xref: /dpdk/examples/ip_reassembly/main.c (revision 13c4ebd65a77fae2d6c5a08a2a2f3498758b68d2)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <stdint.h>
37 #include <inttypes.h>
38 #include <sys/types.h>
39 #include <string.h>
40 #include <sys/queue.h>
41 #include <stdarg.h>
42 #include <errno.h>
43 #include <getopt.h>
44 #include <signal.h>
45 
46 #include <rte_common.h>
47 #include <rte_byteorder.h>
48 #include <rte_log.h>
49 #include <rte_memory.h>
50 #include <rte_memcpy.h>
51 #include <rte_memzone.h>
52 #include <rte_tailq.h>
53 #include <rte_eal.h>
54 #include <rte_per_lcore.h>
55 #include <rte_launch.h>
56 #include <rte_atomic.h>
57 #include <rte_cycles.h>
58 #include <rte_prefetch.h>
59 #include <rte_lcore.h>
60 #include <rte_per_lcore.h>
61 #include <rte_branch_prediction.h>
62 #include <rte_interrupts.h>
63 #include <rte_pci.h>
64 #include <rte_random.h>
65 #include <rte_debug.h>
66 #include <rte_ether.h>
67 #include <rte_ethdev.h>
68 #include <rte_ring.h>
69 #include <rte_mempool.h>
70 #include <rte_mbuf.h>
71 #include <rte_malloc.h>
72 #include <rte_ip.h>
73 #include <rte_tcp.h>
74 #include <rte_udp.h>
75 #include <rte_string_fns.h>
76 #include "main.h"
77 
78 #define APP_LOOKUP_EXACT_MATCH          0
79 #define APP_LOOKUP_LPM                  1
80 #define DO_RFC_1812_CHECKS
81 
82 #ifndef APP_LOOKUP_METHOD
83 #define APP_LOOKUP_METHOD             APP_LOOKUP_LPM
84 #endif
85 
86 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
87 #include <rte_hash.h>
88 #elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
89 #include <rte_lpm.h>
90 #include <rte_lpm6.h>
91 #else
92 #error "APP_LOOKUP_METHOD set to incorrect value"
93 #endif
94 
95 #define MAX_PKT_BURST 32
96 
97 #include "ipv4_rsmbl.h"
98 
99 #ifndef IPv6_BYTES
100 #define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
101                        "%02x%02x:%02x%02x:%02x%02x:%02x%02x"
102 #define IPv6_BYTES(addr) \
103 	addr[0],  addr[1], addr[2],  addr[3], \
104 	addr[4],  addr[5], addr[6],  addr[7], \
105 	addr[8],  addr[9], addr[10], addr[11],\
106 	addr[12], addr[13],addr[14], addr[15]
107 #endif
108 
109 
110 #define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
111 
112 #define MAX_PORTS	RTE_MAX_ETHPORTS
113 
114 #define MAX_JUMBO_PKT_LEN  9600
115 
116 #define IPV6_ADDR_LEN 16
117 
118 #define MEMPOOL_CACHE_SIZE 256
119 
120 #define	BUF_SIZE	2048
121 #define MBUF_SIZE	\
122 	(BUF_SIZE + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
123 
124 #define	MAX_FLOW_NUM	UINT16_MAX
125 #define	MIN_FLOW_NUM	1
126 #define	DEF_FLOW_NUM	0x1000
127 
128 /* TTL numbers are in ms. */
129 #define	MAX_FLOW_TTL	(3600 * MS_PER_S)
130 #define	MIN_FLOW_TTL	1
131 #define	DEF_FLOW_TTL	MS_PER_S
132 
133 #define	DEF_MBUF_NUM	0x400
134 
135 /* Should be power of two. */
136 #define	IPV4_FRAG_TBL_BUCKET_ENTRIES	2
137 
138 static uint32_t max_flow_num = DEF_FLOW_NUM;
139 static uint32_t max_flow_ttl = DEF_FLOW_TTL;
140 
141 /*
142  * RX and TX Prefetch, Host, and Write-back threshold values should be
143  * carefully set for optimal performance. Consult the network
144  * controller's datasheet and supporting DPDK documentation for guidance
145  * on how these parameters should be set.
146  */
147 #define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */
148 #define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */
149 #define RX_WTHRESH 4 /**< Default values of RX write-back threshold reg. */
150 
151 /*
152  * These default values are optimized for use with the Intel(R) 82599 10 GbE
153  * Controller and the DPDK ixgbe PMD. Consider using other values for other
154  * network controllers and/or network drivers.
155  */
156 #define TX_PTHRESH 36 /**< Default values of TX prefetch threshold reg. */
157 #define TX_HTHRESH 0  /**< Default values of TX host threshold reg. */
158 #define TX_WTHRESH 0  /**< Default values of TX write-back threshold reg. */
159 
160 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
161 
162 #define NB_SOCKETS 8
163 
164 /* Configure how many packets ahead to prefetch, when reading packets */
165 #define PREFETCH_OFFSET	3
166 
167 /*
168  * Configurable number of RX/TX ring descriptors
169  */
170 #define RTE_TEST_RX_DESC_DEFAULT 128
171 #define RTE_TEST_TX_DESC_DEFAULT 512
172 
173 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
174 static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
175 
176 /* ethernet addresses of ports */
177 static struct ether_addr ports_eth_addr[MAX_PORTS];
178 
179 /* mask of enabled ports */
180 static uint32_t enabled_port_mask = 0;
181 static int promiscuous_on = 0; /**< Ports set in promiscuous mode off by default. */
182 static int numa_on = 1; /**< NUMA is enabled by default. */
183 
184 struct mbuf_table {
185 	uint32_t len;
186 	uint32_t head;
187 	uint32_t tail;
188 	struct rte_mbuf *m_table[0];
189 };
190 
191 struct lcore_rx_queue {
192 	uint8_t port_id;
193 	uint8_t queue_id;
194 } __rte_cache_aligned;
195 
196 #define MAX_RX_QUEUE_PER_LCORE 16
197 #define MAX_TX_QUEUE_PER_PORT MAX_PORTS
198 #define MAX_RX_QUEUE_PER_PORT 128
199 
200 #define MAX_LCORE_PARAMS 1024
201 struct lcore_params {
202 	uint8_t port_id;
203 	uint8_t queue_id;
204 	uint8_t lcore_id;
205 } __rte_cache_aligned;
206 
207 static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
208 static struct lcore_params lcore_params_array_default[] = {
209 	{0, 0, 2},
210 	{0, 1, 2},
211 	{0, 2, 2},
212 	{1, 0, 2},
213 	{1, 1, 2},
214 	{1, 2, 2},
215 	{2, 0, 2},
216 	{3, 0, 3},
217 	{3, 1, 3},
218 };
219 
220 static struct lcore_params * lcore_params = lcore_params_array_default;
221 static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
222 				sizeof(lcore_params_array_default[0]);
223 
224 static struct rte_eth_conf port_conf = {
225 	.rxmode = {
226 		.mq_mode 	= ETH_MQ_RX_RSS,
227 		.max_rx_pkt_len	= ETHER_MAX_LEN,
228 		.split_hdr_size = 0,
229 		.header_split   = 0, /**< Header Split disabled */
