xref: /dpdk/examples/ip_reassembly/main.c (revision f8dbaebbf1c9efcbb2e2354b341ed62175466a57)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <stdint.h>
8 #include <inttypes.h>
9 #include <sys/types.h>
10 #include <string.h>
11 #include <sys/queue.h>
12 #include <stdarg.h>
13 #include <errno.h>
14 #include <getopt.h>
15 #include <signal.h>
16 #include <sys/param.h>
17 
18 #include <rte_common.h>
19 #include <rte_byteorder.h>
20 #include <rte_log.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_eal.h>
24 #include <rte_launch.h>
25 #include <rte_cycles.h>
26 #include <rte_prefetch.h>
27 #include <rte_lcore.h>
28 #include <rte_per_lcore.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_interrupts.h>
31 #include <rte_random.h>
32 #include <rte_debug.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_mempool.h>
36 #include <rte_mbuf.h>
37 #include <rte_malloc.h>
38 #include <rte_ip.h>
39 #include <rte_tcp.h>
40 #include <rte_udp.h>
41 #include <rte_string_fns.h>
42 #include <rte_lpm.h>
43 #include <rte_lpm6.h>
44 
45 #include <rte_ip_frag.h>
46 
47 #define MAX_PKT_BURST 32
48 
49 
50 #define RTE_LOGTYPE_IP_RSMBL RTE_LOGTYPE_USER1
51 
52 #define MAX_JUMBO_PKT_LEN  9600
53 
54 #define	BUF_SIZE	RTE_MBUF_DEFAULT_DATAROOM
55 #define	MBUF_DATA_SIZE	RTE_MBUF_DEFAULT_BUF_SIZE
56 
57 #define NB_MBUF 8192
58 #define MEMPOOL_CACHE_SIZE 256
59 
60 /* allow max jumbo frame 9.5 KB */
61 #define JUMBO_FRAME_MAX_SIZE	0x2600
62 
63 #define	MAX_FLOW_NUM	UINT16_MAX
64 #define	MIN_FLOW_NUM	1
65 #define	DEF_FLOW_NUM	0x1000
66 
67 /* TTL numbers are in ms. */
68 #define	MAX_FLOW_TTL	(3600 * MS_PER_S)
69 #define	MIN_FLOW_TTL	1
70 #define	DEF_FLOW_TTL	MS_PER_S
71 
72 #define MAX_FRAG_NUM RTE_LIBRTE_IP_FRAG_MAX_FRAG
73 
74 /* Should be power of two. */
75 #define	IP_FRAG_TBL_BUCKET_ENTRIES	16
76 
77 static uint32_t max_flow_num = DEF_FLOW_NUM;
78 static uint32_t max_flow_ttl = DEF_FLOW_TTL;
79 
80 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
81 
82 #define NB_SOCKETS 8
83 
84 /* Configure how many packets ahead to prefetch, when reading packets */
85 #define PREFETCH_OFFSET	3
86 
87 /*
88  * Configurable number of RX/TX ring descriptors
89  */
90 #define RTE_TEST_RX_DESC_DEFAULT 1024
91 #define RTE_TEST_TX_DESC_DEFAULT 1024
92 
93 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
94 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
95 
96 /* ethernet addresses of ports */
97 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
98 
99 #ifndef IPv4_BYTES
100 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8
101 #define IPv4_BYTES(addr) \
102 		(uint8_t) (((addr) >> 24) & 0xFF),\
103 		(uint8_t) (((addr) >> 16) & 0xFF),\
104 		(uint8_t) (((addr) >> 8) & 0xFF),\
105 		(uint8_t) ((addr) & 0xFF)
106 #endif
107 
108 #ifndef IPv6_BYTES
109 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
110                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
111 #define IPv6_BYTES(addr) \
112 	addr[0],  addr[1], addr[2],  addr[3], \
113 	addr[4],  addr[5], addr[6],  addr[7], \
114 	addr[8],  addr[9], addr[10], addr[11],\
115 	addr[12], addr[13],addr[14], addr[15]
116 #endif
117 
118 #define IPV6_ADDR_LEN 16
119 
120 /* mask of enabled ports */
121 static uint32_t enabled_port_mask = 0;
122 
123 static int rx_queue_per_lcore = 1;
124 
125 struct mbuf_table {
126 	uint32_t len;
127 	uint32_t head;
128 	uint32_t tail;
129 	struct rte_mbuf *m_table[0];
130 };
131 
132 struct rx_queue {
133 	struct rte_ip_frag_tbl *frag_tbl;
134 	struct rte_mempool *pool;
