xref: /dpdk/examples/eventdev_pipeline/pipeline_worker_tx.c (revision 12a652a02b080f26a1e9fd0169a58d6bcbe7b03c)
1 /*
2  * SPDX-License-Identifier: BSD-3-Clause
3  * Copyright(c) 2010-2014 Intel Corporation
4  * Copyright 2017 Cavium, Inc.
5  */
6 
7 #include "pipeline_common.h"
8 
9 static __rte_always_inline void
10 worker_fwd_event(struct rte_event *ev, uint8_t sched)
11 {
12 	ev->event_type = RTE_EVENT_TYPE_CPU;
13 	ev->op = RTE_EVENT_OP_FORWARD;
14 	ev->sched_type = sched;
15 }
16 
17 static __rte_always_inline void
18 worker_event_enqueue(const uint8_t dev, const uint8_t port,
19 		struct rte_event *ev)
20 {
21 	while (rte_event_enqueue_burst(dev, port, ev, 1) != 1)
22 		rte_pause();
23 }
24 
25 static __rte_always_inline void
26 worker_event_enqueue_burst(const uint8_t dev, const uint8_t port,
27 		struct rte_event *ev, const uint16_t nb_rx)
28 {
29 	uint16_t enq;
30 
31 	enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
32 	while (enq < nb_rx) {
33 		enq += rte_event_enqueue_burst(dev, port,
34 						ev + enq, nb_rx - enq);
35 	}
36 }
37 
38 static __rte_always_inline void
39 worker_tx_pkt(const uint8_t dev, const uint8_t port, struct rte_event *ev)
40 {
41 	exchange_mac(ev->mbuf);
42 	rte_event_eth_tx_adapter_txq_set(ev->mbuf, 0);
43 	while (!rte_event_eth_tx_adapter_enqueue(dev, port, ev, 1, 0))
44 		rte_pause();
45 }
46 
47 /* Single stage pipeline workers */
48 
49 static int
50 worker_do_tx_single(void *arg)
51 {
52 	struct worker_data *data = (struct worker_data *)arg;
53 	const uint8_t dev = data->dev_id;
54 	const uint8_t port = data->port_id;
55 	size_t fwd = 0, received = 0, tx = 0;
56 	struct rte_event ev;
57 
58 	while (!fdata->done) {
59 
60 		if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
61 			rte_pause();
62 			continue;
63 		}
64 
65 		received++;
66 
67 		if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
68 			worker_tx_pkt(dev, port, &ev);
69 			tx++;
70 		} else {
71 			work();
72 			ev.queue_id++;
73 			worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
74 			worker_event_enqueue(dev, port, &ev);
75 			fwd++;
76 		}
77 	}
78 
79 	if (!cdata.quiet)
80 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
81 				rte_lcore_id(), received, fwd, tx);
82 	return 0;
83 }
84 
85 static int
86 worker_do_tx_single_atq(void *arg)
87 {
88 	struct worker_data *data = (struct worker_data *)arg;
89 	const uint8_t dev = data->dev_id;
90 	const uint8_t port = data->port_id;
91 	size_t fwd = 0, received = 0, tx = 0;
92 	struct rte_event ev;
93 
94 	while (!fdata->done) {
95 
96 		if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
97 			rte_pause();
98 			continue;
99 		}
100 
101 		received++;
102 
103 		if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
104 			worker_tx_pkt(dev, port, &ev);
105 			tx++;
106 		} else {
107 			work();
108 			worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
109 			worker_event_enqueue(dev, port, &ev);
110 			fwd++;
111 		}
112 	}
113 
114 	if (!cdata.quiet)
115 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
116 				rte_lcore_id(), received, fwd, tx);
117 	return 0;
118 }
119 
120 static int