230 		.hw_ip_checksum = 1, /**< IP checksum offload enabled */
231 		.hw_vlan_filter = 0, /**< VLAN filtering disabled */
232 		.jumbo_frame    = 0, /**< Jumbo Frame Support disabled */
233 		.hw_strip_crc   = 0, /**< CRC stripped by hardware */
234 	},
235 	.rx_adv_conf = {
236 		.rss_conf = {
237 			.rss_key = NULL,
238 			.rss_hf = ETH_RSS_IPV4 | ETH_RSS_IPV6,
239 		},
240 	},
241 	.txmode = {
242 		.mq_mode = ETH_MQ_TX_NONE,
243 	},
244 };
245 
246 static const struct rte_eth_rxconf rx_conf = {
247 	.rx_thresh = {
248 		.pthresh = RX_PTHRESH,
249 		.hthresh = RX_HTHRESH,
250 		.wthresh = RX_WTHRESH,
251 	},
252 	.rx_free_thresh = 32,
253 };
254 
255 static const struct rte_eth_txconf tx_conf = {
256 	.tx_thresh = {
257 		.pthresh = TX_PTHRESH,
258 		.hthresh = TX_HTHRESH,
259 		.wthresh = TX_WTHRESH,
260 	},
261 	.tx_free_thresh = 0, /* Use PMD default values */
262 	.tx_rs_thresh = 0, /* Use PMD default values */
263 	.txq_flags = 0x0,
264 };
265 
266 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
267 
268 #ifdef RTE_MACHINE_CPUFLAG_SSE4_2
269 #include <rte_hash_crc.h>
270 #define DEFAULT_HASH_FUNC       rte_hash_crc
271 #else
272 #include <rte_jhash.h>
273 #define DEFAULT_HASH_FUNC       rte_jhash
274 #endif
275 
276 struct ipv4_5tuple {
277 	uint32_t ip_dst;
278 	uint32_t ip_src;
279 	uint16_t port_dst;
280 	uint16_t port_src;
281 	uint8_t  proto;
282 } __attribute__((__packed__));
283 
284 struct ipv6_5tuple {
285 	uint8_t  ip_dst[IPV6_ADDR_LEN];
286 	uint8_t  ip_src[IPV6_ADDR_LEN];
287 	uint16_t port_dst;
288 	uint16_t port_src;
289 	uint8_t  proto;
290 } __attribute__((__packed__));
291 
292 struct ipv4_l3fwd_route {
293 	struct ipv4_5tuple key;
294 	uint8_t if_out;
295 };
296 
297 struct ipv6_l3fwd_route {
298 	struct ipv6_5tuple key;
299 	uint8_t if_out;
300 };
301 
302 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
303 	{{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
304 	{{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
305 	{{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
306 	{{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
307 };
308 
309 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
310 	{
311 		{
312 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
313 			 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
314 			{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
315 			 0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
316 			 1, 10, IPPROTO_UDP
317 		}, 4
318 	},
319 };
320 
321 typedef struct rte_hash lookup_struct_t;
322 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
323 static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
324 
325 #define L3FWD_HASH_ENTRIES	1024
326 
327 #define IPV4_L3FWD_NUM_ROUTES \
328 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
329 
330 #define IPV6_L3FWD_NUM_ROUTES \
331 	(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
332 
333 static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
334 static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
335 #endif
336 
337 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
338 struct ipv4_l3fwd_route {
339 	uint32_t ip;
340 	uint8_t  depth;
341 	uint8_t  if_out;
342 };
343 
344 struct ipv6_l3fwd_route {
345 	uint8_t ip[16];
346 	uint8_t  depth;
347 	uint8_t  if_out;
348 };
349 
350 static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
351 	{IPv4(1,1,1,0), 24, 0},
352 	{IPv4(2,1,1,0), 24, 1},
353 	{IPv4(3,1,1,0), 24, 2},
354 	{IPv4(4,1,1,0), 24, 3},
355 	{IPv4(5,1,1,0), 24, 4},
356 	{IPv4(6,1,1,0), 24, 5},
357 	{IPv4(7,1,1,0), 24, 6},
358 	{IPv4(8,1,1,0), 24, 7},
359 };
360 
361 static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
362 	{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
363 	{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
364 	{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
365 	{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
366 	{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
367 	{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
368 	{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
369 	{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
370 };
371 
372 #define IPV4_L3FWD_NUM_ROUTES \
373 	(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
374 #define IPV6_L3FWD_NUM_ROUTES \
375 	(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
376 
377 #define IPV4_L3FWD_LPM_MAX_RULES         1024
378 #define IPV6_L3FWD_LPM_MAX_RULES         1024
379 #define IPV6_L3FWD_LPM_NUMBER_TBL8S (1 << 16)
380 
381 typedef struct rte_lpm lookup_struct_t;
382 typedef struct rte_lpm6 lookup6_struct_t;
383 static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
384 static lookup6_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
385 #endif
386 
387 struct tx_lcore_stat {
388 	uint64_t call;
389 	uint64_t drop;
390 	uint64_t queue;
391 	uint64_t send;
392 };
393 
394 #ifdef IPV4_FRAG_TBL_STAT
395 #define	TX_LCORE_STAT_UPDATE(s, f, v)	((s)->f += (v))
396 #else
397 #define	TX_LCORE_STAT_UPDATE(s, f, v)	do {} while (0)
398 #endif /* IPV4_FRAG_TBL_STAT */
399 
400 struct lcore_conf {
401 	uint16_t n_rx_queue;
402 	struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
403 	uint16_t tx_queue_id[MAX_PORTS];
404 	lookup_struct_t * ipv4_lookup_struct;
405 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
406 	lookup6_struct_t * ipv6_lookup_struct;
407 #else
408 	lookup_struct_t * ipv6_lookup_struct;
409 #endif
410 	struct ipv4_frag_tbl *frag_tbl[MAX_RX_QUEUE_PER_LCORE];
411 	struct rte_mempool *pool[MAX_RX_QUEUE_PER_LCORE];
412 	struct ipv4_frag_death_row death_row;
413 	struct mbuf_table *tx_mbufs[MAX_PORTS];
414 	struct tx_lcore_stat tx_stat;
415 } __rte_cache_aligned;
416 
417 static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
418 
419 /*
420  * If number of queued packets reached given threahold, then
421  * send burst of packets on an output interface.