135 	struct rte_lpm *lpm;
136 	struct rte_lpm6 *lpm6;
137 	uint16_t portid;
138 };
139 
140 struct tx_lcore_stat {
141 	uint64_t call;
142 	uint64_t drop;
143 	uint64_t queue;
144 	uint64_t send;
145 };
146 
147 #define MAX_RX_QUEUE_PER_LCORE 16
148 #define MAX_TX_QUEUE_PER_PORT 16
149 #define MAX_RX_QUEUE_PER_PORT 128
150 
151 struct lcore_queue_conf {
152 	uint16_t n_rx_queue;
153 	struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
154 	uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
155 	struct rte_ip_frag_death_row death_row;
156 	struct mbuf_table *tx_mbufs[RTE_MAX_ETHPORTS];
157 	struct tx_lcore_stat tx_stat;
158 } __rte_cache_aligned;
159 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
160 
161 static struct rte_eth_conf port_conf = {
162 	.rxmode = {
163 		.mq_mode        = RTE_ETH_MQ_RX_RSS,
164 		.mtu = JUMBO_FRAME_MAX_SIZE - RTE_ETHER_HDR_LEN -
165 			RTE_ETHER_CRC_LEN,
166 		.split_hdr_size = 0,
167 		.offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM,
168 	},
169 	.rx_adv_conf = {
170 			.rss_conf = {
171 				.rss_key = NULL,
172 				.rss_hf = RTE_ETH_RSS_IP,
173 		},
174 	},
175 	.txmode = {
176 		.mq_mode = RTE_ETH_MQ_TX_NONE,
177 		.offloads = (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
178 			     RTE_ETH_TX_OFFLOAD_MULTI_SEGS),
179 	},
180 };
181 
182 /*
183  * IPv4 forwarding table
184  */
185 struct l3fwd_ipv4_route {
186 	uint32_t ip;
187 	uint8_t  depth;
188 	uint8_t  if_out;
189 };
190 
191 /* Default l3fwd_ipv4_route_array table. 8< */
192 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
193 		{RTE_IPV4(100,10,0,0), 16, 0},
194 		{RTE_IPV4(100,20,0,0), 16, 1},
195 		{RTE_IPV4(100,30,0,0), 16, 2},
196 		{RTE_IPV4(100,40,0,0), 16, 3},
197 		{RTE_IPV4(100,50,0,0), 16, 4},
198 		{RTE_IPV4(100,60,0,0), 16, 5},
199 		{RTE_IPV4(100,70,0,0), 16, 6},
200 		{RTE_IPV4(100,80,0,0), 16, 7},
201 };
202 /* >8 End of default l3fwd_ipv4_route_array table. */
203 
204 /*
205  * IPv6 forwarding table
206  */
207 
208 struct l3fwd_ipv6_route {
209 	uint8_t ip[IPV6_ADDR_LEN];
210 	uint8_t depth;
211 	uint8_t if_out;
212 };
213 
214 /* Default l3fwd_ipv6_route_array table. 8< */
215 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
216 	{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
217 	{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
218 	{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
219 	{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
220 	{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
221 	{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
222 	{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
223 	{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
224 };
225 /* >8 End of default l3fwd_ipv6_route_array table. */
226 
227 #define LPM_MAX_RULES         1024
228 #define LPM6_MAX_RULES         1024
229 #define LPM6_NUMBER_TBL8S (1 << 16)
230 
231 struct rte_lpm6_config lpm6_config = {
232 		.max_rules = LPM6_MAX_RULES,
233 		.number_tbl8s = LPM6_NUMBER_TBL8S,
234 		.flags = 0
235 };
236 
237 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES];
238 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES];
239 
240 #ifdef RTE_LIBRTE_IP_FRAG_TBL_STAT
241 #define TX_LCORE_STAT_UPDATE(s, f, v)   ((s)->f += (v))
242 #else
243 #define TX_LCORE_STAT_UPDATE(s, f, v)   do {} while (0)
244 #endif /* RTE_LIBRTE_IP_FRAG_TBL_STAT */
245 
246 /*
247  * If number of queued packets reached given threahold, then
248  * send burst of packets on an output interface.
