xref: /dpdk/examples/eventdev_pipeline/pipeline_worker_tx.c (revision decb35d890209f603b01c1d23f35995bd51228fc)
1 /*
2  * SPDX-License-Identifier: BSD-3-Clause
3  * Copyright(c) 2010-2014 Intel Corporation
4  * Copyright 2017 Cavium, Inc.
5  */
6 
7 #include "pipeline_common.h"
8 
9 static __rte_always_inline void
10 worker_fwd_event(struct rte_event *ev, uint8_t sched)
11 {
12 	ev->event_type = RTE_EVENT_TYPE_CPU;
13 	ev->op = RTE_EVENT_OP_FORWARD;
14 	ev->sched_type = sched;
15 }
16 
17 static __rte_always_inline void
18 worker_event_enqueue(const uint8_t dev, const uint8_t port,
19 		struct rte_event *ev)
20 {
21 	while (!rte_event_enqueue_burst(dev, port, ev, 1) && !fdata->done)
22 		rte_pause();
23 }
24 
25 static __rte_always_inline uint16_t
26 worker_event_enqueue_burst(const uint8_t dev, const uint8_t port,
27 			   struct rte_event *ev, const uint16_t nb_rx)
28 {
29 	uint16_t enq;
30 
31 	enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
32 	while (enq < nb_rx && !fdata->done)
33 		enq += rte_event_enqueue_burst(dev, port,
34 						ev + enq, nb_rx - enq);
35 
36 	return enq;
37 }
38 
39 static __rte_always_inline void
40 worker_tx_pkt(const uint8_t dev, const uint8_t port, struct rte_event *ev)
41 {
42 	exchange_mac(ev->mbuf);
43 	rte_event_eth_tx_adapter_txq_set(ev->mbuf, 0);
44 	while (!rte_event_eth_tx_adapter_enqueue(dev, port, ev, 1, 0) &&
45 	       !fdata->done)
46 		rte_pause();
47 }
48 
49 /* Single stage pipeline workers */
50 
51 static int
52 worker_do_tx_single(void *arg)
53 {
54 	struct worker_data *data = (struct worker_data *)arg;
55 	const uint8_t dev = data->dev_id;
56 	const uint8_t port = data->port_id;
57 	size_t fwd = 0, received = 0, tx = 0;
58 	struct rte_event ev;
59 
60 	while (!fdata->done) {
61 
62 		if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
63 			rte_pause();
64 			continue;
65 		}
66 
67 		received++;
68 
69 		if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
70 			worker_tx_pkt(dev, port, &ev);
71 			tx++;
72 		} else {
73 			work();
74 			ev.queue_id++;
75 			worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
76 			worker_event_enqueue(dev, port, &ev);
77 			fwd++;
78 		}
79 	}
80 
81 	if (ev.u64) {
82 		ev.op = RTE_EVENT_OP_RELEASE;
83 		rte_event_enqueue_burst(dev, port, &ev, 1);
84 	}
85 
86 	if (!cdata.quiet)
87 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
88 				rte_lcore_id(), received, fwd, tx);
89 	return 0;
90 }
91 
92 static int
93 worker_do_tx_single_atq(void *arg)
94 {
95 	struct worker_data *data = (struct worker_data *)arg;
96 	const uint8_t dev = data->dev_id;
97 	const uint8_t port = data->port_id;
98 	size_t fwd = 0, received = 0, tx = 0;
99 	struct rte_event ev;
100 
101 	while (!fdata->done) {
102 
103 		if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
104 			rte_pause();
105 			continue;
106 		}
107 
108 		received++;
109 
110 		if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
111 			worker_tx_pkt(dev, port, &ev);
112 			tx++;
113 		} else {
114 			work();
115 			worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
116 			worker_event_enqueue(dev, port, &ev);
117 			fwd++;
118 		}
119 	}
120 
121 	if (ev.u64) {
122 		ev.op = RTE_EVENT_OP_RELEASE;
123 		rte_event_enqueue_burst(dev, port, &ev, 1);
124 	}
125 
126 	if (!cdata.quiet)
127 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
