEMPOOL_CACHE_SIZE 256 55 56 #define NB_MBUF (32000) 57 58 #define CDEV_QUEUE_DESC 2048 59 #define CDEV_MAP_ENTRIES 16384 60 #define CDEV_MP_NB_OBJS 1024 61 #define CDEV_MP_CACHE_SZ 64 62 #define MAX_QUEUE_PAIRS 1 63 64 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 65 66 #define NB_SOCKETS 4 67 68 /* Configure how many packets ahead to prefetch, when reading packets */ 69 #define PREFETCH_OFFSET 3 70 71 #define MAX_RX_QUEUE_PER_LCORE 16 72 73 #define MAX_LCORE_PARAMS 1024 74 75 #define UNPROTECTED_PORT(port) (unprotected_port_mask & (1 << portid)) 76 77 /* 78 * Configurable number of RX/TX ring descriptors 79 */ 80 #define IPSEC_SECGW_RX_DESC_DEFAULT 1024 81 #define IPSEC_SECGW_TX_DESC_DEFAULT 1024 82 static uint16_t nb_rxd = IPSEC_SECGW_RX_DESC_DEFAULT; 83 static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT; 84 85 #if RTE_BYTE_ORDER != RTE_LITTLE_ENDIAN 86 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \ 87 (((uint64_t)((a) & 0xff) << 56) | \ 88 ((uint64_t)((b) & 0xff) << 48) | \ 89 ((uint64_t)((c) & 0xff) << 40) | \ 90 ((uint64_t)((d) & 0xff) << 32) | \ 91 ((uint64_t)((e) & 0xff) << 24) | \ 92 ((uint64_t)((f) & 0xff) << 16) | \ 93 ((uint64_t)((g) & 0xff) << 8) | \ 94 ((uint64_t)(h) & 0xff)) 95 #else 96 #define __BYTES_TO_UINT64(a, b, c, d, e, f, g, h) \ 97 (((uint64_t)((h) & 0xff) << 56) | \ 98 ((uint64_t)((g) & 0xff) << 48) | \ 99 ((uint64_t)((f) & 0xff) << 40) | \ 100 ((uint64_t)((e) & 0xff) << 32) | \ 101 ((uint64_t)((d) & 0xff) << 24) | \ 102 ((uint64_t)((c) & 0xff) << 16) | \ 103 ((uint64_t)((b) & 0xff) << 8) | \ 104 ((uint64_t)(a) & 0xff)) 105 #endif 106 #define ETHADDR(a, b, c, d, e, f) (__BYTES_TO_UINT64(a, b, c, d, e, f, 0, 0)) 107 108 #define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \ 109 (addr)->addr_bytes[0], (addr)->addr_bytes[1], \ 110 (addr)->addr_bytes[2], (addr)->addr_bytes[3], \ 111 (addr)->addr_bytes[4], (addr)->addr_bytes[5], \ 112 0, 0) 113 114 #define FRAG_TBL_BUCKET_ENTRIES 4 115 #define FRAG_TTL_MS (10 * MS_PER_S) 116 117 #define MTU_TO_FRAMELEN(x) ((x) + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN) 118 119 /* port/source ethernet addr and destination ethernet addr */ 120 struct ethaddr_info { 121 uint64_t src, dst; 122 }; 123 124 struct ethaddr_info ethaddr_tbl[RTE_MAX_ETHPORTS] = { 125 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x7e, 0x94, 0x9a) }, 126 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x22, 0xa1, 0xd9) }, 127 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x08, 0x69, 0x26) }, 128 { 0, ETHADDR(0x00, 0x16, 0x3e, 0x49, 0x9e, 0xdd) } 129 }; 130 131 #define CMD_LINE_OPT_CONFIG "config" 132 #define CMD_LINE_OPT_SINGLE_SA "single-sa" 133 #define CMD_LINE_OPT_CRYPTODEV_MASK "cryptodev_mask" 134 #define CMD_LINE_OPT_RX_OFFLOAD "rxoffload" 135 #define CMD_LINE_OPT_TX_OFFLOAD "txoffload" 136 #define CMD_LINE_OPT_REASSEMBLE "reassemble" 137 #define CMD_LINE_OPT_MTU "mtu" 138 139 enum { 140 /* long options mapped to a short option */ 141 142 /* first long only option value must be >= 256, so that we won't 143 * conflict with short options 144 */ 145 CMD_LINE_OPT_MIN_NUM = 256, 146 CMD_LINE_OPT_CONFIG_NUM, 147 CMD_LINE_OPT_SINGLE_SA_NUM, 148 CMD_LINE_OPT_CRYPTODEV_MASK_NUM, 149 CMD_LINE_OPT_RX_OFFLOAD_NUM, 150 CMD_LINE_OPT_TX_OFFLOAD_NUM, 151 CMD_LINE_OPT_REASSEMBLE_NUM, 152 CMD_LINE_OPT_MTU_NUM, 153 }; 154 155 static const struct option lgopts[] = { 156 {CMD_LINE_OPT_CONFIG, 1, 0, CMD_LINE_OPT_CONFIG_NUM}, 157 {CMD_LINE_OPT_SINGLE_SA, 1, 0, CMD_LINE_OPT_SINGLE_SA_NUM}, 158 {CMD_LINE_OPT_CRYPTODEV_MASK, 1, 0, CMD_LINE_OPT_CRYPTODEV_MASK_NUM}, 159 {CMD_LINE_OPT_RX_OFFLOAD, 1, 0, CMD_LINE_OPT_RX_OFFLOAD_NUM}, 160 {CMD_LINE_OPT_TX_OFFLOAD, 1, 0, CMD_LINE_OPT_TX_OFFLOAD_NUM}, 161 {CMD_LINE_OPT_REASSEMBLE, 1, 0, CMD_LINE_OPT_REASSEMBLE_NUM}, 162 {CMD_LINE_OPT_MTU, 1, 0, CMD_LINE_OPT_MTU_NUM}, 163 {NULL, 0, 0, 0} 164 }; 165 166 /* mask of enabled ports */ 167 static uint32_t enabled_port_mask; 168 static uint64_t enabled_cryptodev_mask = UINT64_MAX; 169 static uint32_t unprotected_port_mask; 170 static int32_t promiscuous_on = 1; 171 static int32_t numa_on = 1; /**< NUMA is enabled by default. */ 172 static uint32_t nb_lcores; 173 static uint32_t single_sa; 174 static uint32_t single_sa_idx; 175 176 /* 177 * RX/TX HW offload capabilities to enable/use on ethernet ports. 178 * By default all capabilities are enabled. 179 */ 180 static uint64_t dev_rx_offload = UINT64_MAX; 181 static uint64_t dev_tx_offload = UINT64_MAX; 182 183 /* 184 * global values that determine multi-seg policy 185 */ 186 static uint32_t frag_tbl_sz; 187 static uint32_t frame_buf_size = RTE_MBUF_DEFAULT_BUF_SIZE; 188 static uint32_t mtu_size = RTE_ETHER_MTU; 189 190 /* application wide librte_ipsec/SA parameters */ 191 struct app_sa_prm app_sa_prm = {.enable = 0}; 192 193 struct lcore_rx_queue { 194 uint16_t port_id; 195 uint8_t queue_id; 196 } __rte_cache_aligned; 197 198 struct lcore_params { 199 uint16_t port_id; 200 uint8_t queue_id; 201 uint8_t lcore_id; 202 } __rte_cache_aligned; 203 204 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS]; 205 206 static struct lcore_params *lcore_params; 207 static uint16_t nb_lcore_params; 208 209 static struct rte_hash *cdev_map_in; 210 static struct rte_hash *cdev_map_out; 211 212 struct buffer { 213 uint16_t len; 214 struct rte_mbuf *m_table[MAX_PKT_BURST] __rte_aligned(sizeof(void *)); 215 }; 216 217 struct lcore_conf { 218 uint16_t nb_rx_queue; 219 struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 220 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 221 struct buffer tx_mbufs[RTE_MAX_ETHPORTS]; 222 struct ipsec_ctx inbound; 223 struct ipsec_ctx outbound; 224 struct rt_ctx *rt4_ctx; 225 struct rt_ctx *rt6_ctx; 226 struct { 227 struct rte_ip_frag_tbl *tbl; 228 struct rte_mempool *pool_dir; 229 struct rte_mempool *pool_indir; 230 struct rte_ip_frag_death_row dr; 231 } frag; 232 } __rte_cache_aligned; 233 234 static struct lcore_conf lcore_conf[RTE_MAX_LCORE]; 235 236 static struct rte_eth_conf port_conf = { 237 .rxmode = { 238 .mq_mode = ETH_MQ_RX_RSS, 239 .max_rx_pkt_len = RTE_ETHER_MAX_LEN, 240 .split_hdr_size = 0, 241 .offloads = DEV_RX_OFFLOAD_CHECKSUM, 242 }, 243 .rx_adv_conf = { 244 .rss_conf = { 245 .rss_key = NULL, 246 .rss_hf = ETH_RSS_IP | ETH_RSS_UDP | 247 ETH_RSS_TCP | ETH_RSS_SCTP, 248 }, 249 }, 250 .txmode = { 251 .mq_mode = ETH_MQ_TX_NONE, 252 }, 253 }; 254 255 static struct socket_ctx socket_ctx[NB_SOCKETS]; 256 257 /* 258 * Determine is multi-segment support required: 259 * - either frame buffer size is smaller then mtu 260 * - or reassmeble support is requested 261 */ 262 static int 263 multi_seg_required(void) 264 { 265 return (MTU_TO_FRAMELEN(mtu_size) + RTE_PKTMBUF_HEADROOM > 266 frame_buf_size || frag_tbl_sz != 0); 267 } 268 269 static inline void 270 adjust_ipv4_pktlen(struct rte_mbuf *m, const struct rte_ipv4_hdr *iph, 271 uint32_t l2_len) 272 { 273 uint32_t plen, trim; 274 275 plen = rte_be_to_cpu_16(iph->total_length) + l2_len; 276 if (plen < m->pkt_len) { 277 trim = m->pkt_len - plen; 278 rte_pktmbuf_trim(m, trim); 279 } 280 } 281 282 static inline void 283 adjust_ipv6_pktlen(struct rte_mbuf *m, const struct rte_ipv6_hdr *iph, 284 uint32_t l2_len) 285 { 286 uint32_t plen, trim; 287 288 plen = rte_be_to_cpu_16(iph->payload_len) + sizeof(*iph) + l2_len; 289 if (plen < m->pkt_len) { 290 trim = m->pkt_len - plen; 291 rte_pktmbuf_trim(m, trim); 292 } 293 } 294 295 static inline void 296 prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t) 297 { 298 const struct rte_ether_hdr *eth; 299 const struct rte_ipv4_hdr *iph4; 300 const struct rte_ipv6_hdr *iph6; 301 302 eth = rte_pktmbuf_mtod(pkt, const struct rte_ether_hdr *); 303 if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) { 304 305 iph4 = (const struct rte_ipv4_hdr *)rte_pktmbuf_adj(pkt, 306 RTE_ETHER_HDR_LEN); 307 adjust_ipv4_pktlen(pkt, iph4, 0); 308 309 if (iph4->next_proto_id == IPPROTO_ESP) 310 t->ipsec.pkts[(t->ipsec.num)++] = pkt; 311 else { 312 t->ip4.data[t->ip4.num] = &iph4->next_proto_id; 313 t->ip4.pkts[(t->ip4.num)++] = pkt; 314 } 315 pkt->l2_len = 0; 316 pkt->l3_len = sizeof(*iph4); 317 } else if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) { 318 int next_proto; 319 size_t l3len, ext_len; 320 uint8_t *p; 321 322 /* get protocol type */ 323 iph6 = (const struct rte_ipv6_hdr *)rte_pktmbuf_adj(pkt, 324 RTE_ETHER_HDR_LEN); 325 adjust_ipv6_pktlen(pkt, iph6, 0); 326 327 next_proto = iph6->proto; 328 329 /* determine l3 header size up to ESP extension */ 330 l3len = sizeof(struct ip6_hdr); 331 p = rte_pktmbuf_mtod(pkt, uint8_t *); 332 while (next_proto != IPPROTO_ESP && l3len < pkt->data_len && 333 (next_proto = rte_ipv6_get_next_ext(p + l3len, 334 next_proto, &ext_len)) >= 0) 335 l3len += ext_len; 336 337 /* drop packet when IPv6 header exceeds first segment length */ 338 if (unlikely(l3len > pkt->data_len)) { 339 rte_pktmbuf_free(pkt); 340 return; 341 } 342 343 if (next_proto == IPPROTO_ESP) 344 t->ipsec.pkts[(t->ipsec.num)++] = pkt; 345 else { 346 t->ip6.data[t->ip6.num] = &iph6->proto; 347 t->ip6.pkts[(t->ip6.num)++] = pkt; 348 } 349 pkt->l2_len = 0; 350 pkt->l3_len = l3len; 351 } else { 352 /* Unknown/Unsupported type, drop the packet */ 353 RTE_LOG(ERR, IPSEC, "Unsupported packet type 0x%x\n", 354 rte_be_to_cpu_16(eth->ether_type)); 355 rte_pktmbuf_free(pkt); 356 return; 357 } 358 359 /* Check if the packet has been processed inline. For inline protocol 360 * processed packets, the metadata in the mbuf can be used to identify 361 * the security processing done on the packet. The metadata will be 362 * used to retrieve the application registered userdata associated 363 * with the security session. 