1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <stdint.h> 37 #include <inttypes.h> 38 #include <sys/types.h> 39 #include <string.h> 40 #include <sys/queue.h> 41 #include <stdarg.h> 42 #include <errno.h> 43 #include <getopt.h> 44 #include <signal.h> 45 #include <sys/param.h> 46 47 #include <rte_common.h> 48 #include <rte_byteorder.h> 49 #include <rte_log.h> 50 #include <rte_memory.h> 51 #include <rte_memcpy.h> 52 #include <rte_memzone.h> 53 #include <rte_tailq.h> 54 #include <rte_eal.h> 55 #include <rte_per_lcore.h> 56 #include <rte_launch.h> 57 #include <rte_atomic.h> 58 #include <rte_cycles.h> 59 #include <rte_prefetch.h> 60 #include <rte_lcore.h> 61 #include <rte_per_lcore.h> 62 #include <rte_branch_prediction.h> 63 #include <rte_interrupts.h> 64 #include <rte_pci.h> 65 #include <rte_random.h> 66 #include <rte_debug.h> 67 #include <rte_ether.h> 68 #include <rte_ethdev.h> 69 #include <rte_ring.h> 70 #include <rte_mempool.h> 71 #include <rte_mbuf.h> 72 #include <rte_malloc.h> 73 #include <rte_ip.h> 74 #include <rte_tcp.h> 75 #include <rte_udp.h> 76 #include <rte_string_fns.h> 77 #include <rte_lpm.h> 78 #include <rte_lpm6.h> 79 80 #include <rte_ip_frag.h> 81 82 #include "main.h" 83 84 #define MAX_PKT_BURST 32 85 86 87 #define RTE_LOGTYPE_IP_RSMBL RTE_LOGTYPE_USER1 88 89 #define MAX_JUMBO_PKT_LEN 9600 90 91 #define BUF_SIZE 2048 92 #define MBUF_SIZE \ 93 (BUF_SIZE + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM) 94 95 #define NB_MBUF 8192 96 97 /* allow max jumbo frame 9.5 KB */ 98 #define JUMBO_FRAME_MAX_SIZE 0x2600 99 100 #define MAX_FLOW_NUM UINT16_MAX 101 #define MIN_FLOW_NUM 1 102 #define DEF_FLOW_NUM 0x1000 103 104 /* TTL numbers are in ms. */ 105 #define MAX_FLOW_TTL (3600 * MS_PER_S) 106 #define MIN_FLOW_TTL 1 107 #define DEF_FLOW_TTL MS_PER_S 108 109 #define MAX_FRAG_NUM RTE_LIBRTE_IP_FRAG_MAX_FRAG 110 111 /* Should be power of two. */ 112 #define IP_FRAG_TBL_BUCKET_ENTRIES 16 113 114 static uint32_t max_flow_num = DEF_FLOW_NUM; 115 static uint32_t max_flow_ttl = DEF_FLOW_TTL; 116 117 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 118 119 #define NB_SOCKETS 8 120 121 /* Configure how many packets ahead to prefetch, when reading packets */ 122 #define PREFETCH_OFFSET 3 123 124 /* 125 * Configurable number of RX/TX ring descriptors 126 */ 127 #define RTE_TEST_RX_DESC_DEFAULT 128 128 #define RTE_TEST_TX_DESC_DEFAULT 512 129 130 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 131 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 132 133 /* ethernet addresses of ports */ 134 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 135 136 #ifndef IPv4_BYTES 137 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 138 #define IPv4_BYTES(addr) \ 139 (uint8_t) (((addr) >> 24) & 0xFF),\ 140 (uint8_t) (((addr) >> 16) & 0xFF),\ 141 (uint8_t) (((addr) >> 8) & 0xFF),\ 142 (uint8_t) ((addr) & 0xFF) 143 #endif 144 145 #ifndef IPv6_BYTES 146 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 147 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 148 #define IPv6_BYTES(addr) \ 149 addr[0], addr[1], addr[2], addr[3], \ 150 addr[4], addr[5], addr[6], addr[7], \ 151 addr[8], addr[9], addr[10], addr[11],\ 152 addr[12], addr[13],addr[14], addr[15] 153 #endif 154 155 #define IPV6_ADDR_LEN 16 156 157 /* mask of enabled ports */ 158 static uint32_t enabled_port_mask = 0; 159 160 static int rx_queue_per_lcore = 1; 161 162 struct mbuf_table { 163 uint32_t len; 164 uint32_t head; 165 uint32_t tail; 166 struct rte_mbuf *m_table[0]; 167 }; 168 169 struct rx_queue { 170 struct rte_ip_frag_tbl *frag_tbl; 171 struct rte_mempool *pool; 172 struct rte_lpm *lpm; 173 struct rte_lpm6 *lpm6; 174 uint8_t portid; 175 }; 176 177 struct tx_lcore_stat { 178 uint64_t call; 179 uint64_t drop; 180 uint64_t queue; 181 uint64_t send; 182 }; 183 184 #define MAX_RX_QUEUE_PER_LCORE 