1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <string.h> 11 #include <sys/queue.h> 12 #include <stdarg.h> 13 #include <errno.h> 14 #include <getopt.h> 15 #include <signal.h> 16 #include <sys/param.h> 17 18 #include <rte_common.h> 19 #include <rte_byteorder.h> 20 #include <rte_log.h> 21 #include <rte_memory.h> 22 #include <rte_memcpy.h> 23 #include <rte_eal.h> 24 #include <rte_launch.h> 25 #include <rte_atomic.h> 26 #include <rte_cycles.h> 27 #include <rte_prefetch.h> 28 #include <rte_lcore.h> 29 #include <rte_per_lcore.h> 30 #include <rte_branch_prediction.h> 31 #include <rte_interrupts.h> 32 #include <rte_random.h> 33 #include <rte_debug.h> 34 #include <rte_ether.h> 35 #include <rte_ethdev.h> 36 #include <rte_mempool.h> 37 #include <rte_mbuf.h> 38 #include <rte_malloc.h> 39 #include <rte_ip.h> 40 #include <rte_tcp.h> 41 #include <rte_udp.h> 42 #include <rte_string_fns.h> 43 #include <rte_lpm.h> 44 #include <rte_lpm6.h> 45 46 #include <rte_ip_frag.h> 47 48 #define MAX_PKT_BURST 32 49 50 51 #define RTE_LOGTYPE_IP_RSMBL RTE_LOGTYPE_USER1 52 53 #define MAX_JUMBO_PKT_LEN 9600 54 55 #define BUF_SIZE RTE_MBUF_DEFAULT_DATAROOM 56 #define MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE 57 58 #define NB_MBUF 8192 59 #define MEMPOOL_CACHE_SIZE 256 60 61 /* allow max jumbo frame 9.5 KB */ 62 #define JUMBO_FRAME_MAX_SIZE 0x2600 63 64 #define MAX_FLOW_NUM UINT16_MAX 65 #define MIN_FLOW_NUM 1 66 #define DEF_FLOW_NUM 0x1000 67 68 /* TTL numbers are in ms. */ 69 #define MAX_FLOW_TTL (3600 * MS_PER_S) 70 #define MIN_FLOW_TTL 1 71 #define DEF_FLOW_TTL MS_PER_S 72 73 #define MAX_FRAG_NUM RTE_LIBRTE_IP_FRAG_MAX_FRAG 74 75 /* Should be power of two. */ 76 #define IP_FRAG_TBL_BUCKET_ENTRIES 16 77 78 static uint32_t max_flow_num = DEF_FLOW_NUM; 79 static uint32_t max_flow_ttl = DEF_FLOW_TTL; 80 81 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 82 83 #define NB_SOCKETS 8 84 85 /* Configure how many packets ahead to prefetch, when reading packets */ 86 #define PREFETCH_OFFSET 3 87 88 /* 89 * Configurable number of RX/TX ring descriptors 90 */ 91 #define RTE_TEST_RX_DESC_DEFAULT 128 92 #define RTE_TEST_TX_DESC_DEFAULT 512 93 94 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; 95 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; 96 97 /* ethernet addresses of ports */ 98 static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 99 100 #ifndef IPv4_BYTES 101 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 102 #define IPv4_BYTES(addr) \ 103 (uint8_t) (((addr) >> 24) & 0xFF),\ 104 (uint8_t) (((addr) >> 16) & 0xFF),\ 105 (uint8_t) (((addr) >> 8) & 0xFF),\ 106 (uint8_t) ((addr) & 0xFF) 107 #endif 108 109 #ifndef IPv6_BYTES 110 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 111 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 112 #define IPv6_BYTES(addr) \ 113 addr[0], addr[1], addr[2], addr[3], \ 114 addr[4], addr[5], addr[6], addr[7], \ 115 addr[8], addr[9], addr[10], addr[11],\ 116 addr[12], addr[13],addr[14], addr[15] 117 #endif 118 119 #define IPV6_ADDR_LEN 16 120 121 /* mask of enabled ports */ 122 static uint32_t enabled_port_mask = 0; 123 124 static int rx_queue_per_lcore = 1; 125 126 struct mbuf_table { 127 uint32_t len; 128 uint32_t head; 129 uint32_t tail; 130 struct rte_mbuf *m_table[0]; 131 }; 132 133 struct rx_queue { 134 struct rte_ip_frag_tbl *frag_tbl; 135 struct rte_mempool *pool; 136 struct rte_lpm *lpm; 137 struct rte_lpm6 *lpm6; 138 uint16_t portid; 139 }; 140 141 struct tx_lcore_stat { 142 uint64_t call; 143 uint64_t drop; 144 uint64_t queue; 145 uint64_t send; 146 }; 147 148 #define MAX_RX_QUEUE_PER_LCORE 16 149 #define MAX_TX_QUEUE_PER_PORT 16 150 #define MAX_RX_QUEUE_PER_PORT 128 151 152 struct lcore_queue_conf { 153 uint16_t n_rx_queue; 154 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 155 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 156 struct rte_ip_frag_death_row