364 */ 365 366 if (pkt->ol_flags & PKT_RX_SEC_OFFLOAD) { 367 struct ipsec_sa *sa; 368 struct ipsec_mbuf_metadata *priv; 369 struct rte_security_ctx *ctx = (struct rte_security_ctx *) 370 rte_eth_dev_get_sec_ctx( 371 pkt->port); 372 373 /* Retrieve the userdata registered. Here, the userdata 374 * registered is the SA pointer. 375 */ 376 377 sa = (struct ipsec_sa *) 378 rte_security_get_userdata(ctx, pkt->udata64); 379 380 if (sa == NULL) { 381 /* userdata could not be retrieved */ 382 return; 383 } 384 385 /* Save SA as priv member in mbuf. This will be used in the 386 * IPsec selector(SP-SA) check. 387 */ 388 389 priv = get_priv(pkt); 390 priv->sa = sa; 391 } 392 } 393 394 static inline void 395 prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t, 396 uint16_t nb_pkts) 397 { 398 int32_t i; 399 400 t->ipsec.num = 0; 401 t->ip4.num = 0; 402 t->ip6.num = 0; 403 404 for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) { 405 rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET], 406 void *)); 407 prepare_one_packet(pkts[i], t); 408 } 409 /* Process left packets */ 410 for (; i < nb_pkts; i++) 411 prepare_one_packet(pkts[i], t); 412 } 413 414 static inline void 415 prepare_tx_pkt(struct rte_mbuf *pkt, uint16_t port, 416 const struct lcore_conf *qconf) 417 { 418 struct ip *ip; 419 struct rte_ether_hdr *ethhdr; 420 421 ip = rte_pktmbuf_mtod(pkt, struct ip *); 422 423 ethhdr = (struct rte_ether_hdr *) 424 rte_pktmbuf_prepend(pkt, RTE_ETHER_HDR_LEN); 425 426 if (ip->ip_v == IPVERSION) { 427 pkt->ol_flags |= qconf->outbound.ipv4_offloads; 428 pkt->l3_len = sizeof(struct ip); 429 pkt->l2_len = RTE_ETHER_HDR_LEN; 430 431 ip->ip_sum = 0; 432 433 /* calculate IPv4 cksum in SW */ 434 if ((pkt->ol_flags & PKT_TX_IP_CKSUM) == 0) 435 ip->ip_sum = rte_ipv4_cksum((struct rte_ipv4_hdr *)ip); 436 437 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4); 438 } else { 439 pkt->ol_flags |= qconf->outbound.ipv6_offloads; 440 pkt->l3_len = sizeof(struct ip6_hdr); 441 pkt->l2_len = RTE_ETHER_HDR_LEN; 442 443 ethhdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6); 444 } 445 446 memcpy(ðhdr->s_addr, ðaddr_tbl[port].src, 447 sizeof(struct rte_ether_addr)); 448 memcpy(ðhdr->d_addr, ðaddr_tbl[port].dst, 449 sizeof(struct rte_ether_addr)); 450 } 451 452 static inline void 453 prepare_tx_burst(struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t port, 454 const struct lcore_conf *qconf) 455 { 456 int32_t i; 457 const int32_t prefetch_offset = 2; 458 459 for (i = 0; i < (nb_pkts - prefetch_offset); i++) { 460 rte_mbuf_prefetch_part2(pkts[i + prefetch_offset]); 461 prepare_tx_pkt(pkts[i], port, qconf); 462 } 463 /* Process left packets */ 464 for (; i < nb_pkts; i++) 465 prepare_tx_pkt(pkts[i], port, qconf); 466 } 467 468 /* Send burst of packets on an output interface */ 469 static inline int32_t 470 send_burst(struct lcore_conf *qconf, uint16_t n, uint16_t port) 471 { 472 struct rte_mbuf **m_table; 473 int32_t ret; 474 uint16_t queueid; 475 476 queueid = qconf->tx_queue_id[port]; 477 m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table; 478 479 prepare_tx_burst(m_table, n, port, qconf); 480 481 ret = rte_eth_tx_burst(port, queueid, m_table, n); 482 if (unlikely(ret < n)) { 483 do { 484 rte_pktmbuf_free(m_table[ret]); 485 } while (++ret < n); 486 } 487 488 return 0; 489 } 490 491 /* 492 * Helper function to fragment and queue for TX one packet. 493 */ 494 static inline uint32_t 495 send_fragment_packet(struct lcore_conf *qconf, struct rte_mbuf *m, 496 uint16_t port, uint8_t proto) 497 { 498 struct buffer *tbl; 499 uint32_t len, n; 500 int32_t rc; 501 502 tbl = qconf->tx_mbufs + port; 503 len = tbl->len; 504 505 /* free space for new fragments */ 506 if (len + RTE_LIBRTE_IP_FRAG_MAX_FRAG >= RTE_DIM(tbl->m_table)) { 507 send_burst(qconf, len, port); 508 len = 0; 509 } 510 511 n = RTE_DIM(tbl->m_table) - len; 512 513 if (proto == IPPROTO_IP) 514 rc = rte_ipv4_fragment_packet(m, tbl->m_table + len, 515 n, mtu_size, qconf->frag.pool_dir, 516 qconf->frag.pool_indir); 517 else 518 rc = rte_ipv6_fragment_packet(m, tbl->m_table + len, 519 n, mtu_size, qconf->frag.pool_dir, 520 qconf->frag.pool_indir); 521 522 if (rc >= 0) 523 len += rc; 524 else 525 RTE_LOG(ERR, IPSEC, 526 "%s: failed to fragment packet with size %u, " 527 "error code: %d\n", 528 __func__, m->pkt_len, rte_errno); 529 530 rte_pktmbuf_free(m); 531 return len; 532 } 533 534 /* Enqueue a single packet, and send burst if queue is filled */ 535 static inline int32_t 536 send_single_packet(struct rte_mbuf *m, uint16_t port, uint8_t proto) 537 { 538 uint32_t lcore_id; 539 uint16_t len; 540 struct lcore_conf *qconf; 541 542 lcore_id = rte_lcore_id(); 543 544 qconf = &lcore_conf[lcore_id]; 545 len = qconf->tx_mbufs[port].len; 546 547 if (m->pkt_len <= mtu_size) { 548 qconf->tx_mbufs[port].m_table[len] = m; 549 len++; 550 551 /* need to fragment the packet */ 552 } else if (frag_tbl_sz > 0) 553 len = send_fragment_packet(qconf, m, port, proto); 554 else 555 rte_pktmbuf_free(m); 556 557 /* enough pkts to be sent */ 558 if (unlikely(len == MAX_PKT_BURST)) { 559 send_burst(qconf, MAX_PKT_BURST, port); 560 len = 0; 561 } 562 563 qconf->tx_mbufs[port].len = len; 564 return 0; 565 } 566 567 static inline void 568 inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip, 569 uint16_t lim) 570 { 571 struct rte_mbuf *m; 572 uint32_t i, j, res, sa_idx; 573 574 if (ip->num == 0 || sp == NULL) 575 return; 576 577 rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res, 578 ip->num, DEFAULT_MAX_CATEGORIES); 579 580 j = 0; 581 for (i = 0; i < ip->num; i++) { 582 m = ip->pkts[i]; 583 res = ip->res[i]; 584 if (res == BYPASS) { 585 ip->pkts[j++] = m; 586 continue; 587 } 588 if (res == DISCARD) { 589 rte_pktmbuf_free(m); 590 continue; 591 } 592 593 /* Only check SPI match for processed IPSec packets */ 594 if (i < lim && ((m->ol_flags & PKT_RX_SEC_OFFLOAD) == 0)) { 595 rte_pktmbuf_free(m); 596 continue; 597 } 598 599 sa_idx = SPI2IDX(res); 600 if (!inbound_sa_check(sa, m, sa_idx)) { 601 rte_pktmbuf_free(m); 602 continue; 603 } 604 ip->pkts[j++] = m; 605 } 606 ip->num = j; 607 } 608 609 static void 610 split46_traffic(struct ipsec_traffic *trf, struct rte_mbuf *mb[], uint32_t num) 611 { 612 uint32_t i, n4, n6; 613 struct ip *ip; 614 struct rte_mbuf *m; 615 616 n4 = trf->ip4.num; 617 n6 = trf->ip6.num; 618 619 for (i = 0; i < num; i++) { 620 621 m = mb[i]; 622 ip = rte_pktmbuf_mtod(m, struct ip *); 623 624 if (ip->ip_v == IPVERSION) { 625 trf->ip4.pkts[n4] = m; 626 trf->ip4.data[n4] = rte_pktmbuf_mtod_offset(m, 627 uint8_t *, offsetof(struct ip, ip_p)); 628 n4++; 629 } else if (ip->ip_v == IP6_VERSION) { 630 trf->ip6.pkts[n6] = m; 631 trf->ip6.data[n6] = rte_pktmbuf_mtod_offset(m, 632 uint8_t *, 633 offsetof(struct ip6_hdr, ip6_nxt)); 634 n6++; 635 } else 636 rte_pktmbuf_free(m); 637 } 638 639 trf->ip4.num = n4; 640 trf->ip6.num = n6; 641 } 642 643 644 static inline void 645 process_pkts_inbound(struct ipsec_ctx *ipsec_ctx, 646 struct ipsec_traffic *traffic) 647 { 648 uint16_t nb_pkts_in, n_ip4, n_ip6; 649 650 n_ip4 = traffic->ip4.num; 651 n_ip6 = traffic->ip6.num; 652 653 if (app_sa_prm.enable == 0) { 654 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts, 655 traffic->ipsec.num, MAX_PKT_BURST); 656 split46_traffic(traffic, traffic->ipsec.pkts, nb_pkts_in); 657 } else { 658 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts, 659 traffic->ipsec.saptr, traffic->ipsec.num); 660 ipsec_process(ipsec_ctx, traffic); 661 } 662 663 inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4, 664 n_ip4); 665 666 inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6, 667 n_ip6); 668 } 669 670 static inline void 671 outbound_sp(struct sp_ctx *sp, struct traffic_type *ip, 672 struct traffic_type *ipsec) 673 { 674 struct rte_mbuf *m; 675 uint32_t i, j, sa_idx; 676 677 if (ip->num == 0 || sp == NULL) 678 return; 679 680 rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res, 681 ip->num, DEFAULT_MAX_CATEGORIES); 682 683 j = 0; 684 for (i = 0; i < ip->num; i++) { 685 m = ip->pkts[i]; 686 sa_idx = SPI2IDX(ip->res[i]); 687 if (ip->res[i] == DISCARD) 688 rte_pktmbuf_free(m); 689 else if (ip->res[i] == BYPASS) 690 ip->pkts[j++] = m; 691 else { 692 ipsec->res[ipsec->num] = sa_idx; 693 ipsec->pkts[ipsec->num++] = m; 694 } 695 } 696 ip->num = j; 697 } 698 699 static inline void 700 process_pkts_outbound(struct ipsec_ctx *ipsec_ctx, 701 struct ipsec_traffic *traffic) 702 { 703 struct rte_mbuf *m; 704 uint16_t idx, nb_pkts_out, i; 705 706 /* Drop any IPsec traffic from protected ports */ 707 for (i = 0; i < traffic->ipsec.num; i++) 708 rte_pktmbuf_free(traffic->ipsec.pkts[i]); 709 710 traffic->ipsec.num = 0; 711 712 outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec); 713 714 outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec); 715 716 if (app_sa_prm.enable == 0) { 717 718 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts, 719 traffic->ipsec.res, traffic->ipsec.num, 720 MAX_PKT_BURST); 721 722 for (i = 0; i < nb_pkts_out; i++) { 723 m = traffic->ipsec.pkts[i]; 724 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *); 725 if (ip->ip_v == IPVERSION) { 726 idx = traffic->ip4.num++; 727 traffic->ip4.pkts[idx] = m; 728 } else { 729 idx = traffic->ip6.num++; 730 traffic->ip6.pkts[idx] = m; 731 } 732 } 733 } else { 734 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res, 735 traffic->ipsec.saptr, traffic->ipsec.num); 736 ipsec_process(ipsec_ctx, traffic); 737 } 738 } 739 740 static inline void 741 process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx, 742 struct ipsec_traffic *traffic) 743 { 744 struct rte_mbuf *m; 745 uint32_t nb_pkts_in, i, idx; 746 747 /* Drop any IPv4 traffic from unprotected ports */ 748 for (i = 0; i < traffic->ip4.num; i++) 749 rte_pktmbuf_free(traffic->ip4.pkts[i]); 750 751 traffic->ip4.num = 0; 752 753 /* Drop any IPv6 traffic from unprotected ports */ 754 for (i = 0; i < traffic->ip6.num; i++) 755 rte_pktmbuf_free(traffic->ip6.pkts[i]); 756 757 traffic->ip6.num = 0; 758 759 if (app_sa_prm.enable == 0) { 760 761 nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts, 762 traffic->ipsec.num, MAX_PKT_BURST); 763 764 for (i = 0; i < nb_pkts_in; i++) { 765 m = traffic->ipsec.pkts[i]; 766 struct ip *ip = rte_pktmbuf_mtod(m, struct ip *); 767 if (ip->ip_v == IPVERSION) { 768 idx = traffic->ip4.num++; 769 traffic->ip4.pkts[idx] = m; 770 } else { 771 idx = traffic->ip6.num++; 772 traffic->ip6.pkts[idx] = m; 773 } 774 } 775 } else { 776 inbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.pkts, 777 traffic->ipsec.saptr, traffic->ipsec.num); 778 ipsec_process(ipsec_ctx, traffic); 779 } 780 } 781 782 static inline void 783 process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx, 784 struct ipsec_traffic *traffic) 785 { 786 struct rte_mbuf *m; 787 uint32_t nb_pkts_out, i, n; 788 struct ip *ip; 789 790 /* Drop any IPsec traffic from protected ports */ 791 for (i = 0; i < traffic->ipsec.num; i++) 792 rte_pktmbuf_free(traffic->ipsec.pkts[i]); 793 794 n = 0; 795 796 for (i = 0; i < traffic->ip4.num; i++) { 797 traffic->ipsec.pkts[n] = traffic->ip4.pkts[i]; 798 traffic->ipsec.res[n++] = single_sa_idx; 799 } 800 801 for (i = 0; i < traffic->ip6.num; i++) { 802 traffic->ipsec.pkts[n] = traffic->ip6.pkts[i]; 803 traffic->ipsec.res[n++] = single_sa_idx; 804 } 805 806 traffic->ip4.num = 0; 807 traffic->ip6.num = 0; 808 traffic->ipsec.num = n; 809 810 if (app_sa_prm.enable == 0) { 811 812 nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts, 813 traffic->ipsec.res, traffic->ipsec.num, 814 MAX_PKT_BURST); 815 816 /* They all sue the same SA (ip4 or ip6 tunnel) */ 817 m = traffic->ipsec.pkts[0]; 818 ip = rte_pktmbuf_mtod(m, struct ip *); 819 if (ip->ip_v == IPVERSION) { 820 traffic->ip4.num = nb_pkts_out; 821 for (i = 0; i < nb_pkts_out; i++) 822 traffic->ip4.pkts[i] = traffic->ipsec.pkts[i]; 823 } else { 824 traffic->ip6.num = nb_pkts_out; 825 for (i = 0; i < nb_pkts_out; i++) 826 traffic->ip6.pkts[i] = traffic->ipsec.pkts[i]; 827 } 828 } else { 829 outbound_sa_lookup(ipsec_ctx->sa_ctx, traffic->ipsec.res, 830 traffic->ipsec.saptr, traffic->ipsec.num); 831 ipsec_process(ipsec_ctx, traffic); 832 } 833 } 834 835 static inline int32_t 836 get_hop_for_offload_pkt(struct rte_mbuf *pkt, int is_ipv6) 837 { 838 struct ipsec_mbuf_metadata *priv; 839 struct ipsec_sa *sa; 840 841 priv = get_priv(pkt); 842 843 sa = priv->sa; 844 if (unlikely(sa == NULL)) { 845 RTE_LOG(ERR, IPSEC, "SA not saved in private data\n"); 846 goto fail; 847 } 848 849 if (is_ipv6) 850 return sa->portid; 851 852 /* else */ 853 return (sa->portid | RTE_LPM_LOOKUP_SUCCESS); 854 855 fail: 856 if (is_ipv6) 857 return -1; 858 859 /* else */ 860 return 0; 861 } 862 863 static inline void 864 route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts) 865 { 866 uint32_t hop[MAX_PKT_BURST * 2]; 867 uint32_t dst_ip[MAX_PKT_BURST * 2]; 868 int32_t pkt_hop = 0; 869 uint16_t i, offset; 870 uint16_t lpm_pkts = 0; 871 872 if (nb_pkts == 0) 873 return; 874 875 /* Need to do an LPM lookup for non-inline packets. Inline packets will 876 * have port ID in the SA 877 */ 878 879 for (i = 0; i < nb_pkts; i++) { 880 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) { 881 /* Security offload not enabled. So an LPM lookup is 882 * required to get the hop 883 */ 884 offset = offsetof(struct ip, ip_dst); 885 dst_ip[lpm_pkts] = *rte_pktmbuf_mtod_offset(pkts[i], 886 uint32_t *, offset); 887 dst_ip[lpm_pkts] = rte_be_to_cpu_32(dst_ip[lpm_pkts]); 888 lpm_pkts++; 889 } 890 } 891 892 rte_lpm_lookup_bulk((struct rte_lpm *)rt_ctx, dst_ip, hop, lpm_pkts); 893 894 lpm_pkts = 0; 895 896 for (i = 0; i < nb_pkts; i++) { 897 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) { 898 /* Read hop from the SA */ 899 pkt_hop = get_hop_for_offload_pkt(pkts[i], 0); 900 } else { 901 /* Need to use hop returned by lookup */ 902 pkt_hop = hop[lpm_pkts++]; 903 } 904 905 if ((pkt_hop & RTE_LPM_LOOKUP_SUCCESS) == 0) { 906 rte_pktmbuf_free(pkts[i]); 907 continue; 908 } 909 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IP); 910 } 911 } 912 913 static inline void 914 route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts) 915 { 916 int32_t hop[MAX_PKT_BURST * 2]; 917 uint8_t dst_ip[MAX_PKT_BURST * 2][16]; 918 uint8_t *ip6_dst; 919 int32_t pkt_hop = 0; 920 uint16_t i, offset; 921 uint16_t lpm_pkts = 0; 922 923 if (nb_pkts == 0) 924 return; 925 926 /* Need to do an LPM lookup for non-inline packets. Inline packets will 927 * have port ID in the SA 928 */ 929 930 for (i = 0; i < nb_pkts; i++) { 931 if (!(pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD)) { 932 /* Security offload not enabled. So an LPM lookup is 933 * required to get the hop 934 */ 935 offset = offsetof(struct ip6_hdr, ip6_dst); 936 ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *, 937 offset); 938 memcpy(&dst_ip[lpm_pkts][0], ip6_dst, 16); 939 lpm_pkts++; 940 } 941 } 942 943 rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip, hop, 944 lpm_pkts); 945 946 lpm_pkts = 0; 947 948 for (i = 0; i < nb_pkts; i++) { 949 if (pkts[i]->ol_flags & PKT_TX_SEC_OFFLOAD) { 950 /* Read hop from the SA */ 951 pkt_hop = get_hop_for_offload_pkt(pkts[i], 1); 952 } else { 953 /* Need to use hop returned by lookup */ 954 pkt_hop = hop[lpm_pkts++]; 955 } 956 957 if (pkt_hop == -1) { 958 rte_pktmbuf_free(pkts[i]); 959 continue; 960 } 961 send_single_packet(pkts[i], pkt_hop & 0xff, IPPROTO_IPV6); 962 } 963 } 964 965 static inline void 966 process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts, 967 uint8_t nb_pkts, uint16_t portid) 968 { 969 struct ipsec_traffic traffic; 970 971 prepare_traffic(pkts, &traffic, nb_pkts); 972 973 if (unlikely(single_sa)) { 974 if (UNPROTECTED_PORT(portid)) 975 process_pkts_inbound_nosp(&qconf->inbound, &traffic); 976 else 977 process_pkts_outbound_nosp(&qconf->outbound, &traffic); 978 } else { 979 if (UNPROTECTED_PORT(portid)) 980 process_pkts_inbound(&qconf->inbound, &traffic); 981 else 982 process_pkts_outbound(&qconf->outbound, &traffic); 983 } 984 985 route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num); 986 route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num); 987 } 988 989 static inline void 990 drain_tx_buffers(struct lcore_conf *qconf) 991 { 992 struct buffer *buf; 993 uint32_t portid; 994 995 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 996 buf = &qconf->tx_mbufs[portid]; 997 if (buf->len == 0) 998 continue; 999 send_burst(qconf, buf->len, portid); 1000 buf->len = 0; 1001 } 1002 } 1003 1004 static inline void 1005 drain_crypto_buffers(struct lcore_conf *qconf) 1006 { 1007 uint32_t i; 