422  */
423 static inline uint32_t
424 send_burst(struct lcore_conf *qconf, uint32_t thresh, uint8_t port)
425 {
426 	uint32_t fill, len, k, n;
427 	struct mbuf_table *txmb;
428 
429 	txmb = qconf->tx_mbufs[port];
430 	len = txmb->len;
431 
432 	if ((int32_t)(fill = txmb->head - txmb->tail) < 0)
433 		fill += len;
434 
435 	if (fill >= thresh) {
436 		n = RTE_MIN(len - txmb->tail, fill);
437 
438 		k = rte_eth_tx_burst(port, qconf->tx_queue_id[port],
439 			txmb->m_table + txmb->tail, (uint16_t)n);
440 
441 		TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1);
442 		TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k);
443 
444 		fill -= k;
445 		if ((txmb->tail += k) == len)
446 			txmb->tail = 0;
447 	}
448 
449 	return (fill);
450 }
451 
452 /* Enqueue a single packet, and send burst if queue is filled */
453 static inline int
454 send_single_packet(struct rte_mbuf *m, uint8_t port)
455 {
456 	uint32_t fill, lcore_id, len;
457 	struct lcore_conf *qconf;
458 	struct mbuf_table *txmb;
459 
460 	lcore_id = rte_lcore_id();
461 	qconf = &lcore_conf[lcore_id];
462 
463 	txmb = qconf->tx_mbufs[port];
464 	len = txmb->len;
465 
466 	fill = send_burst(qconf, MAX_PKT_BURST, port);
467 
468 	if (fill == len - 1) {
469 		TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1);
470 		rte_pktmbuf_free(txmb->m_table[txmb->tail]);
471 		if (++txmb->tail == len)
472 			txmb->tail = 0;
473 	}
474 
475 	TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1);
476 	txmb->m_table[txmb->head] = m;
477 	if(++txmb->head == len)
478 		txmb->head = 0;
479 
480 	return (0);
481 }
482 
483 #ifdef DO_RFC_1812_CHECKS
484 static inline int
485 is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
486 {
487 	/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
488 	/*
489 	 * 1. The packet length reported by the Link Layer must be large
490 	 * enough to hold the minimum length legal IP datagram (20 bytes).
491 	 */
492 	if (link_len < sizeof(struct ipv4_hdr))
493 		return -1;
494 
495 	/* 2. The IP checksum must be correct. */
496 	/* this is checked in H/W */
497 
498 	/*
499 	 * 3. The IP version number must be 4. If the version number is not 4
500 	 * then the packet may be another version of IP, such as IPng or
501 	 * ST-II.
502 	 */
503 	if (((pkt->version_ihl) >> 4) != 4)
504 		return -3;
505 	/*
506 	 * 4. The IP header length field must be large enough to hold the
507 	 * minimum length legal IP datagram (20 bytes = 5 words).
508 	 */
509 	if ((pkt->version_ihl & 0xf) < 5)
510 		return -4;
511 
512 	/*
513 	 * 5. The IP total length field must be large enough to hold the IP
514 	 * datagram header, whose length is specified in the IP header length
515 	 * field.
516 	 */
517 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
518 		return -5;
519 
520 	return 0;
521 }
522 #endif
523 
524 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
525 static void
526 print_ipv4_key(struct ipv4_5tuple key)
527 {
528 	printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, proto = %d\n",
529 			(unsigned)key.ip_dst, (unsigned)key.ip_src, key.port_dst, key.port_src, key.proto);
530 }
531 static void
532 print_ipv6_key(struct ipv6_5tuple key)
533 {
534 	printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
535 	        "port dst = %d, port src = %d, proto = %d\n",
536 	        IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
537 	        key.port_dst, key.port_src, key.proto);
538 }
539 
540 static inline uint8_t
541 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr,  uint8_t portid, lookup_struct_t * ipv4_l3fwd_lookup_struct)
542 {
543 	struct ipv4_5tuple key;
544 	struct tcp_hdr *tcp;
545 	struct udp_hdr *udp;
546 	int ret = 0;
547 
548 	key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
549 	key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
550 	key.proto = ipv4_hdr->next_proto_id;
551 
552 	switch (ipv4_hdr->next_proto_id) {
553 	case IPPROTO_TCP:
554 		tcp = (struct tcp_hdr *)((unsigned char *) ipv4_hdr +
555 					sizeof(struct ipv4_hdr));
556 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
557 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
558 		break;
559 
560 	case IPPROTO_UDP:
561 		udp = (struct udp_hdr *)((unsigned char *) ipv4_hdr +
562 					sizeof(struct ipv4_hdr));
563 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
564 		key.port_src = rte_be_to_cpu_16(udp->src_port);
565 		break;
566 
567 	default:
568 		key.port_dst = 0;
569 		key.port_src = 0;
570 		break;
571 	}
572 
573 	/* Find destination port */
574 	ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
575 	return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
576 }
577 
578 static inline uint8_t
579 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr,  uint8_t portid, lookup_struct_t * ipv6_l3fwd_lookup_struct)
580 {
581 	struct ipv6_5tuple key;
582 	struct tcp_hdr *tcp;
583 	struct udp_hdr *udp;
584 	int ret = 0;
585 
586 	memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
587 	memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
588 
589 	key.proto = ipv6_hdr->proto;
590 
591 	switch (ipv6_hdr->proto) {
592 	case IPPROTO_TCP:
593 		tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr +
594 					sizeof(struct ipv6_hdr));
595 		key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
596 		key.port_src = rte_be_to_cpu_16(tcp->src_port);
597 		break;
598 
599 	case IPPROTO_UDP:
600 		udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr +
601 					sizeof(struct ipv6_hdr));
602 		key.port_dst = rte_be_to_cpu_16(udp->dst_port);
603 		key.port_src = rte_be_to_cpu_16(udp->src_port);
604 		break;
605 
606 	default:
607 		key.port_dst = 0;
608 		key.port_src = 0;
609 		break;
610 	}
611 
612 	/* Find destination port */
613 	ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
614 	return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]);
615 }
616 #endif
617 
618 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
619 static inline uint8_t
620 get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr,  uint8_t portid, lookup_struct_t * ipv4_l3fwd_lookup_struct)
621 {
622 	uint8_t next_hop;
623 
624 	return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
625 			rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
626 			next_hop : portid);
627 }
628 
629 static inline uint8_t
630 get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr,  uint8_t portid, lookup6_struct_t * ipv6_l3fwd_lookup_struct)
631 {
632 	uint8_t next_hop;
633 
634 	return (uint8_t) ((rte_lpm6_lookup(ipv6_l3fwd_lookup_struct,
635 			ipv6_hdr->dst_addr, &next_hop) == 0)?
