1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <string.h> 11 #include <sys/queue.h> 12 #include <stdarg.h> 13 #include <errno.h> 14 #include <getopt.h> 15 #include <signal.h> 16 #include <sys/param.h> 17 18 #include <rte_common.h> 19 #include <rte_byteorder.h> 20 #include <rte_log.h> 21 #include <rte_memory.h> 22 #include <rte_memcpy.h> 23 #include <rte_eal.h> 24 #include <rte_launch.h> 25 #include <rte_cycles.h> 26 #include <rte_prefetch.h> 27 #include <rte_lcore.h> 28 #include <rte_per_lcore.h> 29 #include <rte_branch_prediction.h> 30 #include <rte_interrupts.h> 31 #include <rte_random.h> 32 #include <rte_debug.h> 33 #include <rte_ether.h> 34 #include <rte_ethdev.h> 35 #include <rte_mempool.h> 36 #include <rte_mbuf.h> 37 #include <rte_malloc.h> 38 #include <rte_ip.h> 39 #include <rte_tcp.h> 40 #include <rte_udp.h> 41 #include <rte_string_fns.h> 42 #include <rte_lpm.h> 43 #include <rte_lpm6.h> 44 45 #include <rte_ip_frag.h> 46 47 #define MAX_PKT_BURST 32 48 49 50 #define RTE_LOGTYPE_IP_RSMBL RTE_LOGTYPE_USER1 51 52 #define MAX_JUMBO_PKT_LEN 9600 53 54 #define BUF_SIZE RTE_MBUF_DEFAULT_DATAROOM 55 #define MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE 56 57 #define NB_MBUF 8192 58 #define MEMPOOL_CACHE_SIZE 256 59 60 /* allow max jumbo frame 9.5 KB */ 61 #define JUMBO_FRAME_MAX_SIZE 0x2600 62 63 #define MAX_FLOW_NUM UINT16_MAX 64 #define MIN_FLOW_NUM 1 65 #define DEF_FLOW_NUM 0x1000 66 67 /* TTL numbers are in ms. */ 68 #define MAX_FLOW_TTL (3600 * MS_PER_S) 69 #define MIN_FLOW_TTL 1 70 #define DEF_FLOW_TTL MS_PER_S 71 72 #define MAX_FRAG_NUM RTE_LIBRTE_IP_FRAG_MAX_FRAG 73 74 /* Should be power of two. */ 75 #define IP_FRAG_TBL_BUCKET_ENTRIES 16 76 77 static uint32_t max_flow_num = DEF_FLOW_NUM; 78 static uint32_t max_flow_ttl = DEF_FLOW_TTL; 79 80 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 81 82 #define NB_SOCKETS 8 83 84 /* Configure how many packets ahead to prefetch, when reading packets */ 85 #define PREFETCH_OFFSET 3 86 87 /* 88 * Configurable number of RX/TX ring descriptors 89 */ 90 #define RTE_TEST_RX_DESC_DEFAULT 1024 91 #define RTE_TEST_TX_DESC_DEFAULT 1024 92 93 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 94 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 95 96 /* ethernet addresses of ports */ 97 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 98 99 #ifndef IPv4_BYTES 100 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 101 #define IPv4_BYTES(addr) \ 102 (uint8_t) (((addr) >> 24) & 0xFF),\ 103 (uint8_t) (((addr) >> 16) & 0xFF),\ 104 (uint8_t) (((addr) >> 8) & 0xFF),\ 105 (uint8_t) ((addr) & 0xFF) 106 #endif 107 108 #ifndef IPv6_BYTES 109 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 110 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 111 #define IPv6_BYTES(addr) \ 112 addr[0], addr[1], addr[2], addr[3], \ 113 addr[4], addr[5], addr[6], addr[7], \ 114 addr[8], addr[9], addr[10], addr[11],\ 115 addr[12], addr[13],addr[14], addr[15] 116 #endif 117 118 #define IPV6_ADDR_LEN 16 119 120 /* mask of enabled ports */ 121 static uint32_t enabled_port_mask = 0; 122 123 static int rx_queue_per_lcore = 1; 124 125 struct mbuf_table { 126 uint32_t len; 127 uint32_t head; 128 uint32_t tail; 129 struct rte_mbuf *m_table[0]; 130 }; 131 132 struct rx_queue { 133 struct rte_ip_frag_tbl *frag_tbl; 134 struct rte_mempool *pool; 135 struct rte_lpm *lpm; 136 struct rte_lpm6 *lpm6; 137 uint16_t portid; 138 }; 139 140 struct tx_lcore_stat { 141 uint64_t call; 142 uint64_t drop; 143 uint64_t queue; 144 uint64_t send; 145 }; 146 147 #define MAX_RX_QUEUE_PER_LCORE 16 148 #define MAX_TX_QUEUE_PER_PORT 16 149 #define MAX_RX_QUEUE_PER_PORT 128 150 151 struct lcore_queue_conf { 152 uint16_t n_rx_queue; 153 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 154 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 155 struct rte_ip_frag_death_row death_row; 156 struct mbuf_table *tx_mbufs[RTE_MAX_ETHPORTS]; 157 struct tx_lcore_stat tx_stat; 158 } __rte_cache_aligned; 159 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 160 161 static struct rte_eth_conf port_conf = { 162 .rxmode = { 163 .mq_mode = RTE_ETH_MQ_RX_RSS, 164 .mtu = JUMBO_FRAME_MAX_SIZE - RTE_ETHER_HDR_LEN - 165 RTE_ETHER_CRC_LEN, 166 .split_hdr_size = 0, 167 .offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM, 168 }, 169 .rx_adv_conf = { 170 .rss_conf = { 171 .rss_key = NULL, 172 .rss_hf = RTE_ETH_RSS_IP, 173 }, 174 }, 175 .txmode = { 176 .mq_mode = RTE_ETH_MQ_TX_NONE, 177 .offloads = (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | 178 RTE_ETH_TX_OFFLOAD_MULTI_SEGS), 179 }, 180 }; 181 182 /* 183 * IPv4 forwarding table 184 */ 185 struct l3fwd_ipv4_route { 186 uint32_t ip; 187 uint8_t depth; 188 uint8_t if_out; 189 }; 190 191 /* Default l3fwd_ipv4_route_array table. 8< */ 192 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 193 {RTE_IPV4(100,10,0,0), 16, 0}, 194 {RTE_IPV4(100,20,0,0), 16, 1}, 195 {RTE_IPV4(100,30,0,0), 16, 2}, 196 {RTE_IPV4(100,40,0,0), 16, 3}, 197 {RTE_IPV4(100,50,0,0), 16, 4}, 198 {RTE_IPV4(100,60,0,0), 16, 5}, 199 {RTE_IPV4(100,70,0,0), 16, 6}, 200 {RTE_IPV4(100,80,0,0), 16, 7}, 201 }; 202 /* >8 End of default l3fwd_ipv4_route_array table. */ 203 204 /* 205 * IPv6 forwarding table 206 */ 207 208 struct l3fwd_ipv6_route { 209 uint8_t ip[IPV6_ADDR_LEN]; 210 uint8_t depth; 211 uint8_t if_out; 212 }; 213 214 /* Default l3fwd_ipv6_route_array table. 8< */ 215 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 216 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 217 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 218 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 219 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 220 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 221 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 222 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 223 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 224 }; 225 /* >8 End of default l3fwd_ipv6_route_array table. */ 226 227 #define LPM_MAX_RULES 1024 228 #define LPM6_MAX_RULES 1024 229 #define LPM6_NUMBER_TBL8S (1 << 16) 230 231 struct rte_lpm6_config lpm6_config = { 232 .max_rules = LPM6_MAX_RULES, 233 .number_tbl8s = LPM6_NUMBER_TBL8S, 234 .flags = 0 235 }; 236 237 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 238 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 239 240 #ifdef RTE_LIBRTE_IP_FRAG_TBL_STAT 241 #define TX_LCORE_STAT_UPDATE(s, f, v) ((s)->f += (v)) 242 #else 243 #define TX_LCORE_STAT_UPDATE(s, f, v) do {} while (0) 244 #endif /* RTE_LIBRTE_IP_FRAG_TBL_STAT */ 245 246 /* 247 * If number of queued packets reached given threahold, then 248 * send burst of packets on an output interface. 249 */ 250 static inline uint32_t 251 send_burst(struct lcore_queue_conf *qconf, uint32_t thresh, uint16_t port) 252 { 253 uint32_t fill, len, k, n; 254 struct mbuf_table *txmb; 255 256 txmb = qconf->tx_mbufs[port]; 257 len = txmb->len; 258 259 if ((int32_t)(fill = txmb->head - txmb->tail) < 0) 260 fill += len; 261 262 if (fill >= thresh) { 263 n = RTE_MIN(len - txmb->tail, fill); 264 265 k = rte_eth_tx_burst(port, qconf->tx_queue_id[port], 266 txmb->m_table + txmb->tail, (uint16_t)n); 267 268 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1); 269 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k); 270 271 fill -= k; 272 if ((txmb->tail += k) == len) 273 txmb->tail = 0; 274 } 275 276 return fill; 277 } 278 279 /* Enqueue a single packet, and send burst if queue is filled */ 280 static inline int 281 send_single_packet(struct rte_mbuf *m, uint16_t port) 282 { 283 uint32_t fill, lcore_id, len; 284 struct lcore_queue_conf *qconf; 285 struct mbuf_table *txmb; 286 287 lcore_id = rte_lcore_id(); 288 qconf = &lcore_queue_conf[lcore_id]; 289 290 txmb = qconf->tx_mbufs[port]; 291 len = txmb->len; 292 293 fill = send_burst(qconf, MAX_PKT_BURST, port); 294 295 if (fill == len - 1) { 296 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1); 297 rte_pktmbuf_free(txmb->m_table[txmb->tail]); 298 if (++txmb->tail == len) 299 txmb->tail = 0; 300 } 301 302 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1); 303 txmb->m_table[txmb->head] = m; 304 