1008 struct ipsec_ctx *ctx; 1009 1010 /* drain inbound buffers*/ 1011 ctx = &qconf->inbound; 1012 for (i = 0; i != ctx->nb_qps; i++) { 1013 if (ctx->tbl[i].len != 0) 1014 enqueue_cop_burst(ctx->tbl + i); 1015 } 1016 1017 /* drain outbound buffers*/ 1018 ctx = &qconf->outbound; 1019 for (i = 0; i != ctx->nb_qps; i++) { 1020 if (ctx->tbl[i].len != 0) 1021 enqueue_cop_burst(ctx->tbl + i); 1022 } 1023 } 1024 1025 static void 1026 drain_inbound_crypto_queues(const struct lcore_conf *qconf, 1027 struct ipsec_ctx *ctx) 1028 { 1029 uint32_t n; 1030 struct ipsec_traffic trf; 1031 1032 if (app_sa_prm.enable == 0) { 1033 1034 /* dequeue packets from crypto-queue */ 1035 n = ipsec_inbound_cqp_dequeue(ctx, trf.ipsec.pkts, 1036 RTE_DIM(trf.ipsec.pkts)); 1037 1038 trf.ip4.num = 0; 1039 trf.ip6.num = 0; 1040 1041 /* split traffic by ipv4-ipv6 */ 1042 split46_traffic(&trf, trf.ipsec.pkts, n); 1043 } else 1044 ipsec_cqp_process(ctx, &trf); 1045 1046 /* process ipv4 packets */ 1047 if (trf.ip4.num != 0) { 1048 inbound_sp_sa(ctx->sp4_ctx, ctx->sa_ctx, &trf.ip4, 0); 1049 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num); 1050 } 1051 1052 /* process ipv6 packets */ 1053 if (trf.ip6.num != 0) { 1054 inbound_sp_sa(ctx->sp6_ctx, ctx->sa_ctx, &trf.ip6, 0); 1055 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num); 1056 } 1057 } 1058 1059 static void 1060 drain_outbound_crypto_queues(const struct lcore_conf *qconf, 1061 struct ipsec_ctx *ctx) 1062 { 1063 uint32_t n; 1064 struct ipsec_traffic trf; 1065 1066 if (app_sa_prm.enable == 0) { 1067 1068 /* dequeue packets from crypto-queue */ 1069 n = ipsec_outbound_cqp_dequeue(ctx, trf.ipsec.pkts, 1070 RTE_DIM(trf.ipsec.pkts)); 1071 1072 trf.ip4.num = 0; 1073 trf.ip6.num = 0; 1074 1075 /* split traffic by ipv4-ipv6 */ 1076 split46_traffic(&trf, trf.ipsec.pkts, n); 1077 } else 1078 ipsec_cqp_process(ctx, &trf); 1079 1080 /* process ipv4 packets */ 1081 if (trf.ip4.num != 0) 1082 route4_pkts(qconf->rt4_ctx, trf.ip4.pkts, trf.ip4.num); 1083 1084 /* process ipv6 packets */ 1085 if (trf.ip6.num != 0) 1086 route6_pkts(qconf->rt6_ctx, trf.ip6.pkts, trf.ip6.num); 1087 } 1088 1089 /* main processing loop */ 1090 static int32_t 1091 main_loop(__attribute__((unused)) void *dummy) 1092 { 1093 struct rte_mbuf *pkts[MAX_PKT_BURST]; 1094 uint32_t lcore_id; 1095 uint64_t prev_tsc, diff_tsc, cur_tsc; 1096 int32_t i, nb_rx; 1097 uint16_t portid; 1098 uint8_t queueid; 1099 struct lcore_conf *qconf; 1100 int32_t socket_id; 1101 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) 1102 / US_PER_S * BURST_TX_DRAIN_US; 1103 struct lcore_rx_queue *rxql; 1104 1105 prev_tsc = 0; 1106 lcore_id = rte_lcore_id(); 1107 qconf = &lcore_conf[lcore_id]; 1108 rxql = qconf->rx_queue_list; 1109 socket_id = rte_lcore_to_socket_id(lcore_id); 1110 1111 qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4; 1112 qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6; 1113 qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in; 1114 qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in; 1115 qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in; 1116 qconf->inbound.cdev_map = cdev_map_in; 1117 qconf->inbound.session_pool = socket_ctx[socket_id].session_pool; 1118 qconf->inbound.session_priv_pool = 1119 socket_ctx[socket_id].session_priv_pool; 1120 qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out; 1121 qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out; 1122 qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out; 1123 qconf->outbound.cdev_map = cdev_map_out; 1124 qconf->outbound.session_pool = socket_ctx[socket_id].session_pool; 1125 qconf->outbound.session_priv_pool = 1126 socket_ctx[socket_id].session_priv_pool; 1127 qconf->frag.pool_dir = socket_ctx[socket_id].mbuf_pool; 1128 qconf->frag.pool_indir = socket_ctx[socket_id].mbuf_pool_indir; 1129 1130 if (qconf->nb_rx_queue == 0) { 1131 RTE_LOG(DEBUG, IPSEC, "lcore %u has nothing to do\n", 1132 lcore_id); 1133 return 0; 1134 } 1135 1136 RTE_LOG(INFO, IPSEC, "entering main loop on lcore %u\n", lcore_id); 1137 1138 for (i = 0; i < qconf->nb_rx_queue; i++) { 1139 portid = rxql[i].port_id; 1140 queueid = rxql[i].queue_id; 1141 RTE_LOG(INFO, IPSEC, 1142 " -- lcoreid=%u portid=%u rxqueueid=%hhu\n", 1143 lcore_id, portid, queueid); 1144 } 1145 1146 while (1) { 1147 cur_tsc = rte_rdtsc(); 1148 1149 /* TX queue buffer drain */ 1150 diff_tsc = cur_tsc - prev_tsc; 1151 1152 if (unlikely(diff_tsc > drain_tsc)) { 1153 drain_tx_buffers(qconf); 1154 drain_crypto_buffers(qconf); 1155 prev_tsc = cur_tsc; 1156 } 1157 1158 for (i = 0; i < qconf->nb_rx_queue; ++i) { 1159 1160 /* Read packets from RX queues */ 1161 portid = rxql[i].port_id; 1162 queueid = rxql[i].queue_id; 1163 nb_rx = rte_eth_rx_burst(portid, queueid, 1164 pkts, MAX_PKT_BURST); 1165 1166 if (nb_rx > 0) 1167 process_pkts(qconf, pkts, nb_rx, portid); 1168 1169 /* dequeue and process completed crypto-ops */ 1170 if (UNPROTECTED_PORT(portid)) 1171 drain_inbound_crypto_queues(qconf, 1172 &qconf->inbound); 1173 else 1174 drain_outbound_crypto_queues(qconf, 1175 &qconf->outbound); 1176 } 1177 } 1178 } 1179 1180 static int32_t 1181 check_params(void) 1182 { 1183 uint8_t lcore; 1184 uint16_t portid; 1185 uint16_t i; 1186 int32_t socket_id; 1187 1188 if (lcore_params == NULL) { 1189 printf("Error: No port/queue/core mappings\n"); 1190 return -1; 1191 } 1192 1193 for (i = 0; i < nb_lcore_params; ++i) { 1194 lcore = lcore_params[i].lcore_id; 1195 if (!rte_lcore_is_enabled(lcore)) { 1196 printf("error: lcore %hhu is not enabled in " 1197 "lcore mask\n", lcore); 1198 return -1; 1199 } 1200 socket_id = rte_lcore_to_socket_id(lcore); 1201 if (socket_id != 0 && numa_on == 0) { 1202 printf("warning: lcore %hhu is on socket %d " 1203 "with numa off\n", 1204 lcore, socket_id); 1205 } 1206 portid = lcore_params[i].port_id; 1207 if ((enabled_port_mask & (1 << portid)) == 0) { 1208 printf("port %u is not enabled in port mask\n", portid); 1209 return -1; 1210 } 1211 if (!rte_eth_dev_is_valid_port(portid)) { 1212 printf("port %u is not present on the board\n", portid); 1213 return -1; 1214 } 1215 } 1216 return 0; 1217 } 1218 1219 static uint8_t 1220 get_port_nb_rx_queues(const uint16_t port) 1221 { 1222 int32_t queue = -1; 1223 uint16_t i; 1224 1225 for (i = 0; i < nb_lcore_params; ++i) { 1226 if (lcore_params[i].port_id == port && 1227 lcore_params[i].queue_id > queue) 1228 queue = lcore_params[i].queue_id; 1229 } 1230 return (uint8_t)(++queue); 1231 } 1232 1233 static int32_t 1234 init_lcore_rx_queues(void) 1235 { 1236 uint16_t i, nb_rx_queue; 1237 uint8_t lcore; 1238 1239 for (i = 0; i < nb_lcore_params; ++i) { 1240 lcore = lcore_params[i].lcore_id; 1241 nb_rx_queue = lcore_conf[lcore].nb_rx_queue; 1242 if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) { 1243 printf("error: too many queues (%u) for lcore: %u\n", 1244 nb_rx_queue + 1, lcore); 1245 return -1; 1246 } 1247 lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id = 1248 lcore_params[i].port_id; 1249 lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id = 1250 lcore_params[i].queue_id; 1251 lcore_conf[lcore].nb_rx_queue++; 1252 } 1253 return 0; 1254 } 1255 1256 /* display usage */ 1257 static void 1258 print_usage(const char *prgname) 1259 { 1260 fprintf(stderr, "%s [EAL options] --" 1261 " -p PORTMASK" 1262 " [-P]" 1263 " [-u PORTMASK]" 1264 " [-j FRAMESIZE]" 1265 " [-l]" 1266 " [-w REPLAY_WINDOW_SIZE]" 1267 " [-e]" 1268 " [-a]" 1269 " -f CONFIG_FILE" 1270 " --config (port,queue,lcore)[,(port,queue,lcore)]" 1271 " [--single-sa SAIDX]" 1272 " [--cryptodev_mask MASK]" 1273 " [--" CMD_LINE_OPT_RX_OFFLOAD " RX_OFFLOAD_MASK]" 1274 " [--" CMD_LINE_OPT_TX_OFFLOAD " TX_OFFLOAD_MASK]" 1275 " [--" CMD_LINE_OPT_REASSEMBLE " REASSEMBLE_TABLE_SIZE]" 1276 " [--" CMD_LINE_OPT_MTU " MTU]" 1277 "\n\n" 1278 " -p PORTMASK: Hexadecimal bitmask of ports to configure\n" 1279 " -P : Enable promiscuous mode\n" 1280 " -u PORTMASK: Hexadecimal bitmask of unprotected ports\n" 1281 " -j FRAMESIZE: Data buffer size, minimum (and default)\n" 1282 " value: RTE_MBUF_DEFAULT_BUF_SIZE\n" 1283 " -l enables code-path that uses librte_ipsec\n" 1284 " -w REPLAY_WINDOW_SIZE specifies IPsec SQN replay window\n" 1285 " size for each SA\n" 1286 " -e enables ESN\n" 1287 " -a enables SA SQN atomic behaviour\n" 1288 " -f CONFIG_FILE: Configuration file\n" 1289 " --config (port,queue,lcore): Rx queue configuration\n" 1290 " --single-sa SAIDX: Use single SA index for outbound traffic,\n" 1291 " bypassing the SP\n" 1292 " --cryptodev_mask MASK: Hexadecimal bitmask of the crypto\n" 1293 " devices to configure\n" 1294 " --" CMD_LINE_OPT_RX_OFFLOAD 1295 ": bitmask of the RX HW offload capabilities to enable/use\n" 1296 " (DEV_RX_OFFLOAD_*)\n" 1297 " --" CMD_LINE_OPT_TX_OFFLOAD 1298 ": bitmask of