121 worker_do_tx_single_burst(void *arg)
122 {
123 	struct rte_event ev[BATCH_SIZE + 1];
124 
125 	struct worker_data *data = (struct worker_data *)arg;
126 	const uint8_t dev = data->dev_id;
127 	const uint8_t port = data->port_id;
128 	size_t fwd = 0, received = 0, tx = 0;
129 
130 	while (!fdata->done) {
131 		uint16_t i;
132 		uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
133 				BATCH_SIZE, 0);
134 
135 		if (!nb_rx) {
136 			rte_pause();
137 			continue;
138 		}
139 		received += nb_rx;
140 
141 		for (i = 0; i < nb_rx; i++) {
142 			rte_prefetch0(ev[i + 1].mbuf);
143 			if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
144 
145 				worker_tx_pkt(dev, port, &ev[i]);
146 				ev[i].op = RTE_EVENT_OP_RELEASE;
147 				tx++;
148 
149 			} else {
150 				ev[i].queue_id++;
151 				worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
152 			}
153 			work();
154 		}
155 
156 		worker_event_enqueue_burst(dev, port, ev, nb_rx);
157 		fwd += nb_rx;
158 	}
159 
160 	if (!cdata.quiet)
161 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
162 				rte_lcore_id(), received, fwd, tx);
163 	return 0;
164 }
165 
166 static int
167 worker_do_tx_single_burst_atq(void *arg)
168 {
169 	struct rte_event ev[BATCH_SIZE + 1];
170 
171 	struct worker_data *data = (struct worker_data *)arg;
172 	const uint8_t dev = data->dev_id;
173 	const uint8_t port = data->port_id;
174 	size_t fwd = 0, received = 0, tx = 0;
175 
176 	while (!fdata->done) {
177 		uint16_t i;
178 		uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
179 				BATCH_SIZE, 0);
180 
181 		if (!nb_rx) {
182 			rte_pause();
183 			continue;
184 		}
185 
186 		received += nb_rx;
187 
188 		for (i = 0; i < nb_rx; i++) {
189 			rte_prefetch0(ev[i + 1].mbuf);
190 			if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
191 
192 				worker_tx_pkt(dev, port, &ev[i]);
193 				ev[i].op = RTE_EVENT_OP_RELEASE;
194 				tx++;
195 			} else
196 				worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
197 			work();
198 		}
199 
200 		worker_event_enqueue_burst(dev, port, ev, nb_rx);
201 		fwd += nb_rx;
202 	}
203 
204 	if (!cdata.quiet)
205 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
206 				rte_lcore_id(), received, fwd, tx);
207 	return 0;
208 }
209 
210 /* Multi stage Pipeline Workers */
211 
212 static int
213 worker_do_tx(void *arg)
214 {
215 	struct rte_event ev;
216 
217 	struct worker_data *data = (struct worker_data *)arg;
218 	const uint8_t dev = data->dev_id;
219 	const uint8_t port = data->port_id;
220 	const uint8_t lst_qid = cdata.num_stages - 1;
221 	size_t fwd = 0, received = 0, tx = 0;
222 
223 
224 	while (!fdata->done) {
225 
226 		if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
227 			rte_pause();
228 			continue;
229 		}
230 
231 		received++;
232 		const uint8_t cq_id = ev.queue_id % cdata.num_stages;
233 
234 		if (cq_id >= lst_qid) {
235 			if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
236 				worker_tx_pkt(dev, port, &ev);
237 				tx++;
238 				continue;
239 			}
240 
241 			worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
242 			ev.queue_id = (cq_id == lst_qid) ?