16 185 #define MAX_TX_QUEUE_PER_PORT 16 186 #define MAX_RX_QUEUE_PER_PORT 128 187 188 struct lcore_queue_conf { 189 uint16_t n_rx_queue; 190 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 191 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 192 struct rte_ip_frag_death_row death_row; 193 struct mbuf_table *tx_mbufs[RTE_MAX_ETHPORTS]; 194 struct tx_lcore_stat tx_stat; 195 } __rte_cache_aligned; 196 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 197 198 static struct rte_eth_conf port_conf = { 199 .rxmode = { 200 .mq_mode = ETH_MQ_RX_RSS, 201 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 202 .split_hdr_size = 0, 203 .header_split = 0, /**< Header Split disabled */ 204 .hw_ip_checksum = 1, /**< IP checksum offload enabled */ 205 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 206 .jumbo_frame = 1, /**< Jumbo Frame Support disabled */ 207 .hw_strip_crc = 0, /**< CRC stripped by hardware */ 208 }, 209 .rx_adv_conf = { 210 .rss_conf = { 211 .rss_key = NULL, 212 .rss_hf = ETH_RSS_IP, 213 }, 214 }, 215 .txmode = { 216 .mq_mode = ETH_MQ_TX_NONE, 217 }, 218 }; 219 220 /* 221 * IPv4 forwarding table 222 */ 223 struct l3fwd_ipv4_route { 224 uint32_t ip; 225 uint8_t depth; 226 uint8_t if_out; 227 }; 228 229 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 230 {IPv4(100,10,0,0), 16, 0}, 231 {IPv4(100,20,0,0), 16, 1}, 232 {IPv4(100,30,0,0), 16, 2}, 233 {IPv4(100,40,0,0), 16, 3}, 234 {IPv4(100,50,0,0), 16, 4}, 235 {IPv4(100,60,0,0), 16, 5}, 236 {IPv4(100,70,0,0), 16, 6}, 237 {IPv4(100,80,0,0), 16, 7}, 238 }; 239 240 /* 241 * IPv6 forwarding table 242 */ 243 244 struct l3fwd_ipv6_route { 245 uint8_t ip[IPV6_ADDR_LEN]; 246 uint8_t depth; 247 uint8_t if_out; 248 }; 249 250 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 251 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 252 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 253 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 254 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 255 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 256 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 257 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 258 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 259 }; 260 261 #define LPM_MAX_RULES 1024 262 #define LPM6_MAX_RULES 1024 263 #define LPM6_NUMBER_TBL8S (1 << 16) 264 265 struct rte_lpm6_config lpm6_config = { 266 .max_rules = LPM6_MAX_RULES, 267 .number_tbl8s = LPM6_NUMBER_TBL8S, 268 .flags = 0 269 }; 270 271 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 272 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 273 274 #ifdef RTE_LIBRTE_IP_FRAG_TBL_STAT 275 #define TX_LCORE_STAT_UPDATE(s, f, v) ((s)->f += (v)) 276 #else 277 #define TX_LCORE_STAT_UPDATE(s, f, v) do {} while (0) 278 #endif /* RTE_LIBRTE_IP_FRAG_TBL_STAT */ 279 280 /* 281 * If number of queued packets reached given threahold, then 282 * send burst of packets on an output interface. 283 */ 284 static inline uint32_t 285 send_burst(struct lcore_queue_conf *qconf, uint32_t thresh, uint8_t port) 286 { 287 uint32_t fill, len, k, n; 288 struct mbuf_table *txmb; 289 290 txmb = qconf->tx_mbufs[port]; 291 len = txmb->len; 292 293 if ((int32_t)(fill = txmb->head - txmb->tail) < 0) 294 fill += len; 295 296 if (fill >= thresh) { 297 n = RTE_MIN(len - txmb->tail, fill); 298 299 k = rte_eth_tx_burst(port, qconf->tx_queue_id[port], 300 txmb->m_table + txmb->tail, (uint16_t)n); 301 302 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1); 303 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k); 304 305 fill -= k; 306 if ((txmb->tail += k) == len) 307 txmb->tail = 0; 308 } 309 310 return (fill); 311 } 312 313 /* Enqueue a single packet, and send burst if queue is filled */ 314 static inline int 315 send_single_packet(struct rte_mbuf *m, uint8_t port) 316 { 317 