128 				rte_lcore_id(), received, fwd, tx);
129 	return 0;
130 }
131 
132 static int
133 worker_do_tx_single_burst(void *arg)
134 {
135 	struct rte_event ev[BATCH_SIZE + 1];
136 
137 	struct worker_data *data = (struct worker_data *)arg;
138 	const uint8_t dev = data->dev_id;
139 	const uint8_t port = data->port_id;
140 	size_t fwd = 0, received = 0, tx = 0;
141 	uint16_t nb_tx = 0, nb_rx = 0, i;
142 
143 	while (!fdata->done) {
144 		nb_rx = rte_event_dequeue_burst(dev, port, ev, BATCH_SIZE, 0);
145 
146 		if (!nb_rx) {
147 			rte_pause();
148 			continue;
149 		}
150 		received += nb_rx;
151 
152 		for (i = 0; i < nb_rx; i++) {
153 			rte_prefetch0(ev[i + 1].mbuf);
154 			if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
155 
156 				worker_tx_pkt(dev, port, &ev[i]);
157 				ev[i].op = RTE_EVENT_OP_RELEASE;
158 				tx++;
159 
160 			} else {
161 				ev[i].queue_id++;
162 				worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
163 			}
164 			work();
165 		}
166 
167 		nb_tx = worker_event_enqueue_burst(dev, port, ev, nb_rx);
168 		fwd += nb_tx;
169 	}
170 
171 	worker_cleanup(dev, port, ev, nb_tx, nb_rx);
172 
173 	if (!cdata.quiet)
174 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
175 				rte_lcore_id(), received, fwd, tx);
176 	return 0;
177 }
178 
179 static int
180 worker_do_tx_single_burst_atq(void *arg)
181 {
182 	struct rte_event ev[BATCH_SIZE + 1];
183 
184 	struct worker_data *data = (struct worker_data *)arg;
185 	const uint8_t dev = data->dev_id;
186 	const uint8_t port = data->port_id;
187 	size_t fwd = 0, received = 0, tx = 0;
188 	uint16_t i, nb_rx = 0, nb_tx = 0;
189 
190 	while (!fdata->done) {
191 		nb_rx = rte_event_dequeue_burst(dev, port, ev, BATCH_SIZE, 0);
192 
193 		if (!nb_rx) {
194 			rte_pause();
195 			continue;
196 		}
197 
198 		received += nb_rx;
199 
200 		for (i = 0; i < nb_rx; i++) {
201 			rte_prefetch0(ev[i + 1].mbuf);
202 			if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
203 
204 				worker_tx_pkt(dev, port, &ev[i]);
205 				ev[i].op = RTE_EVENT_OP_RELEASE;
206 				tx++;
207 			} else
208 				worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
209 			work();
210 		}
211 
212 		nb_tx = worker_event_enqueue_burst(dev, port, ev, nb_rx);
213 		fwd += nb_tx;
214 	}
215 
216 	worker_cleanup(dev, port, ev, nb_tx, nb_rx);
217 
218 	if (!cdata.quiet)
219 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
220 				rte_lcore_id(), received, fwd, tx);
221 	return 0;
222 }
223 
224 /* Multi stage Pipeline Workers */
225 
226 static int
227 worker_do_tx(void *arg)
228 {
229 	struct rte_event ev;
230 
231 	struct worker_data *data = (struct worker_data *)arg;
232 	const uint8_t dev = data->dev_id;
233 	const uint8_t port = data->port_id;
234 	const uint8_t lst_qid = cdata.num_stages - 1;
235 	size_t fwd = 0, received = 0, tx = 0;
236 
237 
238 	while (!fdata->done) {
239 
240 		if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
241 			rte_pause();
242 			continue;
243 		}
244 
245 		received++;
246 		const uint8_t cq_id = ev.queue_id % cdata.num_stages;
247 
248 		if (cq_id >= lst_qid) {
249 			if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
250 				worker_tx_pkt(dev, port, &ev);
251 				tx++;
252 				continue;
253 			}
254 
255 			worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
256 			ev.queue_id = (cq_id == lst_qid) ?