243 				cdata.next_qid[ev.queue_id] : ev.queue_id;
244 		} else {
245 			ev.queue_id = cdata.next_qid[ev.queue_id];
246 			worker_fwd_event(&ev, cdata.queue_type);
247 		}
248 		work();
249 
250 		worker_event_enqueue(dev, port, &ev);
251 		fwd++;
252 	}
253 
254 	if (!cdata.quiet)
255 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
256 				rte_lcore_id(), received, fwd, tx);
257 
258 	return 0;
259 }
260 
261 static int
262 worker_do_tx_atq(void *arg)
263 {
264 	struct rte_event ev;
265 
266 	struct worker_data *data = (struct worker_data *)arg;
267 	const uint8_t dev = data->dev_id;
268 	const uint8_t port = data->port_id;
269 	const uint8_t lst_qid = cdata.num_stages - 1;
270 	size_t fwd = 0, received = 0, tx = 0;
271 
272 	while (!fdata->done) {
273 
274 		if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
275 			rte_pause();
276 			continue;
277 		}
278 
279 		received++;
280 		const uint8_t cq_id = ev.sub_event_type % cdata.num_stages;
281 
282 		if (cq_id == lst_qid) {
283 			if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
284 				worker_tx_pkt(dev, port, &ev);
285 				tx++;
286 				continue;
287 			}
288 
289 			worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
290 		} else {
291 			ev.sub_event_type++;
292 			worker_fwd_event(&ev, cdata.queue_type);
293 		}
294 		work();
295 
296 		worker_event_enqueue(dev, port, &ev);
297 		fwd++;
298 	}
299 
300 	if (!cdata.quiet)
301 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
302 				rte_lcore_id(), received, fwd, tx);
303 
304 	return 0;
305 }
306 
307 static int
308 worker_do_tx_burst(void *arg)
309 {
310 	struct rte_event ev[BATCH_SIZE];
311 
312 	struct worker_data *data = (struct worker_data *)arg;
313 	uint8_t dev = data->dev_id;
314 	uint8_t port = data->port_id;
315 	uint8_t lst_qid = cdata.num_stages - 1;
316 	size_t fwd = 0, received = 0, tx = 0;
317 
318 	while (!fdata->done) {
319 		uint16_t i;
320 		const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
321 				ev, BATCH_SIZE, 0);
322 
323 		if (nb_rx == 0) {
324 			rte_pause();
325 			continue;
326 		}
327 		received += nb_rx;
328 
329 		for (i = 0; i < nb_rx; i++) {
330 			const uint8_t cq_id = ev[i].queue_id % cdata.num_stages;
331 
332 			if (cq_id >= lst_qid) {
333 				if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
334 					worker_tx_pkt(dev, port, &ev[i]);
335 					tx++;
336 					ev[i].op = RTE_EVENT_OP_RELEASE;
337 					continue;
338 				}
339 				ev[i].queue_id = (cq_id == lst_qid) ?
340 					cdata.next_qid[ev[i].queue_id] :
341 					ev[i].queue_id;
342 
343 				worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
344 			} else {
345 				ev[i].queue_id = cdata.next_qid[ev[i].queue_id];
346 				worker_fwd_event(&ev[i], cdata.queue_type);
347 			}
348 			work();
349 		}
350 		worker_event_enqueue_burst(dev, port, ev, nb_rx);
351 
352 		fwd += nb_rx;
353 	}
354 
355 	if (!cdata.quiet)
356 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
357 				rte_lcore_id(), received, fwd, tx);
358 
359 	return 0;
360 }
361 
362 static int
363 worker_do_tx_burst_atq(void *arg)
364 {
365 	struct rte_event ev[BATCH_SIZE];
366 
367 	struct worker_data *data = (struct worker_data *)arg;
368 	uint8_t dev = data->dev_id;
369 	uint8_t port = data->port_id;
370 	uint8_t lst_qid = cdata.num_stages - 1;
371 	size_t fwd = 0, received = 0, tx = 0;
372 
373 	while (!fdata->done) {
374 		uint16_t i;
375 
376 		const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
377 				ev, BATCH_SIZE, 0);
378 
379 		if (nb_rx == 0) {
380 			rte_pause();
381 			continue;
382 		}
383 		received += nb_rx;
384 
385 		for (i = 0; i < nb_rx; i++) {
386 			const uint8_t cq_id = ev[i].sub_event_type %
387 				cdata.num_stages;
388 
389 			if (cq_id == lst_qid) {
390 				if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
391 					worker_tx_pkt(dev, port, &ev[i]);
392 					tx++;
393 					ev[i].op = RTE_EVENT_OP_RELEASE;
394 					continue;
395 				}
396 
397 				worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
398 			} else {
399 				ev[i].sub_event_type++;
400 				worker_fwd_event(&ev[i], cdata.queue_type);
401 			}
402 			work();
403 		}
404 
405 		worker_event_enqueue_burst(dev, port, ev, nb_rx);
406 		fwd += nb_rx;
407 	}
408 
409 	if (!cdata.quiet)
410 		printf("  worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
411 				rte_lcore_id(), received, fwd, tx);
412 
413 	return 0;
414 }
415 
416 static int
417 setup_eventdev_worker_tx_enq(struct worker_data *worker_data)
418 {
419 	uint8_t i;
420 	const uint8_t atq = cdata.all_type_queues ? 1 : 0;
421 	const uint8_t dev_id = 0;
422 	const uint8_t nb_ports = cdata.num_workers;
423 	uint8_t nb_slots = 0;
424 	uint8_t nb_queues = rte_eth_dev_count_avail();
425 
426 	/*
427 	 * In case where all type queues are not enabled, use queues equal to
428 	 * number of stages * eth_dev_count and one extra queue per pipeline
429 	 * for Tx.
