1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation 3 */ 4 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <stdint.h> 8 #include <inttypes.h> 9 #include <sys/types.h> 10 #include <string.h> 11 #include <sys/queue.h> 12 #include <stdarg.h> 13 #include <errno.h> 14 #include <getopt.h> 15 #include <signal.h> 16 #include <sys/param.h> 17 18 #include <rte_common.h> 19 #include <rte_byteorder.h> 20 #include <rte_log.h> 21 #include <rte_memory.h> 22 #include <rte_memcpy.h> 23 #include <rte_eal.h> 24 #include <rte_launch.h> 25 #include <rte_cycles.h> 26 #include <rte_prefetch.h> 27 #include <rte_lcore.h> 28 #include <rte_per_lcore.h> 29 #include <rte_branch_prediction.h> 30 #include <rte_interrupts.h> 31 #include <rte_random.h> 32 #include <rte_debug.h> 33 #include <rte_ether.h> 34 #include <rte_ethdev.h> 35 #include <rte_mempool.h> 36 #include <rte_mbuf.h> 37 #include <rte_malloc.h> 38 #include <rte_ip.h> 39 #include <rte_tcp.h> 40 #include <rte_udp.h> 41 #include <rte_string_fns.h> 42 #include <rte_lpm.h> 43 #include <rte_lpm6.h> 44 45 #include <rte_ip_frag.h> 46 47 #define MAX_PKT_BURST 32 48 49 50 #define RTE_LOGTYPE_IP_RSMBL RTE_LOGTYPE_USER1 51 52 #define MAX_JUMBO_PKT_LEN 9600 53 54 #define BUF_SIZE RTE_MBUF_DEFAULT_DATAROOM 55 #define MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE 56 57 #define NB_MBUF 8192 58 #define MEMPOOL_CACHE_SIZE 256 59 60 /* allow max jumbo frame 9.5 KB */ 61 #define JUMBO_FRAME_MAX_SIZE 0x2600 62 63 #define MAX_FLOW_NUM UINT16_MAX 64 #define MIN_FLOW_NUM 1 65 #define DEF_FLOW_NUM 0x1000 66 67 /* TTL numbers are in ms. */ 68 #define MAX_FLOW_TTL (3600 * MS_PER_S) 69 #define MIN_FLOW_TTL 1 70 #define DEF_FLOW_TTL MS_PER_S 71 72 #define MAX_FRAG_NUM RTE_LIBRTE_IP_FRAG_MAX_FRAG 73 74 /* Should be power of two. */ 75 #define IP_FRAG_TBL_BUCKET_ENTRIES 16 76 77 static uint32_t max_flow_num = DEF_FLOW_NUM; 78 static uint32_t max_flow_ttl = DEF_FLOW_TTL; 79 80 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ 81 82 #define NB_SOCKETS 8 83 84 /* Configure how many packets ahead to prefetch, when reading packets */ 85 #define PREFETCH_OFFSET 3 86 87 /* 88 * Configurable number of RX/TX ring descriptors 89 */ 90 #define RX_DESC_DEFAULT 1024 91 #define TX_DESC_DEFAULT 1024 92 93 static uint16_t nb_rxd = RX_DESC_DEFAULT; 94 static uint16_t nb_txd = TX_DESC_DEFAULT; 95 96 /* ethernet addresses of ports */ 97 static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS]; 98 99 #ifndef IPv4_BYTES 100 #define IPv4_BYTES_FMT "%" PRIu8 ".%" PRIu8 ".%" PRIu8 ".%" PRIu8 101 #define IPv4_BYTES(addr) \ 102 (uint8_t) (((addr) >> 24) & 0xFF),\ 103 (uint8_t) (((addr) >> 16) & 0xFF),\ 104 (uint8_t) (((addr) >> 8) & 0xFF),\ 105 (uint8_t) ((addr) & 0xFF) 106 #endif 107 108 #ifndef IPv6_BYTES 109 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\ 110 "%02x%02x:%02x%02x:%02x%02x:%02x%02x" 111 #define IPv6_BYTES(addr) \ 112 addr[0], addr[1], addr[2], addr[3], \ 113 addr[4], addr[5], addr[6], addr[7], \ 114 addr[8], addr[9], addr[10], addr[11],\ 115 addr[12], addr[13],addr[14], addr[15] 116 #endif 117 118 #define IPV6_ADDR_LEN 16 119 120 /* mask of enabled ports */ 121 static uint32_t enabled_port_mask = 0; 122 123 static int rx_queue_per_lcore = 1; 124 125 struct mbuf_table { 126 uint32_t len; 127 uint32_t head; 128 uint32_t tail; 129 struct rte_mbuf *m_table[]; 130 }; 131 132 struct rx_queue { 133 struct rte_ip_frag_tbl *frag_tbl; 134 struct rte_mempool *pool; 135 struct rte_lpm *lpm; 136 struct rte_lpm6 *lpm6; 137 uint16_t portid; 138 }; 139 140 struct tx_lcore_stat { 141 uint64_t call; 142 uint64_t drop; 143 uint64_t queue; 144 uint64_t send; 145 }; 146 147 #define MAX_RX_QUEUE_PER_LCORE 16 148 #define MAX_TX_QUEUE_PER_PORT 16 149 #define MAX_RX_QUEUE_PER_PORT 128 150 151 struct __rte_cache_aligned lcore_queue_conf { 152 uint16_t n_rx_queue; 153 struct rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE]; 154 uint16_t tx_queue_id[RTE_MAX_ETHPORTS]; 155 struct rte_ip_frag_death_row death_row; 156 struct mbuf_table *tx_mbufs[RTE_MAX_ETHPORTS]; 157 struct tx_lcore_stat tx_stat; 158 }; 159 