the TX HW offload capabilities to enable/use\n" 1299 " (DEV_TX_OFFLOAD_*)\n" 1300 " --" CMD_LINE_OPT_REASSEMBLE " NUM" 1301 ": max number of entries in reassemble(fragment) table\n" 1302 " (zero (default value) disables reassembly)\n" 1303 " --" CMD_LINE_OPT_MTU " MTU" 1304 ": MTU value on all ports (default value: 1500)\n" 1305 " outgoing packets with bigger size will be fragmented\n" 1306 " incoming packets with bigger size will be discarded\n" 1307 "\n", 1308 prgname); 1309 } 1310 1311 static int 1312 parse_mask(const char *str, uint64_t *val) 1313 { 1314 char *end; 1315 unsigned long t; 1316 1317 errno = 0; 1318 t = strtoul(str, &end, 0); 1319 if (errno != 0 || end[0] != 0) 1320 return -EINVAL; 1321 1322 *val = t; 1323 return 0; 1324 } 1325 1326 static int32_t 1327 parse_portmask(const char *portmask) 1328 { 1329 char *end = NULL; 1330 unsigned long pm; 1331 1332 /* parse hexadecimal string */ 1333 pm = strtoul(portmask, &end, 16); 1334 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 1335 return -1; 1336 1337 if ((pm == 0) && errno) 1338 return -1; 1339 1340 return pm; 1341 } 1342 1343 static int32_t 1344 parse_decimal(const char *str) 1345 { 1346 char *end = NULL; 1347 unsigned long num; 1348 1349 num = strtoul(str, &end, 10); 1350 if ((str[0] == '\0') || (end == NULL) || (*end != '\0')) 1351 return -1; 1352 1353 return num; 1354 } 1355 1356 static int32_t 1357 parse_config(const char *q_arg) 1358 { 1359 char s[256]; 1360 const char *p, *p0 = q_arg; 1361 char *end; 1362 enum fieldnames { 1363 FLD_PORT = 0, 1364 FLD_QUEUE, 1365 FLD_LCORE, 1366 _NUM_FLD 1367 }; 1368 unsigned long int_fld[_NUM_FLD]; 1369 char *str_fld[_NUM_FLD]; 1370 int32_t i; 1371 uint32_t size; 1372 1373 nb_lcore_params = 0; 1374 1375 while ((p = strchr(p0, '(')) != NULL) { 1376 ++p; 1377 p0 = strchr(p, ')'); 1378 if (p0 == NULL) 1379 return -1; 1380 1381 size = p0 - p; 1382 if (size >= sizeof(s)) 1383 return -1; 1384 1385 snprintf(s, sizeof(s), "%.*s", size, p); 1386 if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != 1387 _NUM_FLD) 1388 return -1; 1389 for (i = 0; i < _NUM_FLD; i++) { 1390 errno = 0; 1391 int_fld[i] = strtoul(str_fld[i], &end, 0); 1392 if (errno != 0 || end == str_fld[i] || int_fld[i] > 255) 1393 return -1; 1394 } 1395 if (nb_lcore_params >= MAX_LCORE_PARAMS) { 1396 printf("exceeded max number of lcore params: %hu\n", 1397 nb_lcore_params); 1398 return -1; 1399 } 1400 lcore_params_array[nb_lcore_params].port_id = 1401 (uint8_t)int_fld[FLD_PORT]; 1402 lcore_params_array[nb_lcore_params].queue_id = 1403 (uint8_t)int_fld[FLD_QUEUE]; 1404 lcore_params_array[nb_lcore_params].lcore_id = 1405 (uint8_t)int_fld[FLD_LCORE]; 1406 ++nb_lcore_params; 1407 } 1408 lcore_params = lcore_params_array; 1409 return 0; 1410 } 1411 1412 static void 1413 print_app_sa_prm(const struct app_sa_prm *prm) 1414 { 1415 printf("librte_ipsec usage: %s\n", 1416 (prm->enable == 0) ? "disabled" : "enabled"); 1417 1418 if (prm->enable == 0) 1419 return; 1420 1421 printf("replay window size: %u\n", prm->window_size); 1422 printf("ESN: %s\n", (prm->enable_esn == 0) ? "disabled" : "enabled"); 1423 printf("SA flags: %#" PRIx64 "\n", prm->flags); 1424 } 1425 1426 static int32_t 1427 parse_args(int32_t argc, char **argv) 1428 { 1429 int32_t opt, ret; 1430 char **argvopt; 1431 int32_t option_index; 1432 char *prgname = argv[0]; 1433 int32_t f_present = 0; 1434 1435 argvopt = argv; 1436 1437 while ((opt = getopt_long(argc, argvopt, "aelp:Pu:f:j:w:", 1438 lgopts, &option_index)) != EOF) { 1439 1440 switch (opt) { 1441 case 'p': 1442 enabled_port_mask = parse_portmask(optarg); 1443 if (enabled_port_mask == 0) { 1444 printf("invalid portmask\n"); 1445 print_usage(prgname); 1446 return -1; 1447 } 1448 break; 1449 case 'P': 1450 printf("Promiscuous mode selected\n"); 1451 promiscuous_on = 1; 1452 break; 1453 case 'u': 1454 unprotected_port_mask = parse_portmask(optarg); 1455 if (unprotected_port_mask == 0) { 1456 printf("invalid unprotected portmask\n"); 1457 print_usage(prgname); 1458 return -1; 1459 } 1460 break; 1461 case 'f': 1462 if (f_present == 1) { 1463 printf("\"-f\" option present more than " 1464 "once!\n"); 1465 print_usage(prgname); 1466 return -1; 1467 } 1468 if (parse_cfg_file(optarg) < 0) { 1469 printf("parsing file \"%s\" failed\n", 1470 optarg); 1471 print_usage(prgname); 1472 return -1; 1473 } 1474 f_present = 1; 1475 break; 1476 case 'j': 1477 ret = parse_decimal(optarg); 1478 if (ret < RTE_MBUF_DEFAULT_BUF_SIZE || 1479 ret > UINT16_MAX) { 1480 printf("Invalid frame buffer size value: %s\n", 1481 optarg); 1482 print_usage(prgname); 1483 return -1; 1484 } 1485 frame_buf_size = ret; 1486 printf("Custom frame buffer size %u\n", frame_buf_size); 1487 break; 1488 case 'l': 1489 app_sa_prm.enable = 1; 1490 break; 1491 case 'w': 1492 app_sa_prm.enable = 1; 1493 app_sa_prm.window_size = parse_decimal(optarg); 1494 break; 1495 case 'e': 1496 app_sa_prm.enable = 1; 1497 app_sa_prm.enable_esn = 1; 1498 break; 1499 case 'a': 1500 app_sa_prm.enable = 1; 1501 app_sa_prm.flags |= RTE_IPSEC_SAFLAG_SQN_ATOM; 1502 break; 1503 case CMD_LINE_OPT_CONFIG_NUM: 1504 ret = parse_config(optarg); 1505 if (ret) { 1506 printf("Invalid config\n"); 1507 print_usage(prgname); 1508 return -1; 1509 } 1510 break; 1511 case CMD_LINE_OPT_SINGLE_SA_NUM: 1512 ret = parse_decimal(optarg); 1513 if (ret == -1) { 1514 printf("Invalid argument[sa_idx]\n"); 1515 print_usage(prgname); 1516 return -1; 1517 } 1518 1519 /* else */ 1520 single_sa = 1; 1521 single_sa_idx = ret; 1522 printf("Configured with single SA index %u\n", 1523 single_sa_idx); 1524 break; 1525 case CMD_LINE_OPT_CRYPTODEV_MASK_NUM: 1526 ret = parse_portmask(optarg); 1527 if (ret == -1) { 1528 printf("Invalid argument[portmask]\n"); 1529 print_usage(prgname); 1530 return -1; 1531 } 1532 1533 /* else */ 1534 enabled_cryptodev_mask = ret; 1535 break; 1536 case CMD_LINE_OPT_RX_OFFLOAD_NUM: 1537 ret = parse_mask(optarg, &dev_rx_offload); 1538 if (ret != 0) { 1539 printf("Invalid argument for \'%s\': %s\n", 1540 CMD_LINE_OPT_RX_OFFLOAD, optarg); 1541 print_usage(prgname); 1542 return -1; 1543 } 1544 break; 1545 case CMD_LINE_OPT_TX_OFFLOAD_NUM: 1546 ret = parse_mask(optarg, &dev_tx_offload); 1547 if (ret != 0) { 1548 printf("Invalid argument for \'%s\': %s\n", 1549 CMD_LINE_OPT_TX_OFFLOAD, optarg); 1550 print_usage(prgname); 1551 return -1; 1552 } 1553 break; 1554 case CMD_LINE_OPT_REASSEMBLE_NUM: 1555 ret = parse_decimal(optarg); 1556 if (ret < 0) { 1557 printf("Invalid argument for \'%s\': %s\n", 1558 CMD_LINE_OPT_REASSEMBLE, optarg); 1559 print_usage(prgname); 1560 return -1; 1561 } 1562 frag_tbl_sz = ret; 1563 break; 1564 case CMD_LINE_OPT_MTU_NUM: 1565 ret = parse_decimal(optarg); 1566 if (ret < 0 || ret > RTE_IPV4_MAX_PKT_LEN) { 1567 printf("Invalid argument for \'%s\': %s\n", 1568 CMD_LINE_OPT_MTU, optarg); 1569 print_usage(prgname); 1570 return -1; 1571 } 1572 mtu_size = ret; 1573 break; 1574 default: 1575 print_usage(prgname); 1576 return -1; 1577 } 1578 } 1579 1580 if (f_present == 0) { 1581 printf("Mandatory option \"-f\" not present\n"); 1582 return -1; 1583 } 1584 1585 /* check do we need to enable multi-seg support */ 1586 if (multi_seg_required()) { 1587 /* legacy mode doesn't support multi-seg */ 1588 app_sa_prm.enable = 1; 1589 printf("frame buf size: %u, mtu: %u, " 1590 "number of reassemble entries: %u\n" 1591 "multi-segment support is required\n", 1592 frame_buf_size, mtu_size, frag_tbl_sz); 1593 } 1594 1595 print_app_sa_prm(&app_sa_prm); 1596 1597 if (optind >= 0) 1598 argv[optind-1] = prgname; 1599 1600 ret = optind-1; 1601 optind = 1; /* reset getopt lib */ 1602 return ret; 1603 } 1604 1605 static void 1606 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr) 1607 { 1608 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 1609 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 1610 printf("%s%s", name, buf); 1611 } 1612 1613 /* 1614 * Update destination ethaddr for the port. 1615 */ 1616 int 1617 add_dst_ethaddr(uint16_t port, const struct rte_ether_addr *addr) 1618 { 1619 if (port >= RTE_DIM(ethaddr_tbl)) 1620 return -EINVAL; 1621 1622 ethaddr_tbl[port].dst = ETHADDR_TO_UINT64(addr); 1623 return 0; 1624 } 1625 1626 /* Check the link status of all ports in up to 9s, and print them finally */ 1627 static void 1628 check_all_ports_link_status(uint32_t port_mask) 1629 { 1630 #define CHECK_INTERVAL 100 /* 100ms */ 1631 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 1632 uint16_t portid; 1633 uint8_t count, all_ports_up, print_flag = 0; 1634 struct rte_eth_link link; 1635 int ret; 1636 1637 printf("\nChecking link status"); 1638 fflush(stdout); 1639 for (count = 0; count <= MAX_CHECK_TIME; count++) { 1640 all_ports_up = 1; 1641 RTE_ETH_FOREACH_DEV(portid) { 1642 if ((port_mask & (1 << portid)) == 