death_row; 157 struct mbuf_table *tx_mbufs[RTE_MAX_ETHPORTS]; 158 struct tx_lcore_stat tx_stat; 159 } __rte_cache_aligned; 160 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 161 162 static struct rte_eth_conf port_conf = { 163 .rxmode = { 164 .mq_mode = ETH_MQ_RX_RSS, 165 .max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE, 166 .split_hdr_size = 0, 167 .ignore_offload_bitfield = 1, 168 .offloads = (DEV_RX_OFFLOAD_CHECKSUM | 169 DEV_RX_OFFLOAD_JUMBO_FRAME | 170 DEV_RX_OFFLOAD_CRC_STRIP), 171 }, 172 .rx_adv_conf = { 173 .rss_conf = { 174 .rss_key = NULL, 175 .rss_hf = ETH_RSS_IP, 176 }, 177 }, 178 .txmode = { 179 .mq_mode = ETH_MQ_TX_NONE, 180 .offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM | 181 DEV_TX_OFFLOAD_MULTI_SEGS), 182 }, 183 }; 184 185 /* 186 * IPv4 forwarding table 187 */ 188 struct l3fwd_ipv4_route { 189 uint32_t ip; 190 uint8_t depth; 191 uint8_t if_out; 192 }; 193 194 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 195 {IPv4(100,10,0,0), 16, 0}, 196 {IPv4(100,20,0,0), 16, 1}, 197 {IPv4(100,30,0,0), 16, 2}, 198 {IPv4(100,40,0,0), 16, 3}, 199 {IPv4(100,50,0,0), 16, 4}, 200 {IPv4(100,60,0,0), 16, 5}, 201 {IPv4(100,70,0,0), 16, 6}, 202 {IPv4(100,80,0,0), 16, 7}, 203 }; 204 205 /* 206 * IPv6 forwarding table 207 */ 208 209 struct l3fwd_ipv6_route { 210 uint8_t ip[IPV6_ADDR_LEN]; 211 uint8_t depth; 212 uint8_t if_out; 213 }; 214 215 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 216 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 217 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 218 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 219 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 220 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 221 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 222 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 223 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 224 }; 225 226 #define LPM_MAX_RULES 1024 227 #define LPM6_MAX_RULES 1024 228 #define LPM6_NUMBER_TBL8S (1 << 16) 229 230 struct rte_lpm6_config lpm6_config = { 231 .max_rules = LPM6_MAX_RULES, 232 .number_tbl8s = LPM6_NUMBER_TBL8S, 233 .flags = 0 234 }; 235 236 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 237 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 238 239 #ifdef RTE_LIBRTE_IP_FRAG_TBL_STAT 240 #define TX_LCORE_STAT_UPDATE(s, f, v) ((s)->f += (v)) 241 #else 242 #define TX_LCORE_STAT_UPDATE(s, f, v) do {} while (0) 243 #endif /* RTE_LIBRTE_IP_FRAG_TBL_STAT */ 244 245 /* 246 * If number of queued packets reached given threahold, then 247 * send burst of packets on an output interface. 248 */ 249 static inline uint32_t 250 send_burst(struct lcore_queue_conf *qconf, uint32_t thresh, uint16_t port) 251 { 252 uint32_t fill, len, k, n; 253 struct mbuf_table *txmb; 254 255 txmb = qconf->tx_mbufs[port]; 256 len = txmb->len; 257 258 if ((int32_t)(fill = txmb->head - txmb->tail) < 0) 259 fill += len; 260 261 if (fill >= thresh) { 262 n = RTE_MIN(len - txmb->tail, fill); 263 264 k = rte_eth_tx_burst(port, qconf->tx_queue_id[port], 265 txmb->m_table + txmb->tail, (uint16_t)n); 266 267 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1); 268 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k); 269 270 fill -= k; 271 if ((txmb->tail += k) == len) 272 txmb->tail = 0; 273 } 274 275 return fill; 276 } 277 278 /* Enqueue a single packet, and send burst if queue is filled */ 279 static inline int 280 send_single_packet(struct rte_mbuf *m, uint16_t port) 281 { 282 uint32_t fill, lcore_id, len; 283 struct lcore_queue_conf *qconf; 284 struct mbuf_table *txmb; 285 286 lcore_id = rte_lcore_id(); 287 qconf = &lcore_queue_conf[lcore_id]; 288 289 txmb = qconf->tx_mbufs[port]; 290 len = txmb->len; 291 292 fill = send_burst(qconf, MAX_PKT_BURST, port); 293 294 if (fill == len - 1) { 295 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1); 296 