xref: /dpdk/examples/eventdev_pipeline/pipeline_worker_tx.c (revision b50bcefdcc087e3b945c05ddbe8f0dff399ff405)
1 /*
2  * SPDX-License-Identifier: BSD-3-Clause
3  * Copyright(c) 2010-2014 Intel Corporation
4  * Copyright 2017 Cavium, Inc.
5  */
6 
7 #include "pipeline_common.h"
8 
9 static __rte_always_inline void
10 worker_fwd_event(struct rte_event *ev, uint8_t sched)
11 {
12 	ev->event_type = RTE_EVENT_TYPE_CPU;
13 	ev->op = RTE_EVENT_OP_FORWARD;
14 	ev->sched_type = sched;
15 }
16 
17 static __rte_always_inline void
18 worker_event_enqueue(const uint8_t dev, const uint8_t port,
19 		struct rte_event *ev)
20 {
21 	while (rte_event_enqueue_burst(dev, port, ev, 1) != 1)
22 		rte_pause();
23 }
24 
25 static __rte_always_inline void
26 worker_event_enqueue_burst(const uint8_t dev, const uint8_t port,
27 		struct rte_event *ev, const uint16_t nb_rx)
28 {
29 	uint16_t enq;
30 
31 	enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
32 	while (enq < nb_rx) {
33 		enq += rte_event_enqueue_burst(dev, port,
34 						ev + enq, nb_rx - enq);
35 	}
36 }
37 
38 static __rte_always_inline void
39 worker_tx_pkt(const uint8_t dev, const uint8_t port, struct rte_event *ev)
40 {
41 	exchange_mac(ev->mbuf);
42 	rte_event_eth_tx_adapter_txq_set(ev->mbuf, 0);
43 	while (!rte_event_eth_tx_adapter_enqueue(dev, port, ev, 1, 0))
44 		rte_pause();
45 }
46 
47 /* Single stage pipeline workers */
48 
49 static int
50 worker_do_tx_single(void *arg)
51 {
52 	struct worker_data *data = (struct worker_data *)arg;
53 	const uint8_t dev = data->dev_id;
54 	const uint8_t port = data->port_id;
55 	size_t fwd = 0, received = 0, tx = 0;
56 	struct rte_event ev;
57 
58 	while (!fdata->done) {
59 
60 		if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
61 			rte_pause();
62 			continue;
63 		}
64 
65 		received++;
66 
67 		if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
68 			worker_tx_pkt(dev, port, &ev);
69 			tx++;
70 		} else {
71 			work();
72 			ev.queue_id++;
73 			worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
74 			worker_event_enqueue(dev, port, &ev);
75 			fwd++;
76 		}
77 	}
78 
79 	if (!cdata.quiet)
80 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
81 				rte_lcore_id(), received, fwd, tx);
82 	return 0;
83 }
84 
85 static int
86 worker_do_tx_single_atq(void *arg)
87 {
88 	struct worker_data *data = (struct worker_data *)arg;
89 	const uint8_t dev = data->dev_id;
90 	const uint8_t port = data->port_id;
91 	size_t fwd = 0, received = 0, tx = 0;
92 	struct rte_event ev;
93 
94 	while (!fdata->done) {
95 
96 		if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
97 			rte_pause();
98 			continue;
99 		}
100 
101 		received++;
102 
103 		if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
104 			worker_tx_pkt(dev, port, &ev);
105 			tx++;
106 		} else {
107 			work();
108 			worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
109 			worker_event_enqueue(dev, port, &ev);
110 			fwd++;
111 		}
112 	}
113 
114 	if (!cdata.quiet)
115 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
116 				rte_lcore_id(), received, fwd, tx);
117 	return 0;
118 }
119 
120 static int