636 			next_hop : portid);
637 }
638 #endif
639 
640 static inline void
641 l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, uint32_t queue,
642 	struct lcore_conf *qconf, uint64_t tms)
643 {
644 	struct ether_hdr *eth_hdr;
645 	struct ipv4_hdr *ipv4_hdr;
646 	void *d_addr_bytes;
647 	uint8_t dst_port;
648 	uint16_t flag_offset, ip_flag, ip_ofs;
649 
650 	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
651 
652 	if (m->ol_flags & PKT_RX_IPV4_HDR) {
653 		/* Handle IPv4 headers.*/
654 		ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
655 
656 #ifdef DO_RFC_1812_CHECKS
657 		/* Check to make sure the packet is valid (RFC1812) */
658 		if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt.pkt_len) < 0) {
659 			rte_pktmbuf_free(m);
660 			return;
661 		}
662 
663 		/* Update time to live and header checksum */
664 		--(ipv4_hdr->time_to_live);
665 		++(ipv4_hdr->hdr_checksum);
666 #endif
667 
668 		flag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset);
669 		ip_ofs = (uint16_t)(flag_offset & IPV4_HDR_OFFSET_MASK);
670 		ip_flag = (uint16_t)(flag_offset & IPV4_HDR_MF_FLAG);
671 
672 		 /* if it is a fragmented packet, then try to reassemble. */
673 		if (ip_flag != 0 || ip_ofs  != 0) {
674 
675 			struct rte_mbuf *mo;
676 			struct ipv4_frag_tbl *tbl;
677 			struct ipv4_frag_death_row *dr;
678 
679 			tbl = qconf->frag_tbl[queue];
680 			dr = &qconf->death_row;
681 
682 			/* prepare mbuf: setup l2_len/l3_len. */
683 			m->pkt.vlan_macip.f.l2_len = sizeof(*eth_hdr);
684 			m->pkt.vlan_macip.f.l3_len = sizeof(*ipv4_hdr);
685 
686 			/* process this fragment. */
687 			if ((mo = ipv4_frag_mbuf(tbl, dr, m, tms, ipv4_hdr,
688 					ip_ofs, ip_flag)) == NULL)
689 				/* no packet to send out. */
690 				return;
691 
692 			/* we have our packet reassembled. */
693 			if (mo != m) {
694 				m = mo;
695 				eth_hdr = rte_pktmbuf_mtod(m,
696 					struct ether_hdr *);
697 				ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
698 			}
699 		}
700 
701 		dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
702 			qconf->ipv4_lookup_struct);
703 		if (dst_port >= MAX_PORTS ||
704 				(enabled_port_mask & 1 << dst_port) == 0)
705 			dst_port = portid;
706 
707 		/* 02:00:00:00:00:xx */
708 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
709 		*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
710 
711 		/* src addr */
712 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
713 
714 		send_single_packet(m, dst_port);
715 	}
716 	else {
717 		/* Handle IPv6 headers.*/
718 		struct ipv6_hdr *ipv6_hdr;
719 
720 		ipv6_hdr = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m, unsigned char *) +
721 				sizeof(struct ether_hdr));
722 
723 		dst_port = get_ipv6_dst_port(ipv6_hdr, portid, qconf->ipv6_lookup_struct);
724 
725 		if (dst_port >= MAX_PORTS || (enabled_port_mask & 1 << dst_port) == 0)
726 			dst_port = portid;
727 
728 		/* 02:00:00:00:00:xx */
729 		d_addr_bytes = &eth_hdr->d_addr.addr_bytes[0];
730 		*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
731 
732 		/* src addr */
733 		ether_addr_copy(&ports_eth_addr[dst_port], &eth_hdr->s_addr);
734 
735 		send_single_packet(m, dst_port);
736 	}
737 
738 }
739 
740 /* main processing loop */
741 static int
742 main_loop(__attribute__((unused)) void *dummy)
743 {
744 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
745 	unsigned lcore_id;
746 	uint64_t diff_tsc, cur_tsc, prev_tsc;
747 	int i, j, nb_rx;
748 	uint8_t portid, queueid;
749 	struct lcore_conf *qconf;
750 	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
751 
752 	prev_tsc = 0;
753 
754 	lcore_id = rte_lcore_id();
755 	qconf = &lcore_conf[lcore_id];
756 
757 	if (qconf->n_rx_queue == 0) {
758 		RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
759 		return 0;
760 	}
761 
762 	RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
763 
764 	for (i = 0; i < qconf->n_rx_queue; i++) {
765 
766 		portid = qconf->rx_queue_list[i].port_id;
767 		queueid = qconf->rx_queue_list[i].queue_id;
768 		RTE_LOG(INFO, L3FWD, " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n", lcore_id,
769 			portid, queueid);
770 	}
771 
772 	while (1) {
773 
774 		cur_tsc = rte_rdtsc();
775 
776 		/*
777 		 * TX burst queue drain
778 		 */
779 		diff_tsc = cur_tsc - prev_tsc;
780 		if (unlikely(diff_tsc > drain_tsc)) {
781 
782 			/*
783 			 * This could be optimized (use queueid instead of
784 			 * portid), but it is not called so often
785 			 */
786 			for (portid = 0; portid < MAX_PORTS; portid++) {
787 				if ((enabled_port_mask & (1 << portid)) != 0)
788 					send_burst(qconf, 1, portid);
789 			}
790 
791 			prev_tsc = cur_tsc;
792 		}
793 
794 		/*
795 		 * Read packet from RX queues
796 		 */
797 		for (i = 0; i < qconf->n_rx_queue; ++i) {
798 
799 			portid = qconf->rx_queue_list[i].port_id;
800 			queueid = qconf->rx_queue_list[i].queue_id;
801 
802 			nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
803 				MAX_PKT_BURST);
804 
805 			/* Prefetch first packets */
806 			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
807 				rte_prefetch0(rte_pktmbuf_mtod(
808 						pkts_burst[j], void *));
809 			}
810 
811 			/* Prefetch and forward already prefetched packets */
812 			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
813 				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
814 					j + PREFETCH_OFFSET], void *));
815 				l3fwd_simple_forward(pkts_burst[j], portid,
816 					i, qconf, cur_tsc);
817 			}
818 
819 			/* Forward remaining prefetched packets */
820 			for (; j < nb_rx; j++) {
821 				l3fwd_simple_forward(pkts_burst[j], portid,
822 					i, qconf, cur_tsc);
823 			}
824 
825 			ipv4_frag_free_death_row(&qconf->death_row,
826 				PREFETCH_OFFSET);
827 		}
828 	}
829 }
830 
831 static int
832 check_lcore_params(void)
833 {
834 	uint8_t queue, lcore;
835 	uint16_t i;
836 	int socketid;
837 
838 	for (i = 0; i < nb_lcore_params; ++i) {
839 		queue = lcore_params[i].queue_id;
840 		if (queue >= MAX_RX_QUEUE_PER_PORT) {
841 			printf("invalid queue number: %hhu\n", queue);
842 			return -1;
843 		}
844 		lcore = lcore_params[i].lcore_id;
845 		if (!rte_lcore_is_enabled(lcore)) {