if(++txmb->head == len) 305 txmb->head = 0; 306 307 return 0; 308 } 309 310 static inline void 311 reassemble(struct rte_mbuf *m, uint16_t portid, uint32_t queue, 312 struct lcore_queue_conf *qconf, uint64_t tms) 313 { 314 struct rte_ether_hdr *eth_hdr; 315 struct rte_ip_frag_tbl *tbl; 316 struct rte_ip_frag_death_row *dr; 317 struct rx_queue *rxq; 318 void *d_addr_bytes; 319 uint32_t next_hop; 320 uint16_t dst_port; 321 322 rxq = &qconf->rx_queue_list[queue]; 323 324 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 325 326 dst_port = portid; 327 328 /* if packet is IPv4 */ 329 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 330 struct rte_ipv4_hdr *ip_hdr; 331 uint32_t ip_dst; 332 333 ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1); 334 335 /* if it is a fragmented packet, then try to reassemble. */ 336 if (rte_ipv4_frag_pkt_is_fragmented(ip_hdr)) { 337 struct rte_mbuf *mo; 338 339 tbl = rxq->frag_tbl; 340 dr = &qconf->death_row; 341 342 /* prepare mbuf: setup l2_len/l3_len. */ 343 m->l2_len = sizeof(*eth_hdr); 344 m->l3_len = sizeof(*ip_hdr); 345 346 /* process this fragment. */ 347 mo = rte_ipv4_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr); 348 if (mo == NULL) 349 /* no packet to send out. */ 350 return; 351 352 /* we have our packet reassembled. */ 353 if (mo != m) { 354 m = mo; 355 eth_hdr = rte_pktmbuf_mtod(m, 356 struct rte_ether_hdr *); 357 ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1); 358 } 359 360 /* update offloading flags */ 361 m->ol_flags |= (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IP_CKSUM); 362 } 363 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 364 365 /* Find destination port */ 366 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 367 (enabled_port_mask & 1 << next_hop) != 0) { 368 dst_port = next_hop; 369 } 370 371 eth_hdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4); 372 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 373 /* if packet is IPv6 */ 374 struct rte_ipv6_fragment_ext *frag_hdr; 375 struct rte_ipv6_hdr *ip_hdr; 376 377 ip_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1); 378 379 frag_hdr = rte_ipv6_frag_get_ipv6_fragment_header(ip_hdr); 380 381 if (frag_hdr != NULL) { 382 struct rte_mbuf *mo; 383 384 tbl = rxq->frag_tbl; 385 dr = &qconf->death_row; 386 387 /* prepare mbuf: setup l2_len/l3_len. */ 388 m->l2_len = sizeof(*eth_hdr); 389 m->l3_len = sizeof(*ip_hdr) + sizeof(*frag_hdr); 390 391 mo = rte_ipv6_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr, frag_hdr); 392 if (mo == NULL) 393 return; 394 395 if (mo != m) { 396 m = mo; 397 eth_hdr = rte_pktmbuf_mtod(m, 398 struct rte_ether_hdr *); 399 ip_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1); 400 } 401 } 402 403 /* Find destination port */ 404 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, 405 &next_hop) == 0 && 406 (enabled_port_mask & 1 << next_hop) != 0) { 407 dst_port = next_hop; 408 } 409 410 eth_hdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV6); 411 } 412 /* if packet wasn't IPv4 or IPv6, it's forwarded to the port it came from */ 413 414 /* 02:00:00:00:00:xx */ 415 d_addr_bytes = ð_hdr->dst_addr.addr_bytes[0]; 416 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40); 417 418 /* src addr */ 419 rte_ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->src_addr); 420 421 send_single_packet(m, dst_port); 422 } 423 424 /* main processing loop */ 425 static int 426 main_loop(__rte_unused void *dummy) 427 { 428 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 429 unsigned lcore_id; 430 uint64_t diff_tsc, cur_tsc, prev_tsc; 431 int i, j, nb_rx; 432 uint16_t portid; 433 struct lcore_queue_conf *qconf; 434 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 435 436 prev_tsc = 0; 437 438 lcore_id = rte_lcore_id(); 439 qconf = &lcore_queue_conf[lcore_id]; 440 441 if (qconf->n_rx_queue == 0) { 442 RTE_LOG(INFO, IP_RSMBL, "lcore %u has nothing to do\n", lcore_id); 443 return 0; 444 } 445 446 RTE_LOG(INFO, IP_RSMBL, "entering main loop on lcore %u\n", lcore_id); 447 448 for (i = 0; i < qconf->n_rx_queue; i++) { 