static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 160 161 static struct rte_eth_conf port_conf = { 162 .rxmode = { 163 .mq_mode = RTE_ETH_MQ_RX_RSS, 164 .mtu = JUMBO_FRAME_MAX_SIZE - RTE_ETHER_HDR_LEN - 165 RTE_ETHER_CRC_LEN, 166 .offloads = RTE_ETH_RX_OFFLOAD_CHECKSUM, 167 }, 168 .rx_adv_conf = { 169 .rss_conf = { 170 .rss_key = NULL, 171 .rss_hf = RTE_ETH_RSS_IP, 172 }, 173 }, 174 .txmode = { 175 .mq_mode = RTE_ETH_MQ_TX_NONE, 176 .offloads = (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | 177 RTE_ETH_TX_OFFLOAD_MULTI_SEGS), 178 }, 179 }; 180 181 /* 182 * IPv4 forwarding table 183 */ 184 struct l3fwd_ipv4_route { 185 uint32_t ip; 186 uint8_t depth; 187 uint8_t if_out; 188 }; 189 190 /* Default l3fwd_ipv4_route_array table. 8< */ 191 struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = { 192 {RTE_IPV4(100,10,0,0), 16, 0}, 193 {RTE_IPV4(100,20,0,0), 16, 1}, 194 {RTE_IPV4(100,30,0,0), 16, 2}, 195 {RTE_IPV4(100,40,0,0), 16, 3}, 196 {RTE_IPV4(100,50,0,0), 16, 4}, 197 {RTE_IPV4(100,60,0,0), 16, 5}, 198 {RTE_IPV4(100,70,0,0), 16, 6}, 199 {RTE_IPV4(100,80,0,0), 16, 7}, 200 }; 201 /* >8 End of default l3fwd_ipv4_route_array table. */ 202 203 /* 204 * IPv6 forwarding table 205 */ 206 207 struct l3fwd_ipv6_route { 208 uint8_t ip[IPV6_ADDR_LEN]; 209 uint8_t depth; 210 uint8_t if_out; 211 }; 212 213 /* Default l3fwd_ipv6_route_array table. 8< */ 214 static struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = { 215 {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0}, 216 {{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1}, 217 {{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2}, 218 {{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3}, 219 {{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4}, 220 {{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5}, 221 {{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6}, 222 {{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7}, 223 }; 224 /* >8 End of default l3fwd_ipv6_route_array table. */ 225 226 #define LPM_MAX_RULES 1024 227 #define LPM6_MAX_RULES 1024 228 #define LPM6_NUMBER_TBL8S (1 << 16) 229 230 struct rte_lpm6_config lpm6_config = { 231 .max_rules = LPM6_MAX_RULES, 232 .number_tbl8s = LPM6_NUMBER_TBL8S, 233 .flags = 0 234 }; 235 236 static struct rte_lpm *socket_lpm[RTE_MAX_NUMA_NODES]; 237 static struct rte_lpm6 *socket_lpm6[RTE_MAX_NUMA_NODES]; 238 239 #ifdef RTE_LIBRTE_IP_FRAG_TBL_STAT 240 #define TX_LCORE_STAT_UPDATE(s, f, v) ((s)->f += (v)) 241 #else 242 #define TX_LCORE_STAT_UPDATE(s, f, v) do {} while (0) 243 #endif /* RTE_LIBRTE_IP_FRAG_TBL_STAT */ 244 245 /* 246 * If number of queued packets reached given threshold, then 247 * send burst of packets on an output interface. 248 */ 249 static inline uint32_t 250 send_burst(struct lcore_queue_conf *qconf, uint32_t thresh, uint16_t port) 251 { 252 uint32_t fill, len, k, n; 253 struct mbuf_table *txmb; 254 255 txmb = qconf->tx_mbufs[port]; 256 len = txmb->len; 257 258 if ((int32_t)(fill = txmb->head - txmb->tail) < 0) 259 fill += len; 260 261 if (fill >= thresh) { 262 n = RTE_MIN(len - txmb->tail, fill); 263 264 k = rte_eth_tx_burst(port, qconf->tx_queue_id[port], 265 txmb->m_table + txmb->tail, (uint16_t)n); 266 267 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1); 268 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k); 269 270 fill -= k; 271 if ((txmb->tail += k) == len) 272 txmb->tail = 0; 273 } 274 275 return fill; 276 } 277 278 /* Enqueue a single packet, and send burst if queue is filled */ 279 static inline int 280 send_single_packet(struct rte_mbuf *m, uint16_t port) 281 { 282 uint32_t fill, lcore_id, len; 283 struct lcore_queue_conf *qconf; 284 struct mbuf_table *txmb; 285 286 lcore_id = rte_lcore_id(); 287 qconf = &lcore_queue_conf[lcore_id]; 288 289 txmb = qconf->tx_mbufs[port]; 290 len = txmb->len; 291 292 fill = send_burst(qconf, MAX_PKT_BURST, port); 293 294 if (fill == len - 1) { 295 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1); 296 rte_pktmbuf_free(txmb->m_table[txmb->tail]); 297 if (++txmb->tail == len) 298 txmb->tail = 0; 299 } 300 301 TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1); 302 txmb->m_table[txmb->head] = m; 303 if(++txmb->head == len) 304 txmb->head = 0; 305 306 return 0; 307 } 308 309 static inline void 310 reassemble(struct rte_mbuf *m, uint16_t portid, uint32_t queue, 311 struct lcore_queue_conf *qconf, uint64_t tms) 312 { 313 struct rte_ether_hdr *eth_hdr; 314 struct rte_ip_frag_tbl *tbl; 315 struct rte_ip_frag_death_row *dr; 316 struct rx_queue *rxq; 317 void *d_addr_bytes; 318 uint32_t next_hop; 319 uint16_t dst_port; 320 321 rxq = &qconf->rx_queue_list[queue]; 322 323 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 324 325 dst_port = portid; 326 327 /* if packet is IPv4 */ 328 if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) { 329 struct rte_ipv4_hdr *ip_hdr; 330 uint32_t ip_dst; 331 332 ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1); 333 334 /* if it is a fragmented packet, then try to reassemble. */ 335 if (rte_ipv4_frag_pkt_is_fragmented(ip_hdr)) { 336 struct rte_mbuf *mo; 337 338 tbl = rxq->frag_tbl; 339 dr = &qconf->death_row; 340 341 /* prepare mbuf: setup l2_len/l3_len. */ 342 m->l2_len = sizeof(*eth_hdr); 343 m->l3_len = sizeof(*ip_hdr); 344 345 /* process this fragment. */ 346 mo = rte_ipv4_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr); 347 if (mo == NULL) 348 /* no packet to send out. */ 349 return; 350 351 /* we have our packet reassembled. */ 352 if (mo != m) { 353 m = mo; 354 eth_hdr = rte_pktmbuf_mtod(m, 355 struct rte_ether_hdr *); 356 ip_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1); 357 } 358 359 /* update offloading flags */ 360 m->ol_flags |= (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IP_CKSUM); 361 } 362 ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr); 363 364 /* Find destination port */ 365 if (rte_lpm_lookup(rxq->lpm, ip_dst, &next_hop) == 0 && 366 (enabled_port_mask & 1 << next_hop) != 0) { 367 dst_port = next_hop; 368 } 369 370 eth_hdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4); 371 } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) { 372 /* if packet is IPv6 */ 373 struct rte_ipv6_fragment_ext *frag_hdr; 374 struct rte_ipv6_hdr *ip_hdr; 375 376 ip_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1); 377 378 frag_hdr = rte_ipv6_frag_get_ipv6_fragment_header(ip_hdr); 379 380 if (frag_hdr != NULL) { 381 struct rte_mbuf *mo; 382 383 tbl = rxq->frag_tbl; 384 dr = &qconf->death_row; 385 386 /* prepare mbuf: setup l2_len/l3_len. */ 387 m->l2_len = sizeof(*eth_hdr); 388 m->l3_len = sizeof(*ip_hdr) + sizeof(*frag_hdr); 389 390 mo = rte_ipv6_frag_reassemble_packet(tbl, dr, m, tms, ip_hdr, frag_hdr); 391 if (mo == NULL) 392 return; 393 394 if (mo != m) { 395 m = mo; 396 eth_hdr = rte_pktmbuf_mtod(m, 397 struct rte_ether_hdr *); 398 ip_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1); 399 } 400 } 401 402 /* Find destination port */ 403 if (rte_lpm6_lookup(rxq->lpm6, ip_hdr->dst_addr, 404 &next_hop) == 0 && 405 (enabled_port_mask & 1 << next_hop) != 0) { 406 dst_port = next_hop; 407 } 408 409 eth_hdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV6); 410 } 411 /* if packet wasn't IPv4 or IPv6, it's forwarded to the port it came from */ 412 413 /* 02:00:00:00:00:xx */ 414 d_addr_bytes = ð_hdr->dst_addr.addr_bytes[0]; 415 *((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40); 416 417 /* src addr */ 418 rte_ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->src_addr); 419 420 send_single_packet(m, dst_port); 421 } 422 423 /* main processing loop */ 424 static int 425 main_loop(__rte_unused void *dummy) 426 { 427 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 428 unsigned lcore_id; 429 uint64_t diff_tsc, cur_tsc, prev_tsc; 430 int i, j, nb_rx; 431 uint16_t portid; 432 struct lcore_queue_conf *qconf; 433 const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; 434 435 prev_tsc = 0; 436 437 lcore_id = rte_lcore_id(); 438 qconf = &lcore_queue_conf[lcore_id]; 439 440 if (qconf->n_rx_queue == 0) { 441 RTE_LOG(INFO, IP_RSMBL, "lcore %u has nothing to do\n", lcore_id); 442 return 0; 443 } 444 445 RTE_LOG(INFO, IP_RSMBL, "entering