249  */
250 static inline uint32_t
251 send_burst(struct lcore_queue_conf *qconf, uint32_t thresh, uint16_t port)
252 {
253 	uint32_t fill, len, k, n;
254 	struct mbuf_table *txmb;
255 
256 	txmb = qconf->tx_mbufs[port];
257 	len = txmb->len;
258 
259 	if ((int32_t)(fill = txmb->head - txmb->tail) < 0)
260 		fill += len;
261 
262 	if (fill >= thresh) {
263 		n = RTE_MIN(len - txmb->tail, fill);
264 
265 		k = rte_eth_tx_burst(port, qconf->tx_queue_id[port],
266 			txmb->m_table + txmb->tail, (uint16_t)n);
267 
268 		TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1);
269 		TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k);
270 
271 		fill -= k;
272 		if ((txmb->tail += k) == len)
273 			txmb->tail = 0;
274 	}
275 
276 	return fill;
277 }
278 
279 /* Enqueue a single packet, and send burst if queue is filled */
280 static inline int
281 send_single_packet(struct rte_mbuf *m, uint16_t port)
282 {
283 	uint32_t fill, lcore_id, len;
284 	struct lcore_queue_conf *qconf;
285 	struct mbuf_table *txmb;
286 
287 	lcore_id = rte_lcore_id();
288 	qconf = &lcore_queue_conf[lcore_id];
289 
290 	txmb = qconf->tx_mbufs[port];
291 	len = txmb->len;
292 
293 	fill = send_burst(qconf, MAX_PKT_BURST, port);
294 
295 	if (fill == len - 1) {
296 		TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1);
297 		rte_pktmbuf_free(txmb->m_table[txmb->tail]);
298 		if (++txmb->tail == len)
299 			txmb->tail = 0;
300 	}
301 
302 	TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1);
303 	txmb->m_table[txmb->head] = m;
304 	if(++txmb->head == len)
305 		txmb->head = 0;
306 
307 	return 0;
308 }
309 
310 static inline void
311 reassemble(struct rte_mbuf *m, uint16_t portid, uint32_t queue,
312 	struct lcore_queue_conf *qconf, uint64_t tms)
313 {
314 	struct rte_ether_hdr *eth_hdr;
315 	struct rte_ip_frag_tbl *tbl;
316 	struct rte_ip_frag_death_row *dr;
317 	struct rx_queue *rxq;
318 	void *d_addr_bytes;
319 	uint32_t next_hop;
320 	uint16_t dst_port;
321 
322 	rxq = &qconf->rx_queue_list[queue];
323 
324 	eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
325 
326 	dst_port = portid;
327 
328 	/* if packet is IPv4 */
329 	if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
330 		struct rte_ipv4_hdr *ip_hdr;
331 		uint32_t ip_dst;
332 
333 		ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
334 
335 		 /* if it is a fragmented packet, then try to reassemble. */
336 		if (rte_ipv4_frag_pkt_is_fragmented(ip_hdr)) {
337 			struct rte_mbuf *mo;
338 
339 			tbl = rxq->frag_tbl;
340 			dr = &qconf->death_row;
341 
342 			/* prepare mbuf: setup l2_len/l3_len. */
343 			m->l2_len = sizeof(*eth_hdr);
344 			m->l3_len = sizeof(*ip_hdr);
345 
346 			/* process this fragment. */
347 			mo = rte_ipv4_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr);
348 			if (mo == NULL)
349 				/* no packet to send out. */
350 				return;
351 
352 			/* we have our packet reassembled. */
353 			if (mo != m) {
354 				m = mo;
355 				eth_hdr = rte_pktmbuf_mtod(m,
356 					struct rte_ether_hdr *);
357 				ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1);
358 			}
359 
360 			/* update offloading flags */
361 			m->ol_flags |= (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IP_CKSUM);
362 		}
363 		ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
364 
365 		/* Find destination port */
366 		if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 &&
367 				(enabled_port_mask & 1 << next_hop) != 0) {
368 			dst_port = next_hop;
369 		}
370 
371 		eth_hdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4);
372 	} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
373 		/* if packet is IPv6 */
374 		struct rte_ipv6_fragment_ext *frag_hdr;
375 		struct rte_ipv6_hdr *ip_hdr;
376 
377 		ip_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1);
378 
379 		frag_hdr = rte_ipv6_frag_get_ipv6_fragment_header(ip_hdr);
380 
381 		if (frag_hdr != NULL) {
382 			struct rte_mbuf *mo;
383 
384 			tbl = rxq->frag_tbl;
385 			dr  = &qconf->death_row;
386 
387 			/* prepare mbuf: setup l2_len/l3_len. */
388 			m->l2_len = sizeof(*eth_hdr);
389 			m->l3_len = sizeof(*ip_hdr) + sizeof(*frag_hdr);
390 
391 			mo = rte_ipv6_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr, frag_hdr);
392 			if (mo == NULL)
393 				return;
394 
395 			if (mo != m) {
396 				m = mo;
397 				eth_hdr = rte_pktmbuf_mtod(m,
398 							struct rte_ether_hdr *);
399 				ip_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1);
400 			}
401 		}
402 
403 		/* Find destination port */
404 		if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr,
405 						&next_hop) == 0 &&
406 				(enabled_port_mask & 1 << next_hop) != 0) {