rte_pktmbuf_free(txmb->m_table[txmb->tail]); 297 if (++txmb->tail == len) 298 txmb->tail = 0; 299 } 300 301 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1); 302 txmb->m_table[txmb->head] = m; 303 if(++txmb->head == len) 304 txmb->head = 0; 305 306 return 0; 307 } 308 309 static inline void 310 reassemble(struct rte_mbuf *m, uint16_t portid, uint32_t queue, 311 struct lcore_queue_conf *qconf, uint64_t tms) 312 { 313 struct ether_hdr *eth_hdr; 314 struct rte_ip_frag_tbl *tbl; 315 struct rte_ip_frag_death_row *dr; 316 struct rx_queue *rxq; 317 void *d_addr_bytes; 318 uint32_t next_hop; 319 uint16_t dst_port; 320 321 rxq = &qconf->rx_queue_list[queue]; 322 323 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 324 325 dst_port = portid; 326 327 /* if packet is IPv4 */ 328 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 329 struct ipv4_hdr *ip_hdr; 330 uint32_t ip_dst; 331 332 ip_hdr = (struct ipv4_hdr *)(eth_hdr + 1); 333 334 /* if it is a fragmented packet, then try to reassemble. */ 335 if (rte_ipv4_frag_pkt_is_fragmented(ip_hdr)) { 336 struct rte_mbuf *mo; 337 338 tbl = rxq->frag_tbl; 339 dr = &qconf->death_row; 340 341 /* prepare mbuf: setup l2_len/l3_len. */ 342 m->l2_len = sizeof(*eth_hdr); 343 m->l3_len = sizeof(*ip_hdr); 344 345 /* process this fragment. */ 346 mo = rte_ipv4_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr); 347 if (mo == NULL) 348 /* no packet to send out. */ 349 return; 350 351 /* we have our packet reassembled. */ 352 if (mo != m) { 353 m = mo; 354 eth_hdr = rte_pktmbuf_mtod(m, 355 struct ether_hdr *); 356 ip_hdr = (struct ipv4_hdr *)(eth_hdr + 1); 357 } 358 } 359 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 360 361 /* Find destination port */ 362 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 363 (enabled_port_mask & 1 << next_hop) != 0) { 364 dst_port = next_hop; 365 } 366 367 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4); 368 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 369 /* if packet is IPv6 */ 370 struct ipv6_extension_fragment *frag_hdr; 371 struct ipv6_hdr *ip_hdr; 372 373 ip_hdr = (struct ipv6_hdr *)(eth_hdr + 1); 374 375 frag_hdr = rte_ipv6_frag_get_ipv6_fragment_header(ip_hdr); 376 377 if (frag_hdr != NULL) { 378 struct rte_mbuf *mo; 379 380 tbl = rxq->frag_tbl; 381 dr = &qconf->death_row; 382 383 /* prepare mbuf: setup l2_len/l3_len. */ 384 m->l2_len = sizeof(*eth_hdr); 385 m->l3_len = sizeof(*ip_hdr) + sizeof(*frag_hdr); 386 387 mo = rte_ipv6_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr, frag_hdr); 388 if (mo == NULL) 389 return; 390 391 if (mo != m) { 392 m = mo; 393 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 394 ip_hdr = (struct ipv6_hdr *)(eth_hdr + 1); 395 } 396 } 397 398 /* Find destination port */ 399 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, 400 &next_hop) == 0 && 401 (enabled_port_mask & 1 << next_hop) != 0) { 402 dst_port = next_hop; 403 } 404 405 eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv6); 406 } 407 /* if packet wasn't IPv4 or IPv6, it's forwarded to the port it came from */ 408 409 /* 02:00:00:00:00:xx */ 410 d_addr_bytes = ð_hdr->d_addr.addr_bytes[0]; 411 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40); 412 413 /* src addr */ 414 ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr); 415 416 send_single_packet(m, dst_port); 417 } 418 419 /* main processing loop */ 420 static int 421 main_loop(__attribute__((unused)) void *dummy) 422 { 423 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 424 unsigned lcore_id; 425 uint64_t diff_tsc, cur_tsc, prev_tsc; 426 int i, j, nb_rx; 427 uint16_t portid; 428 struct lcore_queue_conf *qconf; 429 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 430 431 prev_tsc = 0; 432 433 lcore_id = rte_lcore_id(); 434 qconf = &lcore_queue_conf[lcore_id]; 435 436 if (qconf->n_rx_queue == 0) { 437 RTE_LOG(INFO, IP_RSMBL, "lcore %u has