121 worker_do_tx_single_burst(void *arg)
122 {
123 	struct rte_event ev[BATCH_SIZE + 1];
124 
125 	struct worker_data *data = (struct worker_data *)arg;
126 	const uint8_t dev = data->dev_id;
127 	const uint8_t port = data->port_id;
128 	size_t fwd = 0, received = 0, tx = 0;
129 
130 	while (!fdata->done) {
131 		uint16_t i;
132 		uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
133 				BATCH_SIZE, 0);
134 
135 		if (!nb_rx) {
136 			rte_pause();
137 			continue;
138 		}
139 		received += nb_rx;
140 
141 		for (i = 0; i < nb_rx; i++) {
142 			rte_prefetch0(ev[i + 1].mbuf);
143 			if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
144 
145 				worker_tx_pkt(dev, port, &ev[i]);
146 				ev[i].op = RTE_EVENT_OP_RELEASE;
147 				tx++;
148 
149 			} else {
150 				ev[i].queue_id++;
151 				worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
152 			}
153 			work();
154 		}
155 
156 		worker_event_enqueue_burst(dev, port, ev, nb_rx);
157 		fwd += nb_rx;
158 	}
159 
160 	if (!cdata.quiet)
161 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
162 				rte_lcore_id(), received, fwd, tx);
163 	return 0;
164 }
165 
166 static int
167 worker_do_tx_single_burst_atq(void *arg)
168 {
169 	struct rte_event ev[BATCH_SIZE + 1];
170 
171 	struct worker_data *data = (struct worker_data *)arg;
172 	const uint8_t dev = data->dev_id;
173 	const uint8_t port = data->port_id;
174 	size_t fwd = 0, received = 0, tx = 0;
175 
176 	while (!fdata->done) {
177 		uint16_t i;
178 		uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
179 				BATCH_SIZE, 0);
180 
181 		if (!nb_rx) {
182 			rte_pause();
183 			continue;
184 		}
185 
186 		received += nb_rx;
187 
188 		for (i = 0; i < nb_rx; i++) {
189 			rte_prefetch0(ev[i + 1].mbuf);
190 			if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
191 
192 				worker_tx_pkt(dev, port, &ev[i]);
193 				ev[i].op = RTE_EVENT_OP_RELEASE;
194 				tx++;
195 			} else
196 				worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
197 			work();
198 		}
199 
200 		worker_event_enqueue_burst(dev, port, ev, nb_rx);
201 		fwd += nb_rx;
202 	}
203 
204 	if (!cdata.quiet)
205 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
206 				rte_lcore_id(), received, fwd, tx);
207 	return 0;
208 }
209 
210 /* Multi stage Pipeline Workers */
211 
212 static int
213 worker_do_tx(void *arg)
214 {
215 	struct rte_event ev;
216 
217 	struct worker_data *data = (struct worker_data *)arg;
218 	const uint8_t dev = data->dev_id;
219 	const uint8_t port = data->port_id;
220 	const uint8_t lst_qid = cdata.num_stages - 1;
221 	size_t fwd = 0, received = 0, tx = 0;
222 
223 
224 	while (!fdata->done) {
225 
226 		if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
227 			rte_pause();
228 			continue;
229 		}
230 
231 		received++;
232 		const uint8_t cq_id = ev.queue_id % cdata.num_stages;
233 
234 		if (cq_id >= lst_qid) {
235 			if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
236 				worker_tx_pkt(dev, port, &ev);
237 				tx++;
238 				continue;
239 			}
240 
241 			worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
242 			ev.queue_id = (cq_id == lst_qid) ?