407 			dst_port = next_hop;
408 		}
409 
410 		eth_hdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV6);
411 	}
412 	/* if packet wasn't IPv4 or IPv6, it's forwarded to the port it came from */
413 
414 	/* 02:00:00:00:00:xx */
415 	d_addr_bytes = &eth_hdr->dst_addr.addr_bytes[0];
416 	*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
417 
418 	/* src addr */
419 	rte_ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->src_addr);
420 
421 	send_single_packet(m, dst_port);
422 }
423 
424 /* main processing loop */
425 static int
426 main_loop(__rte_unused void *dummy)
427 {
428 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
429 	unsigned lcore_id;
430 	uint64_t diff_tsc, cur_tsc, prev_tsc;
431 	int i, j, nb_rx;
432 	uint16_t portid;
433 	struct lcore_queue_conf *qconf;
434 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
435 
436 	prev_tsc = 0;
437 
438 	lcore_id = rte_lcore_id();
439 	qconf = &lcore_queue_conf[lcore_id];
440 
441 	if (qconf->n_rx_queue == 0) {
442 		RTE_LOG(INFO, IP_RSMBL, "lcore %u has nothing to do\n", lcore_id);
443 		return 0;
444 	}
445 
446 	RTE_LOG(INFO, IP_RSMBL, "entering main loop on lcore %u\n", lcore_id);
447 
448 	for (i = 0; i < qconf->n_rx_queue; i++) {
449 
450 		portid = qconf->rx_queue_list[i].portid;
451 		RTE_LOG(INFO, IP_RSMBL, " -- lcoreid=%u portid=%u\n", lcore_id,
452 			portid);
453 	}
454 
455 	while (1) {
456 
457 		cur_tsc = rte_rdtsc();
458 
459 		/*
460 		 * TX burst queue drain
461 		 */
462 		diff_tsc = cur_tsc - prev_tsc;
463 		if (unlikely(diff_tsc > drain_tsc)) {
464 
465 			/*
466 			 * This could be optimized (use queueid instead of
467 			 * portid), but it is not called so often
468 			 */
469 			for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
470 				if ((enabled_port_mask & (1 << portid)) != 0)
471 					send_burst(qconf, 1, portid);
472 			}
473 
474 			prev_tsc = cur_tsc;
475 		}
476 
477 		/*
478 		 * Read packet from RX queues
479 		 */
480 		for (i = 0; i < qconf->n_rx_queue; ++i) {
481 
482 			portid = qconf->rx_queue_list[i].portid;
483 
484 			nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
485 				MAX_PKT_BURST);
486 
487 			/* Prefetch first packets */
488 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
489 				rte_prefetch0(rte_pktmbuf_mtod(
490 						pkts_burst[j], void *));
491 			}
492 
493 			/* Prefetch and forward already prefetched packets */
494 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
495 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
496 					j + PREFETCH_OFFSET], void *));
497 				reassemble(pkts_burst[j], portid,
498 					i, qconf, cur_tsc);
499 			}
500 
501 			/* Forward remaining prefetched packets */
502 			for (; j < nb_rx; j++) {
503 				reassemble(pkts_burst[j], portid,
504 					i, qconf, cur_tsc);
505 			}
506 
507 			rte_ip_frag_free_death_row(&qconf->death_row,
508 				PREFETCH_OFFSET);
509 		}
510 	}
511 }
512 
513 /* display usage */
514 static void
515 print_usage(const char *prgname)
516 {
517 	printf("%s [EAL options] -- -p PORTMASK [-q NQ]"
518 		"  [--maxflows=<flows>]  [--flowttl=<ttl>[(s|ms)]]\n"
519 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
520 		"  -q NQ: number of RX queues per lcore\n"
521 		"  --maxflows=<flows>: optional, maximum number of flows "
522 		"supported\n"
523 		"  --flowttl=<ttl>[(s|ms)]: optional, maximum TTL for each "
524 		"flow\n",
525 		prgname);
526 }
527 
528 static uint32_t
529 parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val)
530 {
531 	char *end;
532 	uint64_t v;
533 
534 	/* parse decimal string */
535 	errno = 0;
536 	v = strtoul(str, &end, 10);
537 	if (errno != 0 || *end != '\0')
538 		return -EINVAL;
539 
540 	if (v < min || v > max)
541 		return -EINVAL;
542 
543 	*val = (uint32_t)v;
544 	return 0;
545 }
546 
547 static int
548 parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val)
549 {
550 	char *end;
551 	uint64_t v;
552 
553 	static const char frmt_sec[] = "s";
554 	static const char frmt_msec[] = "ms";
555 
556 	/* parse decimal string */
557 	errno = 0;
558 	v = strtoul(str, &end, 10);
559 	if (errno != 0)
560 		return -EINVAL;
561 
562 	if (*end != '\0') {
563 		if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0)
564 			v *= MS_PER_S;
565 		else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0)
566 			return -EINVAL;
567 	}
568 
569 	if (v < min || v > max)
570 		return -EINVAL;
571 
572 	*val = (uint32_t)v;
573 	return 0;
574 }
575 
576 static int
577 parse_portmask(const char *portmask)
578 {
579 	char *end = NULL;
580 	unsigned long pm;
581 
582 	/* parse hexadecimal string */
583 	pm = strtoul(portmask, &end, 16);