nothing to do\n", lcore_id); 438 return 0; 439 } 440 441 RTE_LOG(INFO, IP_RSMBL, "entering main loop on lcore %u\n", lcore_id); 442 443 for (i = 0; i < qconf->n_rx_queue; i++) { 444 445 portid = qconf->rx_queue_list[i].portid; 446 RTE_LOG(INFO, IP_RSMBL, " -- lcoreid=%u portid=%u\n", lcore_id, 447 portid); 448 } 449 450 while (1) { 451 452 cur_tsc = rte_rdtsc(); 453 454 /* 455 * TX burst queue drain 456 */ 457 diff_tsc = cur_tsc - prev_tsc; 458 if (unlikely(diff_tsc > drain_tsc)) { 459 460 /* 461 * This could be optimized (use queueid instead of 462 * portid), but it is not called so often 463 */ 464 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 465 if ((enabled_port_mask & (1 << portid)) != 0) 466 send_burst(qconf, 1, portid); 467 } 468 469 prev_tsc = cur_tsc; 470 } 471 472 /* 473 * Read packet from RX queues 474 */ 475 for (i = 0; i < qconf->n_rx_queue; ++i) { 476 477 portid = qconf->rx_queue_list[i].portid; 478 479 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 480 MAX_PKT_BURST); 481 482 /* Prefetch first packets */ 483 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 484 rte_prefetch0(rte_pktmbuf_mtod( 485 pkts_burst[j], void *)); 486 } 487 488 /* Prefetch and forward already prefetched packets */ 489 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 490 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 491 j + PREFETCH_OFFSET], void *)); 492 reassemble(pkts_burst[j], portid, 493 i, qconf, cur_tsc); 494 } 495 496 /* Forward remaining prefetched packets */ 497 for (; j < nb_rx; j++) { 498 reassemble(pkts_burst[j], portid, 499 i, qconf, cur_tsc); 500 } 501 502 rte_ip_frag_free_death_row(&qconf->death_row, 503 PREFETCH_OFFSET); 504 } 505 } 506 } 507 508 /* display usage */ 509 static void 510 print_usage(const char *prgname) 511 { 512 printf("%s [EAL options] -- -p PORTMASK [-q NQ]" 513 " [--max-pkt-len PKTLEN]" 514 " [--maxflows=<flows>] [--flowttl=<ttl>[(s|ms)]]\n" 515 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 516 " -q NQ: number of RX queues per lcore\n" 517 " --maxflows=<flows>: optional, maximum number of flows " 518 "supported\n" 519 " --flowttl=<ttl>[(s|ms)]: optional, maximum TTL for each " 520 "flow\n", 521 prgname); 522 } 523 524 static uint32_t 525 parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val) 526 { 527 char *end; 528 uint64_t v; 529 530 /* parse decimal string */ 531 errno = 0; 532 v = strtoul(str, &end, 10); 533 if (errno != 0 || *end != '\0') 534 return -EINVAL; 535 536 if (v < min || v > max) 537 return -EINVAL; 538 539 *val = (uint32_t)v; 540 return 0; 541 } 542 543 static int 544 parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val) 545 { 546 char *end; 547 uint64_t v; 548 549 static const char frmt_sec[] = "s"; 550 static const char frmt_msec[] = "ms"; 551 552 /* parse decimal string */ 553 errno = 0; 554 v = strtoul(str, &end, 10); 555 if (errno != 0) 556 return -EINVAL; 557 558 if (*end != '\0') { 559 if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0) 560 v *= MS_PER_S; 561 else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0) 562 return -EINVAL; 563 } 564 565 if (v < min || v > max) 566 return -EINVAL; 567 568 *val = (uint32_t)v; 569 return 0; 570 } 571 572 static int 573 parse_portmask(const char *portmask) 574 { 575 char *end = NULL; 576 unsigned long pm; 577 578 /* parse hexadecimal string */ 579 pm = strtoul(portmask, &end, 16); 580 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 581 return -1; 582 583 if (pm == 0) 584 return -1; 585 586 return pm; 587 } 588 589 static int 590 parse_nqueue(const char *q_arg) 591 { 592 char *end = NULL; 593 unsigned long n; 594 595 printf("%p\n", q_arg); 596 597 /* parse hexadecimal string */ 598 n = strtoul(q_arg, &end, 10); 599 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 600 return -1; 601 if (n == 0) 602 return -1; 603 if (n >= MAX_RX_QUEUE_PER_LCORE) 604 return -1; 605 606 