uint32_t fill, lcore_id, len; 318 struct lcore_queue_conf *qconf; 319 struct mbuf_table *txmb; 320 321 lcore_id = rte_lcore_id(); 322 qconf = &lcore_queue_conf[lcore_id]; 323 324 txmb = qconf->tx_mbufs[port]; 325 len = txmb->len; 326 327 fill = send_burst(qconf, MAX_PKT_BURST, port); 328 329 if (fill == len - 1) { 330 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1); 331 rte_pktmbuf_free(txmb->m_table[txmb->tail]); 332 if (++txmb->tail == len) 333 txmb->tail = 0; 334 } 335 336 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1); 337 txmb->m_table[txmb->head] = m; 338 if(++txmb->head == len) 339 txmb->head = 0; 340 341 return (0); 342 } 343 344 static inline void 345 reassemble(struct rte_mbuf *m, uint8_t portid, uint32_t queue, 346 struct lcore_queue_conf *qconf, uint64_t tms) 347 { 348 struct ether_hdr *eth_hdr; 349 struct rte_ip_frag_tbl *tbl; 350 struct rte_ip_frag_death_row *dr; 351 struct rx_queue *rxq; 352 void *d_addr_bytes; 353 uint8_t next_hop, dst_port; 354 355 rxq = &qconf->rx_queue_list[queue]; 356 357 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 358 359 dst_port = portid; 360 361 /* if packet is IPv4 */ 362 if (m->ol_flags & (PKT_RX_IPV4_HDR)) { 363 struct ipv4_hdr *ip_hdr; 364 uint32_t ip_dst; 365 366 ip_hdr = (struct ipv4_hdr *)(eth_hdr + 1); 367 368 /* if it is a fragmented packet, then try to reassemble. */ 369 if (rte_ipv4_frag_pkt_is_fragmented(ip_hdr)) { 370 struct rte_mbuf *mo; 371 372 tbl = rxq->frag_tbl; 373 dr = &qconf->death_row; 374 375 /* prepare mbuf: setup l2_len/l3_len. */ 376 m->l2_len = sizeof(*eth_hdr); 377 m->l3_len = sizeof(*ip_hdr); 378 379 /* process this fragment. */ 380 mo = rte_ipv4_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr); 381 if (mo == NULL) 382 /* no packet to send out. */ 383 return; 384 385 /* we have our packet reassembled. */ 386 if (mo != m) { 387 m = mo; 388 eth_hdr = rte_pktmbuf_mtod(m, 389 struct ether_hdr *); 390 ip_hdr = (struct ipv4_hdr *)(eth_hdr + 1); 391 } 392 } 393 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 394 395 /* Find destination port */ 396 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 397 (enabled_port_mask & 1 << next_hop) != 0) { 398 dst_port = next_hop; 399 } 400 401 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 402 } 403 /* if packet is IPv6 */ 404 else if (m->ol_flags & (PKT_RX_IPV6_HDR | PKT_RX_IPV6_HDR_EXT)) { 405 struct ipv6_extension_fragment *frag_hdr; 406 struct ipv6_hdr *ip_hdr; 407 408 ip_hdr = (struct ipv6_hdr *)(eth_hdr + 1); 409 410 frag_hdr = rte_ipv6_frag_get_ipv6_fragment_header(ip_hdr); 411 412 if (frag_hdr != NULL) { 413 struct rte_mbuf *mo; 414 415 tbl = rxq->frag_tbl; 416 dr = &qconf->death_row; 417 418 /* prepare mbuf: setup l2_len/l3_len. */ 419 m->l2_len = sizeof(*eth_hdr); 420 m->l3_len = sizeof(*ip_hdr) + sizeof(*frag_hdr); 421 422 mo = rte_ipv6_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr, frag_hdr); 423 if (mo == NULL) 424 return; 425 426 if (mo != m) { 427 m = mo; 428 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 429 ip_hdr = (struct ipv6_hdr *)(eth_hdr + 1); 430 } 431 } 432 433 /* Find destination port */ 434 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, &next_hop) == 0 && 435 (enabled_port_mask & 1 << next_hop) != 0) { 436 dst_port = next_hop; 437 } 438 439 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6); 440 } 441 /* if packet wasn't IPv4 or IPv6, it's forwarded to the port it came from */ 442 443 /* 02:00:00:00:00:xx */ 444 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 445 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40); 446 447 /* src addr */ 448 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 449 450 send_single_packet(m, dst_port); 451 } 452 453 /* main processing loop */ 454 static int 455 main_loop(__attribute__((unused)) void *dummy) 456 { 457 