main loop on lcore %u\n", lcore_id); 446 447 for (i = 0; i < qconf->n_rx_queue; i++) { 448 449 portid = qconf->rx_queue_list[i].portid; 450 RTE_LOG(INFO, IP_RSMBL, " -- lcoreid=%u portid=%u\n", lcore_id, 451 portid); 452 } 453 454 while (1) { 455 456 cur_tsc = rte_rdtsc(); 457 458 /* 459 * TX burst queue drain 460 */ 461 diff_tsc = cur_tsc - prev_tsc; 462 if (unlikely(diff_tsc > drain_tsc)) { 463 464 /* 465 * This could be optimized (use queueid instead of 466 * portid), but it is not called so often 467 */ 468 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 469 if ((enabled_port_mask & (1 << portid)) != 0) 470 send_burst(qconf, 1, portid); 471 } 472 473 prev_tsc = cur_tsc; 474 } 475 476 /* 477 * Read packet from RX queues 478 */ 479 for (i = 0; i < qconf->n_rx_queue; ++i) { 480 481 portid = qconf->rx_queue_list[i].portid; 482 483 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, 484 MAX_PKT_BURST); 485 486 /* Prefetch first packets */ 487 for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) { 488 rte_prefetch0(rte_pktmbuf_mtod( 489 pkts_burst[j], void *)); 490 } 491 492 /* Prefetch and forward already prefetched packets */ 493 for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) { 494 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ 495 j + PREFETCH_OFFSET], void *)); 496 reassemble(pkts_burst[j], portid, 497 i, qconf, cur_tsc); 498 } 499 500 /* Forward remaining prefetched packets */ 501 for (; j < nb_rx; j++) { 502 reassemble(pkts_burst[j], portid, 503 i, qconf, cur_tsc); 504 } 505 506 rte_ip_frag_free_death_row(&qconf->death_row, 507 PREFETCH_OFFSET); 508 } 509 } 510 } 511 512 /* display usage */ 513 static void 514 print_usage(const char *prgname) 515 { 516 printf("%s [EAL options] -- -p PORTMASK [-q NQ]" 517 " [--maxflows=<flows>] [--flowttl=<ttl>[(s|ms)]]\n" 518 " -p PORTMASK: hexadecimal bitmask of ports to configure\n" 519 " -q NQ: number of RX queues per lcore\n" 520 " --maxflows=<flows>: optional, maximum number of flows " 521 "supported\n" 522 " --flowttl=<ttl>[(s|ms)]: optional, maximum TTL for each " 523 "flow\n", 524 prgname); 525 } 526 527 static uint32_t 528 parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val) 529 { 530 char *end; 531 uint64_t v; 532 533 /* parse decimal string */ 534 errno = 0; 535 v = strtoul(str, &end, 10); 536 if (errno != 0 || *end != '\0') 537 return -EINVAL; 538 539 if (v < min || v > max) 540 return -EINVAL; 541 542 *val = (uint32_t)v; 543 return 0; 544 } 545 546 static int 547 parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val) 548 { 549 char *end; 550 uint64_t v; 551 552 static const char frmt_sec[] = "s"; 553 static const char frmt_msec[] = "ms"; 554 555 /* parse decimal string */ 556 errno = 0; 557 v = strtoul(str, &end, 10); 558 if (errno != 0) 559 return -EINVAL; 560 561 if (*end != '\0') { 562 if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0) 563 v *= MS_PER_S; 564 else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0) 565 return -EINVAL; 566 } 567 568 if (v < min || v > max) 569 return -EINVAL; 570 571 *val = (uint32_t)v; 572 return 0; 573 } 574 575 static int 576 parse_portmask(const char *portmask) 577 { 578 char *end = NULL; 579 unsigned long pm; 580 581 /* parse hexadecimal string */ 582 pm = strtoul(portmask, &end, 16); 583 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) 584 return 0; 585 586 return pm; 587 } 588 589 static int 590 parse_nqueue(const char *q_arg) 591 { 592 char *end = NULL; 593 unsigned long n; 594 595 printf("%p\n", q_arg); 596 597 /* parse hexadecimal string */ 598 n = strtoul(q_arg, &end, 10); 599 if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) 600 return -1; 601 if (n == 0) 602 return -1; 603 if (n >= MAX_RX_QUEUE_PER_LCORE) 604 return -1; 605 606 return n; 607 } 608 609 /* Parse the argument given in the command line of the application */ 610 static int 611 parse_args(int argc, char **argv) 612 { 613 int opt, ret; 614 char **argvopt; 615 int option_index; 616 char *prgname = argv[0]; 617 static struct option lgopts[] = { 618 {"maxflows", 1, 0, 0}, 619 {"flowttl", 1, 0, 0}, 620 {NULL, 0, 0, 0} 621 }; 622 623 argvopt = argv; 624 625 while ((opt = getopt_long(argc, argvopt, "p:q:", 626 lgopts, &option_index)) != EOF) { 627 628 switch (opt) { 629 /* portmask */ 630 case 'p': 631 enabled_port_mask = parse_portmask(optarg); 632 if (enabled_port_mask == 0) { 633 printf("invalid portmask\n"); 634 print_usage(prgname); 635 return -1; 636 } 637 break; 638 639 /* nqueue */ 640 case 'q': 641 rx_queue_per_lcore = parse_nqueue(optarg); 642 if (rx_queue_per_lcore < 0) { 643 printf("invalid queue number\n"); 644 print_usage(prgname); 645 return -1; 646 } 647 break; 648 649 /* long options */ 650 case 0: 651 if (!strncmp(lgopts[option_index].name, 652 "maxflows", 8)) { 653 if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM, 654 MAX_FLOW_NUM, 655 &max_flow_num)) != 0) { 656 printf("invalid value: \"%s\" for " 657 "parameter %s\n", 658 optarg, 659 lgopts[option_index].name); 660 print_usage(prgname); 661 return ret; 662 } 663 } 664 665 if (!strncmp(lgopts[option_index].name, "flowttl", 7)) { 666 if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL, 667 MAX_FLOW_TTL, 668 &max_flow_ttl)) != 0) { 669 printf("invalid value: \"%s\" for " 670 "parameter %s\n", 671 optarg, 672 lgopts[option_index].name); 673 print_usage(prgname); 674 return ret; 675 } 676 } 677 678 break; 679 680 default: 681 print_usage(prgname); 682 return -1; 683 } 684 } 685 686 if (optind >= 0) 687 argv[optind-1] = prgname; 688 689 ret = optind-1; 690 optind = 1; /* reset getopt lib */ 691 return ret; 692 } 693 694 static void 695 print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr) 696 { 697 char buf[RTE_ETHER_ADDR_FMT_SIZE]; 698 rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr); 699 printf("%s%s", name, buf); 700 } 701 702 /* Check the link status of all ports in up to 9s, and print them finally */ 703 static void 704 check_all_ports_link_status(uint32_t port_mask) 705 { 706 #define CHECK_INTERVAL 100 /* 100ms */ 707 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 708 uint16_t portid; 709 uint8_t count, all_ports_up, print_flag = 0; 710 struct rte_eth_link link; 711 int ret; 712 char link_status_text[RTE_ETH_LINK_MAX_STR_LEN]; 713 714 printf("\nChecking link status"); 715 fflush(stdout); 716 for (count = 0; count <= MAX_CHECK_TIME; count++) { 717 all_ports_up = 1; 718 RTE_ETH_FOREACH_DEV(portid) { 719 if ((port_mask & (1 << portid)) == 0) 720 continue; 721 memset(&link, 0, sizeof(link)); 722 ret = rte_eth_link_get_nowait(portid, &link); 723 if (ret < 0) { 724 all_ports_up = 0; 725 if (print_flag == 1) 726 printf("Port %u link get failed: %s\n", 727 portid, rte_strerror(-ret)); 728 continue; 729 } 730 /* print link status if flag set */ 731 if (print_flag == 1) { 732 rte_eth_link_to_str(link_status_text, 733 sizeof(link_status_text), &link); 734 printf("Port %d %s\n", portid, 735 link_status_text); 736 continue; 737 } 738 /* clear all_ports_up flag if any link down */ 739 if (link.link_status == RTE_ETH_LINK_DOWN) { 740 all_ports_up = 0; 741 break; 742 } 743 } 744 /* after finally printing all link status, get out */ 745 if (print_flag == 1) 746 break; 747 748 if (all_ports_up == 0) { 749 printf("."); 750 fflush(stdout); 751 rte_delay_ms(CHECK_INTERVAL); 752 } 753 754 /* set the print_flag if all ports up or timeout */ 755 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 756 print_flag = 1; 757 printf("\ndone\n"); 758 } 759 } 760 } 761 762 static int 763 init_routing_table(void) 764 { 765 struct rte_lpm *lpm; 766 struct rte_lpm6 *lpm6; 767 int socket, ret; 768 unsigned i; 769 770 for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { 771 if (socket_lpm[socket]) { 772 lpm = socket_lpm[socket]; 773 /* populate the LPM table */ 774 for (i = 0; i < RTE_DIM(l3fwd_ipv4_route_array); i++) { 775 ret = rte_lpm_add(lpm, 776 l3fwd_ipv4_route_array[i].ip, 777 l3fwd_ipv4_route_array[i].depth, 778 l3fwd_ipv4_route_array[i].if_out); 779 780 if (ret < 0) { 781 RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd " 782 "LPM table\n", i); 783 return -1; 784 } 785 786 RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv4_BYTES_FMT 