0) 1643 continue; 1644 memset(&link, 0, sizeof(link)); 1645 ret = rte_eth_link_get_nowait(portid, &link); 1646 if (ret < 0) { 1647 all_ports_up = 0; 1648 if (print_flag == 1) 1649 printf("Port %u link get failed: %s\n", 1650 portid, rte_strerror(-ret)); 1651 continue; 1652 } 1653 /* print link status if flag set */ 1654 if (print_flag == 1) { 1655 if (link.link_status) 1656 printf( 1657 "Port%d Link Up - speed %u Mbps -%s\n", 1658 portid, link.link_speed, 1659 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 1660 ("full-duplex") : ("half-duplex\n")); 1661 else 1662 printf("Port %d Link Down\n", portid); 1663 continue; 1664 } 1665 /* clear all_ports_up flag if any link down */ 1666 if (link.link_status == ETH_LINK_DOWN) { 1667 all_ports_up = 0; 1668 break; 1669 } 1670 } 1671 /* after finally printing all link status, get out */ 1672 if (print_flag == 1) 1673 break; 1674 1675 if (all_ports_up == 0) { 1676 printf("."); 1677 fflush(stdout); 1678 rte_delay_ms(CHECK_INTERVAL); 1679 } 1680 1681 /* set the print_flag if all ports up or timeout */ 1682 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 1683 print_flag = 1; 1684 printf("done\n"); 1685 } 1686 } 1687 } 1688 1689 static int32_t 1690 add_mapping(struct rte_hash *map, const char *str, uint16_t cdev_id, 1691 uint16_t qp, struct lcore_params *params, 1692 struct ipsec_ctx *ipsec_ctx, 1693 const struct rte_cryptodev_capabilities *cipher, 1694 const struct rte_cryptodev_capabilities *auth, 1695 const struct rte_cryptodev_capabilities *aead) 1696 { 1697 int32_t ret = 0; 1698 unsigned long i; 1699 struct cdev_key key = { 0 }; 1700 1701 key.lcore_id = params->lcore_id; 1702 if (cipher) 1703 key.cipher_algo = cipher->sym.cipher.algo; 1704 if (auth) 1705 key.auth_algo = auth->sym.auth.algo; 1706 if (aead) 1707 key.aead_algo = aead->sym.aead.algo; 1708 1709 ret = rte_hash_lookup(map, &key); 1710 if (ret != -ENOENT) 1711 return 0; 1712 1713 for (i = 0; i < ipsec_ctx->nb_qps; i++) 1714 if (ipsec_ctx->tbl[i].id == cdev_id) 1715 break; 1716 1717 if (i == ipsec_ctx->nb_qps) { 1718 if (ipsec_ctx->nb_qps == MAX_QP_PER_LCORE) { 1719 printf("Maximum number of crypto devices assigned to " 1720 "a core, increase MAX_QP_PER_LCORE value\n"); 1721 return 0; 1722 } 1723 ipsec_ctx->tbl[i].id = cdev_id; 1724 ipsec_ctx->tbl[i].qp = qp; 1725 ipsec_ctx->nb_qps++; 1726 printf("%s cdev mapping: lcore %u using cdev %u qp %u " 1727 "(cdev_id_qp %lu)\n", str, key.lcore_id, 1728 cdev_id, qp, i); 1729 } 1730 1731 ret = rte_hash_add_key_data(map, &key, (void *)i); 1732 if (ret < 0) { 1733 printf("Faled to insert cdev mapping for (lcore %u, " 1734 "cdev %u, qp %u), errno %d\n", 1735 key.lcore_id, ipsec_ctx->tbl[i].id, 1736 ipsec_ctx->tbl[i].qp, ret); 1737 return 0; 1738 } 1739 1740 return 1; 1741 } 1742 1743 static int32_t 1744 add_cdev_mapping(struct rte_cryptodev_info *dev_info, uint16_t cdev_id, 1745 uint16_t qp, struct lcore_params *params) 1746 { 1747 int32_t ret = 0; 1748 const struct rte_cryptodev_capabilities *i, *j; 1749 struct rte_hash *map; 1750 struct lcore_conf *qconf; 1751 struct ipsec_ctx *ipsec_ctx; 1752 const char *str; 1753 1754 qconf = &lcore_conf[params->lcore_id]; 1755 1756 if ((unprotected_port_mask & (1 << params->port_id)) == 0) { 1757 map = cdev_map_out; 1758 ipsec_ctx = &qconf->outbound; 1759 str = "Outbound"; 1760 } else { 1761 map = cdev_map_in; 1762 ipsec_ctx = &qconf->inbound; 1763 str = "Inbound"; 1764 } 1765 1766 /* Required cryptodevs with operation chainning */ 1767 if (!(dev_info->feature_flags & 1768 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING)) 1769 return ret; 1770 1771 for (i = dev_info->capabilities; 1772 i->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; i++) { 1773 if (i->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC) 1774 continue; 1775 1776 if (i->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AEAD) { 1777 ret |= add_mapping(map, str, cdev_id, qp, params, 1778 ipsec_ctx, NULL, NULL, i); 1779 continue; 1780 } 1781 1782 if (i->sym.xform_type != RTE_CRYPTO_SYM_XFORM_CIPHER) 1783 continue; 1784 1785 for (j = dev_info->capabilities; 1786 j->op != RTE_CRYPTO_OP_TYPE_UNDEFINED; j++) { 1787 if (j->op != RTE_CRYPTO_OP_TYPE_SYMMETRIC) 1788 continue; 1789 1790 if (j->sym.xform_type != RTE_CRYPTO_SYM_XFORM_AUTH) 1791 continue; 1792 1793 ret |= add_mapping(map, str, cdev_id, qp, params, 1794 ipsec_ctx, i, j, NULL); 1795 } 1796 } 1797 1798 return ret; 1799 } 1800 1801 /* Check if the device is enabled by cryptodev_mask */ 1802 static int 1803 check_cryptodev_mask(uint8_t cdev_id) 1804 { 1805 if (enabled_cryptodev_mask & (1 << cdev_id)) 1806 return 0; 1807 1808 return -1; 1809 } 1810 1811 static int32_t 1812 cryptodevs_init(void) 1813 { 1814 struct rte_cryptodev_config dev_conf; 1815 struct rte_cryptodev_qp_conf qp_conf; 1816 uint16_t idx, max_nb_qps, qp, i; 1817 int16_t cdev_id; 1818 struct rte_hash_parameters params = { 0 }; 1819 1820 const uint64_t mseg_flag = multi_seg_required() ? 1821 RTE_CRYPTODEV_FF_IN_PLACE_SGL : 0; 1822 1823 params.entries = CDEV_MAP_ENTRIES; 1824 params.key_len = sizeof(struct cdev_key); 1825 params.hash_func = rte_jhash; 1826 params.hash_func_init_val = 0; 1827 params.socket_id = rte_socket_id(); 1828 1829 params.name = "cdev_map_in"; 1830 cdev_map_in = rte_hash_create(¶ms); 1831 if (cdev_map_in == NULL) 1832 rte_panic("Failed to create cdev_map hash table, errno = %d\n", 1833 rte_errno); 1834 1835 params.name = "cdev_map_out"; 1836 cdev_map_out = rte_hash_create(¶ms); 1837 if (cdev_map_out == NULL) 1838 rte_panic("Failed to create cdev_map hash table, errno = %d\n", 1839 rte_errno); 1840 1841 printf("lcore/cryptodev/qp mappings:\n"); 1842 1843 idx = 0; 1844 for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) { 1845 struct rte_cryptodev_info cdev_info; 1846 1847 if (check_cryptodev_mask((uint8_t)cdev_id)) 1848 continue; 1849 1850 rte_cryptodev_info_get(cdev_id, &cdev_info); 1851 1852 if ((mseg_flag & cdev_info.feature_flags) != mseg_flag) 1853 rte_exit(EXIT_FAILURE, 1854 "Device %hd does not support \'%s\' feature\n", 1855 cdev_id, 1856 rte_cryptodev_get_feature_name(mseg_flag)); 1857 1858 if (nb_lcore_params > cdev_info.max_nb_queue_pairs) 1859 max_nb_qps = cdev_info.max_nb_queue_pairs; 1860 else 1861 max_nb_qps = nb_lcore_params; 1862 1863 qp = 0; 1864 i = 0; 1865 while (qp < max_nb_qps && i < nb_lcore_params) { 1866 if (add_cdev_mapping(&cdev_info, cdev_id, qp, 1867 &lcore_params[idx])) 1868 qp++; 1869 idx++; 1870 idx = idx % nb_lcore_params; 1871 i++; 1872 } 1873 1874 if (qp == 0) 1875 continue; 1876 1877 dev_conf.socket_id = rte_cryptodev_socket_id(cdev_id); 1878 dev_conf.nb_queue_pairs = qp; 1879 dev_conf.ff_disable = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO; 1880 1881 uint32_t dev_max_sess = cdev_info.sym.max_nb_sessions; 1882 if (dev_max_sess != 0 && dev_max_sess < CDEV_MP_NB_OBJS) 1883 rte_exit(EXIT_FAILURE, 1884 "Device does not support at least %u " 1885 "sessions", CDEV_MP_NB_OBJS); 1886 1887 if (rte_cryptodev_configure(cdev_id, &dev_conf)) 1888 rte_panic("Failed to initialize cryptodev %u\n", 1889 cdev_id); 1890 1891 qp_conf.nb_descriptors = CDEV_QUEUE_DESC; 1892 qp_conf.mp_session = 1893 socket_ctx[dev_conf.socket_id].session_pool; 1894 qp_conf.mp_session_private = 1895 socket_ctx[dev_conf.socket_id].session_priv_pool; 1896 for (qp = 0; qp < dev_conf.nb_queue_pairs; qp++) 1897 if (rte_cryptodev_queue_pair_setup(cdev_id, qp, 1898 &qp_conf, dev_conf.socket_id)) 1899 rte_panic("Failed to setup queue %u for " 1900 "cdev_id %u\n", 0, cdev_id); 1901 1902 if (rte_cryptodev_start(cdev_id)) 1903 rte_panic("Failed to start cryptodev %u\n", 1904 cdev_id); 1905 } 1906 1907 printf("\n"); 1908 1909 return 0; 1910 } 1911 1912 static void 1913 port_init(uint16_t portid, uint64_t req_rx_offloads, uint64_t req_tx_offloads) 1914 { 1915 uint32_t frame_size; 1916 struct rte_eth_dev_info dev_info; 1917 struct rte_eth_txconf *txconf; 1918 uint16_t nb_tx_queue, nb_rx_queue; 1919 uint16_t tx_queueid, rx_queueid, queue, lcore_id; 1920 int32_t ret, socket_id; 1921 struct lcore_conf *qconf; 1922 struct rte_ether_addr ethaddr; 1923 struct rte_eth_conf local_port_conf = port_conf; 1924 1925 ret = rte_eth_dev_info_get(portid, &dev_info); 1926 if (ret != 0) 1927 rte_exit(EXIT_FAILURE, 1928 "Error during getting device (port %u) info: %s\n", 1929 portid, strerror(-ret)); 1930 1931 /* limit allowed HW offloafs, as user requested */ 1932 dev_info.rx_offload_capa &= dev_rx_offload; 1933 dev_info.tx_offload_capa &= dev_tx_offload; 1934 1935 printf("Configuring device port %u:\n", portid); 1936 1937 ret = rte_eth_macaddr_get(portid, ðaddr); 1938 if (ret != 0) 1939 rte_exit(EXIT_FAILURE, 1940 "Error getting MAC address (port %u): %s\n", 1941 portid, rte_strerror(-ret)); 1942 1943 ethaddr_tbl[portid].src = ETHADDR_TO_UINT64(ðaddr); 1944 print_ethaddr("Address: ", ðaddr); 1945 printf("\n"); 1946 1947 nb_rx_queue = get_port_nb_rx_queues(portid); 1948 nb_tx_queue = nb_lcores; 1949 1950 if (nb_rx_queue > dev_info.max_rx_queues) 1951 rte_exit(EXIT_FAILURE, "Error: queue %u not available " 1952 "(max rx queue is %u)\n", 1953 nb_rx_queue, dev_info.max_rx_queues); 1954 1955 if (nb_tx_queue > dev_info.max_tx_queues) 1956 rte_exit(EXIT_FAILURE, "Error: queue %u not available " 1957 "(max tx queue is %u)\n", 1958 nb_tx_queue, dev_info.max_tx_queues); 1959 1960 printf("Creating queues: nb_rx_queue=%d nb_tx_queue=%u...