return n; 607 } 608 609 /* Parse the argument given in the command line of the application */ 610 static int 611 parse_args(int argc, char **argv) 612 { 613 int opt, ret; 614 char **argvopt; 615 int option_index; 616 char *prgname = argv[0]; 617 static struct option lgopts[] = { 618 {"max-pkt-len", 1, 0, 0}, 619 {"maxflows", 1, 0, 0}, 620 {"flowttl", 1, 0, 0}, 621 {NULL, 0, 0, 0} 622 }; 623 624 argvopt = argv; 625 626 while ((opt = getopt_long(argc, argvopt, "p:q:", 627 lgopts, &option_index)) != EOF) { 628 629 switch (opt) { 630 /* portmask */ 631 case 'p': 632 enabled_port_mask = parse_portmask(optarg); 633 if (enabled_port_mask == 0) { 634 printf("invalid portmask\n"); 635 print_usage(prgname); 636 return -1; 637 } 638 break; 639 640 /* nqueue */ 641 case 'q': 642 rx_queue_per_lcore = parse_nqueue(optarg); 643 if (rx_queue_per_lcore < 0) { 644 printf("invalid queue number\n"); 645 print_usage(prgname); 646 return -1; 647 } 648 break; 649 650 /* long options */ 651 case 0: 652 if (!strncmp(lgopts[option_index].name, 653 "maxflows", 8)) { 654 if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM, 655 MAX_FLOW_NUM, 656 &max_flow_num)) != 0) { 657 printf("invalid value: \"%s\" for " 658 "parameter %s\n", 659 optarg, 660 lgopts[option_index].name); 661 print_usage(prgname); 662 return ret; 663 } 664 } 665 666 if (!strncmp(lgopts[option_index].name, "flowttl", 7)) { 667 if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL, 668 MAX_FLOW_TTL, 669 &max_flow_ttl)) != 0) { 670 printf("invalid value: \"%s\" for " 671 "parameter %s\n", 672 optarg, 673 lgopts[option_index].name); 674 print_usage(prgname); 675 return ret; 676 } 677 } 678 679 break; 680 681 default: 682 print_usage(prgname); 683 return -1; 684 } 685 } 686 687 if (optind >= 0) 688 argv[optind-1] = prgname; 689 690 ret = optind-1; 691 optind = 1; /* reset getopt lib */ 692 return ret; 693 } 694 695 static void 696 print_ethaddr(const char *name, const struct ether_addr *eth_addr) 697 { 698 char buf[ETHER_ADDR_FMT_SIZE]; 699 ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr); 700 printf("%s%s", name, buf); 701 } 702 703 /* Check the link status of all ports in up to 9s, and print them finally */ 704 static void 705 check_all_ports_link_status(uint16_t port_num, uint32_t port_mask) 706 { 707 #define CHECK_INTERVAL 100 /* 100ms */ 708 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 709 uint16_t portid; 710 uint8_t count, all_ports_up, print_flag = 0; 711 struct rte_eth_link link; 712 713 printf("\nChecking link status"); 714 fflush(stdout); 715 for (count = 0; count <= MAX_CHECK_TIME; count++) { 716 all_ports_up = 1; 717 for (portid = 0; portid < port_num; portid++) { 718 if ((port_mask & (1 << portid)) == 0) 719 continue; 720 memset(&link, 0, sizeof(link)); 721 rte_eth_link_get_nowait(portid, &link); 722 /* print link status if flag set */ 723 if (print_flag == 1) { 724 if (link.link_status) 725 printf( 726 "Port%d Link Up. Speed %u Mbps - %s\n", 727 portid, link.link_speed, 728 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? 729 ("full-duplex") : ("half-duplex\n")); 730 else 731 printf("Port %d Link Down\n", portid); 732 continue; 733 } 734 /* clear all_ports_up flag if any link down */ 735 if (link.link_status == ETH_LINK_DOWN) { 736 all_ports_up = 0; 737 break; 738 } 739 } 740 /* after finally printing all link status, get out */ 741 if (print_flag == 1) 742 break; 743 744 if (all_ports_up == 0) { 745 printf("."); 746 fflush(stdout); 747 rte_delay_ms(CHECK_INTERVAL); 748 } 749 750 /* set the print_flag if all ports up or timeout */ 751 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 752 print_flag = 1; 753 printf("\ndone\n"); 754 } 755 } 756 } 757 758 static int 759 init_routing_table(void) 760 { 761 struct rte_lpm *lpm; 762 struct rte_lpm6 *lpm6; 763 int socket, ret; 764 unsigned i; 765 766 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 