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 458 unsigned lcore_id; 459 uint64_t diff_tsc, cur_tsc, prev_tsc; 460 int i, j, nb_rx; 461 uint8_t portid; 462 struct lcore_queue_conf *qconf; 463 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 464 465 prev_tsc = 0; 466 467 lcore_id = rte_lcore_id(); 468 qconf = &lcore_queue_conf[lcore_id]; 469 470 if (qconf->n_rx_queue == 0) { 471 RTE_LOG(INFO, IP_RSMBL, "lcore %u has nothing to do\n", lcore_id); 472 return 0; 473 } 474 475 RTE_LOG(INFO, IP_RSMBL, "entering main loop on lcore %u\n", lcore_id); 476 477 for (i = 0; i < qconf->n_rx_queue; i++) { 478 479 portid = qconf->rx_queue_list[i].portid; 480 RTE_LOG(INFO, IP_RSMBL, " -- lcoreid=%u portid=%hhu\n", lcore_id, 481 portid); 482 } 483 484 while (1) { 485 486 cur_tsc = rte_rdtsc(); 487 488 /* 489 * TX burst queue drain 490 */ 491 diff_tsc = cur_tsc - prev_tsc; 492 if (unlikely(diff_tsc > drain_tsc)) { 493 494 /* 495 * This could be optimized (use queueid instead of 496 * portid), but it is not called so often 497 */ 498 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 499 if ((enabled_port_mask & (1 << portid)) != 0) 500 send_burst(qconf, 1, portid); 501 } 502 503 prev_tsc = cur_tsc; 504 } 505 506 /* 507 * Read packet from RX queues 508 */ 509 for (i = 0; i < qconf->n_rx_queue; ++i) { 510 511 portid = qconf->rx_queue_list[i].portid; 512 513 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 514 MAX_PKT_BURST); 515 516 /* Prefetch first packets */ 517 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 518 rte_prefetch0(rte_pktmbuf_mtod( 519 pkts_burst[j], void *)); 520 } 521 522 /* Prefetch and forward already prefetched packets */ 523 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 524 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 525 j + PREFETCH_OFFSET], void *)); 526 reassemble(pkts_burst[j], portid, 527 i, qconf, cur_tsc); 528 } 529 530 /* Forward remaining prefetched packets */ 531 for (; j < nb_rx; j++) { 532 reassemble(pkts_burst[j], portid, 533 i, qconf, cur_tsc); 534 } 535 536 rte_ip_frag_free_death_row(&qconf->death_row, 537 PREFETCH_OFFSET); 538 } 539 } 540 } 541 542 /* display usage */ 543 static void 544 print_usage(const char *prgname) 545 { 546 printf("%s [EAL options] -- -p PORTMASK [-q NQ]" 547 " [--max-pkt-len PKTLEN]" 548 " [--maxflows=<flows>] [--flowttl=<ttl>[(s|ms)]]\n" 549 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 550 " -q NQ: number of RX queues per lcore\n" 551 " --maxflows=<flows>: optional, maximum number of flows " 552 "supported\n" 553 " --flowttl=<ttl>[(s|ms)]: optional, maximum TTL for each " 554 "flow\n", 555 prgname); 556 } 557 558 static uint32_t 559 parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val) 560 { 561 char *end; 562 uint64_t v; 563 564 /* parse decimal string */ 565 errno = 0; 566 v = strtoul(str, &end, 10); 567 if (errno != 0 || *end != '\0') 568 return (-EINVAL); 569 570 if (v < min || v > max) 571 return (-EINVAL); 572 573 *val = (uint32_t)v; 574 return (0); 575 } 576 577 static int 578 parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val) 579 { 580 char *end; 581 uint64_t v; 582 583 static const char frmt_sec[] = "s"; 584 static const char frmt_msec[] = "ms"; 585 586 /* parse decimal string */ 587 errno = 0; 588 v = strtoul(str, &end, 10); 589 if (errno != 0) 590 return (-EINVAL); 591 592 if (*end != '\0') { 593 if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0) 594 v *= MS_PER_S; 595 else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0) 596 return (-EINVAL); 597 } 598 599 if (v < min || v > max) 600 return (-EINVAL); 601 602 *val = (uint32_t)v; 603 return (0); 604 } 605 606 static int 607 parse_portmask(const char *portmask) 608 { 609 char *end = NULL; 610 unsigned long pm; 611 612 /* parse hexadecimal string */ 613 pm = strtoul(portmask, &end, 16); 614 