430 	 */
431 	if (!atq) {
432 		nb_queues *= cdata.num_stages;
433 		nb_queues += rte_eth_dev_count_avail();
434 	}
435 
436 	struct rte_event_dev_config config = {
437 			.nb_event_queues = nb_queues,
438 			.nb_event_ports = nb_ports,
439 			.nb_events_limit  = 4096,
440 			.nb_event_queue_flows = 1024,
441 			.nb_event_port_dequeue_depth = 128,
442 			.nb_event_port_enqueue_depth = 128,
443 	};
444 	struct rte_event_port_conf wkr_p_conf = {
445 			.dequeue_depth = cdata.worker_cq_depth,
446 			.enqueue_depth = 64,
447 			.new_event_threshold = 4096,
448 	};
449 	struct rte_event_queue_conf wkr_q_conf = {
450 			.schedule_type = cdata.queue_type,
451 			.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
452 			.nb_atomic_flows = 1024,
453 			.nb_atomic_order_sequences = 1024,
454 	};
455 
456 	int ret, ndev = rte_event_dev_count();
457 
458 	if (ndev < 1) {
459 		printf("%d: No Eventdev Devices Found\n", __LINE__);
460 		return -1;
461 	}
462 
463 
464 	struct rte_event_dev_info dev_info;
465 	ret = rte_event_dev_info_get(dev_id, &dev_info);
466 	printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name);
467 
468 	if (dev_info.max_num_events < config.nb_events_limit)
469 		config.nb_events_limit = dev_info.max_num_events;
470 	if (dev_info.max_event_port_dequeue_depth <
471 			config.nb_event_port_dequeue_depth)
472 		config.nb_event_port_dequeue_depth =
473 				dev_info.max_event_port_dequeue_depth;
474 	if (dev_info.max_event_port_enqueue_depth <
475 			config.nb_event_port_enqueue_depth)
476 		config.nb_event_port_enqueue_depth =
477 				dev_info.max_event_port_enqueue_depth;
478 
479 	ret = rte_event_dev_configure(dev_id, &config);
480 	if (ret < 0) {
481 		printf("%d: Error configuring device\n", __LINE__);
482 		return -1;
483 	}
484 
485 	printf("  Stages:\n");
486 	for (i = 0; i < nb_queues; i++) {
487 
488 		if (atq) {
489 
490 			nb_slots = cdata.num_stages;
491 			wkr_q_conf.event_queue_cfg =
492 				RTE_EVENT_QUEUE_CFG_ALL_TYPES;
493 		} else {
494 			uint8_t slot;
495 
496 			nb_slots = cdata.num_stages + 1;
497 			slot = i % nb_slots;
498 			wkr_q_conf.schedule_type = slot == cdata.num_stages ?