243 				cdata.next_qid[ev.queue_id] : ev.queue_id;
244 		} else {
245 			ev.queue_id = cdata.next_qid[ev.queue_id];
246 			worker_fwd_event(&ev, cdata.queue_type);
247 		}
248 		work();
249 
250 		worker_event_enqueue(dev, port, &ev);
251 		fwd++;
252 	}
253 
254 	if (!cdata.quiet)
255 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
256 				rte_lcore_id(), received, fwd, tx);
257 
258 	return 0;
259 }
260 
261 static int
262 worker_do_tx_atq(void *arg)
263 {
264 	struct rte_event ev;
265 
266 	struct worker_data *data = (struct worker_data *)arg;
267 	const uint8_t dev = data->dev_id;
268 	const uint8_t port = data->port_id;
269 	const uint8_t lst_qid = cdata.num_stages - 1;
270 	size_t fwd = 0, received = 0, tx = 0;
271 
272 	while (!fdata->done) {
273 
274 		if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
275 			rte_pause();
276 			continue;
277 		}
278 
279 		received++;
280 		const uint8_t cq_id = ev.sub_event_type % cdata.num_stages;
281 
282 		if (cq_id == lst_qid) {
283 			if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
284 				worker_tx_pkt(dev, port, &ev);
285 				tx++;
286 				continue;
287 			}
288 
289 			worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
290 		} else {
291 			ev.sub_event_type++;
292 			worker_fwd_event(&ev, cdata.queue_type);
293 		}
294 		work();
295 
296 		worker_event_enqueue(dev, port, &ev);
297 		fwd++;
298 	}
299 
300 	if (!cdata.quiet)
301 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
302 				rte_lcore_id(), received, fwd, tx);
303 
304 	return 0;
305 }
306 
307 static int
308 worker_do_tx_burst(void *arg)
309 {
310 	struct rte_event ev[BATCH_SIZE];
311 
312 	struct worker_data *data = (struct worker_data *)arg;
313 	uint8_t dev = data->dev_id;
314 	uint8_t port = data->port_id;
315 	uint8_t lst_qid = cdata.num_stages - 1;
316 	size_t fwd = 0, received = 0, tx = 0;
317 
318 	while (!fdata->done) {
319 		uint16_t i;
320 		const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
321 				ev, BATCH_SIZE, 0);
322 
323 		if (nb_rx == 0) {
324 			rte_pause();
325 			continue;
326 		}
327 		received += nb_rx;
328 
329 		for (i = 0; i < nb_rx; i++) {
330 			const uint8_t cq_id = ev[i].queue_id % cdata.num_stages;
331 
332 			if (cq_id >= lst_qid) {
333 				if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
334 					worker_tx_pkt(dev, port, &ev[i]);
335 					tx++;
336 					ev[i].op = RTE_EVENT_OP_RELEASE;
337 					continue;
338 				}
339 				ev[i].queue_id = (cq_id == lst_qid) ?
340 					cdata.next_qid[ev[i].queue_id] :
341 					ev[i].queue_id;
342 
343 				worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
344 			} else {
345 				ev[i].queue_id = cdata.next_qid[ev[i].queue_id];
346 				worker_fwd_event(&ev[i], cdata.queue_type);
347 			}
348 			work();
349 		}
350 		worker_event_enqueue_burst(dev, port, ev, nb_rx);
351 
352 		fwd += nb_rx;
353 	}
354 
355 	if (!cdata.quiet)
356 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
357 				rte_lcore_id(), received, fwd, tx);
358 
359 	return 0;
360 }
361 
362 static int
363 worker_do_tx_burst_atq(void *arg)
364 {
365 	struct rte_event ev[BATCH_SIZE];
366 
367 	struct worker_data *data = (struct worker_data *)arg;
368 	uint8_t dev = data->dev_id;
369 	uint8_t port = data->port_id;
370 	uint8_t lst_qid = cdata.num_stages - 1;
371 	size_t fwd = 0, received = 0, tx = 0;
372 
373 	while (!fdata->done) {
374 		uint16_t i;
375 
376 		const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
377 				ev, BATCH_SIZE, 0);
378 
379 		if (nb_rx == 0) {
380 			rte_pause();
381 			continue;
382 		}
383 		received += nb_rx;
384 
385 		for (i = 0; i < nb_rx; i++) {
386 			const uint8_t cq_id = ev[i].sub_event_type %
387 				cdata.num_stages;
388 
389 			if (cq_id == lst_qid) {
390 				if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
391 					worker_tx_pkt(dev, port, &ev[i]);
392 					tx++;
393 					ev[i].op = RTE_EVENT_OP_RELEASE;
394 					continue;
395 				}
396 
397 				worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
398 			} else {
399 				ev[i].sub_event_type++;
400 				worker_fwd_event(&ev[i], cdata.queue_type);
401 			}
402 			work();
403 		}
404 
405 		worker_event_enqueue_burst(dev, port, ev, nb_rx);
406 		fwd += nb_rx;
407 	}
408 
409 	if (!cdata.quiet)
410 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
411 				rte_lcore_id(), received, fwd, tx);
412 
413 	return 0;
414 }
415 
416 static int
417 setup_eventdev_worker_tx_enq(struct worker_data *worker_data)
418 {
419 	uint8_t i;
420 	const uint8_t atq = cdata.all_type_queues ? 1 : 0;
421 	const uint8_t dev_id = 0;
422 	const uint8_t nb_ports = cdata.num_workers;
423 	uint8_t nb_slots = 0;
424 	uint8_t nb_queues = rte_eth_dev_count_avail();
425 
426 	/*
427 	 * In case where all type queues are not enabled, use queues equal to
428 	 * number of stages * eth_dev_count and one extra queue per pipeline
429 	 * for Tx.