787 "/%d (port %d)\n", 788 socket, 789 IPv4_BYTES(l3fwd_ipv4_route_array[i].ip), 790 l3fwd_ipv4_route_array[i].depth, 791 l3fwd_ipv4_route_array[i].if_out); 792 } 793 } 794 795 if (socket_lpm6[socket]) { 796 lpm6 = socket_lpm6[socket]; 797 /* populate the LPM6 table */ 798 for (i = 0; i < RTE_DIM(l3fwd_ipv6_route_array); i++) { 799 ret = rte_lpm6_add(lpm6, 800 l3fwd_ipv6_route_array[i].ip, 801 l3fwd_ipv6_route_array[i].depth, 802 l3fwd_ipv6_route_array[i].if_out); 803 804 if (ret < 0) { 805 RTE_LOG(ERR, IP_RSMBL, "Unable to add entry %i to the l3fwd " 806 "LPM6 table\n", i); 807 return -1; 808 } 809 810 RTE_LOG(INFO, IP_RSMBL, "Socket %i: adding route " IPv6_BYTES_FMT 811 "/%d (port %d)\n", 812 socket, 813 IPv6_BYTES(l3fwd_ipv6_route_array[i].ip), 814 l3fwd_ipv6_route_array[i].depth, 815 l3fwd_ipv6_route_array[i].if_out); 816 } 817 } 818 } 819 return 0; 820 } 821 822 static int 823 setup_port_tbl(struct lcore_queue_conf *qconf, uint32_t lcore, int socket, 824 uint32_t port) 825 { 826 struct mbuf_table *mtb; 827 uint32_t n; 828 size_t sz; 829 830 n = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST); 831 sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) * n; 832 833 if ((mtb = rte_zmalloc_socket(__func__, sz, RTE_CACHE_LINE_SIZE, 834 socket)) == NULL) { 835 RTE_LOG(ERR, IP_RSMBL, "%s() for lcore: %u, port: %u " 836 "failed to allocate %zu bytes\n", 837 __func__, lcore, port, sz); 838 return -1; 839 } 840 841 mtb->len = n; 842 qconf->tx_mbufs[port] = mtb; 843 844 return 0; 845 } 846 847 static int 848 setup_queue_tbl(struct rx_queue *rxq, uint32_t lcore, uint32_t queue) 849 { 850 int socket; 851 uint32_t nb_mbuf; 852 uint64_t frag_cycles; 853 char buf[RTE_MEMPOOL_NAMESIZE]; 854 855 socket = rte_lcore_to_socket_id(lcore); 856 if (socket == SOCKET_ID_ANY) 857 socket = 0; 858 859 /* Each table entry holds information about packet fragmentation. 8< */ 860 frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * 861 max_flow_ttl; 862 863 if ((rxq->frag_tbl = rte_ip_frag_table_create(max_flow_num, 864 IP_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles, 865 socket)) == NULL) { 866 RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on " 867 "lcore: %u for queue: %u failed\n", 868 max_flow_num, lcore, queue); 869 return -1; 870 } 871 /* >8 End of holding packet fragmentation. */ 872 873 /* 874 * At any given moment up to <max_flow_num * (MAX_FRAG_NUM)> 875 * mbufs could be stored in the fragment table. 876 * Plus, each TX queue can hold up to <max_flow_num> packets. 877 */ 878 879 /* mbufs stored in the fragment table. 8< */ 880 nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM; 881 nb_mbuf *= (port_conf.rxmode.mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN 882 + BUF_SIZE - 1) / BUF_SIZE; 883 nb_mbuf *= 2; /* ipv4 and ipv6 */ 884 nb_mbuf += nb_rxd + nb_txd; 885 886 nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF); 887 888 snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue); 889 890 rxq->pool = rte_pktmbuf_pool_create(buf, nb_mbuf, MEMPOOL_CACHE_SIZE, 0, 891 MBUF_DATA_SIZE, socket); 892 if (rxq->pool == NULL) { 893 RTE_LOG(ERR, IP_RSMBL, 894 "rte_pktmbuf_pool_create(%s) failed", buf); 895 return -1; 896 } 897 /* >8 End of mbufs stored in the fragmentation table. */ 898 899 return 0; 900 } 901 902 static int 903 init_mem(void) 904 { 905 char buf[PATH_MAX]; 906 struct rte_lpm *lpm; 907 struct rte_lpm6 *lpm6; 908 struct rte_lpm_config lpm_config; 909 int socket; 910 unsigned lcore_id; 911 912 /* traverse through lcores and initialize structures on each socket */ 913 914 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 915 916 if (rte_lcore_is_enabled(lcore_id) == 0) 917 continue; 918 919 socket = rte_lcore_to_socket_id(lcore_id); 920 921 if (socket == SOCKET_ID_ANY) 922 socket = 0; 923 924 if (socket_lpm[socket] == NULL) { 925 RTE_LOG(INFO, IP_RSMBL, "Creating LPM table on socket %i\n", socket); 926 snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket); 927 928 lpm_config.max_rules = LPM_MAX_RULES; 929 lpm_config.number_tbl8s = 256; 930 lpm_config.flags = 0; 931 932 lpm = rte_lpm_create(buf, socket, &lpm_config); 933 if (lpm == NULL) { 934 RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n"); 935 return -1; 936 } 937 socket_lpm[socket] = lpm; 938 } 939 940 if (socket_lpm6[socket] == NULL) { 941 RTE_LOG(INFO, IP_RSMBL, "Creating LPM6 table on socket %i\n", socket); 942 snprintf(buf, sizeof(buf), "IP_RSMBL_LPM_%i", socket); 943 944 lpm6 = rte_lpm6_create(buf, socket, &lpm6_config); 945 if (lpm6 == NULL) { 946 RTE_LOG(ERR, IP_RSMBL, "Cannot create LPM table\n"); 947 return -1; 948 } 949 socket_lpm6[socket] = lpm6; 950 } 951 } 952 953 return 0; 954 } 955 956 static void 957 queue_dump_stat(void) 958 { 959 uint32_t i, lcore; 960 const struct lcore_queue_conf *qconf; 961 962 for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) { 963 if (rte_lcore_is_enabled(lcore) == 0) 964 continue; 965 966 qconf = &lcore_queue_conf[lcore]; 967 for (i = 0; i < qconf->n_rx_queue; i++) { 968 969 fprintf(stdout, " -- lcoreid=%u portid=%u " 970 "frag tbl stat:\n", 971 lcore, qconf->rx_queue_list[i].portid); 972 rte_ip_frag_table_statistics_dump(stdout, 973 qconf->rx_queue_list[i].frag_tbl); 974 fprintf(stdout, "TX bursts:\t%" PRIu64 "\n" 975 "TX packets _queued:\t%" PRIu64 "\n" 976 "TX packets dropped:\t%" PRIu64 "\n" 977 "TX packets send:\t%" PRIu64 "\n", 978 qconf->tx_stat.call, 979 qconf->tx_stat.queue, 980 qconf->tx_stat.drop, 981 qconf->tx_stat.send); 982 } 983 } 984 } 985 986 static void 987 signal_handler(int signum) 988 { 989 queue_dump_stat(); 990 if (signum != SIGUSR1) 991 rte_exit(0, "received signal: %d, exiting\n", signum); 992 } 993 994 int 995 main(int argc, char **argv) 996 { 997 struct lcore_queue_conf *qconf; 998 struct rte_eth_dev_info dev_info; 999 struct rte_eth_txconf *txconf; 1000 struct rx_queue *rxq; 1001 int ret, socket; 1002 unsigned nb_ports; 1003 uint16_t queueid; 1004 unsigned lcore_id = 0, rx_lcore_id = 0; 1005 uint32_t n_tx_queue, nb_lcores; 1006 uint16_t portid; 1007 1008 /* init EAL */ 1009 ret = rte_eal_init(argc, argv); 1010 if (ret < 0) 1011 rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n"); 1012 argc -= ret; 1013 argv += ret; 1014 1015 /* parse application arguments (after the EAL ones) */ 1016 ret = parse_args(argc, argv); 1017 if (ret < 0) 1018 rte_exit(EXIT_FAILURE, "Invalid IP reassembly parameters\n"); 1019 1020 nb_ports = rte_eth_dev_count_avail(); 1021 if (nb_ports == 0) 1022 rte_exit(EXIT_FAILURE, "No ports found!\n"); 1023 1024 nb_lcores = rte_lcore_count(); 1025 1026 /* initialize structures (mempools, lpm etc.) */ 1027 if (init_mem() < 0) 1028 rte_panic("Cannot initialize memory structures!\n"); 1029 1030 /* check if portmask has non-existent ports */ 1031 if (enabled_port_mask & ~(RTE_LEN2MASK(nb_ports, unsigned))) 1032 rte_exit(EXIT_FAILURE, "Non-existent ports in portmask!\n"); 1033 1034 /* initialize all ports */ 1035 RTE_ETH_FOREACH_DEV(portid) { 1036 struct rte_eth_rxconf rxq_conf; 1037 struct rte_eth_conf local_port_conf = port_conf; 1038 1039 /* skip ports that are not enabled */ 1040 if ((enabled_port_mask & (1 << portid)) == 0) { 1041 printf("\nSkipping disabled port %d\n", portid); 1042 continue; 1043 } 1044 1045 qconf = &lcore_queue_conf[rx_lcore_id]; 1046 1047 /* limit the frame size to the maximum supported by NIC */ 1048 ret = rte_eth_dev_info_get(portid, &dev_info); 1049 if (ret != 0) 1050 rte_exit(EXIT_FAILURE, 1051 "Error during getting device (port %u) info: %s\n", 1052 portid, strerror(-ret)); 1053 1054 local_port_conf.rxmode.mtu = RTE_MIN( 1055 dev_info.max_mtu, 1056 local_port_conf.rxmode.mtu); 1057 1058 /* get the lcore_id for this port */ 1059 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || 1060 qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) { 1061 1062 rx_lcore_id++; 1063 if (rx_lcore_id >= RTE_MAX_LCORE) 1064 rte_exit(EXIT_FAILURE, "Not enough cores\n"); 1065 1066 qconf = &lcore_queue_conf[rx_lcore_id]; 1067 } 1068 1069 socket = rte_lcore_to_socket_id(portid); 1070 if (socket == SOCKET_ID_ANY) 1071 socket = 0; 1072 1073 queueid = qconf->n_rx_queue; 1074 rxq = &qconf->rx_queue_list[queueid]; 1075 rxq->portid = portid; 