846 			printf("error: lcore %hhu is not enabled in lcore mask\n", lcore);
847 			return -1;
848 		}
849 		if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
850 			(numa_on == 0)) {
851 			printf("warning: lcore %hhu is on socket %d with numa off \n",
852 				lcore, socketid);
853 		}
854 	}
855 	return 0;
856 }
857 
858 static int
859 check_port_config(const unsigned nb_ports)
860 {
861 	unsigned portid;
862 	uint16_t i;
863 
864 	for (i = 0; i < nb_lcore_params; ++i) {
865 		portid = lcore_params[i].port_id;
866 		if ((enabled_port_mask & (1 << portid)) == 0) {
867 			printf("port %u is not enabled in port mask\n", portid);
868 			return -1;
869 		}
870 		if (portid >= nb_ports) {
871 			printf("port %u is not present on the board\n", portid);
872 			return -1;
873 		}
874 	}
875 	return 0;
876 }
877 
878 static uint8_t
879 get_port_n_rx_queues(const uint8_t port)
880 {
881 	int queue = -1;
882 	uint16_t i;
883 
884 	for (i = 0; i < nb_lcore_params; ++i) {
885 		if (lcore_params[i].port_id == port && lcore_params[i].queue_id > queue)
886 			queue = lcore_params[i].queue_id;
887 	}
888 	return (uint8_t)(++queue);
889 }
890 
891 static int
892 init_lcore_rx_queues(void)
893 {
894 	uint16_t i, nb_rx_queue;
895 	uint8_t lcore;
896 
897 	for (i = 0; i < nb_lcore_params; ++i) {
898 		lcore = lcore_params[i].lcore_id;
899 		nb_rx_queue = lcore_conf[lcore].n_rx_queue;
900 		if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
901 			printf("error: too many queues (%u) for lcore: %u\n",
902 				(unsigned)nb_rx_queue + 1, (unsigned)lcore);
903 			return -1;
904 		} else {
905 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
906 				lcore_params[i].port_id;
907 			lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
908 				lcore_params[i].queue_id;
909 			lcore_conf[lcore].n_rx_queue++;
910 		}
911 	}
912 	return 0;
913 }
914 
915 /* display usage */
916 static void
917 print_usage(const char *prgname)
918 {
919 	printf ("%s [EAL options] -- -p PORTMASK -P"
920 		"  [--config (port,queue,lcore)[,(port,queue,lcore]]"
921 		"  [--enable-jumbo [--max-pkt-len PKTLEN]]"
922 		"  [--maxflows=<flows>]  [--flowttl=<ttl>[(s|ms)]]\n"
923 		"  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
924 		"  -P : enable promiscuous mode\n"
925 		"  --config (port,queue,lcore): rx queues configuration\n"
926 		"  --no-numa: optional, disable numa awareness\n"
927 		"  --enable-jumbo: enable jumbo frame"
928 		" which max packet len is PKTLEN in decimal (64-9600)\n"
929 		"  --maxflows=<flows>: optional, maximum number of flows "
930 		"supported\n"
931 		"  --flowttl=<ttl>[(s|ms)]: optional, maximum TTL for each "
932 		"flow\n",
933 		prgname);
934 }
935 
936 static uint32_t
937 parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val)
938 {
939 	char *end;
940 	uint64_t v;
941 
942 	/* parse decimal string */
943 	errno = 0;
944 	v = strtoul(str, &end, 10);
945 	if (errno != 0 || *end != '\0')
946 		return (-EINVAL);
947 
948 	if (v < min || v > max)
949 		return (-EINVAL);
950 
951 	*val = (uint32_t)v;
952 	return (0);
953 }
954 
955 static int
956 parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val)
957 {
958 	char *end;
959 	uint64_t v;
960 
961 	static const char frmt_sec[] = "s";
962 	static const char frmt_msec[] = "ms";
963 
964 	/* parse decimal string */
965 	errno = 0;
966 	v = strtoul(str, &end, 10);
967 	if (errno != 0)
968 		return (-EINVAL);
969 
970 	if (*end != '\0') {
971 		if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0)
972 			v *= MS_PER_S;
973 		else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0)
974 			return (-EINVAL);
975 	}
976 
977 	if (v < min || v > max)
978 		return (-EINVAL);
979 
980 	*val = (uint32_t)v;
981 	return (0);
982 }
983 
984 
985 static int parse_max_pkt_len(const char *pktlen)
986 {
987 	char *end = NULL;
988 	unsigned long len;
989 
990 	/* parse decimal string */
991 	len = strtoul(pktlen, &end, 10);
992 	if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
993 		return -1;
994 
995 	if (len == 0)
996 		return -1;
997 
998 	return len;
999 }
1000 
1001 static int
1002 parse_portmask(const char *portmask)
1003 {
1004 	char *end = NULL;
1005 	unsigned long pm;
1006 
1007 	/* parse hexadecimal string */
1008 	pm = strtoul(portmask, &end, 16);
1009 	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
1010 		return -1;
1011 
1012 	if (pm == 0)
1013 		return -1;
1014 
1015 	return pm;
1016 }
1017 
1018 static int
1019 parse_config(const char *q_arg)
1020 {
1021 	char s[256];
1022 	const char *p, *p0 = q_arg;
1023 	char *end;
1024 	enum fieldnames {
1025 		FLD_PORT = 0,
1026 		FLD_QUEUE,
1027 		FLD_LCORE,
1028 		_NUM_FLD
1029 	};
1030 	unsigned long int_fld[_NUM_FLD];
1031 	char *str_fld[_NUM_FLD];
1032 	int i;
1033 	unsigned size;
1034 
1035 	nb_lcore_params = 0;
1036 
1037 	while ((p = strchr(p0,'(')) != NULL) {
1038 		++p;
1039 		if((p0 = strchr(p,')')) == NULL)
1040 			return -1;
1041 
1042 		size = p0 - p;
1043 		if(size >= sizeof(s))
1044 			return -1;
1045 
1046 		rte_snprintf(s, sizeof(s), "%.*s", size, p);
1047 		if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)
1048 			return -1;
1049 		for (i = 0; i < _NUM_FLD; i++){
1050 			errno = 0;
1051 			int_fld[i] = strtoul(str_fld[i], &end, 0);
1052 			if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
1053 				return -1;
1054 		}
1055 		if (nb_lcore_params >= MAX_LCORE_PARAMS) {
1056 			printf("exceeded max number of lcore params: %hu\n",
1057 				nb_lcore_params);
1058 			return -1;
1059 		}
1060 		lcore_params_array[nb_lcore_params].port_id = (uint8_t)int_fld[FLD_PORT];
1061 		lcore_params_array[nb_lcore_params].queue_id = (uint8_t)int_fld[FLD_QUEUE];
1062 		lcore_params_array[nb_lcore_params].lcore_id = (uint8_t)int_fld[FLD_LCORE];
1063 		++nb_lcore_params;
1064 	}
1065 	lcore_params = lcore_params_array;
1066 	return 0;
1067 }
1068 
1069 /* Parse the argument given in the command line of the application */
1070 static int
1071 parse_args(int argc, char **argv)
1072 {
1073 	int opt, ret;
1074 	char **argvopt;
1075 	int option_index;
1076 	char *prgname = argv[0];
1077 	static struct option lgopts[] = {
1078 		{"config", 1, 0, 0},
1079 		{"no-numa", 0, 0, 0},
1080 		{"enable-jumbo", 0, 0, 0},