584 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
585 		return 0;
586 
587 	return pm;
588 }
589 
590 static int
591 parse_nqueue(const char *q_arg)
592 {
593 	char *end = NULL;
594 	unsigned long n;
595 
596 	printf("%p\n", q_arg);
597 
598 	/* parse hexadecimal string */
599 	n = strtoul(q_arg, &end, 10);
600 	if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
601 		return -1;
602 	if (n == 0)
603 		return -1;
604 	if (n >= MAX_RX_QUEUE_PER_LCORE)
605 		return -1;
606 
607 	return n;
608 }
609 
610 /* Parse the argument given in the command line of the application */
611 static int
612 parse_args(int argc, char **argv)
613 {
614 	int opt, ret;
615 	char **argvopt;
616 	int option_index;
617 	char *prgname = argv[0];
618 	static struct option lgopts[] = {
619 		{"maxflows", 1, 0, 0},
620 		{"flowttl", 1, 0, 0},
621 		{NULL, 0, 0, 0}
622 	};
623 
624 	argvopt = argv;
625 
626 	while ((opt = getopt_long(argc, argvopt, "p:q:",
627 				lgopts, &option_index)) != EOF) {
628 
629 		switch (opt) {
630 		/* portmask */
631 		case 'p':
632 			enabled_port_mask = parse_portmask(optarg);
633 			if (enabled_port_mask == 0) {
634 				printf("invalid portmask\n");
635 				print_usage(prgname);
636 				return -1;
637 			}
638 			break;
639 
640 		/* nqueue */
641 		case 'q':
642 			rx_queue_per_lcore = parse_nqueue(optarg);
643 			if (rx_queue_per_lcore < 0) {
644 				printf("invalid queue number\n");
645 				print_usage(prgname);
646 				return -1;
647 			}
648 			break;
649 
650 		/* long options */
651 		case 0:
652 			if (!strncmp(lgopts[option_index].name,
653 					"maxflows", 8)) {
654 				if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM,
655 						MAX_FLOW_NUM,
656 						&max_flow_num)) != 0) {
657 					printf("invalid value: \"%s\" for "
658 						"parameter %s\n",
659 						optarg,
660 						lgopts[option_index].name);
661 					print_usage(prgname);
662 					return ret;
663 				}
664 			}
665 
666 			if (!strncmp(lgopts[option_index].name, "flowttl", 7)) {
667 				if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL,
668 						MAX_FLOW_TTL,
669 						&max_flow_ttl)) != 0) {
670 					printf("invalid value: \"%s\" for "
671 						"parameter %s\n",
672 						optarg,
673 						lgopts[option_index].name);
674 					print_usage(prgname);
675 					return ret;
676 				}
677 			}
678 
679 			break;
680 
681 		default:
682 			print_usage(prgname);
683 			return -1;
684 		}
685 	}
686 
687 	if (optind >= 0)
688 		argv[optind-1] = prgname;
689 
690 	ret = optind-1;
691 	optind = 1; /* reset getopt lib */
692 	return ret;
693 }
694 
695 static void
696 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
697 {
698 	char buf[RTE_ETHER_ADDR_FMT_SIZE];
699 	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
700 	printf("%s%s", name, buf);
701 }
702 
703 /* Check the link status of all ports in up to 9s, and print them finally */
704 static void
705 check_all_ports_link_status(uint32_t port_mask)
706 {
707 #define CHECK_INTERVAL 100 /* 100ms */
708 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
709 	uint16_t portid;
710 	uint8_t count, all_ports_up, print_flag = 0;
711 	struct rte_eth_link link;
712 	int ret;
713 	char link_status_text[RTE_ETH_LINK_MAX_STR_LEN];
714 
715 	printf("\nChecking link status");
716 	fflush(stdout);
717 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
718 		all_ports_up = 1;
719 		RTE_ETH_FOREACH_DEV(portid) {
720 			if ((port_mask & (1 << portid)) == 0)
721 				continue;
722 			memset(&link, 0, sizeof(link));
723 			ret = rte_eth_link_get_nowait(portid, &link);
724 			if (ret < 0) {
725 				all_ports_up = 0;
726 				if (print_flag == 1)
727 					printf("Port %u link get failed: %s\n",
728 						portid, rte_strerror(-ret));
729 				continue;
730 			}
731 			/* print link status if flag set */
732 			if (print_flag == 1) {
733 				rte_eth_link_to_str(link_status_text,
734 					sizeof(link_status_text), &link);
735 				printf("Port %d %s\n", portid,
736 				       link_status_text);
737 				continue;
738 			}
739 			/* clear all_ports_up flag if any link down */
740 			if (link.link_status == RTE_ETH_LINK_DOWN) {
741 				all_ports_up = 0;
742 				break;
743 			}
744 		}
745 		/* after finally printing all link status, get out */
746 		if (print_flag == 1)
747 			break;
748 
749 		if (all_ports_up == 0) {
750 			printf(".");
751 			fflush(stdout);
752 			rte_delay_ms(CHECK_INTERVAL);
753 		}
754 
755 		/* set the print_flag if all ports up or timeout */
756 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
757 			print_flag = 1;
758 			printf("\ndone\n");
759 		}
760 	}
761 }
762 
763 static int
764 init_routing_table(void)