1076 rxq->lpm = socket_lpm[socket]; 1077 rxq->lpm6 = socket_lpm6[socket]; 1078 1079 ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, 1080 &nb_txd); 1081 if (ret < 0) 1082 rte_exit(EXIT_FAILURE, 1083 "Cannot adjust number of descriptors: err=%d, port=%d\n", 1084 ret, portid); 1085 1086 if (setup_queue_tbl(rxq, rx_lcore_id, queueid) < 0) 1087 rte_exit(EXIT_FAILURE, "Failed to set up queue table\n"); 1088 qconf->n_rx_queue++; 1089 1090 /* init port */ 1091 printf("Initializing port %d ... ", portid ); 1092 fflush(stdout); 1093 1094 n_tx_queue = nb_lcores; 1095 if (n_tx_queue > MAX_TX_QUEUE_PER_PORT) 1096 n_tx_queue = MAX_TX_QUEUE_PER_PORT; 1097 if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) 1098 local_port_conf.txmode.offloads |= 1099 RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE; 1100 1101 local_port_conf.rx_adv_conf.rss_conf.rss_hf &= 1102 dev_info.flow_type_rss_offloads; 1103 if (local_port_conf.rx_adv_conf.rss_conf.rss_hf != 1104 port_conf.rx_adv_conf.rss_conf.rss_hf) { 1105 printf("Port %u modified RSS hash function based on hardware support," 1106 "requested:%#"PRIx64" configured:%#"PRIx64"\n", 1107 portid, 1108 port_conf.rx_adv_conf.rss_conf.rss_hf, 1109 local_port_conf.rx_adv_conf.rss_conf.rss_hf); 1110 } 1111 1112 ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue, 1113 &local_port_conf); 1114 if (ret < 0) { 1115 printf("\n"); 1116 rte_exit(EXIT_FAILURE, "Cannot configure device: " 1117 "err=%d, port=%d\n", 1118 ret, portid); 1119 } 1120 1121 /* init one RX queue */ 1122 rxq_conf = dev_info.default_rxconf; 1123 rxq_conf.offloads = local_port_conf.rxmode.offloads; 1124 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 1125 socket, &rxq_conf, 1126 rxq->pool); 1127 if (ret < 0) { 1128 printf("\n"); 1129 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 1130 "err=%d, port=%d\n", 1131 ret, portid); 1132 } 1133 1134 ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]); 1135 if (ret < 0) { 1136 printf("\n"); 1137 rte_exit(EXIT_FAILURE, 1138 "rte_eth_macaddr_get: err=%d, port=%d\n", 1139 ret, portid); 1140 } 1141 1142 print_ethaddr(" Address:", &ports_eth_addr[portid]); 1143 printf("\n"); 1144 1145 /* init one TX queue per couple (lcore,port) */ 1146 queueid = 0; 1147 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 1148 if (rte_lcore_is_enabled(lcore_id) == 0) 1149 continue; 1150 1151 socket = (int) rte_lcore_to_socket_id(lcore_id); 1152 1153 printf("txq=%u,%d,%d ", lcore_id, queueid, socket); 1154 fflush(stdout); 1155 1156 txconf = &dev_info.default_txconf; 1157 txconf->offloads = local_port_conf.txmode.offloads; 1158 1159 ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd, 1160 socket, txconf); 1161 if (ret < 0) 1162 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, " 1163 "port=%d\n", ret, portid); 1164 1165 qconf = &lcore_queue_conf[lcore_id]; 1166 qconf->tx_queue_id[portid] = queueid; 1167 setup_port_tbl(qconf, lcore_id, socket, portid); 1168 queueid++; 1169 } 1170 printf("\n"); 1171 } 1172 1173 printf("\n"); 1174 1175 /* start ports */ 1176 RTE_ETH_FOREACH_DEV(portid) { 1177 if ((enabled_port_mask & (1 << portid)) == 0) { 1178 continue; 1179 } 1180 /* Start device */ 1181 ret = rte_eth_dev_start(portid); 1182 if (ret < 0) 1183 rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n", 1184 ret, portid); 1185 1186 ret = rte_eth_promiscuous_enable(portid); 1187 if (ret != 0) 1188 rte_exit(EXIT_FAILURE, 1189 "rte_eth_promiscuous_enable: err=%s, port=%d\n", 1190 rte_strerror(-ret), portid); 1191 } 1192 1193 if (init_routing_table() < 0) 1194 rte_exit(EXIT_FAILURE, "Cannot init routing table\n"); 1195 1196 check_all_ports_link_status(enabled_port_mask); 1197 1198 signal(SIGUSR1, signal_handler); 1199 signal(SIGTERM, signal_handler); 1200 signal(SIGINT, signal_handler); 1201 1202 /* launch per-lcore init on every lcore */ 1203 rte_eal_mp_remote_launch(main_loop, NULL, CALL_MAIN); 1204 RTE_LCORE_FOREACH_WORKER(lcore_id) { 1205 if (rte_eal_wait_lcore(lcore_id) < 0) 1206 return -1; 1207 } 1208 1209 /* clean up the EAL */ 1210 rte_eal_cleanup(); 1211 1212 return 0; 1213 } 1214