257 				cdata.next_qid[ev.queue_id] : ev.queue_id;
258 		} else {
259 			ev.queue_id = cdata.next_qid[ev.queue_id];
260 			worker_fwd_event(&ev, cdata.queue_type);
261 		}
262 		work();
263 
264 		worker_event_enqueue(dev, port, &ev);
265 		fwd++;
266 	}
267 
268 	if (ev.u64) {
269 		ev.op = RTE_EVENT_OP_RELEASE;
270 		rte_event_enqueue_burst(dev, port, &ev, 1);
271 	}
272 
273 	if (!cdata.quiet)
274 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
275 				rte_lcore_id(), received, fwd, tx);
276 
277 	return 0;
278 }
279 
280 static int
281 worker_do_tx_atq(void *arg)
282 {
283 	struct rte_event ev;
284 
285 	struct worker_data *data = (struct worker_data *)arg;
286 	const uint8_t dev = data->dev_id;
287 	const uint8_t port = data->port_id;
288 	const uint8_t lst_qid = cdata.num_stages - 1;
289 	size_t fwd = 0, received = 0, tx = 0;
290 
291 	while (!fdata->done) {
292 
293 		if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
294 			rte_pause();
295 			continue;
296 		}
297 
298 		received++;
299 		const uint8_t cq_id = ev.sub_event_type % cdata.num_stages;
300 
301 		if (cq_id == lst_qid) {
302 			if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
303 				worker_tx_pkt(dev, port, &ev);
304 				tx++;
305 				continue;
306 			}
307 
308 			worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
309 		} else {
310 			ev.sub_event_type++;
311 			worker_fwd_event(&ev, cdata.queue_type);
312 		}
313 		work();
314 
315 		worker_event_enqueue(dev, port, &ev);
316 		fwd++;
317 	}
318 
319 	if (ev.u64) {
320 		ev.op = RTE_EVENT_OP_RELEASE;
321 		rte_event_enqueue_burst(dev, port, &ev, 1);
322 	}
323 
324 	if (!cdata.quiet)
325 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
326 				rte_lcore_id(), received, fwd, tx);
327 
328 	return 0;
329 }
330 
331 static int
332 worker_do_tx_burst(void *arg)
333 {
334 	struct rte_event ev[BATCH_SIZE];
335 
336 	struct worker_data *data = (struct worker_data *)arg;
337 	uint8_t dev = data->dev_id;
338 	uint8_t port = data->port_id;
339 	uint8_t lst_qid = cdata.num_stages - 1;
340 	size_t fwd = 0, received = 0, tx = 0;
341 	uint16_t i, nb_rx = 0, nb_tx = 0;
342 
343 	while (!fdata->done) {
344 		nb_rx = rte_event_dequeue_burst(dev, port, ev, BATCH_SIZE, 0);
345 
346 		if (nb_rx == 0) {
347 			rte_pause();
348 			continue;
349 		}
350 		received += nb_rx;
351 
352 		for (i = 0; i < nb_rx; i++) {
353 			const uint8_t cq_id = ev[i].queue_id % cdata.num_stages;
354 
355 			if (cq_id >= lst_qid) {
356 				if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
357 					worker_tx_pkt(dev, port, &ev[i]);
358 					tx++;
359 					ev[i].op = RTE_EVENT_OP_RELEASE;
360 					continue;
361 				}
362 				ev[i].queue_id = (cq_id == lst_qid) ?
363 					cdata.next_qid[ev[i].queue_id] :
364 					ev[i].queue_id;
365 
366 				worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
367 			} else {
368 				ev[i].queue_id = cdata.next_qid[ev[i].queue_id];
369 				worker_fwd_event(&ev[i], cdata.queue_type);
370 			}
371 			work();
372 		}
373 
374 		nb_tx = worker_event_enqueue_burst(dev, port, ev, nb_rx);
375 		fwd += nb_tx;
376 	}
377 
378 	worker_cleanup(dev, port, ev, nb_tx, nb_rx);
379 
380 	if (!cdata.quiet)
381 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
382 				rte_lcore_id(), received, fwd, tx);
383 
384 	return 0;
385 }
386 
387 static int
388 worker_do_tx_burst_atq(void *arg)
389 {
390 	struct rte_event ev[BATCH_SIZE];
391 
392 	struct worker_data *data = (struct worker_data *)arg;
393 	uint8_t dev = data->dev_id;
394 	uint8_t port = data->port_id;
395 	uint8_t lst_qid = cdata.num_stages - 1;
396 	size_t fwd = 0, received = 0, tx = 0;
397 	uint16_t i, nb_rx = 0, nb_tx = 0;
398 
399 	while (!fdata->done) {
400 		nb_rx = rte_event_dequeue_burst(dev, port, ev, BATCH_SIZE, 0);
401 
402 		if (nb_rx == 0) {
403 			rte_pause();
404 			continue;
405 		}
406 		received += nb_rx;
407 
408 		for (i = 0; i < nb_rx; i++) {
409 			const uint8_t cq_id = ev[i].sub_event_type %
410 				cdata.num_stages;
411 
412 			if (cq_id == lst_qid) {
413 				if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
414 					worker_tx_pkt(dev, port, &ev[i]);
415 					tx++;
416 					ev[i].op = RTE_EVENT_OP_RELEASE;
417 					continue;
418 				}
419 
420 				worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
421 			} else {
422 				ev[i].sub_event_type++;
423 				worker_fwd_event(&ev[i], cdata.queue_type);
424 			}
425 			work();
426 		}
427 
428 		nb_tx = worker_event_enqueue_burst(dev, port, ev, nb_rx);
429 		fwd += nb_tx;
430 	}
431 
432 	worker_cleanup(dev, port, ev, nb_tx, nb_rx);
433 
434 	if (!cdata.quiet)
435 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
436 				rte_lcore_id(), received, fwd, tx);
437 
438 	return 0;
439 }
440 
441 static int
442 setup_eventdev_worker_tx_enq(struct worker_data *worker_data)
443 {
444 	uint8_t i;
445 	const uint8_t atq = cdata.all_type_queues ? 1 : 0;
446 	const uint8_t dev_id = 0;
447 	const uint8_t nb_ports = cdata.num_workers;
448 	uint8_t nb_slots = 0;
449 	uint8_t nb_queues = rte_eth_dev_count_avail();
450 
451 	/*
452 	 * In case where all type queues are not enabled, use queues equal to
453 	 * number of stages * eth_dev_count and one extra queue per pipeline
454 	 * for Tx.