765 {
766 	struct rte_lpm *lpm;
767 	struct rte_lpm6 *lpm6;
768 	int socket, ret;
769 	unsigned i;
770 
771 	for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
772 		if (socket_lpm[socket]) {
773 			lpm = socket_lpm[socket];
774 			/* populate the LPM table */
775 			for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) {
776 				ret = rte_lpm_add(lpm,
777 					l3fwd_ipv4_route_array[i].ip,
778 					l3fwd_ipv4_route_array[i].depth,
779 					l3fwd_ipv4_route_array[i].if_out);
780 
781 				if (ret < 0) {
782 					RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd "
783 						"LPM table\n", i);
784 					return -1;
785 				}
786 
787 				RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv4_BYTES_FMT
788 						"/%d (port %d)\n",
789 					socket,
790 					IPv4_BYTES(l3fwd_ipv4_route_array[i].ip),
791 					l3fwd_ipv4_route_array[i].depth,
792 					l3fwd_ipv4_route_array[i].if_out);
793 			}
794 		}
795 
796 		if (socket_lpm6[socket]) {
797 			lpm6 = socket_lpm6[socket];
798 			/* populate the LPM6 table */
799 			for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) {
800 				ret = rte_lpm6_add(lpm6,
801 					l3fwd_ipv6_route_array[i].ip,
802 					l3fwd_ipv6_route_array[i].depth,
803 					l3fwd_ipv6_route_array[i].if_out);
804 
805 				if (ret < 0) {
806 					RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd "
807 						"LPM6 table\n", i);
808 					return -1;
809 				}
810 
811 				RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv6_BYTES_FMT
812 						"/%d (port %d)\n",
813 					socket,
814 					IPv6_BYTES(l3fwd_ipv6_route_array[i].ip),
815 					l3fwd_ipv6_route_array[i].depth,
816 					l3fwd_ipv6_route_array[i].if_out);
817 			}
818 		}
819 	}
820 	return 0;
821 }
822 
823 static int
824 setup_port_tbl(struct lcore_queue_conf *qconf, uint32_t lcore, int socket,
825 	uint32_t port)
826 {
827 	struct mbuf_table *mtb;
828 	uint32_t n;
829 	size_t sz;
830 
831 	n = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST);
832 	sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) *  n;
833 
834 	if ((mtb = rte_zmalloc_socket(__func__, sz, RTE_CACHE_LINE_SIZE,
835 			socket)) == NULL) {
836 		RTE_LOG(ERR, IP_RSMBL, "%s() for lcore: %u, port: %u "
837 			"failed to allocate %zu bytes\n",
838 			__func__, lcore, port, sz);
839 		return -1;
840 	}
841 
842 	mtb->len = n;
843 	qconf->tx_mbufs[port] = mtb;
844 
845 	return 0;
846 }
847 
848 static int
849 setup_queue_tbl(struct rx_queue *rxq, uint32_t lcore, uint32_t queue)
850 {
851 	int socket;
852 	uint32_t nb_mbuf;
853 	uint64_t frag_cycles;
854 	char buf[RTE_MEMPOOL_NAMESIZE];
855 
856 	socket = rte_lcore_to_socket_id(lcore);
857 	if (socket == SOCKET_ID_ANY)
858 		socket = 0;
859 
860 	/* Each table entry holds information about packet fragmentation. 8< */
861 	frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S *
862 		max_flow_ttl;
863 
864 	if ((rxq->frag_tbl = rte_ip_frag_table_create(max_flow_num,
865 			IP_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles,
866 			socket)) == NULL) {
867 		RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on "
868 			"lcore: %u for queue: %u failed\n",
869 			max_flow_num, lcore, queue);
870 		return -1;
871 	}
872 	/* >8 End of holding packet fragmentation. */
873 
874 	/*
875 	 * At any given moment up to <max_flow_num * (MAX_FRAG_NUM)>
876 	 * mbufs could be stored int the fragment table.
877 	 * Plus, each TX queue can hold up to <max_flow_num> packets.
878 	 */
879 
880 	/* mbufs stored int the gragment table. 8< */
881 	nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM;
882 	nb_mbuf *= (port_conf.rxmode.mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN
883 			+ BUF_SIZE - 1) / BUF_SIZE;
884 	nb_mbuf *= 2; /* ipv4 and ipv6 */
885 	nb_mbuf += nb_rxd + nb_txd;
886 
887 	nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF);
888 
889 	snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);
890 
891 	rxq->pool = rte_pktmbuf_pool_create(buf, nb_mbuf, MEMPOOL_CACHE_SIZE, 0,
892 					    MBUF_DATA_SIZE, socket);
893 	if (rxq->pool == NULL) {
894 		RTE_LOG(ERR, IP_RSMBL,
895 			"rte_pktmbuf_pool_create(%s) failed", buf);
896 		return -1;
897 	}
898 	/* >8 End of mbufs stored int the fragmentation table. */
899 
900 	return 0;
901 }
902 
903 static int
904 init_mem(void)
905 {
906 	char buf[PATH_MAX];
907 	struct rte_lpm *lpm;
908 	struct rte_lpm6 *lpm6;
909 	struct rte_lpm_config lpm_config;
910 	int socket;
911 	unsigned lcore_id;
912 
913 	/* traverse through lcores and initialize structures on each socket */
914 
915 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
916 
917 		if (rte_lcore_is_enabled(lcore_id) == 0)