430 	 */
431 	if (!atq) {
432 		nb_queues *= cdata.num_stages;
433 		nb_queues += rte_eth_dev_count_avail();
434 	}
435 
436 	struct rte_event_dev_config config = {
437 			.nb_event_queues = nb_queues,
438 			.nb_event_ports = nb_ports,
439 			.nb_events_limit  = 4096,
440 			.nb_event_queue_flows = 1024,
441 			.nb_event_port_dequeue_depth = 128,
442 			.nb_event_port_enqueue_depth = 128,
443 	};
444 	struct rte_event_port_conf wkr_p_conf = {
445 			.dequeue_depth = cdata.worker_cq_depth,
446 			.enqueue_depth = 64,
447 			.new_event_threshold = 4096,
448 	};
449 	struct rte_event_queue_conf wkr_q_conf = {
450 			.schedule_type = cdata.queue_type,
451 			.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
452 			.nb_atomic_flows = 1024,
453 			.nb_atomic_order_sequences = 1024,
454 	};
455 
456 	int ret, ndev = rte_event_dev_count();
457 
458 	if (ndev < 1) {
459 		printf("%d: No Eventdev Devices Found\n", __LINE__);
460 		return -1;
461 	}
462 
463 
464 	struct rte_event_dev_info dev_info;
465 	ret = rte_event_dev_info_get(dev_id, &dev_info);
466 	printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name);
467 
468 	if (dev_info.max_num_events < config.nb_events_limit)
469 		config.nb_events_limit = dev_info.max_num_events;
470 	if (dev_info.max_event_port_dequeue_depth <
471 			config.nb_event_port_dequeue_depth)
472 		config.nb_event_port_dequeue_depth =
473 				dev_info.max_event_port_dequeue_depth;
474 	if (dev_info.max_event_port_enqueue_depth <
475 			config.nb_event_port_enqueue_depth)
476 		config.nb_event_port_enqueue_depth =
477 				dev_info.max_event_port_enqueue_depth;
478 
479 	ret = rte_event_dev_configure(dev_id, &config);
480 	if (ret < 0) {
481 		printf("%d: Error configuring device\n", __LINE__);
482 		return -1;
483 	}
484 
485 	printf("  Stages:\n");
486 	for (i = 0; i < nb_queues; i++) {
487 
488 		if (atq) {
489 
490 			nb_slots = cdata.num_stages;
491 			wkr_q_conf.event_queue_cfg =
492 				RTE_EVENT_QUEUE_CFG_ALL_TYPES;
493 		} else {
494 			uint8_t slot;
495 
496 			nb_slots = cdata.num_stages + 1;
497 			slot = i % nb_slots;
498 			wkr_q_conf.schedule_type = slot == cdata.num_stages ?
499 				RTE_SCHED_TYPE_ATOMIC : cdata.queue_type;
500 		}
501 
502 		if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) {
503 			printf("%d: error creating qid %d\n", __LINE__, i);
504 			return -1;
505 		}
506 		cdata.qid[i] = i;
507 		cdata.next_qid[i] = i+1;
508 		if (cdata.enable_queue_priorities) {
509 			const uint32_t prio_delta =
510 				(RTE_EVENT_DEV_PRIORITY_LOWEST) /
511 				nb_slots;
512 
513 			/* higher priority for queues closer to tx */
514 			wkr_q_conf.priority =
515 				RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta *
516 				(i % nb_slots);
517 		}
518 
519 		const char *type_str = "Atomic";
520 		switch (wkr_q_conf.schedule_type) {
521 		case RTE_SCHED_TYPE_ORDERED:
522 			type_str = "Ordered";
523 			break;
524 		case RTE_SCHED_TYPE_PARALLEL:
525 			type_str = "Parallel";
526 			break;
527 		}
528 		printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str,
529 				wkr_q_conf.priority);
530 	}
531 
532 	printf("\n");
533 	if (wkr_p_conf.new_event_threshold > config.nb_events_limit)
534 		wkr_p_conf.new_event_threshold = config.nb_events_limit;
535 	if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
536 		wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
537 	if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
538 		wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
539 
540 	/* set up one port per worker, linking to all stage queues */
541 	for (i = 0; i < cdata.num_workers; i++) {
542 		struct worker_data *w = &worker_data[i];
543 		w->dev_id = dev_id;
544 		if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) {
545 			printf("Error setting up port %d\n", i);
546 			return -1;
547 		}
548 
549 		if (rte_event_port_link(dev_id, i, NULL, NULL, 0)
550 				!= nb_queues) {
551 			printf("%d: error creating link for port %d\n",
552 					__LINE__, i);
553 			return -1;
554 		}
555 		w->port_id = i;
556 	}
557 	/*
558 	 * Reduce the load on ingress event queue by splitting the traffic
559 	 * across multiple event queues.