\n", 1961 nb_rx_queue, nb_tx_queue); 1962 1963 frame_size = MTU_TO_FRAMELEN(mtu_size); 1964 if (frame_size > local_port_conf.rxmode.max_rx_pkt_len) 1965 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 1966 local_port_conf.rxmode.max_rx_pkt_len = frame_size; 1967 1968 if (multi_seg_required()) { 1969 local_port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SCATTER; 1970 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MULTI_SEGS; 1971 } 1972 1973 local_port_conf.rxmode.offloads |= req_rx_offloads; 1974 local_port_conf.txmode.offloads |= req_tx_offloads; 1975 1976 /* Check that all required capabilities are supported */ 1977 if ((local_port_conf.rxmode.offloads & dev_info.rx_offload_capa) != 1978 local_port_conf.rxmode.offloads) 1979 rte_exit(EXIT_FAILURE, 1980 "Error: port %u required RX offloads: 0x%" PRIx64 1981 ", avaialbe RX offloads: 0x%" PRIx64 "\n", 1982 portid, local_port_conf.rxmode.offloads, 1983 dev_info.rx_offload_capa); 1984 1985 if ((local_port_conf.txmode.offloads & dev_info.tx_offload_capa) != 1986 local_port_conf.txmode.offloads) 1987 rte_exit(EXIT_FAILURE, 1988 "Error: port %u required TX offloads: 0x%" PRIx64 1989 ", avaialbe TX offloads: 0x%" PRIx64 "\n", 1990 portid, local_port_conf.txmode.offloads, 1991 dev_info.tx_offload_capa); 1992 1993 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 1994 local_port_conf.txmode.offloads |= 1995 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 1996 1997 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) 1998 local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_IPV4_CKSUM; 1999 2000 printf("port %u configurng rx_offloads=0x%" PRIx64 2001 ", tx_offloads=0x%" PRIx64 "\n", 2002 portid, local_port_conf.rxmode.offloads, 2003 local_port_conf.txmode.offloads); 2004 2005 local_port_conf.rx_adv_conf.rss_conf.rss_hf &= 2006 dev_info.flow_type_rss_offloads; 2007 if (local_port_conf.rx_adv_conf.rss_conf.rss_hf != 2008 port_conf.rx_adv_conf.rss_conf.rss_hf) { 2009 printf("Port %u modified RSS hash function based on hardware support," 2010 "requested:%#"PRIx64" configured:%#"PRIx64"\n", 2011 portid, 2012 port_conf.rx_adv_conf.rss_conf.rss_hf, 2013 local_port_conf.rx_adv_conf.rss_conf.rss_hf); 2014 } 2015 2016 ret = rte_eth_dev_configure(portid, nb_rx_queue, nb_tx_queue, 2017 &local_port_conf); 2018 if (ret < 0) 2019 rte_exit(EXIT_FAILURE, "Cannot configure device: " 2020 "err=%d, port=%d\n", ret, portid); 2021 2022 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd); 2023 if (ret < 0) 2024 rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: " 2025 "err=%d, port=%d\n", ret, portid); 2026 2027 /* init one TX queue per lcore */ 2028 tx_queueid = 0; 2029 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 2030 if (rte_lcore_is_enabled(lcore_id) == 0) 2031 continue; 2032 2033 if (numa_on) 2034 socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id); 2035 else 2036 socket_id = 0; 2037 2038 /* init TX queue */ 2039 printf("Setup txq=%u,%d,%d\n", lcore_id, tx_queueid, socket_id); 2040 2041 txconf = &dev_info.default_txconf; 2042 txconf->offloads = local_port_conf.txmode.offloads; 2043 2044 ret = rte_eth_tx_queue_setup(portid, tx_queueid, nb_txd, 2045 socket_id, txconf); 2046 if (ret < 0) 2047 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: " 2048 "err=%d, port=%d\n", ret, portid); 2049 2050 qconf = &lcore_conf[lcore_id]; 2051 qconf->tx_queue_id[portid] = tx_queueid; 2052 2053 /* Pre-populate pkt offloads based on capabilities */ 2054 qconf->outbound.ipv4_offloads = PKT_TX_IPV4; 2055 qconf->outbound.ipv6_offloads = PKT_TX_IPV6; 2056 if (local_port_conf.txmode.offloads & DEV_TX_OFFLOAD_IPV4_CKSUM) 2057 qconf->outbound.ipv4_offloads |= PKT_TX_IP_CKSUM; 2058 2059 tx_queueid++; 2060 2061 /* init RX queues */ 2062 for (queue = 0; queue < qconf->nb_rx_queue; ++queue) { 2063 struct rte_eth_rxconf rxq_conf; 2064 2065 if (portid != qconf->rx_queue_list[queue].port_id) 2066 continue; 2067 2068 rx_queueid = qconf->rx_queue_list[queue].queue_id; 2069 2070 printf("Setup rxq=%d,%d,%d\n", portid, rx_queueid, 2071 socket_id); 2072 2073 rxq_conf = dev_info.default_rxconf; 2074 rxq_conf.offloads = local_port_conf.rxmode.offloads; 2075 ret = rte_eth_rx_queue_setup(portid, rx_queueid, 2076 nb_rxd, socket_id, &rxq_conf, 2077 socket_ctx[socket_id].mbuf_pool); 2078 if (ret < 0) 2079 rte_exit(EXIT_FAILURE, 2080 "rte_eth_rx_queue_setup: err=%d, " 2081 "port=%d\n", ret, portid); 2082 } 2083 } 2084 printf("\n"); 2085 } 2086 2087 static size_t 2088 max_session_size(void) 2089 { 2090 size_t max_sz, sz; 2091 void *sec_ctx; 2092 int16_t cdev_id, port_id, n; 2093 2094 max_sz = 0; 2095 n = rte_cryptodev_count(); 2096 for (cdev_id = 0; cdev_id != n; cdev_id++) { 2097 sz = rte_cryptodev_sym_get_private_session_size(cdev_id); 2098 if (sz > max_sz) 2099 max_sz = sz; 2100 /* 2101 * If crypto device is security capable, need to check the 2102 * size of security session as well. 2103 */ 2104 2105 /* Get security context of the crypto device */ 2106 sec_ctx = rte_cryptodev_get_sec_ctx(cdev_id); 2107 if (sec_ctx == NULL) 2108 continue; 2109 2110 /* Get size of security session */ 2111 sz = rte_security_session_get_size(sec_ctx); 2112 if (sz > max_sz) 2113 max_sz = sz; 2114 } 2115 2116 RTE_ETH_FOREACH_DEV(port_id) { 2117 if ((enabled_port_mask & (1 << port_id)) == 0) 2118 continue; 2119 2120 sec_ctx = rte_eth_dev_get_sec_ctx(port_id); 2121 if (sec_ctx == NULL) 2122 continue; 2123 2124 sz = rte_security_session_get_size(sec_ctx); 2125 if (sz > max_sz) 2126 max_sz = sz; 2127 } 2128 2129 return max_sz; 2130 } 2131 2132 static void 2133 session_pool_init(struct socket_ctx *ctx, int32_t socket_id, size_t sess_sz) 2134 { 2135 char mp_name[RTE_MEMPOOL_NAMESIZE]; 2136 struct rte_mempool *sess_mp; 2137 2138 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, 2139 "sess_mp_%u", socket_id); 2140 sess_mp = rte_cryptodev_sym_session_pool_create( 2141 mp_name, CDEV_MP_NB_OBJS, 2142 sess_sz, CDEV_MP_CACHE_SZ, 0, 2143 socket_id); 2144 ctx->session_pool = sess_mp; 2145 2146 if (ctx->session_pool == NULL) 2147 rte_exit(EXIT_FAILURE, 2148 "Cannot init session pool on socket %d\n", socket_id); 2149 else 2150 printf("Allocated session pool on socket %d\n", socket_id); 2151 } 2152 2153 static void 2154 session_priv_pool_init(struct socket_ctx *ctx, int32_t socket_id, 2155 size_t sess_sz) 2156 { 2157 char mp_name[RTE_MEMPOOL_NAMESIZE]; 2158 struct rte_mempool *sess_mp; 2159 2160 snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, 2161 "sess_mp_priv_%u", socket_id); 2162 sess_mp = rte_mempool_create(mp_name, 2163 CDEV_MP_NB_OBJS, 2164 sess_sz, 2165 CDEV_MP_CACHE_SZ, 2166 0, NULL, NULL, NULL, 2167 NULL, socket_id, 2168 0); 2169 ctx->session_priv_pool = sess_mp; 2170 2171 if (ctx->session_priv_pool == NULL) 2172 rte_exit(EXIT_FAILURE, 2173 "Cannot init session priv pool on socket %d\n", 2174 socket_id); 2175 else 2176 printf("Allocated session priv pool on socket %d\n", 2177 socket_id); 2178 } 2179 2180 static void 2181 pool_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t nb_mbuf) 2182 { 2183 char s[64]; 2184 int32_t ms; 2185 2186 snprintf(s, sizeof(s), "mbuf_pool_%d", socket_id); 2187 ctx->mbuf_pool = rte_pktmbuf_pool_create(s, nb_mbuf, 2188 MEMPOOL_CACHE_SIZE, ipsec_metadata_size(), 2189 frame_buf_size, socket_id); 2190 2191 /* 2192 * if multi-segment support is enabled, then create a pool 2193 * for indirect mbufs. 2194 */ 2195 ms = multi_seg_required(); 2196 if (ms != 0) { 2197 snprintf(s, sizeof(s), "mbuf_pool_indir_%d", socket_id); 2198 ctx->mbuf_pool_indir = rte_pktmbuf_pool_create(s, nb_mbuf, 2199 MEMPOOL_CACHE_SIZE, 0, 0, socket_id); 2200 } 2201 2202 if (ctx->mbuf_pool == NULL || (ms != 0 && ctx->mbuf_pool_indir == NULL)) 2203 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool on socket %d\n", 2204 socket_id); 2205 else 2206 printf("Allocated mbuf pool on socket %d\n", socket_id); 2207 } 2208 2209 static inline int 2210 inline_ipsec_event_esn_overflow(struct rte_security_ctx *ctx, uint64_t md) 2211 { 2212 struct ipsec_sa *sa; 2213 2214 /* For inline protocol processing, the metadata in the event will 2215 * uniquely identify the security session which raised the event. 