499 				RTE_SCHED_TYPE_ATOMIC : cdata.queue_type;
500 		}
501 
502 		if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) {
503 			printf("%d: error creating qid %d\n", __LINE__, i);
504 			return -1;
505 		}
506 		cdata.qid[i] = i;
507 		cdata.next_qid[i] = i+1;
508 		if (cdata.enable_queue_priorities) {
509 			const uint32_t prio_delta =
510 				(RTE_EVENT_DEV_PRIORITY_LOWEST) /
511 				nb_slots;
512 
513 			/* higher priority for queues closer to tx */
514 			wkr_q_conf.priority =
515 				RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta *
516 				(i % nb_slots);
517 		}
518 
519 		const char *type_str = "Atomic";
520 		switch (wkr_q_conf.schedule_type) {
521 		case RTE_SCHED_TYPE_ORDERED:
522 			type_str = "Ordered";
523 			break;
524 		case RTE_SCHED_TYPE_PARALLEL:
525 			type_str = "Parallel";
526 			break;
527 		}
528 		printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str,
529 				wkr_q_conf.priority);
530 	}
531 
532 	printf("\n");
533 	if (wkr_p_conf.new_event_threshold > config.nb_events_limit)
534 		wkr_p_conf.new_event_threshold = config.nb_events_limit;
535 	if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
536 		wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
537 	if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
538 		wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
539 
540 	/* set up one port per worker, linking to all stage queues */
541 	for (i = 0; i < cdata.num_workers; i++) {
542 		struct worker_data *w = &worker_data[i];
543 		w->dev_id = dev_id;
544 		if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) {
545 			printf("Error setting up port %d\n", i);
546 			return -1;
547 		}
548 
549 		if (rte_event_port_link(dev_id, i, NULL, NULL, 0)
550 				!= nb_queues) {
551 			printf("%d: error creating link for port %d\n",
552 					__LINE__, i);
553 			return -1;
554 		}
555 		w->port_id = i;
556 	}
557 	/*
558 	 * Reduce the load on ingress event queue by splitting the traffic
559 	 * across multiple event queues.
560 	 * for example, nb_stages =  2 and nb_ethdev = 2 then
561 	 *
562 	 *	nb_queues = (2 * 2) + 2 = 6 (non atq)
563 	 *	rx_stride = 3
564 	 *
565 	 * So, traffic is split across queue 0 and queue 3 since queue id for
566 	 * rx adapter is chosen <ethport_id> * <rx_stride> i.e in the above
567 	 * case eth port 0, 1 will inject packets into event queue 0, 3
568 	 * respectively.
569 	 *
570 	 * This forms two set of queue pipelines 0->1->2->tx and 3->4->5->tx.
571 	 */
572 	cdata.rx_stride = atq ? 1 : nb_slots;
573 	ret = rte_event_dev_service_id_get(dev_id,
574 				&fdata->evdev_service_id);
575 	if (ret != -ESRCH && ret != 0) {
576 		printf("Error getting the service ID\n");
577 		return -1;
578 	}
579 	rte_service_runstate_set(fdata->evdev_service_id, 1);
580 	rte_service_set_runstate_mapped_check(fdata->evdev_service_id, 0);
581 
582 	if (rte_event_dev_start(dev_id) < 0)
583 		rte_exit(EXIT_FAILURE, "Error starting eventdev");
584 
585 	return dev_id;
586 }
587 
588 
589 struct rx_adptr_services {
590 	uint16_t nb_rx_adptrs;
591 	uint32_t *rx_adpt_arr;
592 };
593 
594 static int32_t
595 service_rx_adapter(void *arg)
596 {
597 	int i;
598 	struct rx_adptr_services *adptr_services = arg;
599 
600 	for (i = 0; i < adptr_services->nb_rx_adptrs; i++)
601 		rte_service_run_iter_on_app_lcore(
602 				adptr_services->rx_adpt_arr[i], 1);
603 	return 0;
604 }
605 
606 /*
607  * Initializes a given port using global settings and with the RX buffers
608  * coming from the mbuf_pool passed as a parameter.