455 	 */
456 	if (!atq) {
457 		nb_queues *= cdata.num_stages;
458 		nb_queues += rte_eth_dev_count_avail();
459 	}
460 
461 	struct rte_event_dev_config config = {
462 			.nb_event_queues = nb_queues,
463 			.nb_event_ports = nb_ports,
464 			.nb_single_link_event_port_queues = 0,
465 			.nb_events_limit  = 4096,
466 			.nb_event_queue_flows = 1024,
467 			.nb_event_port_dequeue_depth = 128,
468 			.nb_event_port_enqueue_depth = 128,
469 	};
470 	struct rte_event_port_conf wkr_p_conf = {
471 			.dequeue_depth = cdata.worker_cq_depth,
472 			.enqueue_depth = 64,
473 			.new_event_threshold = 4096,
474 			.event_port_cfg = RTE_EVENT_PORT_CFG_HINT_WORKER,
475 	};
476 	struct rte_event_queue_conf wkr_q_conf = {
477 			.schedule_type = cdata.queue_type,
478 			.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
479 			.nb_atomic_flows = 1024,
480 			.nb_atomic_order_sequences = 1024,
481 	};
482 
483 	int ret, ndev = rte_event_dev_count();
484 
485 	if (ndev < 1) {
486 		printf("%d: No Eventdev Devices Found\n", __LINE__);
487 		return -1;
488 	}
489 
490 
491 	struct rte_event_dev_info dev_info;
492 	ret = rte_event_dev_info_get(dev_id, &dev_info);
493 	printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name);
494 
495 	if (dev_info.max_num_events < config.nb_events_limit)
496 		config.nb_events_limit = dev_info.max_num_events;
497 	if (dev_info.max_event_port_dequeue_depth <
498 			config.nb_event_port_dequeue_depth)
499 		config.nb_event_port_dequeue_depth =
500 				dev_info.max_event_port_dequeue_depth;
501 	if (dev_info.max_event_port_enqueue_depth <
502 			config.nb_event_port_enqueue_depth)
503 		config.nb_event_port_enqueue_depth =
504 				dev_info.max_event_port_enqueue_depth;
505 
506 	ret = rte_event_dev_configure(dev_id, &config);
507 	if (ret < 0) {
508 		printf("%d: Error configuring device\n", __LINE__);
509 		return -1;
510 	}
511 
512 	printf("  Stages:\n");
513 	for (i = 0; i < nb_queues; i++) {
514 
515 		if (atq) {
516 
517 			nb_slots = cdata.num_stages;
518 			wkr_q_conf.event_queue_cfg =
519 				RTE_EVENT_QUEUE_CFG_ALL_TYPES;
520 		} else {
521 			uint8_t slot;
522 
523 			nb_slots = cdata.num_stages + 1;
524 			slot = i % nb_slots;
525 			wkr_q_conf.schedule_type = slot == cdata.num_stages ?