2216 * Application would then need the userdata it had registered with the 2217 * security session to process the event. 2218 */ 2219 2220 sa = (struct ipsec_sa *)rte_security_get_userdata(ctx, md); 2221 2222 if (sa == NULL) { 2223 /* userdata could not be retrieved */ 2224 return -1; 2225 } 2226 2227 /* Sequence number over flow. SA need to be re-established */ 2228 RTE_SET_USED(sa); 2229 return 0; 2230 } 2231 2232 static int 2233 inline_ipsec_event_callback(uint16_t port_id, enum rte_eth_event_type type, 2234 void *param, void *ret_param) 2235 { 2236 uint64_t md; 2237 struct rte_eth_event_ipsec_desc *event_desc = NULL; 2238 struct rte_security_ctx *ctx = (struct rte_security_ctx *) 2239 rte_eth_dev_get_sec_ctx(port_id); 2240 2241 RTE_SET_USED(param); 2242 2243 if (type != RTE_ETH_EVENT_IPSEC) 2244 return -1; 2245 2246 event_desc = ret_param; 2247 if (event_desc == NULL) { 2248 printf("Event descriptor not set\n"); 2249 return -1; 2250 } 2251 2252 md = event_desc->metadata; 2253 2254 if (event_desc->subtype == RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW) 2255 return inline_ipsec_event_esn_overflow(ctx, md); 2256 else if (event_desc->subtype >= RTE_ETH_EVENT_IPSEC_MAX) { 2257 printf("Invalid IPsec event reported\n"); 2258 return -1; 2259 } 2260 2261 return -1; 2262 } 2263 2264 static uint16_t 2265 rx_callback(__rte_unused uint16_t port, __rte_unused uint16_t queue, 2266 struct rte_mbuf *pkt[], uint16_t nb_pkts, 2267 __rte_unused uint16_t max_pkts, void *user_param) 2268 { 2269 uint64_t tm; 2270 uint32_t i, k; 2271 struct lcore_conf *lc; 2272 struct rte_mbuf *mb; 2273 struct rte_ether_hdr *eth; 2274 2275 lc = user_param; 2276 k = 0; 2277 tm = 0; 2278 2279 for (i = 0; i != nb_pkts; i++) { 2280 2281 mb = pkt[i]; 2282 eth = rte_pktmbuf_mtod(mb, struct rte_ether_hdr *); 2283 if (eth->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) { 2284 2285 struct rte_ipv4_hdr *iph; 2286 2287 iph = (struct rte_ipv4_hdr *)(eth + 1); 2288 if (rte_ipv4_frag_pkt_is_fragmented(iph)) { 2289 2290 mb->l2_len = sizeof(*eth); 2291 mb->l3_len = sizeof(*iph); 2292 tm = (tm != 0) ? tm : rte_rdtsc(); 2293 mb = rte_ipv4_frag_reassemble_packet( 2294 lc->frag.tbl, &lc->frag.dr, 2295 mb, tm, iph); 2296 2297 if (mb != NULL) { 2298 /* fix ip cksum after reassemble. */ 2299 iph = rte_pktmbuf_mtod_offset(mb, 2300 struct rte_ipv4_hdr *, 2301 mb->l2_len); 2302 iph->hdr_checksum = 0; 2303 iph->hdr_checksum = rte_ipv4_cksum(iph); 2304 } 2305 } 2306 } else if (eth->ether_type == 2307 rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) { 2308 2309 struct rte_ipv6_hdr *iph; 2310 struct ipv6_extension_fragment *fh; 2311 2312 iph = (struct rte_ipv6_hdr *)(eth + 1); 2313 fh = rte_ipv6_frag_get_ipv6_fragment_header(iph); 2314 if (fh != NULL) { 2315 mb->l2_len = sizeof(*eth); 2316 mb->l3_len = (uintptr_t)fh - (uintptr_t)iph + 2317 sizeof(*fh); 2318 tm = (tm != 0) ? tm : rte_rdtsc(); 2319 mb = rte_ipv6_frag_reassemble_packet( 2320 lc->frag.tbl, &lc->frag.dr, 2321 mb, tm, iph, fh); 2322 if (mb != NULL) 2323 /* fix l3_len after reassemble. */ 2324 mb->l3_len = mb->l3_len - sizeof(*fh); 2325 } 2326 } 2327 2328 pkt[k] = mb; 2329 k += (mb != NULL); 2330 } 2331 2332 /* some fragments were encountered, drain death row */ 2333 if (tm != 0) 2334 rte_ip_frag_free_death_row(&lc->frag.dr, 0); 2335 2336 return k; 2337 } 2338 2339 2340 static int 2341 reassemble_lcore_init(struct lcore_conf *lc, uint32_t cid) 2342 { 2343 int32_t sid; 2344 uint32_t i; 2345 uint64_t frag_cycles; 2346 const struct lcore_rx_queue *rxq; 2347 const struct rte_eth_rxtx_callback *cb; 2348 2349 /* create fragment table */ 2350 sid = rte_lcore_to_socket_id(cid); 2351 frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / 2352 MS_PER_S * FRAG_TTL_MS; 2353 2354 lc->frag.tbl = rte_ip_frag_table_create(frag_tbl_sz, 2355 FRAG_TBL_BUCKET_ENTRIES, frag_tbl_sz, frag_cycles, sid); 2356 if (lc->frag.tbl == NULL) { 2357 printf("%s(%u): failed to create fragment table of size: %u, " 2358 "error code: %d\n", 2359 __func__, cid, frag_tbl_sz, rte_errno); 2360 return -ENOMEM; 2361 } 2362 2363 /* setup reassemble RX callbacks for all queues */ 2364 for (i = 0; i != lc->nb_rx_queue; i++) { 2365 2366 rxq = lc->rx_queue_list + i; 2367 cb = rte_eth_add_rx_callback(rxq->port_id, rxq->queue_id, 2368 rx_callback, lc); 2369 if (cb == NULL) { 2370 printf("%s(%u): failed to install RX callback for " 2371 "portid=%u, queueid=%u, error code: %d\n", 2372 __func__, cid, 2373 rxq->port_id, rxq->queue_id, rte_errno); 2374 return -ENOMEM; 2375 } 2376 } 2377 2378 return 0; 2379 } 2380 2381 static int 2382 reassemble_init(void) 2383 { 2384 int32_t rc; 2385 uint32_t i, lc; 2386 2387 rc = 0; 2388 for (i = 0; i != nb_lcore_params; i++) { 2389 lc = lcore_params[i].lcore_id; 2390 rc = reassemble_lcore_init(lcore_conf + lc, lc); 2391 if (rc != 0) 2392 break; 2393 } 2394 2395 return rc; 2396 } 2397 2398 int32_t 2399 main(int32_t argc, char **argv) 2400 { 2401 int32_t ret; 2402 uint32_t lcore_id; 2403 uint32_t i; 2404 uint8_t socket_id; 2405 uint16_t portid; 2406 uint64_t req_rx_offloads, req_tx_offloads; 2407 size_t sess_sz; 2408 2409 /* init EAL */ 2410 ret = rte_eal_init(argc, argv); 2411 if (ret < 0) 2412 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 2413 argc -= ret; 2414 argv += ret; 2415 2416 /* parse application arguments (after the EAL ones) */ 2417 ret = parse_args(argc, argv); 2418 if (ret < 0) 2419 rte_exit(EXIT_FAILURE, "Invalid parameters\n"); 2420 2421 if ((unprotected_port_mask & enabled_port_mask) != 2422 unprotected_port_mask) 2423 rte_exit(EXIT_FAILURE, "Invalid unprotected portmask 0x%x\n", 2424 unprotected_port_mask); 2425 2426 if (check_params() < 0) 2427 rte_exit(EXIT_FAILURE, "check_params failed\n"); 2428 2429 ret = init_lcore_rx_queues(); 2430 if (ret < 0) 2431 rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n"); 2432 2433 nb_lcores = rte_lcore_count(); 2434 2435 sess_sz = max_session_size(); 2436 2437 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 2438 if (rte_lcore_is_enabled(lcore_id) == 0) 2439 continue; 2440 2441 if (numa_on) 2442 socket_id = (uint8_t)rte_lcore_to_socket_id(lcore_id); 2443 else 2444 socket_id = 0; 2445 2446 /* mbuf_pool is initialised by the pool_init() function*/ 2447 if (socket_ctx[socket_id].mbuf_pool) 2448 continue; 2449 2450 pool_init(&socket_ctx[socket_id], socket_id, NB_MBUF); 2451 session_pool_init(&socket_ctx[socket_id], socket_id, sess_sz); 2452 session_priv_pool_init(&socket_ctx[socket_id], socket_id, 2453 sess_sz); 2454 } 2455 2456 RTE_ETH_FOREACH_DEV(portid) { 2457 if ((enabled_port_mask & (1 << portid)) == 0) 2458 continue; 2459 2460 sa_check_offloads(portid, &req_rx_offloads, &req_tx_offloads); 2461 port_init(portid, req_rx_offloads, req_tx_offloads); 2462 } 2463 2464 cryptodevs_init(); 2465 2466 /* start ports */ 2467 RTE_ETH_FOREACH_DEV(portid) { 2468 if ((enabled_port_mask & (1 << portid)) == 0) 2469 continue; 2470 2471 /* 2472 * Start device 2473 * note: device must be started before a flow rule 2474 * can be installed. 2475 */ 2476 ret = rte_eth_dev_start(portid); 2477 if (ret < 0) 2478 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: " 2479 "err=%d, port=%d\n", ret, portid); 2480 /* 2481 * If enabled, put device in promiscuous mode. 2482 * This allows IO forwarding mode to forward packets 2483 * to itself through 2 cross-connected ports of the 2484 * target machine. 2485 */ 2486 if (promiscuous_on) { 2487 ret = rte_eth_promiscuous_enable(portid); 2488 if (ret != 0) 2489 rte_exit(EXIT_FAILURE, 2490 "rte_eth_promiscuous_enable: err=%s, port=%d\n", 2491 rte_strerror(-ret), portid); 2492 } 2493 2494 rte_eth_dev_callback_register(portid, 2495 RTE_ETH_EVENT_IPSEC, inline_ipsec_event_callback, NULL); 2496 } 2497 2498 /* fragment reassemble is enabled */ 2499 if (frag_tbl_sz != 0) { 2500 ret = reassemble_init(); 2501 if (ret != 0) 2502 rte_exit(EXIT_FAILURE, "failed at reassemble init"); 2503 } 2504 2505 /* Replicate each context per socket */ 2506 for (i = 0; i < NB_SOCKETS && i < rte_socket_count(); i++) { 2507 socket_id = rte_socket_id_by_idx(i); 2508 if ((socket_ctx[socket_id].mbuf_pool != NULL) && 2509 (socket_ctx[socket_id].sa_in == NULL) && 2510 (socket_ctx[socket_id].sa_out == NULL)) { 2511 sa_init(&socket_ctx[socket_id], socket_id); 2512 sp4_init(&socket_ctx[socket_id], socket_id); 2513 sp6_init(&socket_ctx[socket_id], socket_id); 2514 rt_init(&socket_ctx[socket_id], socket_id); 2515 } 2516 } 2517 2518 check_all_ports_link_status(enabled_port_mask); 2519 2520 /* launch per-lcore init on every lcore */ 2521 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 2522 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 2523 if (rte_eal_wait_lcore(lcore_id) < 0) 2524 return -1; 2525 } 2526 2527 return 0; 2528 } 2529