560 	 * for example, nb_stages =  2 and nb_ethdev = 2 then
561 	 *
562 	 *	nb_queues = (2 * 2) + 2 = 6 (non atq)
563 	 *	rx_stride = 3
564 	 *
565 	 * So, traffic is split across queue 0 and queue 3 since queue id for
566 	 * rx adapter is chosen <ethport_id> * <rx_stride> i.e in the above
567 	 * case eth port 0, 1 will inject packets into event queue 0, 3
568 	 * respectively.
569 	 *
570 	 * This forms two set of queue pipelines 0->1->2->tx and 3->4->5->tx.
571 	 */
572 	cdata.rx_stride = atq ? 1 : nb_slots;
573 	ret = rte_event_dev_service_id_get(dev_id,
574 				&fdata->evdev_service_id);
575 	if (ret != -ESRCH && ret != 0) {
576 		printf("Error getting the service ID\n");
577 		return -1;
578 	}
579 	rte_service_runstate_set(fdata->evdev_service_id, 1);
580 	rte_service_set_runstate_mapped_check(fdata->evdev_service_id, 0);
581 
582 	if (rte_event_dev_start(dev_id) < 0)
583 		rte_exit(EXIT_FAILURE, "Error starting eventdev");
584 
585 	return dev_id;
586 }
587 
588 
589 struct rx_adptr_services {
590 	uint16_t nb_rx_adptrs;
591 	uint32_t *rx_adpt_arr;
592 };
593 
594 static int32_t
595 service_rx_adapter(void *arg)
596 {
597 	int i;
598 	struct rx_adptr_services *adptr_services = arg;
599 
600 	for (i = 0; i < adptr_services->nb_rx_adptrs; i++)
601 		rte_service_run_iter_on_app_lcore(
602 				adptr_services->rx_adpt_arr[i], 1);
603 	return 0;
604 }
605 
606 static void
607 init_adapters(uint16_t nb_ports)
608 {
609 	int i;
610 	int ret;
611 	uint8_t evdev_id = 0;
612 	struct rx_adptr_services *adptr_services = NULL;
613 	struct rte_event_dev_info dev_info;
614 
615 	ret = rte_event_dev_info_get(evdev_id, &dev_info);
616 	adptr_services = rte_zmalloc(NULL, sizeof(struct rx_adptr_services), 0);
617 
618 	struct rte_event_port_conf adptr_p_conf = {
619 		.dequeue_depth = cdata.worker_cq_depth,
620 		.enqueue_depth = 64,
621 		.new_event_threshold = 4096,
622 	};
623 
624 	if (adptr_p_conf.new_event_threshold > dev_info.max_num_events)
625 		adptr_p_conf.new_event_threshold = dev_info.max_num_events;
626 	if (adptr_p_conf.dequeue_depth > dev_info.max_event_port_dequeue_depth)
627 		adptr_p_conf.dequeue_depth =
628 			dev_info.max_event_port_dequeue_depth;
629 	if (adptr_p_conf.enqueue_depth > dev_info.max_event_port_enqueue_depth)
630 		adptr_p_conf.enqueue_depth =
631 			dev_info.max_event_port_enqueue_depth;
632 
633 	struct rte_event_eth_rx_adapter_queue_conf queue_conf;
634 	memset(&queue_conf, 0, sizeof(queue_conf));
635 	queue_conf.ev.sched_type = cdata.queue_type;
636 
637 	for (i = 0; i < nb_ports; i++) {
638 		uint32_t cap;
639 		uint32_t service_id;
640 
641 		ret = rte_event_eth_rx_adapter_create(i, evdev_id,
642 				&adptr_p_conf);
643 		if (ret)
644 			rte_exit(EXIT_FAILURE,
645 					"failed to create rx adapter[%d]", i);
646 
647 		ret = rte_event_eth_rx_adapter_caps_get(evdev_id, i, &cap);
648 		if (ret)
649 			rte_exit(EXIT_FAILURE,
650 					"failed to get event rx adapter "
651 					"capabilities");
652 
653 		queue_conf.ev.queue_id = cdata.rx_stride ?