449 450 portid = qconf->rx_queue_list[i].portid; 451 RTE_LOG(INFO, IP_RSMBL, " -- lcoreid=%u portid=%u\n", lcore_id, 452 portid); 453 } 454 455 while (1) { 456 457 cur_tsc = rte_rdtsc(); 458 459 /* 460 * TX burst queue drain 461 */ 462 diff_tsc = cur_tsc - prev_tsc; 463 if (unlikely(diff_tsc > drain_tsc)) { 464 465 /* 466 * This could be optimized (use queueid instead of 467 * portid), but it is not called so often 468 */ 469 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 470 if ((enabled_port_mask & (1 << portid)) != 0) 471 send_burst(qconf, 1, portid); 472 } 473 474 prev_tsc = cur_tsc; 475 } 476 477 /* 478 * Read packet from RX queues 479 */ 480 for (i = 0; i < qconf->n_rx_queue; ++i) { 481 482 portid = qconf->rx_queue_list[i].portid; 483 484 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 485 MAX_PKT_BURST); 486 487 /* Prefetch first packets */ 488 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 489 rte_prefetch0(rte_pktmbuf_mtod( 490 pkts_burst[j], void *)); 491 } 492 493 /* Prefetch and forward already prefetched packets */ 494 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 495 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 496 j + PREFETCH_OFFSET], void *)); 497 reassemble(pkts_burst[j], portid, 498 i, qconf, cur_tsc); 499 } 500 501 /* Forward remaining prefetched packets */ 502 for (; j < nb_rx; j++) { 503 reassemble(pkts_burst[j], portid, 504 i, qconf, cur_tsc); 505 } 506 507 rte_ip_frag_free_death_row(&qconf->death_row, 508 PREFETCH_OFFSET); 509 } 510 } 511 } 512 513 /* display usage */ 514 static void 515 print_usage(const char *prgname) 516 { 517 printf("%s [EAL options] -- -p PORTMASK [-q NQ]" 518 " [--maxflows=<flows>] [--flowttl=<ttl>[(s|ms)]]\n" 519 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 520 " -q NQ: number of RX queues per lcore\n" 521 " --maxflows=<flows>: optional, maximum number of flows " 522 "supported\n" 523 " --flowttl=<ttl>[(s|ms)]: optional, maximum TTL for each " 524 "flow\n", 525 prgname); 526 } 527 528 static uint32_t 529 parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val) 530 { 531 char *end; 532 uint64_t v; 533 534 /* parse decimal string */ 535 errno = 0; 536 v = strtoul(str, &end, 10); 537 if (errno != 0 || *end != '\0') 538 return -EINVAL; 539 540 if (v < min || v > max) 541 return -EINVAL; 542 543 *val = (uint32_t)v; 544 return 0; 545 } 546 547 static int 548 parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val) 549 { 550 char *end; 551 uint64_t v; 552 553 static const char frmt_sec[] = "s"; 554 static const char frmt_msec[] = "ms"; 555 556 /* parse decimal string */ 557 errno = 0; 558 v = strtoul(str, &end, 10); 559 if (errno != 0) 560 return -EINVAL; 561 562 if (*end != '\0') { 563 if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0) 564 v *= MS_PER_S; 565 else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0) 566 return -EINVAL; 567 } 568 569 if (v < min || v > max) 570 return -EINVAL; 571 572 *val = (uint32_t)v; 573 return 0; 574 } 575 576 static int 577 parse_portmask(const char *portmask) 578 { 579 char *end = NULL; 580 unsigned long pm; 581 582 /* parse hexadecimal string */ 583 pm = strtoul(portmask, &end, 16); 584 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 585 return 0; 586 587 return pm; 588 } 589 590 static int 591 parse_nqueue(const char *q_arg) 592 { 593 char *end = NULL; 594 unsigned long n; 595 596 printf("%p\n", q_arg); 597 598 /* parse hexadecimal string */ 599 n = strtoul(q_arg, &end, 10); 600 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 601 return -1; 602 if (n == 0) 603 return -1; 604 if (n >= MAX_RX_QUEUE_PER_LCORE) 605 return -1; 606 607 return n; 608 } 609 610 /* Parse the argument given in the command line of the application */ 611 static int 612 parse_args(int argc, char **argv) 613 { 614 int opt, ret; 615 char **argvopt; 616 int option_index; 617 char *prgname = argv[0]; 618 static struct option lgopts[] = { 619 {"maxflows", 1, 0, 0}, 620 {"flowttl", 1, 0, 0}, 621 {NULL, 0, 0, 0} 622 }; 623 624 argvopt = argv; 625 626 while ((opt = getopt_long(argc, argvopt, "p:q:", 