526 				RTE_SCHED_TYPE_ATOMIC : cdata.queue_type;
527 		}
528 
529 		if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) {
530 			printf("%d: error creating qid %d\n", __LINE__, i);
531 			return -1;
532 		}
533 		cdata.qid[i] = i;
534 		cdata.next_qid[i] = i+1;
535 		if (cdata.enable_queue_priorities) {
536 			const uint32_t prio_delta =
537 				(RTE_EVENT_DEV_PRIORITY_LOWEST) /
538 				nb_slots;
539 
540 			/* higher priority for queues closer to tx */
541 			wkr_q_conf.priority =
542 				RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta *
543 				(i % nb_slots);
544 		}
545 
546 		const char *type_str = "Atomic";
547 		switch (wkr_q_conf.schedule_type) {
548 		case RTE_SCHED_TYPE_ORDERED:
549 			type_str = "Ordered";
550 			break;
551 		case RTE_SCHED_TYPE_PARALLEL:
552 			type_str = "Parallel";
553 			break;
554 		}
555 		printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str,
556 				wkr_q_conf.priority);
557 	}
558 
559 	printf("\n");
560 	if (wkr_p_conf.new_event_threshold > config.nb_events_limit)
561 		wkr_p_conf.new_event_threshold = config.nb_events_limit;
562 	if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
563 		wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
564 	if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
565 		wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
566 
567 	/* set up one port per worker, linking to all stage queues */
568 	for (i = 0; i < cdata.num_workers; i++) {
569 		struct worker_data *w = &worker_data[i];
570 		w->dev_id = dev_id;
571 		if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) {
572 			printf("Error setting up port %d\n", i);
573 			return -1;
574 		}
575 
576 		if (rte_event_port_link(dev_id, i, NULL, NULL, 0)
577 				!= nb_queues) {
578 			printf("%d: error creating link for port %d\n",
579 					__LINE__, i);
580 			return -1;
581 		}
582 		w->port_id = i;
583 	}
584 	/*
585 	 * Reduce the load on ingress event queue by splitting the traffic
586 	 * across multiple event queues.
587 	 * for example, nb_stages =  2 and nb_ethdev = 2 then
588 	 *
589 	 *	nb_queues = (2 * 2) + 2 = 6 (non atq)
590 	 *	rx_stride = 3
591 	 *
592 	 * So, traffic is split across queue 0 and queue 3 since queue id for
593 	 * rx adapter is chosen <ethport_id> * <rx_stride> i.e in the above
594 	 * case eth port 0, 1 will inject packets into event queue 0, 3
595 	 * respectively.
596 	 *
597 	 * This forms two set of queue pipelines 0->1->2->tx and 3->4->5->tx.
598 	 */
599 	cdata.rx_stride = atq ? 1 : nb_slots;
600 	ret = rte_event_dev_service_id_get(dev_id,
601 				&fdata->evdev_service_id);
602 	if (ret != -ESRCH && ret != 0) {
603 		printf("Error getting the service ID\n");
604 		return -1;
605 	}
606 	rte_service_runstate_set(fdata->evdev_service_id, 1);
607 	rte_service_set_runstate_mapped_check(fdata->evdev_service_id, 0);
608 
609 	if (rte_event_dev_start(dev_id) < 0)
610 		rte_exit(EXIT_FAILURE, "Error starting eventdev");
611 
612 	return dev_id;
613 }
614 
615 
616 struct rx_adptr_services {
617 	uint16_t nb_rx_adptrs;
618 	uint32_t *rx_adpt_arr;
619 };
620 
621 static int32_t
622 service_rx_adapter(void *arg)
623 {
624 	int i;
625 	struct rx_adptr_services *adptr_services = arg;
626 
627 	for (i = 0; i < adptr_services->nb_rx_adptrs; i++)
628 		rte_service_run_iter_on_app_lcore(
629 				adptr_services->rx_adpt_arr[i], 1);
630 	return 0;
631 }
632 
633 /*
634  * Initializes a given port using global settings and with the RX buffers
635  * coming from the mbuf_pool passed as a parameter.