654 			(i * cdata.rx_stride)
655 			: (uint8_t)cdata.qid[0];
656 
657 		ret = rte_event_eth_rx_adapter_queue_add(i, i, -1, &queue_conf);
658 		if (ret)
659 			rte_exit(EXIT_FAILURE,
660 					"Failed to add queues to Rx adapter");
661 
662 		/* Producer needs to be scheduled. */
663 		if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
664 			ret = rte_event_eth_rx_adapter_service_id_get(i,
665 					&service_id);
666 			if (ret != -ESRCH && ret != 0) {
667 				rte_exit(EXIT_FAILURE,
668 				"Error getting the service ID for rx adptr\n");
669 			}
670 
671 			rte_service_runstate_set(service_id, 1);
672 			rte_service_set_runstate_mapped_check(service_id, 0);
673 
674 			adptr_services->nb_rx_adptrs++;
675 			adptr_services->rx_adpt_arr = rte_realloc(
676 					adptr_services->rx_adpt_arr,
677 					adptr_services->nb_rx_adptrs *
678 					sizeof(uint32_t), 0);
679 			adptr_services->rx_adpt_arr[
680 				adptr_services->nb_rx_adptrs - 1] =
681 				service_id;
682 		}
683 
684 		ret = rte_event_eth_rx_adapter_start(i);
685 		if (ret)
686 			rte_exit(EXIT_FAILURE, "Rx adapter[%d] start failed",
687 					i);
688 	}
689 
690 	/* We already know that Tx adapter has INTERNAL port cap*/
691 	ret = rte_event_eth_tx_adapter_create(cdata.tx_adapter_id, evdev_id,
692 			&adptr_p_conf);
693 	if (ret)
694 		rte_exit(EXIT_FAILURE, "failed to create tx adapter[%d]",
695 				cdata.tx_adapter_id);
696 
697 	for (i = 0; i < nb_ports; i++) {
698 		ret = rte_event_eth_tx_adapter_queue_add(cdata.tx_adapter_id, i,
699 				-1);
700 		if (ret)
701 			rte_exit(EXIT_FAILURE,
702 					"Failed to add queues to Tx adapter");
703 	}
704 
705 	ret = rte_event_eth_tx_adapter_start(cdata.tx_adapter_id);
706 	if (ret)
707 		rte_exit(EXIT_FAILURE, "Tx adapter[%d] start failed",
708 				cdata.tx_adapter_id);
709 
710 	if (adptr_services->nb_rx_adptrs) {
711 		struct rte_service_spec service;
712 
713 		memset(&service, 0, sizeof(struct rte_service_spec));
714 		snprintf(service.name, sizeof(service.name), "rx_service");
715 		service.callback = service_rx_adapter;
716 		service.callback_userdata = (void *)adptr_services;
717 
718 		int32_t ret = rte_service_component_register(&service,
719 				&fdata->rxadptr_service_id);
720 		if (ret)
721 			rte_exit(EXIT_FAILURE,
722 				"Rx adapter service register failed");
723 
724 		rte_service_runstate_set(fdata->rxadptr_service_id, 1);
725 		rte_service_component_runstate_set(fdata->rxadptr_service_id,
726 				1);
727 		rte_service_set_runstate_mapped_check(fdata->rxadptr_service_id,
728 				0);
729 	} else {
730 		memset(fdata->rx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
731 		rte_free(adptr_services);
732 	}
733 
734 	if (!adptr_services->nb_rx_adptrs && (dev_info.event_dev_cap &
735 			 RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))
736 		fdata->cap.scheduler = NULL;
737 }
738 
739 static void
740 worker_tx_enq_opt_check(void)
741 {
742 	int i;
743 	int ret;
744 	uint32_t cap = 0;
745 	uint8_t rx_needed = 0;
746 	uint8_t sched_needed = 0;
747 	struct rte_event_dev_info eventdev_info;
748 
749 	memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info));