627 lgopts, &option_index)) != EOF) { 628 629 switch (opt) { 630 /* portmask */ 631 case 'p': 632 enabled_port_mask = parse_portmask(optarg); 633 if (enabled_port_mask == 0) { 634 printf("invalid portmask\n"); 635 print_usage(prgname); 636 return -1; 637 } 638 break; 639 640 /* nqueue */ 641 case 'q': 642 rx_queue_per_lcore = parse_nqueue(optarg); 643 if (rx_queue_per_lcore < 0) { 644 printf("invalid queue number\n"); 645 print_usage(prgname); 646 return -1; 647 } 648 break; 649 650 /* long options */ 651 case 0: 652 if (!strncmp(lgopts[option_index].name, 653 "maxflows", 8)) { 654 if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM, 655 MAX_FLOW_NUM, 656 &max_flow_num)) != 0) { 657 printf("invalid value: \"%s\" for " 658 "parameter %s\n", 659 optarg, 660 lgopts[option_index].name); 661 print_usage(prgname); 662 return ret; 663 } 664 } 665 666 if (!strncmp(lgopts[option_index].name, "flowttl", 7)) { 667 if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL, 668 MAX_FLOW_TTL, 669 &max_flow_ttl)) != 0) { 670 printf("invalid value: \"%s\" for " 671 "parameter %s\n", 672 optarg, 673 lgopts[option_index].name); 674 print_usage(prgname); 675 return ret; 676 } 677 } 678 679 break; 680 681 default: 682 print_usage(prgname); 683 return -1; 684 } 685 } 686 687 if (optind >= 0) 688 argv[optind-1] = prgname; 689 690 ret = optind-1; 691 optind = 1; /* reset getopt lib */ 692 return ret; 693 } 694 695 static void 696 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr) 697 { 698 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 699 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 700 printf("%s%s", name, buf); 701 } 702 703 /* Check the link status of all ports in up to 9s, and print them finally */ 704 static void 705 check_all_ports_link_status(uint32_t port_mask) 706 { 707 #define CHECK_INTERVAL 100 /* 100ms */ 708 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 709 uint16_t portid; 710 uint8_t count, all_ports_up, print_flag = 0; 711 struct rte_eth_link link; 712 int ret; 713 char link_status_text[RTE_ETH_LINK_MAX_STR_LEN]; 714 715 printf("\nChecking link status"); 716 fflush(stdout); 717 for (count = 0; count <= MAX_CHECK_TIME; count++) { 718 all_ports_up = 1; 719 RTE_ETH_FOREACH_DEV(portid) { 720 if ((port_mask & (1 << portid)) == 0) 721 continue; 722 memset(&link, 0, sizeof(link)); 723 ret = rte_eth_link_get_nowait(portid, &link); 724 if (ret < 0) { 725 all_ports_up = 0; 726 if (print_flag == 1) 727 printf("Port %u link get failed: %s\n", 728 portid, rte_strerror(-ret)); 729 continue; 730 } 731 /* print link status if flag set */ 732 if (print_flag == 1) { 733 rte_eth_link_to_str(link_status_text, 734 sizeof(link_status_text), &link); 735 printf("Port %d %s\n", portid, 736 link_status_text); 737 continue; 738 } 739 /* clear all_ports_up flag if any link down */ 740 if (link.link_status == RTE_ETH_LINK_DOWN) { 741 all_ports_up = 0; 742 break; 743 } 744 } 745 /* after finally printing all link status, get out */ 746 if (print_flag == 1) 747 break; 748 749 if (all_ports_up == 0) { 750 printf("."); 751 fflush(stdout); 752 rte_delay_ms(CHECK_INTERVAL); 753 } 754 755 /* set the print_flag if all ports up or timeout */ 756 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 757 print_flag = 1; 758 printf("\ndone\n"); 759 } 760 } 761 } 762 763 static int 764 init_routing_table(void) 765 { 766 struct rte_lpm *lpm; 767 struct rte_lpm6 *lpm6; 768 int socket, ret; 769 unsigned i; 770 771 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 772 if (socket_lpm[socket]) { 773 lpm = socket_lpm[socket]; 774 /* populate the LPM table */ 775 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 776 ret = rte_lpm_add(lpm, 777 l3fwd_ipv4_route_array[i].ip, 778 l3fwd_ipv4_route_array[i].depth, 779 l3fwd_ipv4_route_array[i].if_out); 780 781 if (ret < 0) { 782 RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd " 783 "LPM table\n", i); 784 return -1; 785 } 786 787 RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv4_BYTES_FMT 788 "/%d (port %d)\n", 789 socket, 790 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 