1081 		{"maxflows", 1, 0, 0},
1082 		{"flowttl", 1, 0, 0},
1083 		{NULL, 0, 0, 0}
1084 	};
1085 
1086 	argvopt = argv;
1087 
1088 	while ((opt = getopt_long(argc, argvopt, "p:P",
1089 				lgopts, &option_index)) != EOF) {
1090 
1091 		switch (opt) {
1092 		/* portmask */
1093 		case 'p':
1094 			enabled_port_mask = parse_portmask(optarg);
1095 			if (enabled_port_mask == 0) {
1096 				printf("invalid portmask\n");
1097 				print_usage(prgname);
1098 				return -1;
1099 			}
1100 			break;
1101 		case 'P':
1102 			printf("Promiscuous mode selected\n");
1103 			promiscuous_on = 1;
1104 			break;
1105 
1106 		/* long options */
1107 		case 0:
1108 			if (!strncmp(lgopts[option_index].name, "config", 6)) {
1109 				ret = parse_config(optarg);
1110 				if (ret) {
1111 					printf("invalid config\n");
1112 					print_usage(prgname);
1113 					return -1;
1114 				}
1115 			}
1116 
1117 			if (!strncmp(lgopts[option_index].name, "no-numa", 7)) {
1118 				printf("numa is disabled \n");
1119 				numa_on = 0;
1120 			}
1121 
1122 			if (!strncmp(lgopts[option_index].name,
1123 					"maxflows", 8)) {
1124 				if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM,
1125 						MAX_FLOW_NUM,
1126 						&max_flow_num)) != 0) {
1127 					printf("invalid value: \"%s\" for "
1128 						"parameter %s\n",
1129 						optarg,
1130 						lgopts[option_index].name);
1131 					print_usage(prgname);
1132 					return (ret);
1133 				}
1134 			}
1135 
1136 			if (!strncmp(lgopts[option_index].name, "flowttl", 7)) {
1137 				if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL,
1138 						MAX_FLOW_TTL,
1139 						&max_flow_ttl)) != 0) {
1140 					printf("invalid value: \"%s\" for "
1141 						"parameter %s\n",
1142 						optarg,
1143 						lgopts[option_index].name);
1144 					print_usage(prgname);
1145 					return (ret);
1146 				}
1147 			}
1148 
1149 			if (!strncmp(lgopts[option_index].name, "enable-jumbo", 12)) {
1150 				struct option lenopts = {"max-pkt-len", required_argument, 0, 0};
1151 
1152 				printf("jumbo frame is enabled \n");
1153 				port_conf.rxmode.jumbo_frame = 1;
1154 
1155 				/* if no max-pkt-len set, use the default value ETHER_MAX_LEN */
1156 				if (0 == getopt_long(argc, argvopt, "", &lenopts, &option_index)) {
1157 					ret = parse_max_pkt_len(optarg);
1158 					if ((ret < 64) || (ret > MAX_JUMBO_PKT_LEN)){
1159 						printf("invalid packet length\n");
1160 						print_usage(prgname);
1161 						return -1;
1162 					}
1163 					port_conf.rxmode.max_rx_pkt_len = ret;
1164 				}
1165 				printf("set jumbo frame max packet length to %u\n",
1166 						(unsigned int)port_conf.rxmode.max_rx_pkt_len);
1167 			}
1168 
1169 			break;
1170 
1171 		default:
1172 			print_usage(prgname);
1173 			return -1;
1174 		}
1175 	}
1176 
1177 	if (optind >= 0)
1178 		argv[optind-1] = prgname;
1179 
1180 	ret = optind-1;
1181 	optind = 0; /* reset getopt lib */
1182 	return ret;
1183 }
1184 
1185 static void
1186 print_ethaddr(const char *name, const struct ether_addr *eth_addr)
1187 {
1188 	printf ("%s%02X:%02X:%02X:%02X:%02X:%02X", name,
1189 		eth_addr->addr_bytes[0],
1190 		eth_addr->addr_bytes[1],
1191 		eth_addr->addr_bytes[2],
1192 		eth_addr->addr_bytes[3],
1193 		eth_addr->addr_bytes[4],
1194 		eth_addr->addr_bytes[5]);
1195 }
1196 
1197 #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
1198 static void
1199 setup_hash(int socketid)
1200 {
1201 	struct rte_hash_parameters ipv4_l3fwd_hash_params = {
1202 		.name = NULL,
1203 		.entries = L3FWD_HASH_ENTRIES,
1204 		.bucket_entries = 4,
1205 		.key_len = sizeof(struct ipv4_5tuple),
1206 		.hash_func = DEFAULT_HASH_FUNC,
1207 		.hash_func_init_val = 0,
1208 	};
1209 
1210 	struct rte_hash_parameters ipv6_l3fwd_hash_params = {
1211 		.name = NULL,
1212 		.entries = L3FWD_HASH_ENTRIES,
1213 		.bucket_entries = 4,
1214 		.key_len = sizeof(struct ipv6_5tuple),
1215 		.hash_func = DEFAULT_HASH_FUNC,
1216 		.hash_func_init_val = 0,
1217 	};
1218 
1219 	unsigned i;
1220 	int ret;
1221 	char s[64];
1222 
1223 	/* create ipv4 hash */
1224 	rte_snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
1225 	ipv4_l3fwd_hash_params.name = s;
1226 	ipv4_l3fwd_hash_params.socket_id = socketid;
1227 	ipv4_l3fwd_lookup_struct[socketid] = rte_hash_create(&ipv4_l3fwd_hash_params);
1228 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1229 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1230 				"socket %d\n", socketid);
1231 
1232 	/* create ipv6 hash */
1233 	rte_snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
1234 	ipv6_l3fwd_hash_params.name = s;
1235 	ipv6_l3fwd_hash_params.socket_id = socketid;
1236 	ipv6_l3fwd_lookup_struct[socketid] = rte_hash_create(&ipv6_l3fwd_hash_params);
1237 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
1238 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
1239 				"socket %d\n", socketid);
1240 
1241 
1242 	/* populate the ipv4 hash */
1243 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1244 		ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
1245 				(void *) &ipv4_l3fwd_route_array[i].key);
1246 		if (ret < 0) {
1247 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1248 				"l3fwd hash on socket %d\n", i, socketid);
1249 		}
1250 		ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
1251 		printf("Hash: Adding key\n");
1252 		print_ipv4_key(ipv4_l3fwd_route_array[i].key);
1253 	}
1254 
1255 	/* populate the ipv6 hash */
1256 	for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
1257 		ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
1258 				(void *) &ipv6_l3fwd_route_array[i].key);
1259 		if (ret < 0) {
1260 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
1261 				"l3fwd hash on socket %d\n", i, socketid);
1262 		}
1263 		ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
1264 		printf("Hash: Adding key\n");
1265 		print_ipv6_key(ipv6_l3fwd_route_array[i].key);
1266 	}
1267 }
1268 #endif
1269 
1270 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1271 static void
1272 setup_lpm(int socketid)
1273 {
1274 	struct rte_lpm6_config config;
1275 	unsigned i;
1276 	int ret;
1277 	char s[64];
1278 
1279 	/* create the LPM table */