918 			continue;
919 
920 		socket = rte_lcore_to_socket_id(lcore_id);
921 
922 		if (socket == SOCKET_ID_ANY)
923 			socket = 0;
924 
925 		if (socket_lpm[socket] == NULL) {
926 			RTE_LOG(INFO, IP_RSMBL, "Creating LPM table on socket %i\n", socket);
927 			snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket);
928 
929 			lpm_config.max_rules = LPM_MAX_RULES;
930 			lpm_config.number_tbl8s = 256;
931 			lpm_config.flags = 0;
932 
933 			lpm = rte_lpm_create(buf, socket, &lpm_config);
934 			if (lpm == NULL) {
935 				RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n");
936 				return -1;
937 			}
938 			socket_lpm[socket] = lpm;
939 		}
940 
941 		if (socket_lpm6[socket] == NULL) {
942 			RTE_LOG(INFO, IP_RSMBL, "Creating LPM6 table on socket %i\n", socket);
943 			snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket);
944 
945 			lpm6 = rte_lpm6_create(buf, socket, &lpm6_config);
946 			if (lpm6 == NULL) {
947 				RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n");
948 				return -1;
949 			}
950 			socket_lpm6[socket] = lpm6;
951 		}
952 	}
953 
954 	return 0;
955 }
956 
957 static void
958 queue_dump_stat(void)
959 {
960 	uint32_t i, lcore;
961 	const struct lcore_queue_conf *qconf;
962 
963 	for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) {
964 		if (rte_lcore_is_enabled(lcore) == 0)
965 			continue;
966 
967 		qconf = &lcore_queue_conf[lcore];
968 		for (i = 0; i < qconf->n_rx_queue; i++) {
969 
970 			fprintf(stdout, " -- lcoreid=%u portid=%u "
971 				"frag tbl stat:\n",
972 				lcore,  qconf->rx_queue_list[i].portid);
973 			rte_ip_frag_table_statistics_dump(stdout,
974 					qconf->rx_queue_list[i].frag_tbl);
975 			fprintf(stdout, "TX bursts:\t%" PRIu64 "\n"
976 				"TX packets _queued:\t%" PRIu64 "\n"
977 				"TX packets dropped:\t%" PRIu64 "\n"
978 				"TX packets send:\t%" PRIu64 "\n",
979 				qconf->tx_stat.call,
980 				qconf->tx_stat.queue,
981 				qconf->tx_stat.drop,
982 				qconf->tx_stat.send);
983 		}
984 	}
985 }
986 
987 static void
988 signal_handler(int signum)
989 {
990 	queue_dump_stat();
991 	if (signum != SIGUSR1)
992 		rte_exit(0, "received signal: %d, exiting\n", signum);
993 }
994 
995 int
996 main(int argc, char **argv)
997 {
998 	struct lcore_queue_conf *qconf;
999 	struct rte_eth_dev_info dev_info;
1000 	struct rte_eth_txconf *txconf;
1001 	struct rx_queue *rxq;
1002 	int ret, socket;
1003 	unsigned nb_ports;
1004 	uint16_t queueid;
1005 	unsigned lcore_id = 0, rx_lcore_id = 0;
1006 	uint32_t n_tx_queue, nb_lcores;
1007 	uint16_t portid;
1008 
1009 	/* init EAL */
1010 	ret = rte_eal_init(argc, argv);
1011 	if (ret < 0)
1012 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1013 	argc -= ret;
1014 	argv += ret;
1015 
1016 	/* parse application arguments (after the EAL ones) */
1017 	ret = parse_args(argc, argv);
1018 	if (ret < 0)
1019 		rte_exit(EXIT_FAILURE, "Invalid IP reassembly parameters\n");
1020 
1021 	nb_ports = rte_eth_dev_count_avail();
1022 	if (nb_ports == 0)
1023 		rte_exit(EXIT_FAILURE, "No ports found!\n");
1024 
1025 	nb_lcores = rte_lcore_count();
1026 
1027 	/* initialize structures (mempools, lpm etc.) */
1028 	if (init_mem() < 0)
1029 		rte_panic("Cannot initialize memory structures!\n");
1030 
1031 	/* check if portmask has non-existent ports */
1032 	if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned)))
1033 		rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n");
1034 
1035 	/* initialize all ports */
1036 	RTE_ETH_FOREACH_DEV(portid) {
1037 		struct rte_eth_rxconf rxq_conf;
1038 		struct rte_eth_conf local_port_conf = port_conf;
1039 
1040 		/* skip ports that are not enabled */
1041 		if ((enabled_port_mask & (1 << portid)) == 0) {
1042 			printf("\nSkipping disabled port %d\n", portid);
1043 			continue;
1044 		}
1045 
1046 		qconf = &lcore_queue_conf[rx_lcore_id];
1047 
1048 		/* limit the frame size to the maximum supported by NIC */
1049 		ret = rte_eth_dev_info_get(portid, &dev_info);
1050 		if (ret != 0)
1051 			rte_exit(EXIT_FAILURE,
1052 				"Error during getting device (port %u) info: %s\n",
1053 				portid, strerror(-ret));
1054 
1055 		local_port_conf.rxmode.mtu = RTE_MIN(
1056 		    dev_info.max_mtu,
1057 		    local_port_conf.rxmode.mtu);
1058 
1059 		/* get the lcore_id for this port */
1060 		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
1061 			   qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
1062 
1063 			rx_lcore_id++;
1064 			if (rx_lcore_id >= RTE_MAX_LCORE)
1065 				rte_exit(EXIT_FAILURE, "Not enough cores\n");
1066 
1067 			qconf = &lcore_queue_conf[rx_lcore_id];
1068 		}
1069 
1070 		socket = rte_lcore_to_socket_id(portid);