636  */
637 static inline int
638 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
639 {
640 	struct rte_eth_rxconf rx_conf;
641 	static const struct rte_eth_conf port_conf_default = {
642 		.rxmode = {
643 			.mq_mode = RTE_ETH_MQ_RX_RSS,
644 		},
645 		.rx_adv_conf = {
646 			.rss_conf = {
647 				.rss_hf = RTE_ETH_RSS_IP |
648 					  RTE_ETH_RSS_TCP |
649 					  RTE_ETH_RSS_UDP,
650 			}
651 		}
652 	};
653 	const uint16_t rx_rings = 1, tx_rings = 1;
654 	const uint16_t rx_ring_size = 512, tx_ring_size = 512;
655 	struct rte_eth_conf port_conf = port_conf_default;
656 	int retval;
657 	uint16_t q;
658 	struct rte_eth_dev_info dev_info;
659 	struct rte_eth_txconf txconf;
660 
661 	if (!rte_eth_dev_is_valid_port(port))
662 		return -1;
663 
664 	retval = rte_eth_dev_info_get(port, &dev_info);
665 	if (retval != 0) {
666 		printf("Error during getting device (port %u) info: %s\n",
667 				port, strerror(-retval));
668 		return retval;
669 	}
670 
671 	if (dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
672 		port_conf.txmode.offloads |=
673 			RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
674 	rx_conf = dev_info.default_rxconf;
675 	rx_conf.offloads = port_conf.rxmode.offloads;
676 
677 	port_conf.rx_adv_conf.rss_conf.rss_hf &=
678 		dev_info.flow_type_rss_offloads;
679 	if (port_conf.rx_adv_conf.rss_conf.rss_hf !=
680 			port_conf_default.rx_adv_conf.rss_conf.rss_hf) {
681 		printf("Port %u modified RSS hash function based on hardware support,"
682 			"requested:%#"PRIx64" configured:%#"PRIx64"\n",
683 			port,
684 			port_conf_default.rx_adv_conf.rss_conf.rss_hf,
685 			port_conf.rx_adv_conf.rss_conf.rss_hf);
686 	}
687 
688 	/* Configure the Ethernet device. */
689 	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
690 	if (retval != 0)
691 		return retval;
692 
693 	/* Allocate and set up 1 RX queue per Ethernet port. */
694 	for (q = 0; q < rx_rings; q++) {
695 		retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
696 				rte_eth_dev_socket_id(port), &rx_conf,
697 				mbuf_pool);
698 		if (retval < 0)
699 			return retval;
700 	}
701 
702 	txconf = dev_info.default_txconf;
703 	txconf.offloads = port_conf_default.txmode.offloads;
704 	/* Allocate and set up 1 TX queue per Ethernet port. */
705 	for (q = 0; q < tx_rings; q++) {
706 		retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
707 				rte_eth_dev_socket_id(port), &txconf);
708 		if (retval < 0)
709 			return retval;
710 	}
711 
712 	/* Display the port MAC address. */
713 	struct rte_ether_addr addr;
714 	retval = rte_eth_macaddr_get(port, &addr);
715 	if (retval != 0) {
716 		printf("Failed to get MAC address (port %u): %s\n",
717 				port, rte_strerror(-retval));
718 		return retval;
719 	}
720 
721 	printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
722 			" %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
723 			(unsigned int)port, RTE_ETHER_ADDR_BYTES(&addr));
724 
725 	/* Enable RX in promiscuous mode for the Ethernet device. */
726 	retval = rte_eth_promiscuous_enable(port);
727 	if (retval != 0)
728 		return retval;
729 
730 	return 0;
731 }
732 
733 static int
734 init_ports(uint16_t num_ports)
735 {
736 	uint16_t portid;
737 
738 	if (!cdata.num_mbuf)
739 		cdata.num_mbuf = 16384 * num_ports;
740 
741 	struct rte_mempool *mp = rte_pktmbuf_pool_create("packet_pool",
742 			/* mbufs */ cdata.num_mbuf,
743 			/* cache_size */ 512,
744 			/* priv_size*/ 0,
745 			/* data_room_size */ RTE_MBUF_DEFAULT_BUF_SIZE,
746 			rte_socket_id());
747 
748 	RTE_ETH_FOREACH_DEV(portid)
749 		if (port_init(portid, mp) != 0)
750 			rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu16 "\n",
751 					portid);
752 
753 	return 0;
754 }
755 
756 static void
757 init_adapters(uint16_t nb_ports)
758 {
759 	int i;
760 	int ret;
761 	uint8_t evdev_id = 0;
762 	struct rx_adptr_services *adptr_services = NULL;
763 	struct rte_event_dev_info dev_info;
764 
765 	ret = rte_event_dev_info_get(evdev_id, &dev_info);
766 	adptr_services = rte_zmalloc(NULL, sizeof(struct rx_adptr_services), 0);
767 
768 	struct rte_event_port_conf adptr_p_conf = {
769 		.dequeue_depth = cdata.worker_cq_depth,
770 		.enqueue_depth = 64,
771 		.new_event_threshold = 4096,
772 		.event_port_cfg = RTE_EVENT_PORT_CFG_HINT_PRODUCER,
773 	};
774 
775 	init_ports(nb_ports);
776 	if (adptr_p_conf.new_event_threshold > dev_info.max_num_events)
777 		adptr_p_conf.new_event_threshold = dev_info.max_num_events;
778 	if (adptr_p_conf.dequeue_depth > dev_info.max_event_port_dequeue_depth)
779 		adptr_p_conf.dequeue_depth =
780 			dev_info.max_event_port_dequeue_depth;
781 	if (adptr_p_conf.enqueue_depth > dev_info.max_event_port_enqueue_depth)
782 		adptr_p_conf.enqueue_depth =
783 			dev_info.max_event_port_enqueue_depth;
784 
785 	struct rte_event_eth_rx_adapter_queue_conf queue_conf;
786 	memset(&queue_conf, 0, sizeof(queue_conf));
787 	queue_conf.ev.sched_type = cdata.queue_type;
788 
789 	for (i = 0; i < nb_ports; i++) {
790 		uint32_t cap;
791 		uint32_t service_id;
792 
793 		ret = rte_event_eth_rx_adapter_create(i, evdev_id,
794 				&adptr_p_conf);
795 		if (ret)
796 			rte_exit(EXIT_FAILURE,
797 					"failed to create rx adapter[%d]", i);
798 
799 		ret = rte_event_eth_rx_adapter_caps_get(evdev_id, i, &cap);
800 		if (ret)
801 			rte_exit(EXIT_FAILURE,
802 					"failed to get event rx adapter "
803 					"capabilities");
804 
805 		queue_conf.ev.queue_id = cdata.rx_stride ?