767 if (socket_lpm[socket]) { 768 lpm = socket_lpm[socket]; 769 /* populate the LPM table */ 770 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 771 ret = rte_lpm_add(lpm, 772 l3fwd_ipv4_route_array[i].ip, 773 l3fwd_ipv4_route_array[i].depth, 774 l3fwd_ipv4_route_array[i].if_out); 775 776 if (ret < 0) { 777 RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd " 778 "LPM table\n", i); 779 return -1; 780 } 781 782 RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv4_BYTES_FMT 783 "/%d (port %d)\n", 784 socket, 785 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 786 l3fwd_ipv4_route_array[i].depth, 787 l3fwd_ipv4_route_array[i].if_out); 788 } 789 } 790 791 if (socket_lpm6[socket]) { 792 lpm6 = socket_lpm6[socket]; 793 /* populate the LPM6 table */ 794 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 795 ret = rte_lpm6_add(lpm6, 796 l3fwd_ipv6_route_array[i].ip, 797 l3fwd_ipv6_route_array[i].depth, 798 l3fwd_ipv6_route_array[i].if_out); 799 800 if (ret < 0) { 801 RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd " 802 "LPM6 table\n", i); 803 return -1; 804 } 805 806 RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv6_BYTES_FMT 807 "/%d (port %d)\n", 808 socket, 809 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 810 l3fwd_ipv6_route_array[i].depth, 811 l3fwd_ipv6_route_array[i].if_out); 812 } 813 } 814 } 815 return 0; 816 } 817 818 static int 819 setup_port_tbl(struct lcore_queue_conf *qconf, uint32_t lcore, int socket, 820 uint32_t port) 821 { 822 struct mbuf_table *mtb; 823 uint32_t n; 824 size_t sz; 825 826 n = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST); 827 sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) * n; 828 829 if ((mtb = rte_zmalloc_socket(__func__, sz, RTE_CACHE_LINE_SIZE, 830 socket)) == NULL) { 831 RTE_LOG(ERR, IP_RSMBL, "%s() for lcore: %u, port: %u " 832 "failed to allocate %zu bytes\n", 833 __func__, lcore, port, sz); 834 return -1; 835 } 836 837 mtb->len = n; 838 qconf->tx_mbufs[port] = mtb; 839 840 return 0; 841 } 842 843 static int 844 setup_queue_tbl(struct rx_queue *rxq, uint32_t lcore, uint32_t queue) 845 { 846 int socket; 847 uint32_t nb_mbuf; 848 uint64_t frag_cycles; 849 char buf[RTE_MEMPOOL_NAMESIZE]; 850 851 socket = rte_lcore_to_socket_id(lcore); 852 if (socket == SOCKET_ID_ANY) 853 socket = 0; 854 855 frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * 856 max_flow_ttl; 857 858 if ((rxq->frag_tbl = rte_ip_frag_table_create(max_flow_num, 859 IP_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles, 860 socket)) == NULL) { 861 RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on " 862 "lcore: %u for queue: %u failed\n", 863 max_flow_num, lcore, queue); 864 return -1; 865 } 866 867 /* 868 * At any given moment up to <max_flow_num * (MAX_FRAG_NUM)> 869 * mbufs could be stored int the fragment table. 870 * Plus, each TX queue can hold up to <max_flow_num> packets. 871 */ 872 873 nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM; 874 nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE; 875 nb_mbuf *= 2; /* ipv4 and ipv6 */ 876 nb_mbuf += nb_rxd + nb_txd; 877 878 nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF); 879 880 snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue); 881 882 rxq->pool = rte_pktmbuf_pool_create(buf, nb_mbuf, MEMPOOL_CACHE_SIZE, 0, 883 MBUF_DATA_SIZE, socket); 884 if (rxq->pool == NULL) { 885 RTE_LOG(ERR, IP_RSMBL, 886 "rte_pktmbuf_pool_create(%s) failed", buf); 887 return -1; 888 } 889 890 return 0; 891 } 892 893 static int 894 init_mem(void) 895 { 896 char buf[PATH_MAX]; 897 struct rte_lpm *lpm; 898 struct rte_lpm6 *lpm6; 899 struct rte_lpm_config lpm_config; 900 int socket; 901 unsigned lcore_id; 902 903 /* traverse through lcores and initialize structures on each socket */ 904 905 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 906 907 if (rte_lcore_is_enabled(lcore_id) == 0) 908 