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 615 return -1; 616 617 if (pm == 0) 618 return -1; 619 620 return pm; 621 } 622 623 static int 624 parse_nqueue(const char *q_arg) 625 { 626 char *end = NULL; 627 unsigned long n; 628 629 printf("%p\n", q_arg); 630 631 /* parse hexadecimal string */ 632 n = strtoul(q_arg, &end, 10); 633 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 634 return -1; 635 if (n == 0) 636 return -1; 637 if (n >= MAX_RX_QUEUE_PER_LCORE) 638 return -1; 639 640 return n; 641 } 642 643 /* Parse the argument given in the command line of the application */ 644 static int 645 parse_args(int argc, char **argv) 646 { 647 int opt, ret; 648 char **argvopt; 649 int option_index; 650 char *prgname = argv[0]; 651 static struct option lgopts[] = { 652 {"max-pkt-len", 1, 0, 0}, 653 {"maxflows", 1, 0, 0}, 654 {"flowttl", 1, 0, 0}, 655 {NULL, 0, 0, 0} 656 }; 657 658 argvopt = argv; 659 660 while ((opt = getopt_long(argc, argvopt, "p:q:", 661 lgopts, &option_index)) != EOF) { 662 663 switch (opt) { 664 /* portmask */ 665 case 'p': 666 enabled_port_mask = parse_portmask(optarg); 667 if (enabled_port_mask == 0) { 668 printf("invalid portmask\n"); 669 print_usage(prgname); 670 return -1; 671 } 672 break; 673 674 /* nqueue */ 675 case 'q': 676 rx_queue_per_lcore = parse_nqueue(optarg); 677 if (rx_queue_per_lcore < 0) { 678 printf("invalid queue number\n"); 679 print_usage(prgname); 680 return -1; 681 } 682 break; 683 684 /* long options */ 685 case 0: 686 if (!strncmp(lgopts[option_index].name, 687 "maxflows", 8)) { 688 if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM, 689 MAX_FLOW_NUM, 690 &max_flow_num)) != 0) { 691 printf("invalid value: \"%s\" for " 692 "parameter %s\n", 693 optarg, 694 lgopts[option_index].name); 695 print_usage(prgname); 696 return (ret); 697 } 698 } 699 700 if (!strncmp(lgopts[option_index].name, "flowttl", 7)) { 701 if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL, 702 MAX_FLOW_TTL, 703 &max_flow_ttl)) != 0) { 704 printf("invalid value: \"%s\" for " 705 "parameter %s\n", 706 optarg, 707 lgopts[option_index].name); 708 print_usage(prgname); 709 return (ret); 710 } 711 } 712 713 break; 714 715 default: 716 print_usage(prgname); 717 return -1; 718 } 719 } 720 721 if (optind >= 0) 722 argv[optind-1] = prgname; 723 724 ret = optind-1; 725 optind = 0; /* reset getopt lib */ 726 return ret; 727 } 728 729 static void 730 print_ethaddr(const char *name, const struct ether_addr *eth_addr) 731 { 732 char buf[ETHER_ADDR_FMT_SIZE]; 733 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 734 printf("%s%s", name, buf); 735 } 736 737 /* Check the link status of all ports in up to 9s, and print them finally */ 738 static void 739 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask) 740 { 741 #define CHECK_INTERVAL 100 /* 100ms */ 742 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 743 uint8_t portid, count, all_ports_up, print_flag = 0; 744 struct rte_eth_link link; 745 746 printf("\nChecking link status"); 747 fflush(stdout); 748 for (count = 0; count <= MAX_CHECK_TIME; count++) { 749 all_ports_up = 1; 750 for (portid = 0; portid < port_num; portid++) { 751 if ((port_mask & (1 << portid)) == 0) 752 continue; 753 memset(&link, 0, sizeof(link)); 754 rte_eth_link_get_nowait(portid, &link); 755 /* print link status if flag set */ 756 if (print_flag == 1) { 757 if (link.link_status) 758 printf("Port %d Link Up - speed %u " 759 "Mbps - %s\n", (uint8_t)portid, 760 (unsigned)link.link_speed, 761 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 762 ("full-duplex") : ("half-duplex\n")); 763 else 764 printf("Port %d Link Down\n", 765 (uint8_t)portid); 766 continue; 767 } 768 /* clear all_ports_up flag if any link down */ 769 if (link.link_status == 0) { 770 all_ports_up = 0; 771 break; 772 } 773 } 774 /* after finally printing