806 			(i * cdata.rx_stride)
807 			: (uint8_t)cdata.qid[0];
808 
809 		ret = rte_event_eth_rx_adapter_queue_add(i, i, -1, &queue_conf);
810 		if (ret)
811 			rte_exit(EXIT_FAILURE,
812 					"Failed to add queues to Rx adapter");
813 
814 		/* Producer needs to be scheduled. */
815 		if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
816 			ret = rte_event_eth_rx_adapter_service_id_get(i,
817 					&service_id);
818 			if (ret != -ESRCH && ret != 0) {
819 				rte_exit(EXIT_FAILURE,
820 				"Error getting the service ID for rx adptr\n");
821 			}
822 
823 			rte_service_runstate_set(service_id, 1);
824 			rte_service_set_runstate_mapped_check(service_id, 0);
825 
826 			adptr_services->nb_rx_adptrs++;
827 			adptr_services->rx_adpt_arr = rte_realloc(
828 					adptr_services->rx_adpt_arr,
829 					adptr_services->nb_rx_adptrs *
830 					sizeof(uint32_t), 0);
831 			adptr_services->rx_adpt_arr[
832 				adptr_services->nb_rx_adptrs - 1] =
833 				service_id;
834 		}
835 
836 		ret = rte_event_eth_rx_adapter_start(i);
837 		if (ret)
838 			rte_exit(EXIT_FAILURE, "Rx adapter[%d] start failed",
839 					i);
840 	}
841 
842 	/* We already know that Tx adapter has INTERNAL port cap*/
843 	ret = rte_event_eth_tx_adapter_create(cdata.tx_adapter_id, evdev_id,
844 			&adptr_p_conf);
845 	if (ret)
846 		rte_exit(EXIT_FAILURE, "failed to create tx adapter[%d]",
847 				cdata.tx_adapter_id);
848 
849 	for (i = 0; i < nb_ports; i++) {
850 		ret = rte_event_eth_tx_adapter_queue_add(cdata.tx_adapter_id, i,
851 				-1);
852 		if (ret)
853 			rte_exit(EXIT_FAILURE,
854 					"Failed to add queues to Tx adapter");
855 	}
856 
857 	ret = rte_event_eth_tx_adapter_start(cdata.tx_adapter_id);
858 	if (ret)
859 		rte_exit(EXIT_FAILURE, "Tx adapter[%d] start failed",
860 				cdata.tx_adapter_id);
861 
862 	if (adptr_services->nb_rx_adptrs) {
863 		struct rte_service_spec service;
864 
865 		memset(&service, 0, sizeof(struct rte_service_spec));
866 		snprintf(service.name, sizeof(service.name), "rx_service");
867 		service.callback = service_rx_adapter;
868 		service.callback_userdata = (void *)adptr_services;
869 
870 		int32_t ret = rte_service_component_register(&service,
871 				&fdata->rxadptr_service_id);
872 		if (ret)
873 			rte_exit(EXIT_FAILURE,
874 				"Rx adapter service register failed");
875 
876 		rte_service_runstate_set(fdata->rxadptr_service_id, 1);
877 		rte_service_component_runstate_set(fdata->rxadptr_service_id,
878 				1);
879 		rte_service_set_runstate_mapped_check(fdata->rxadptr_service_id,
880 				0);
881 	} else {
882 		memset(fdata->rx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
883 		rte_free(adptr_services);
884 	}
885 
886 	if (!adptr_services->nb_rx_adptrs && (dev_info.event_dev_cap &
887 			 RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))
888 		fdata->cap.scheduler = NULL;
889 }
890 
891 static void
892 worker_tx_enq_opt_check(void)
893 {
894 	int i;
895 	int ret;
896 	uint32_t cap = 0;
897 	uint8_t rx_needed = 0;
898 	uint8_t sched_needed = 0;
899 	struct rte_event_dev_info eventdev_info;
900 
901 	memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info));