continue; 909 910 socket = rte_lcore_to_socket_id(lcore_id); 911 912 if (socket == SOCKET_ID_ANY) 913 socket = 0; 914 915 if (socket_lpm[socket] == NULL) { 916 RTE_LOG(INFO, IP_RSMBL, "Creating LPM table on socket %i\n", socket); 917 snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket); 918 919 lpm_config.max_rules = LPM_MAX_RULES; 920 lpm_config.number_tbl8s = 256; 921 lpm_config.flags = 0; 922 923 lpm = rte_lpm_create(buf, socket, &lpm_config); 924 if (lpm == NULL) { 925 RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n"); 926 return -1; 927 } 928 socket_lpm[socket] = lpm; 929 } 930 931 if (socket_lpm6[socket] == NULL) { 932 RTE_LOG(INFO, IP_RSMBL, "Creating LPM6 table on socket %i\n", socket); 933 snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket); 934 935 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); 936 if (lpm6 == NULL) { 937 RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n"); 938 return -1; 939 } 940 socket_lpm6[socket] = lpm6; 941 } 942 } 943 944 return 0; 945 } 946 947 static void 948 queue_dump_stat(void) 949 { 950 uint32_t i, lcore; 951 const struct lcore_queue_conf *qconf; 952 953 for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) { 954 if (rte_lcore_is_enabled(lcore) == 0) 955 continue; 956 957 qconf = &lcore_queue_conf[lcore]; 958 for (i = 0; i < qconf->n_rx_queue; i++) { 959 960 fprintf(stdout, " -- lcoreid=%u portid=%u " 961 "frag tbl stat:\n", 962 lcore, qconf->rx_queue_list[i].portid); 963 rte_ip_frag_table_statistics_dump(stdout, 964 qconf->rx_queue_list[i].frag_tbl); 965 fprintf(stdout, "TX bursts:\t%" PRIu64 "\n" 966 "TX packets _queued:\t%" PRIu64 "\n" 967 "TX packets dropped:\t%" PRIu64 "\n" 968 "TX packets send:\t%" PRIu64 "\n", 969 qconf->tx_stat.call, 970 qconf->tx_stat.queue, 971 qconf->tx_stat.drop, 972 qconf->tx_stat.send); 973 } 974 } 975 } 976 977 static void 978 signal_handler(int signum) 979 { 980 queue_dump_stat(); 981 if (signum != SIGUSR1) 982 rte_exit(0, "received signal: %d, exiting\n", signum); 983 } 984 985 int 986 main(int argc, char **argv) 987 { 988 struct lcore_queue_conf *qconf; 989 struct rte_eth_dev_info dev_info; 990 struct rte_eth_txconf *txconf; 991 struct rx_queue *rxq; 992 int ret, socket; 993 unsigned nb_ports; 994 uint16_t queueid; 995 unsigned lcore_id = 0, rx_lcore_id = 0; 996 uint32_t n_tx_queue, nb_lcores; 997 uint16_t portid; 998 999 /* init EAL */ 1000 ret = rte_eal_init(argc, argv); 1001 if (ret < 0) 1002 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 1003 argc -= ret; 1004 argv += ret; 1005 1006 /* parse application arguments (after the EAL ones) */ 1007 ret = parse_args(argc, argv); 1008 if (ret < 0) 1009 rte_exit(EXIT_FAILURE, "Invalid IP reassembly parameters\n"); 1010 1011 nb_ports = rte_eth_dev_count(); 1012 if (nb_ports == 0) 1013 rte_exit(EXIT_FAILURE, "No ports found!\n"); 1014 1015 nb_lcores = rte_lcore_count(); 1016 1017 /* initialize structures (mempools, lpm etc.) */ 1018 if (init_mem() < 0) 1019 rte_panic("Cannot initialize memory structures!\n"); 1020 1021 /* check if portmask has non-existent ports */ 1022 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 1023 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 1024 1025 /* initialize all ports */ 1026 for (portid = 0; portid < nb_ports; portid++) { 1027 struct rte_eth_rxconf rxq_conf; 1028 struct rte_eth_conf local_port_conf = port_conf; 1029 1030 /* skip ports that are not enabled */ 1031 if ((enabled_port_mask & (1 << portid)) == 0) { 1032 printf("\nSkipping disabled port %d\n", portid); 1033 continue; 1034 } 1035 1036 qconf = &lcore_queue_conf[rx_lcore_id]; 1037 1038 /* limit the frame size to the maximum supported by NIC */ 1039 rte_eth_dev_info_get(portid, &dev_info); 1040 local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN( 1041 dev_info.max_rx_pktlen, 1042 local_port_conf.rxmode.max_rx_pkt_len); 1043 1044 /* get the lcore_id for