1071 		if (socket == SOCKET_ID_ANY)
1072 			socket = 0;
1073 
1074 		queueid = qconf->n_rx_queue;
1075 		rxq = &qconf->rx_queue_list[queueid];
1076 		rxq->portid = portid;
1077 		rxq->lpm = socket_lpm[socket];
1078 		rxq->lpm6 = socket_lpm6[socket];
1079 
1080 		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
1081 						       &nb_txd);
1082 		if (ret < 0)
1083 			rte_exit(EXIT_FAILURE,
1084 				 "Cannot adjust number of descriptors: err=%d, port=%d\n",
1085 				 ret, portid);
1086 
1087 		if (setup_queue_tbl(rxq, rx_lcore_id, queueid) < 0)
1088 			rte_exit(EXIT_FAILURE, "Failed to set up queue table\n");
1089 		qconf->n_rx_queue++;
1090 
1091 		/* init port */
1092 		printf("Initializing port %d ... ", portid );
1093 		fflush(stdout);
1094 
1095 		n_tx_queue = nb_lcores;
1096 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
1097 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
1098 		if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
1099 			local_port_conf.txmode.offloads |=
1100 				RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
1101 
1102 		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
1103 			dev_info.flow_type_rss_offloads;
1104 		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
1105 				port_conf.rx_adv_conf.rss_conf.rss_hf) {
1106 			printf("Port %u modified RSS hash function based on hardware support,"
1107 				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
1108 				portid,
1109 				port_conf.rx_adv_conf.rss_conf.rss_hf,
1110 				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
1111 		}
1112 
1113 		ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
1114 					    &local_port_conf);
1115 		if (ret < 0) {
1116 			printf("\n");
1117 			rte_exit(EXIT_FAILURE, "Cannot configure device: "
1118 				"err=%d, port=%d\n",
1119 				ret, portid);
1120 		}
1121 
1122 		/* init one RX queue */
1123 		rxq_conf = dev_info.default_rxconf;
1124 		rxq_conf.offloads = local_port_conf.rxmode.offloads;
1125 		ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
1126 					     socket, &rxq_conf,
1127 					     rxq->pool);
1128 		if (ret < 0) {
1129 			printf("\n");
1130 			rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
1131 				"err=%d, port=%d\n",
1132 				ret, portid);
1133 		}
1134 
1135 		ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
1136 		if (ret < 0) {
1137 			printf("\n");
1138 			rte_exit(EXIT_FAILURE,
1139 				"rte_eth_macaddr_get: err=%d, port=%d\n",
1140 				ret, portid);
1141 		}
1142 
1143 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
1144 		printf("\n");
1145 
1146 		/* init one TX queue per couple (lcore,port) */
1147 		queueid = 0;
1148 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1149 			if (rte_lcore_is_enabled(lcore_id) == 0)
1150 				continue;
1151 
1152 			socket = (int) rte_lcore_to_socket_id(lcore_id);
1153 
1154 			printf("txq=%u,%d,%d ", lcore_id, queueid, socket);
1155 			fflush(stdout);
1156 
1157 			txconf = &dev_info.default_txconf;
1158 			txconf->offloads = local_port_conf.txmode.offloads;
1159 
1160 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1161 					socket, txconf);
1162 			if (ret < 0)
1163 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
1164 					"port=%d\n", ret, portid);
1165 
1166 			qconf = &lcore_queue_conf[lcore_id];
1167 			qconf->tx_queue_id[portid] = queueid;
1168 			setup_port_tbl(qconf, lcore_id, socket, portid);
1169 			queueid++;
1170 		}
1171 		printf("\n");
1172 	}
1173 
1174 	printf("\n");
1175 
1176 	/* start ports */
1177 	RTE_ETH_FOREACH_DEV(portid) {
1178 		if ((enabled_port_mask & (1 << portid)) == 0) {
1179 			continue;
1180 		}
1181 		/* Start device */
1182 		ret = rte_eth_dev_start(portid);
1183 		if (ret < 0)
1184 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1185 				ret, portid);
1186 
1187 		ret = rte_eth_promiscuous_enable(portid);
1188 		if (ret != 0)
1189 			rte_exit(EXIT_FAILURE,
1190 				"rte_eth_promiscuous_enable: err=%s, port=%d\n",
1191 				rte_strerror(-ret), portid);
1192 	}
1193 
1194 	if (init_routing_table() < 0)
1195 		rte_exit(EXIT_FAILURE, "Cannot init routing table\n");
1196 
1197 	check_all_ports_link_status(enabled_port_mask);
1198 
1199 	signal(SIGUSR1, signal_handler);
1200 	signal(SIGTERM, signal_handler);
1201 	signal(SIGINT, signal_handler);
1202 
1203 	/* launch per-lcore init on every lcore */
1204 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN);
1205 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
1206 		if (rte_eal_wait_lcore(lcore_id) < 0)
1207 			return -1;
1208 	}
1209 
1210 	/* clean up the EAL */
1211 	rte_eal_cleanup();
1212 
1213 	return 0;
1214 }
1215