791 l3fwd_ipv4_route_array[i].depth, 792 l3fwd_ipv4_route_array[i].if_out); 793 } 794 } 795 796 if (socket_lpm6[socket]) { 797 lpm6 = socket_lpm6[socket]; 798 /* populate the LPM6 table */ 799 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 800 ret = rte_lpm6_add(lpm6, 801 l3fwd_ipv6_route_array[i].ip, 802 l3fwd_ipv6_route_array[i].depth, 803 l3fwd_ipv6_route_array[i].if_out); 804 805 if (ret < 0) { 806 RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd " 807 "LPM6 table\n", i); 808 return -1; 809 } 810 811 RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv6_BYTES_FMT 812 "/%d (port %d)\n", 813 socket, 814 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 815 l3fwd_ipv6_route_array[i].depth, 816 l3fwd_ipv6_route_array[i].if_out); 817 } 818 } 819 } 820 return 0; 821 } 822 823 static int 824 setup_port_tbl(struct lcore_queue_conf *qconf, uint32_t lcore, int socket, 825 uint32_t port) 826 { 827 struct mbuf_table *mtb; 828 uint32_t n; 829 size_t sz; 830 831 n = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST); 832 sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) * n; 833 834 if ((mtb = rte_zmalloc_socket(__func__, sz, RTE_CACHE_LINE_SIZE, 835 socket)) == NULL) { 836 RTE_LOG(ERR, IP_RSMBL, "%s() for lcore: %u, port: %u " 837 "failed to allocate %zu bytes\n", 838 __func__, lcore, port, sz); 839 return -1; 840 } 841 842 mtb->len = n; 843 qconf->tx_mbufs[port] = mtb; 844 845 return 0; 846 } 847 848 static int 849 setup_queue_tbl(struct rx_queue *rxq, uint32_t lcore, uint32_t queue) 850 { 851 int socket; 852 uint32_t nb_mbuf; 853 uint64_t frag_cycles; 854 char buf[RTE_MEMPOOL_NAMESIZE]; 855 856 socket = rte_lcore_to_socket_id(lcore); 857 if (socket == SOCKET_ID_ANY) 858 socket = 0; 859 860 /* Each table entry holds information about packet fragmentation. 8< */ 861 frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * 862 max_flow_ttl; 863 864 if ((rxq->frag_tbl = rte_ip_frag_table_create(max_flow_num, 865 IP_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles, 866 socket)) == NULL) { 867 RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on " 868 "lcore: %u for queue: %u failed\n", 869 max_flow_num, lcore, queue); 870 return -1; 871 } 872 /* >8 End of holding packet fragmentation. */ 873 874 /* 875 * At any given moment up to <max_flow_num * (MAX_FRAG_NUM)> 876 * mbufs could be stored int the fragment table. 877 * Plus, each TX queue can hold up to <max_flow_num> packets. 878 */ 879 880 /* mbufs stored int the gragment table. 8< */ 881 nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM; 882 nb_mbuf *= (port_conf.rxmode.mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN 883 + BUF_SIZE - 1) / BUF_SIZE; 884 nb_mbuf *= 2; /* ipv4 and ipv6 */ 885 nb_mbuf += nb_rxd + nb_txd; 886 887 nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF); 888 889 snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue); 890 891 rxq->pool = rte_pktmbuf_pool_create(buf, nb_mbuf, MEMPOOL_CACHE_SIZE, 0, 892 MBUF_DATA_SIZE, socket); 893 if (rxq->pool == NULL) { 894 RTE_LOG(ERR, IP_RSMBL, 895 "rte_pktmbuf_pool_create(%s) failed", buf); 896 return -1; 897 } 898 /* >8 End of mbufs stored int the fragmentation table. */ 899 900 return 0; 901 } 902 903 static int 904 init_mem(void) 905 { 906 char buf[PATH_MAX]; 907 struct rte_lpm *lpm; 908 struct rte_lpm6 *lpm6; 909 struct rte_lpm_config lpm_config; 910 int socket; 911 unsigned lcore_id; 912 913 /* traverse through lcores and initialize structures on each socket */ 914 915 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 916 917 if (rte_lcore_is_enabled(lcore_id) == 0) 918 continue; 919 920 socket = rte_lcore_to_socket_id(lcore_id); 921 922 if (socket == SOCKET_ID_ANY) 923 socket = 0; 924 925 if (socket_lpm[socket] == NULL) { 926 RTE_LOG(INFO, IP_RSMBL, "Creating LPM table on socket %i\n", socket); 927 snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket); 928 929 lpm_config.max_rules = LPM_MAX_RULES; 930 lpm_config.number_tbl8s = 256; 931 lpm_config.flags = 0; 932 933 lpm = rte_lpm_create(buf, socket, &lpm_config); 934 if (lpm == NULL) { 935 RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n"); 936 return -1; 937 } 938 socket_lpm[socket] = lpm; 939 } 940 941 if (socket_lpm6[socket] == NULL) { 942 RTE_LOG(INFO, IP_RSMBL, "Creating LPM6 table on socket %i\n", socket); 943 snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket); 944 945 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); 946 if (lpm6 == NULL) { 947 RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n"); 948 return -1; 949 } 950 socket_lpm6[socket] = lpm6; 951 } 952 } 953 954 return 0; 955 } 956 957 static void 958 queue_dump_stat(void) 959 { 960 uint32_t i, lcore; 961 const struct lcore_queue_conf *qconf; 962 963 for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) { 964 if (rte_lcore_is_enabled(lcore) == 0) 965 continue; 966 967 qconf = &lcore_queue_conf[lcore]; 968 for (i = 0; i < qconf->n_rx_queue; i++) { 969 970 fprintf(stdout, " -- lcoreid=%u portid=%u " 971 "frag tbl stat:\n", 972 lcore, qconf->rx_queue_list[i].portid); 973 rte_ip_frag_table_statistics_dump(stdout, 974 qconf->rx_queue_list[i].frag_tbl); 975 fprintf(stdout, "TX bursts:\t%" PRIu64 "\n" 976 "TX packets _queued:\t%" PRIu64 "\n" 977 "TX packets dropped:\t%" PRIu64 "\n" 978 "TX packets send:\t%" PRIu64 "\n", 979 qconf->tx_stat.call, 980 qconf->tx_stat.queue, 981 qconf->tx_stat.drop, 982 qconf->tx_stat.send); 983 } 984 } 985 } 986 987 static void 988 signal_handler(int signum) 989 { 990 queue_dump_stat(); 991 if (signum != SIGUSR1) 992 rte_exit(0, "received signal: %d, exiting\n", signum); 993 } 994 995 int 996 main(int argc, char **argv) 997 { 998 struct lcore_queue_conf *qconf; 999 struct rte_eth_dev_info dev_info; 1000 struct rte_eth_txconf *txconf; 1001 struct rx_queue *rxq; 1002 int ret, socket; 1003 unsigned nb_ports; 1004 uint16_t queueid; 1005 unsigned lcore_id = 0, rx_lcore_id = 0; 1006 uint32_t n_tx_queue, nb_lcores; 1007 uint16_t portid; 1008 1009 /* init EAL */ 1010 ret = rte_eal_init(argc, argv); 1011 if (ret < 0) 1012 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 1013 argc -= ret; 1014 argv += ret; 1015 1016 /* parse application arguments (after the EAL ones) */ 1017 ret = parse_args(argc, argv); 1018 if (ret < 0) 1019 rte_exit(EXIT_FAILURE, "Invalid IP reassembly parameters\n"); 1020 1021 nb_ports = rte_eth_dev_count_avail(); 1022 if (nb_ports == 0) 1023 rte_exit(EXIT_FAILURE, "No ports found!\n"); 1024 1025 nb_lcores = rte_lcore_count(); 1026 1027 /* initialize structures (mempools, lpm etc.) */ 1028 if (init_mem() < 0) 1029 rte_panic("Cannot initialize memory structures!\n"); 1030 1031 /* check if portmask has non-existent ports */ 1032 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 1033 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 1034 1035 /* initialize all ports */ 1036 RTE_ETH_FOREACH_DEV(portid) { 1037 struct rte_eth_rxconf rxq_conf; 1038 struct rte_eth_conf local_port_conf = port_conf; 1039 1040 /* skip ports that are not enabled */ 1041 if ((enabled_port_mask & (1 << portid)) == 0) { 1042 printf("\nSkipping disabled port %d\n", portid); 1043 continue; 1044 } 1045 1046 qconf = &lcore_queue_conf[rx_lcore_id]; 1047 1048 /* limit the frame size to the maximum supported by NIC */ 1049 ret = rte_eth_dev_info_get(portid, &dev_info); 1050 if (ret != 0) 1051 rte_exit(EXIT_FAILURE, 1052 "Error during getting device (port %u) info: %s\n", 1053 portid, strerror(-ret)); 1054 1055 local_port_conf.rxmode.mtu = RTE_MIN( 1056 dev_info.max_mtu, 1057 local_port_conf.rxmode.mtu); 1058 1059 /* get the lcore_id for this port */ 1060 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 1061 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 1062 1063 rx_lcore_id++; 1064 if (rx_lcore_id >= RTE_MAX_LCORE) 1065 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 1066 1067 qconf = &lcore_queue_conf[rx_lcore_id]; 1068 } 1069 1070 socket = rte_lcore_to_socket_id(portid); 1071 if (socket == SOCKET_ID_ANY) 1072 socket = 0; 1073 1074 queueid = qconf->n_rx_queue; 1075 rxq = &qconf->rx_queue_list[queueid]; 1076 rxq->portid = portid; 1077 rxq->lpm = socket_lpm[socket]; 