this port */ 1045 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 1046 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 1047 1048 rx_lcore_id++; 1049 if (rx_lcore_id >= RTE_MAX_LCORE) 1050 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 1051 1052 qconf = &lcore_queue_conf[rx_lcore_id]; 1053 } 1054 1055 socket = rte_lcore_to_socket_id(portid); 1056 if (socket == SOCKET_ID_ANY) 1057 socket = 0; 1058 1059 queueid = qconf->n_rx_queue; 1060 rxq = &qconf->rx_queue_list[queueid]; 1061 rxq->portid = portid; 1062 rxq->lpm = socket_lpm[socket]; 1063 rxq->lpm6 = socket_lpm6[socket]; 1064 1065 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 1066 &nb_txd); 1067 if (ret < 0) 1068 rte_exit(EXIT_FAILURE, 1069 "Cannot adjust number of descriptors: err=%d, port=%d\n", 1070 ret, portid); 1071 1072 if (setup_queue_tbl(rxq, rx_lcore_id, queueid) < 0) 1073 rte_exit(EXIT_FAILURE, "Failed to set up queue table\n"); 1074 qconf->n_rx_queue++; 1075 1076 /* init port */ 1077 printf("Initializing port %d ... ", portid ); 1078 fflush(stdout); 1079 1080 n_tx_queue = nb_lcores; 1081 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 1082 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 1083 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 1084 local_port_conf.txmode.offloads |= 1085 DEV_TX_OFFLOAD_MBUF_FAST_FREE; 1086 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 1087 &local_port_conf); 1088 if (ret < 0) { 1089 printf("\n"); 1090 rte_exit(EXIT_FAILURE, "Cannot configure device: " 1091 "err=%d, port=%d\n", 1092 ret, portid); 1093 } 1094 1095 /* init one RX queue */ 1096 rxq_conf = dev_info.default_rxconf; 1097 rxq_conf.offloads = local_port_conf.rxmode.offloads; 1098 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 1099 socket, &rxq_conf, 1100 rxq->pool); 1101 if (ret < 0) { 1102 printf("\n"); 1103 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 1104 "err=%d, port=%d\n", 1105 ret, portid); 1106 } 1107 1108 rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 1109 print_ethaddr(" Address:", &ports_eth_addr[portid]); 1110 printf("\n"); 1111 1112 /* init one TX queue per couple (lcore,port) */ 1113 queueid = 0; 1114 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1115 if (rte_lcore_is_enabled(lcore_id) == 0) 1116 continue; 1117 1118 socket = (int) rte_lcore_to_socket_id(lcore_id); 1119 1120 printf("txq=%u,%d,%d ", lcore_id, queueid, socket); 1121 fflush(stdout); 1122 1123 txconf = &dev_info.default_txconf; 1124 txconf->txq_flags = ETH_TXQ_FLAGS_IGNORE; 1125 txconf->offloads = local_port_conf.txmode.offloads; 1126 1127 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1128 socket, txconf); 1129 if (ret < 0) 1130 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 1131 "port=%d\n", ret, portid); 1132 1133 qconf = &lcore_queue_conf[lcore_id]; 1134 qconf->tx_queue_id[portid] = queueid; 1135 setup_port_tbl(qconf, lcore_id, socket, portid); 1136 queueid++; 1137 } 1138 printf("\n"); 1139 } 1140 1141 printf("\n"); 1142 1143 /* start ports */ 1144 for (portid = 0; portid < nb_ports; portid++) { 1145 if ((enabled_port_mask & (1 << portid)) == 0) { 1146 continue; 1147 } 1148 /* Start device */ 1149 ret = rte_eth_dev_start(portid); 1150 if (ret < 0) 1151 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 1152 ret, portid); 1153 1154 rte_eth_promiscuous_enable(portid); 1155 } 1156 1157 if (init_routing_table() < 0) 1158 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 1159 1160 check_all_ports_link_status(nb_ports, enabled_port_mask); 1161 1162 signal(SIGUSR1, signal_handler); 1163 signal(SIGTERM, signal_handler); 1164 signal(SIGINT, signal_handler); 1165 1166 /* launch per-lcore init on every lcore */ 1167 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER); 1168 RTE_LCORE_FOREACH_SLAVE(lcore_id) { 1169 if (rte_eal_wait_lcore(lcore_id) < 0) 1170 return -1; 1171 } 1172 1173 return 0; 1174 } 1175