902 	rte_event_dev_info_get(0, &eventdev_info);
903 
904 	if (cdata.all_type_queues && !(eventdev_info.event_dev_cap &
905 				RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES))
906 		rte_exit(EXIT_FAILURE,
907 				"Event dev doesn't support all type queues\n");
908 	sched_needed = !(eventdev_info.event_dev_cap &
909 		RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED);
910 
911 	RTE_ETH_FOREACH_DEV(i) {
912 		ret = rte_event_eth_rx_adapter_caps_get(0, i, &cap);
913 		if (ret)
914 			rte_exit(EXIT_FAILURE,
915 				"failed to get event rx adapter capabilities");
916 		rx_needed |=
917 			!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT);
918 	}
919 
920 	if (cdata.worker_lcore_mask == 0 ||
921 			(rx_needed && cdata.rx_lcore_mask == 0) ||
922 			(sched_needed && cdata.sched_lcore_mask == 0)) {
923 		printf("Core part of pipeline was not assigned any cores. "
924 			"This will stall the pipeline, please check core masks "
925 			"(use -h for details on setting core masks):\n"
926 			"\trx: %"PRIu64"\n\tsched: %"PRIu64
927 			"\n\tworkers: %"PRIu64"\n", cdata.rx_lcore_mask,
928 			cdata.sched_lcore_mask, cdata.worker_lcore_mask);
929 		rte_exit(-1, "Fix core masks\n");
930 	}
931 
932 	if (!sched_needed)
933 		memset(fdata->sched_core, 0,
934 				sizeof(unsigned int) * MAX_NUM_CORE);
935 	if (!rx_needed)
936 		memset(fdata->rx_core, 0,
937 				sizeof(unsigned int) * MAX_NUM_CORE);
938 
939 	memset(fdata->tx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
940 }
941 
942 static worker_loop
943 get_worker_loop_single_burst(uint8_t atq)
944 {
945 	if (atq)
946 		return worker_do_tx_single_burst_atq;
947 
948 	return worker_do_tx_single_burst;
949 }
950 
951 static worker_loop
952 get_worker_loop_single_non_burst(uint8_t atq)
953 {
954 	if (atq)
955 		return worker_do_tx_single_atq;
956 
957 	return worker_do_tx_single;
958 }
959 
960 static worker_loop
961 get_worker_loop_burst(uint8_t atq)
962 {
963 	if (atq)
964 		return worker_do_tx_burst_atq;
965 
966 	return worker_do_tx_burst;
967 }
968 
969 static worker_loop
970 get_worker_loop_non_burst(uint8_t atq)
971 {
972 	if (atq)
973 		return worker_do_tx_atq;
974 
975 	return worker_do_tx;
976 }
977 
978 static worker_loop
979 get_worker_single_stage(bool burst)
980 {
981 	uint8_t atq = cdata.all_type_queues ? 1 : 0;
982 
983 	if (burst)
984 		return get_worker_loop_single_burst(atq);
985 
986 	return get_worker_loop_single_non_burst(atq);
987 }
988 
989 static worker_loop
990 get_worker_multi_stage(bool burst)
991 {
992 	uint8_t atq = cdata.all_type_queues ? 1 : 0;
993 
994 	if (burst)
995 		return get_worker_loop_burst(atq);
996 
997 	return get_worker_loop_non_burst(atq);
998 }
999 
1000 void
1001 set_worker_tx_enq_setup_data(struct setup_data *caps, bool burst)
1002 {
1003 	if (cdata.num_stages == 1)
1004 		caps->worker = get_worker_single_stage(burst);
1005 	else
1006 		caps->worker = get_worker_multi_stage(burst);
1007 
1008 	caps->check_opt = worker_tx_enq_opt_check;
1009 	caps->scheduler = schedule_devices;
1010 	caps->evdev_setup = setup_eventdev_worker_tx_enq;
1011 	caps->adptr_setup = init_adapters;
1012 }
1013