1078 rxq->lpm6 = socket_lpm6[socket]; 1079 1080 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 1081 &nb_txd); 1082 if (ret < 0) 1083 rte_exit(EXIT_FAILURE, 1084 "Cannot adjust number of descriptors: err=%d, port=%d\n", 1085 ret, portid); 1086 1087 if (setup_queue_tbl(rxq, rx_lcore_id, queueid) < 0) 1088 rte_exit(EXIT_FAILURE, "Failed to set up queue table\n"); 1089 qconf->n_rx_queue++; 1090 1091 /* init port */ 1092 printf("Initializing port %d ... ", portid ); 1093 fflush(stdout); 1094 1095 n_tx_queue = nb_lcores; 1096 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 1097 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 1098 if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) 1099 local_port_conf.txmode.offloads |= 1100 RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE; 1101 1102 local_port_conf.rx_adv_conf.rss_conf.rss_hf &= 1103 dev_info.flow_type_rss_offloads; 1104 if (local_port_conf.rx_adv_conf.rss_conf.rss_hf != 1105 port_conf.rx_adv_conf.rss_conf.rss_hf) { 1106 printf("Port %u modified RSS hash function based on hardware support," 1107 "requested:%#"PRIx64" configured:%#"PRIx64"\n", 1108 portid, 1109 port_conf.rx_adv_conf.rss_conf.rss_hf, 1110 local_port_conf.rx_adv_conf.rss_conf.rss_hf); 1111 } 1112 1113 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 1114 &local_port_conf); 1115 if (ret < 0) { 1116 printf("\n"); 1117 rte_exit(EXIT_FAILURE, "Cannot configure device: " 1118 "err=%d, port=%d\n", 1119 ret, portid); 1120 } 1121 1122 /* init one RX queue */ 1123 rxq_conf = dev_info.default_rxconf; 1124 rxq_conf.offloads = local_port_conf.rxmode.offloads; 1125 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 1126 socket, &rxq_conf, 1127 rxq->pool); 1128 if (ret < 0) { 1129 printf("\n"); 1130 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 1131 "err=%d, port=%d\n", 1132 ret, portid); 1133 } 1134 1135 ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 1136 if (ret < 0) { 1137 printf("\n"); 1138 rte_exit(EXIT_FAILURE, 1139 "rte_eth_macaddr_get: err=%d, port=%d\n", 1140 ret, portid); 1141 } 1142 1143 print_ethaddr(" Address:", &ports_eth_addr[portid]); 1144 printf("\n"); 1145 1146 /* init one TX queue per couple (lcore,port) */ 1147 queueid = 0; 1148 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1149 if (rte_lcore_is_enabled(lcore_id) == 0) 1150 continue; 1151 1152 socket = (int) rte_lcore_to_socket_id(lcore_id); 1153 1154 printf("txq=%u,%d,%d ", lcore_id, queueid, socket); 1155 fflush(stdout); 1156 1157 txconf = &dev_info.default_txconf; 1158 txconf->offloads = local_port_conf.txmode.offloads; 1159 1160 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1161 socket, txconf); 1162 if (ret < 0) 1163 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 1164 "port=%d\n", ret, portid); 1165 1166 qconf = &lcore_queue_conf[lcore_id]; 1167 qconf->tx_queue_id[portid] = queueid; 1168 setup_port_tbl(qconf, lcore_id, socket, portid); 1169 queueid++; 1170 } 1171 printf("\n"); 1172 } 1173 1174 printf("\n"); 1175 1176 /* start ports */ 1177 RTE_ETH_FOREACH_DEV(portid) { 1178 if ((enabled_port_mask & (1 << portid)) == 0) { 1179 continue; 1180 } 1181 /* Start device */ 1182 ret = rte_eth_dev_start(portid); 1183 if (ret < 0) 1184 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 1185 ret, portid); 1186 1187 ret = rte_eth_promiscuous_enable(portid); 1188 if (ret != 0) 1189 rte_exit(EXIT_FAILURE, 1190 "rte_eth_promiscuous_enable: err=%s, port=%d\n", 1191 rte_strerror(-ret), portid); 1192 } 1193 1194 if (init_routing_table() < 0) 1195 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 1196 1197 check_all_ports_link_status(enabled_port_mask); 1198 1199 signal(SIGUSR1, signal_handler); 1200 signal(SIGTERM, signal_handler); 1201 signal(SIGINT, signal_handler); 1202 1203 /* launch per-lcore init on every lcore */ 1204 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN); 1205 RTE_LCORE_FOREACH_WORKER(lcore_id) { 1206 if (rte_eal_wait_lcore(lcore_id) < 0) 1207 return -1; 1208 } 1209 1210 /* clean up the EAL */ 1211 rte_eal_cleanup(); 1212 1213 return 0; 1214 } 1215