750 	rte_event_dev_info_get(0, &eventdev_info);
751 
752 	if (cdata.all_type_queues && !(eventdev_info.event_dev_cap &
753 				RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES))
754 		rte_exit(EXIT_FAILURE,
755 				"Event dev doesn't support all type queues\n");
756 	sched_needed = !(eventdev_info.event_dev_cap &
757 		RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED);
758 
759 	RTE_ETH_FOREACH_DEV(i) {
760 		ret = rte_event_eth_rx_adapter_caps_get(0, i, &cap);
761 		if (ret)
762 			rte_exit(EXIT_FAILURE,
763 				"failed to get event rx adapter capabilities");
764 		rx_needed |=
765 			!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT);
766 	}
767 
768 	if (cdata.worker_lcore_mask == 0 ||
769 			(rx_needed && cdata.rx_lcore_mask == 0) ||
770 			(sched_needed && cdata.sched_lcore_mask == 0)) {
771 		printf("Core part of pipeline was not assigned any cores. "
772 			"This will stall the pipeline, please check core masks "
773 			"(use -h for details on setting core masks):\n"
774 			"\trx: %"PRIu64"\n\tsched: %"PRIu64
775 			"\n\tworkers: %"PRIu64"\n", cdata.rx_lcore_mask,
776 			cdata.sched_lcore_mask, cdata.worker_lcore_mask);
777 		rte_exit(-1, "Fix core masks\n");
778 	}
779 
780 	if (!sched_needed)
781 		memset(fdata->sched_core, 0,
782 				sizeof(unsigned int) * MAX_NUM_CORE);
783 	if (!rx_needed)
784 		memset(fdata->rx_core, 0,
785 				sizeof(unsigned int) * MAX_NUM_CORE);
786 
787 	memset(fdata->tx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
788 }
789 
790 static worker_loop
791 get_worker_loop_single_burst(uint8_t atq)
792 {
793 	if (atq)
794 		return worker_do_tx_single_burst_atq;
795 
796 	return worker_do_tx_single_burst;
797 }
798 
799 static worker_loop
800 get_worker_loop_single_non_burst(uint8_t atq)
801 {
802 	if (atq)
803 		return worker_do_tx_single_atq;
804 
805 	return worker_do_tx_single;
806 }
807 
808 static worker_loop
809 get_worker_loop_burst(uint8_t atq)
810 {
811 	if (atq)
812 		return worker_do_tx_burst_atq;
813 
814 	return worker_do_tx_burst;
815 }
816 
817 static worker_loop
818 get_worker_loop_non_burst(uint8_t atq)
819 {
820 	if (atq)
821 		return worker_do_tx_atq;
822 
823 	return worker_do_tx;
824 }
825 
826 static worker_loop
827 get_worker_single_stage(bool burst)
828 {
829 	uint8_t atq = cdata.all_type_queues ? 1 : 0;
830 
831 	if (burst)
832 		return get_worker_loop_single_burst(atq);
833 
834 	return get_worker_loop_single_non_burst(atq);
835 }
836 
837 static worker_loop
838 get_worker_multi_stage(bool burst)
839 {
840 	uint8_t atq = cdata.all_type_queues ? 1 : 0;
841 
842 	if (burst)
843 		return get_worker_loop_burst(atq);
844 
845 	return get_worker_loop_non_burst(atq);
846 }
847 
848 void
849 set_worker_tx_enq_setup_data(struct setup_data *caps, bool burst)
850 {
851 	if (cdata.num_stages == 1)
852 		caps->worker = get_worker_single_stage(burst);
853 	else
854 		caps->worker = get_worker_multi_stage(burst);
855 
856 	caps->check_opt = worker_tx_enq_opt_check;
857 	caps->scheduler = schedule_devices;
858 	caps->evdev_setup = setup_eventdev_worker_tx_enq;
859 	caps->adptr_setup = init_adapters;
860 }
861