1280 	rte_snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
1281 	ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid,
1282 				IPV4_L3FWD_LPM_MAX_RULES, 0);
1283 	if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
1284 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
1285 				" on socket %d\n", socketid);
1286 
1287 	/* populate the LPM table */
1288 	for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
1289 		ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
1290 			ipv4_l3fwd_route_array[i].ip,
1291 			ipv4_l3fwd_route_array[i].depth,
1292 			ipv4_l3fwd_route_array[i].if_out);
1293 
1294 		if (ret < 0) {
1295 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
1296 				"l3fwd LPM table on socket %d\n",
1297 				i, socketid);
1298 		}
1299 
1300 		printf("LPM: Adding route 0x%08x / %d (%d)\n",
1301 			(unsigned)ipv4_l3fwd_route_array[i].ip,
1302 			ipv4_l3fwd_route_array[i].depth,
1303 			ipv4_l3fwd_route_array[i].if_out);
1304 	}
1305 
1306 	/* create the LPM6 table */
1307 	rte_snprintf(s, sizeof(s), "IPV6_L3FWD_LPM_%d", socketid);
1308 
1309 	config.max_rules = IPV6_L3FWD_LPM_MAX_RULES;
1310 	config.number_tbl8s = IPV6_L3FWD_LPM_NUMBER_TBL8S;
1311 	config.flags = 0;
1312 	ipv6_l3fwd_lookup_struct[socketid] = rte_lpm6_create(s, socketid,
1313 				&config);
1314 	if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
1315 		rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
1316 				" on socket %d\n", socketid);
1317 
1318 	/* populate the LPM table */
1319 	for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
1320 		ret = rte_lpm6_add(ipv6_l3fwd_lookup_struct[socketid],
1321 			ipv6_l3fwd_route_array[i].ip,
1322 			ipv6_l3fwd_route_array[i].depth,
1323 			ipv6_l3fwd_route_array[i].if_out);
1324 
1325 		if (ret < 0) {
1326 			rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
1327 				"l3fwd LPM table on socket %d\n",
1328 				i, socketid);
1329 		}
1330 
1331 		printf("LPM: Adding route %s / %d (%d)\n",
1332 			"IPV6",
1333 			ipv6_l3fwd_route_array[i].depth,
1334 			ipv6_l3fwd_route_array[i].if_out);
1335 	}
1336 }
1337 #endif
1338 
1339 static int
1340 init_mem(void)
1341 {
1342 	struct lcore_conf *qconf;
1343 	int socketid;
1344 	unsigned lcore_id;
1345 
1346 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1347 		if (rte_lcore_is_enabled(lcore_id) == 0)
1348 			continue;
1349 
1350 		if (numa_on)
1351 			socketid = rte_lcore_to_socket_id(lcore_id);
1352 		else
1353 			socketid = 0;
1354 
1355 		if (socketid >= NB_SOCKETS) {
1356 			rte_exit(EXIT_FAILURE,
1357 				"Socket %d of lcore %u is out of range %d\n",
1358 				socketid, lcore_id, NB_SOCKETS);
1359 		}
1360 
1361 #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
1362 			setup_lpm(socketid);
1363 #else
1364 			setup_hash(socketid);
1365 #endif
1366 		qconf = &lcore_conf[lcore_id];
1367 		qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
1368 		qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
1369 	}
1370 	return 0;
1371 }
1372 
1373 /* Check the link status of all ports in up to 9s, and print them finally */
1374 static void
1375 check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
1376 {
1377 #define CHECK_INTERVAL 100 /* 100ms */
1378 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
1379 	uint8_t portid, count, all_ports_up, print_flag = 0;
1380 	struct rte_eth_link link;
1381 
1382 	printf("\nChecking link status");
1383 	fflush(stdout);
1384 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
1385 		all_ports_up = 1;
1386 		for (portid = 0; portid < port_num; portid++) {
1387 			if ((port_mask & (1 << portid)) == 0)
1388 				continue;
1389 			memset(&link, 0, sizeof(link));
1390 			rte_eth_link_get_nowait(portid, &link);
1391 			/* print link status if flag set */
1392 			if (print_flag == 1) {
1393 				if (link.link_status)
1394 					printf("Port %d Link Up - speed %u "
1395 						"Mbps - %s\n", (uint8_t)portid,
1396 						(unsigned)link.link_speed,
1397 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
1398 					("full-duplex") : ("half-duplex\n"));
1399 				else
1400 					printf("Port %d Link Down\n",
1401 						(uint8_t)portid);
1402 				continue;
1403 			}
1404 			/* clear all_ports_up flag if any link down */
1405 			if (link.link_status == 0) {
1406 				all_ports_up = 0;
1407 				break;
1408 			}
1409 		}
1410 		/* after finally printing all link status, get out */
1411 		if (print_flag == 1)
1412 			break;
1413 
1414 		if (all_ports_up == 0) {
1415 			printf(".");
1416 			fflush(stdout);
1417 			rte_delay_ms(CHECK_INTERVAL);
1418 		}
1419 
1420 		/* set the print_flag if all ports up or timeout */
1421 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
1422 			print_flag = 1;
1423 			printf("done\n");
1424 		}
1425 	}
1426 }
1427 static void
1428 setup_port_tbl(struct lcore_conf *qconf, uint32_t lcore, int socket,
1429 	uint32_t port)
1430 {
1431 	struct mbuf_table *mtb;
1432 	uint32_t n;
1433 	size_t sz;
1434 
1435 	n = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST);
1436 	sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) *  n;
1437 
1438 	if ((mtb = rte_zmalloc_socket(__func__, sz, CACHE_LINE_SIZE,
1439 			socket)) == NULL)
1440 		rte_exit(EXIT_FAILURE, "%s() for lcore: %u, port: %u "
1441 			"failed to allocate %zu bytes\n",
1442 			__func__, lcore, port, sz);
1443 
1444 	mtb->len = n;
1445 	qconf->tx_mbufs[port] = mtb;
1446 }
1447 
1448 static void
1449 setup_queue_tbl(struct lcore_conf *qconf, uint32_t lcore, int socket,
1450 	uint32_t queue)
1451 {
1452 	uint32_t nb_mbuf;
1453 	uint64_t frag_cycles;
1454 	char buf[RTE_MEMPOOL_NAMESIZE];
1455 
1456 	frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S *
1457 		max_flow_ttl;
1458 
1459 	if ((qconf->frag_tbl[queue] = ipv4_frag_tbl_create(max_flow_num,
1460 			IPV4_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles,
1461 			socket)) == NULL)
1462 		rte_exit(EXIT_FAILURE, "ipv4_frag_tbl_create(%u) on "
1463 			"lcore: %u for queue: %u failed\n",
1464 			max_flow_num, lcore, queue);
1465 
1466 	/*
1467 	 * At any given moment up to <max_flow_num * (MAX_FRAG_NUM - 1)>
1468 	 * mbufs could be stored int the fragment table.
1469 	 * Plus, each TX queue can hold up to <max_flow_num> packets.