all link status, get out */ 775 if (print_flag == 1) 776 break; 777 778 if (all_ports_up == 0) { 779 printf("."); 780 fflush(stdout); 781 rte_delay_ms(CHECK_INTERVAL); 782 } 783 784 /* set the print_flag if all ports up or timeout */ 785 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 786 print_flag = 1; 787 printf("\ndone\n"); 788 } 789 } 790 } 791 792 static int 793 init_routing_table(void) 794 { 795 struct rte_lpm *lpm; 796 struct rte_lpm6 *lpm6; 797 int socket, ret; 798 unsigned i; 799 800 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 801 if (socket_lpm[socket]) { 802 lpm = socket_lpm[socket]; 803 /* populate the LPM table */ 804 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 805 ret = rte_lpm_add(lpm, 806 l3fwd_ipv4_route_array[i].ip, 807 l3fwd_ipv4_route_array[i].depth, 808 l3fwd_ipv4_route_array[i].if_out); 809 810 if (ret < 0) { 811 RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd " 812 "LPM table\n", i); 813 return -1; 814 } 815 816 RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv4_BYTES_FMT 817 "/%d (port %d)\n", 818 socket, 819 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 820 l3fwd_ipv4_route_array[i].depth, 821 l3fwd_ipv4_route_array[i].if_out); 822 } 823 } 824 825 if (socket_lpm6[socket]) { 826 lpm6 = socket_lpm6[socket]; 827 /* populate the LPM6 table */ 828 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 829 ret = rte_lpm6_add(lpm6, 830 l3fwd_ipv6_route_array[i].ip, 831 l3fwd_ipv6_route_array[i].depth, 832 l3fwd_ipv6_route_array[i].if_out); 833 834 if (ret < 0) { 835 RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd " 836 "LPM6 table\n", i); 837 return -1; 838 } 839 840 RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv6_BYTES_FMT 841 "/%d (port %d)\n", 842 socket, 843 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 844 l3fwd_ipv6_route_array[i].depth, 845 l3fwd_ipv6_route_array[i].if_out); 846 } 847 } 848 } 849 return 0; 850 } 851 852 static int 853 setup_port_tbl(struct lcore_queue_conf *qconf, uint32_t lcore, int socket, 854 uint32_t port) 855 { 856 struct mbuf_table *mtb; 857 uint32_t n; 858 size_t sz; 859 860 n = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST); 861 sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) * n; 862 863 if ((mtb = rte_zmalloc_socket(__func__, sz, CACHE_LINE_SIZE, 864 socket)) == NULL) { 865 RTE_LOG(ERR, IP_RSMBL, "%s() for lcore: %u, port: %u " 866 "failed to allocate %zu bytes\n", 867 __func__, lcore, port, sz); 868 return -1; 869 } 870 871 mtb->len = n; 872 qconf->tx_mbufs[port] = mtb; 873 874 return 0; 875 } 876 877 static int 878 setup_queue_tbl(struct rx_queue *rxq, uint32_t lcore, uint32_t queue) 879 { 880 int socket; 881 uint32_t nb_mbuf; 882 uint64_t frag_cycles; 883 char buf[RTE_MEMPOOL_NAMESIZE]; 884 885 socket = rte_lcore_to_socket_id(lcore); 886 if (socket == SOCKET_ID_ANY) 887 socket = 0; 888 889 frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * 890 max_flow_ttl; 891 892 if ((rxq->frag_tbl = rte_ip_frag_table_create(max_flow_num, 893 IP_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles, 894 socket)) == NULL) { 895 RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on " 896 "lcore: %u for queue: %u failed\n", 897 max_flow_num, lcore, queue); 898 return -1; 899 } 900 901 /* 902 * At any given moment up to <max_flow_num * (MAX_FRAG_NUM)> 903 * mbufs could be stored int the fragment table. 904 * Plus, each TX queue can hold up to <max_flow_num> packets. 905 */ 906 907 nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM; 908 nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE; 909 nb_mbuf *= 2; /* ipv4 and ipv6 */ 910 nb_mbuf += RTE_TEST_RX_DESC_DEFAULT + RTE_TEST_TX_DESC_DEFAULT; 911 912 nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF); 913 914 snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue); 915 916 if ((rxq->pool = rte_mempool_create(buf, nb_mbuf, MBUF_SIZE, 0, 917 sizeof(struct rte_pktmbuf_pool_private), 918 rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, 919 socket, MEMPOOL_F_SP_PUT | MEMPOOL_F_SC_GET)) == NULL) { 920 RTE_LOG(ERR, IP_RSMBL, "mempool_create(%s) failed", buf); 921 return -1; 922 } 923 924 return 0; 925 } 926 927 static int 928 init_mem(void) 929 { 930 char buf[PATH_MAX]; 931 struct rte_lpm *lpm; 932 struct rte_lpm6 *lpm6; 933 int socket; 934 unsigned lcore_id; 935 936 /* traverse through lcores and initialize structures on each socket */ 937 938 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 939 940 if (rte_lcore_is_enabled(lcore_id) == 0) 941 continue; 942 943 socket = rte_lcore_to_socket_id(lcore_id); 944 945 if (socket == SOCKET_ID_ANY) 946 socket = 0; 947 948 if (socket_lpm[socket] == NULL) { 949 RTE_LOG(INFO, IP_RSMBL, "Creating LPM table on socket %i\n", socket); 950 snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket); 951 952 lpm = rte_lpm_create(buf, socket, LPM_MAX_RULES, 0); 953 if (lpm == NULL) { 954 RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n"); 955 return -1; 956 } 957 socket_lpm[socket] = lpm; 958 } 959 960 if (socket_lpm6[socket] == NULL) { 961 RTE_LOG(INFO, IP_RSMBL, "Creating LPM6 table on socket %i\n", socket); 962 snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket); 963 964 lpm6 = rte_lpm6_create("IP_RSMBL_LPM6", socket, &lpm6_config); 965 if (lpm6 == NULL) { 966 RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n"); 967 return -1; 968 } 969 socket_lpm6[socket] = lpm6; 970 } 971 } 972 973 return 0; 974 } 975 976 static void 977 queue_dump_stat(void) 978 { 979 uint32_t i, lcore; 980 const struct lcore_queue_conf *qconf; 981 982 for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) { 983 if (rte_lcore_is_enabled(lcore) == 0) 984 continue; 985 986 qconf = &lcore_queue_conf[lcore]; 987 for (i = 0; i < qconf->n_rx_queue; i++) { 988 989 fprintf(stdout, " -- lcoreid=%u portid=%hhu " 990 "frag tbl stat:\n", 991 lcore, qconf->rx_queue_list[i].portid); 992 rte_ip_frag_table_statistics_dump(stdout, 993 qconf->rx_queue_list[i].frag_tbl); 994 fprintf(stdout, "TX bursts:\t%" PRIu64 "\n" 995 "TX packets _queued:\t%" PRIu64 "\n" 996 "TX packets dropped:\t%" PRIu64 "\n" 997 "TX packets send:\t%" PRIu64 "\n", 998 qconf->tx_stat.call, 999 qconf->tx_stat.queue, 1000 qconf->tx_stat.drop, 1001 qconf->tx_stat.send); 1002 } 1003 } 1004 } 1005 1006 static void 1007 signal_handler(int signum) 1008 { 1009 queue_dump_stat(); 1010 if (signum != SIGUSR1) 1011 rte_exit(0, "received signal: %d, exiting\n", signum); 1012 } 1013 1014 int 1015 MAIN(int argc, char **argv) 1016 { 1017 struct lcore_queue_conf *qconf; 1018 struct rte_eth_dev_info dev_info; 1019 struct rte_eth_txconf *txconf; 1020 struct rx_queue *rxq; 1021 int ret, socket; 1022 unsigned nb_ports; 1023 uint16_t queueid; 1024 unsigned lcore_id = 0, rx_lcore_id = 0; 1025 uint32_t n_tx_queue, nb_lcores; 1026 uint8_t portid; 1027 1028 /* init EAL */ 1029 ret = rte_eal_init(argc, argv); 1030 if (ret < 0) 1031 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 1032 argc -= ret; 1033 argv += ret; 1034 1035 /* parse application arguments (after the EAL ones) */ 1036 ret = parse_args(argc, argv); 1037 if (ret < 0) 1038 rte_exit(EXIT_FAILURE, "Invalid IP reassembly parameters\n"); 1039 1040 nb_ports = rte_eth_dev_count(); 1041 if (nb_ports > RTE_MAX_ETHPORTS) 1042 nb_ports = RTE_MAX_ETHPORTS; 1043 else if (nb_ports == 0) 1044 rte_exit(EXIT_FAILURE, "No ports found!\n"); 1045 1046 nb_lcores = rte_lcore_count(); 1047 1048 /* initialize structures (mempools, lpm etc.) */ 1049 if (init_mem() < 0) 1050 rte_panic("Cannot initialize memory structures!