1470 	 */
1471 
1472 	nb_mbuf = 2 * RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM;
1473 	nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE;
1474 	nb_mbuf += RTE_TEST_RX_DESC_DEFAULT + RTE_TEST_TX_DESC_DEFAULT;
1475 
1476 	nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)DEF_MBUF_NUM);
1477 
1478 	rte_snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);
1479 
1480 	if ((qconf->pool[queue] = rte_mempool_create(buf, nb_mbuf, MBUF_SIZE, 0,
1481 			sizeof(struct rte_pktmbuf_pool_private),
1482 			rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL,
1483 			socket, MEMPOOL_F_SP_PUT | MEMPOOL_F_SC_GET)) == NULL)
1484 		rte_exit(EXIT_FAILURE, "mempool_create(%s) failed", buf);
1485 }
1486 
1487 static void
1488 queue_dump_stat(void)
1489 {
1490 	uint32_t i, lcore;
1491 	const struct lcore_conf *qconf;
1492 
1493 	for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) {
1494 		if (rte_lcore_is_enabled(lcore) == 0)
1495 			continue;
1496 
1497 		qconf = lcore_conf + lcore;
1498 		for (i = 0; i < qconf->n_rx_queue; i++) {
1499 
1500 			fprintf(stdout, " -- lcoreid=%u portid=%hhu "
1501 				"rxqueueid=%hhu frag tbl stat:\n",
1502 				lcore,  qconf->rx_queue_list[i].port_id,
1503 				qconf->rx_queue_list[i].queue_id);
1504 			ipv4_frag_tbl_dump_stat(stdout, qconf->frag_tbl[i]);
1505 			fprintf(stdout, "TX bursts:\t%" PRIu64 "\n"
1506 				"TX packets _queued:\t%" PRIu64 "\n"
1507 				"TX packets dropped:\t%" PRIu64 "\n"
1508 				"TX packets send:\t%" PRIu64 "\n",
1509 				qconf->tx_stat.call,
1510 				qconf->tx_stat.queue,
1511 				qconf->tx_stat.drop,
1512 				qconf->tx_stat.send);
1513 		}
1514 	}
1515 }
1516 
1517 static void
1518 signal_handler(int signum)
1519 {
1520 	queue_dump_stat();
1521 	if (signum != SIGUSR1)
1522 		rte_exit(0, "received signal: %d, exiting\n", signum);
1523 }
1524 
1525 int
1526 MAIN(int argc, char **argv)
1527 {
1528 	struct lcore_conf *qconf;
1529 	int ret;
1530 	unsigned nb_ports;
1531 	uint16_t queueid;
1532 	unsigned lcore_id;
1533 	uint32_t n_tx_queue, nb_lcores;
1534 	uint8_t portid, nb_rx_queue, queue, socketid;
1535 
1536 	/* init EAL */
1537 	ret = rte_eal_init(argc, argv);
1538 	if (ret < 0)
1539 		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
1540 	argc -= ret;
1541 	argv += ret;
1542 
1543 	/* parse application arguments (after the EAL ones) */
1544 	ret = parse_args(argc, argv);
1545 	if (ret < 0)
1546 		rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
1547 
1548 	if (check_lcore_params() < 0)
1549 		rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
1550 
1551 	ret = init_lcore_rx_queues();
1552 	if (ret < 0)
1553 		rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
1554 
1555 
1556 	/* init driver(s) */
1557 	if (rte_pmd_init_all() < 0)
1558 		rte_exit(EXIT_FAILURE, "Cannot init pmd\n");
1559 
1560 	if (rte_eal_pci_probe() < 0)
1561 		rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");
1562 
1563 	nb_ports = rte_eth_dev_count();
1564 	if (nb_ports > MAX_PORTS)
1565 		nb_ports = MAX_PORTS;
1566 
1567 	if (check_port_config(nb_ports) < 0)
1568 		rte_exit(EXIT_FAILURE, "check_port_config failed\n");
1569 
1570 	nb_lcores = rte_lcore_count();
1571 
1572 	/* initialize all ports */
1573 	for (portid = 0; portid < nb_ports; portid++) {
1574 		/* skip ports that are not enabled */
1575 		if ((enabled_port_mask & (1 << portid)) == 0) {
1576 			printf("\nSkipping disabled port %d\n", portid);
1577 			continue;
1578 		}
1579 
1580 		/* init port */
1581 		printf("Initializing port %d ... ", portid );
1582 		fflush(stdout);
1583 
1584 		nb_rx_queue = get_port_n_rx_queues(portid);
1585 		n_tx_queue = nb_lcores;
1586 		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
1587 			n_tx_queue = MAX_TX_QUEUE_PER_PORT;
1588 		printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
1589 			nb_rx_queue, (unsigned)n_tx_queue );
1590 		ret = rte_eth_dev_configure(portid, nb_rx_queue,
1591 					(uint16_t)n_tx_queue, &port_conf);
1592 		if (ret < 0)
1593 			rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
1594 				ret, portid);
1595 
1596 		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
1597 		print_ethaddr(" Address:", &ports_eth_addr[portid]);
1598 		printf(", ");
1599 
1600 		/* init memory */
1601 		ret = init_mem();
1602 		if (ret < 0)
1603 			rte_exit(EXIT_FAILURE, "init_mem failed\n");
1604 
1605 		/* init one TX queue per couple (lcore,port) */
1606 		queueid = 0;
1607 		for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1608 			if (rte_lcore_is_enabled(lcore_id) == 0)
1609 				continue;
1610 
1611 			if (numa_on)
1612 				socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1613 			else
1614 				socketid = 0;
1615 
1616 			printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
1617 			fflush(stdout);
1618 			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
1619 						     socketid, &tx_conf);
1620 			if (ret < 0)
1621 				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
1622 					"port=%d\n", ret, portid);
1623 
1624 			qconf = &lcore_conf[lcore_id];
1625 			qconf->tx_queue_id[portid] = queueid;
1626 			setup_port_tbl(qconf, lcore_id, socketid, portid);
1627 			queueid++;
1628 		}
1629 		printf("\n");
1630 	}
1631 
1632 	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
1633 		if (rte_lcore_is_enabled(lcore_id) == 0)
1634 			continue;
1635 		qconf = &lcore_conf[lcore_id];
1636 		printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
1637 		fflush(stdout);
1638 		/* init RX queues */
1639 		for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
1640 			portid = qconf->rx_queue_list[queue].port_id;
1641 			queueid = qconf->rx_queue_list[queue].queue_id;
1642 
1643 			if (numa_on)
1644 				socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
1645 			else
1646 				socketid = 0;
1647 
1648 			printf("rxq=%d,%d,%d ", portid, queueid, socketid);
1649 			fflush(stdout);
1650 
1651 			setup_queue_tbl(qconf, lcore_id, socketid, queue);
1652 
1653 			ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
1654 				        socketid, &rx_conf, qconf->pool[queue]);
1655 			if (ret < 0)
1656 				rte_exit(EXIT_FAILURE,
1657 					"rte_eth_rx_queue_setup: err=%d,"
1658 					"port=%d\n", ret, portid);
1659 		}
1660 	}
1661 
1662 	printf("\n");
1663 
1664 	/* start ports */
1665 	for (portid = 0; portid < nb_ports; portid++) {
1666 		if ((enabled_port_mask & (1 << portid)) == 0) {
1667 			continue;
1668 		}
1669 		/* Start device */
1670 		ret = rte_eth_dev_start(portid);
1671 		if (ret < 0)
1672 			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
1673 				ret, portid);
1674 
1675 		/*
1676 		 * If enabled, put device in promiscuous mode.
1677 		 * This allows IO forwarding mode to forward packets
1678 		 * to itself through 2 cross-connected  ports of the
1679 		 * target machine.
1680 		 */
1681 		if (promiscuous_on)
1682 			rte_eth_promiscuous_enable(portid);
1683 	}
1684 
1685 	check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
1686 
1687 	signal(SIGUSR1, signal_handler);
1688 	signal(SIGTERM, signal_handler);
1689 	signal(SIGINT, signal_handler);
1690 
1691 	/* launch per-lcore init on every lcore */
1692 	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
1693 	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
1694 		if (rte_eal_wait_lcore(lcore_id) < 0)
1695 			return -1;
1696 	}
1697 
1698 	return 0;
1699 }
1700