\n"); 1051 1052 /* check if portmask has non-existent ports */ 1053 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 1054 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 1055 1056 /* initialize all ports */ 1057 for (portid = 0; portid < nb_ports; portid++) { 1058 /* skip ports that are not enabled */ 1059 if ((enabled_port_mask & (1 << portid)) == 0) { 1060 printf("\nSkipping disabled port %d\n", portid); 1061 continue; 1062 } 1063 1064 qconf = &lcore_queue_conf[rx_lcore_id]; 1065 1066 /* get the lcore_id for this port */ 1067 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 1068 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 1069 1070 rx_lcore_id++; 1071 if (rx_lcore_id >= RTE_MAX_LCORE) 1072 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 1073 1074 qconf = &lcore_queue_conf[rx_lcore_id]; 1075 } 1076 1077 socket = rte_lcore_to_socket_id(portid); 1078 if (socket == SOCKET_ID_ANY) 1079 socket = 0; 1080 1081 queueid = qconf->n_rx_queue; 1082 rxq = &qconf->rx_queue_list[queueid]; 1083 rxq->portid = portid; 1084 rxq->lpm = socket_lpm[socket]; 1085 rxq->lpm6 = socket_lpm6[socket]; 1086 if (setup_queue_tbl(rxq, rx_lcore_id, queueid) < 0) 1087 rte_exit(EXIT_FAILURE, "Failed to set up queue table\n"); 1088 qconf->n_rx_queue++; 1089 1090 /* init port */ 1091 printf("Initializing port %d ... ", portid ); 1092 fflush(stdout); 1093 1094 n_tx_queue = nb_lcores; 1095 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 1096 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 1097 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 1098 &port_conf); 1099 if (ret < 0) { 1100 printf("\n"); 1101 rte_exit(EXIT_FAILURE, "Cannot configure device: " 1102 "err=%d, port=%d\n", 1103 ret, portid); 1104 } 1105 1106 /* init one RX queue */ 1107 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 1108 socket, NULL, 1109 rxq->pool); 1110 if (ret < 0) { 1111 printf("\n"); 1112 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 1113 "err=%d, port=%d\n", 1114 ret, portid); 1115 } 1116 1117 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 1118 print_ethaddr(" Address:", &ports_eth_addr[portid]); 1119 printf("\n"); 1120 1121 /* init one TX queue per couple (lcore,port) */ 1122 queueid = 0; 1123 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1124 if (rte_lcore_is_enabled(lcore_id) == 0) 1125 continue; 1126 1127 socket = (int) rte_lcore_to_socket_id(lcore_id); 1128 1129 printf("txq=%u,%d,%d ", lcore_id, queueid, socket); 1130 fflush(stdout); 1131 1132 rte_eth_dev_info_get(portid, &dev_info); 1133 txconf = &dev_info.default_txconf; 1134 txconf->txq_flags = 0; 1135 1136 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1137 socket, txconf); 1138 if (ret < 0) 1139 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 1140 "port=%d\n", ret, portid); 1141 1142 qconf = &lcore_queue_conf[lcore_id]; 1143 qconf->tx_queue_id[portid] = queueid; 1144 setup_port_tbl(qconf, lcore_id, socket, portid); 1145 queueid++; 1146 } 1147 printf("\n"); 1148 } 1149 1150 printf("\n"); 1151 1152 /* start ports */ 1153 for (portid = 0; portid < nb_ports; portid++) { 1154 if ((enabled_port_mask & (1 << portid)) == 0) { 1155 continue; 1156 } 1157 /* Start device */ 1158 ret = rte_eth_dev_start(portid); 1159 if (ret < 0) 1160 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 1161 ret, portid); 1162 1163 rte_eth_promiscuous_enable(portid); 1164 } 1165 1166 if (init_routing_table() < 0) 1167 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 1168 1169 check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask); 1170 1171 signal(SIGUSR1, signal_handler); 1172 signal(SIGTERM, signal_handler); 1173 signal(SIGINT, signal_handler); 1174 1175 /* launch per-lcore init on every lcore */ 1176 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1177 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1178 if (rte_eal_wait_lcore(lcore_id) < 0) 1179 return -1; 1180 } 1181 1182 return 0; 1183 } 1184