609  */
610 static inline int
611 port_init(uint8_t port, struct rte_mempool *mbuf_pool)
612 {
613 	struct rte_eth_rxconf rx_conf;
614 	static const struct rte_eth_conf port_conf_default = {
615 		.rxmode = {
616 			.mq_mode = ETH_MQ_RX_RSS,
617 			.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
618 		},
619 		.rx_adv_conf = {
620 			.rss_conf = {
621 				.rss_hf = ETH_RSS_IP |
622 					  ETH_RSS_TCP |
623 					  ETH_RSS_UDP,
624 			}
625 		}
626 	};
627 	const uint16_t rx_rings = 1, tx_rings = 1;
628 	const uint16_t rx_ring_size = 512, tx_ring_size = 512;
629 	struct rte_eth_conf port_conf = port_conf_default;
630 	int retval;
631 	uint16_t q;
632 	struct rte_eth_dev_info dev_info;
633 	struct rte_eth_txconf txconf;
634 
635 	if (!rte_eth_dev_is_valid_port(port))
636 		return -1;
637 
638 	retval = rte_eth_dev_info_get(port, &dev_info);
639 	if (retval != 0) {
640 		printf("Error during getting device (port %u) info: %s\n",
641 				port, strerror(-retval));
642 		return retval;
643 	}
644 
645 	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
646 		port_conf.txmode.offloads |=
647 			DEV_TX_OFFLOAD_MBUF_FAST_FREE;
648 	rx_conf = dev_info.default_rxconf;
649 	rx_conf.offloads = port_conf.rxmode.offloads;
650 
651 	port_conf.rx_adv_conf.rss_conf.rss_hf &=
652 		dev_info.flow_type_rss_offloads;
653 	if (port_conf.rx_adv_conf.rss_conf.rss_hf !=
654 			port_conf_default.rx_adv_conf.rss_conf.rss_hf) {
655 		printf("Port %u modified RSS hash function based on hardware support,"
656 			"requested:%#"PRIx64" configured:%#"PRIx64"\n",
657 			port,
658 			port_conf_default.rx_adv_conf.rss_conf.rss_hf,
659 			port_conf.rx_adv_conf.rss_conf.rss_hf);
660 	}
661 
662 	/* Configure the Ethernet device. */
663 	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
664 	if (retval != 0)
665 		return retval;
666 
667 	/* Allocate and set up 1 RX queue per Ethernet port. */
668 	for (q = 0; q < rx_rings; q++) {
669 		retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
670 				rte_eth_dev_socket_id(port), &rx_conf,
671 				mbuf_pool);
672 		if (retval < 0)
673 			return retval;
674 	}
675 
676 	txconf = dev_info.default_txconf;
677 	txconf.offloads = port_conf_default.txmode.offloads;
678 	/* Allocate and set up 1 TX queue per Ethernet port. */
679 	for (q = 0; q < tx_rings; q++) {
680 		retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
681 				rte_eth_dev_socket_id(port), &txconf);
682 		if (retval < 0)
683 			return retval;
684 	}
685 
686 	/* Display the port MAC address. */
687 	struct rte_ether_addr addr;
688 	retval = rte_eth_macaddr_get(port, &addr);
689 	if (retval != 0) {
690 		printf("Failed to get MAC address (port %u): %s\n",
691 				port, rte_strerror(-retval));
692 		return retval;
693 	}
694 
695 	printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
696 			" %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
697 			(unsigned int)port,
698 			addr.addr_bytes[0], addr.addr_bytes[1],
699 			addr.addr_bytes[2], addr.addr_bytes[3],
700 			addr.addr_bytes[4], addr.addr_bytes[5]);
701 
702 	/* Enable RX in promiscuous mode for the Ethernet device. */
703 	retval = rte_eth_promiscuous_enable(port);
704 	if (retval != 0)
705 		return retval;
706 
707 	return 0;
708 }
709 
710 static int
711 init_ports(uint16_t num_ports)
712 {
713 	uint16_t portid;
714 
715 	if (!cdata.num_mbuf)
716 		cdata.num_mbuf = 16384 * num_ports;
717 
718 	struct rte_mempool *mp = rte_pktmbuf_pool_create("packet_pool",
719 			/* mbufs */ cdata.num_mbuf,
720 			/* cache_size */ 512,
721 			/* priv_size*/ 0,
722 			/* data_room_size */ RTE_MBUF_DEFAULT_BUF_SIZE,
723 			rte_socket_id());
724 
725 	RTE_ETH_FOREACH_DEV(portid)
726 		if (port_init(portid, mp) != 0)
727 			rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu16 "\n",
728 					portid);
729 
730 	return 0;
731 }
732 
733 static void
734 init_adapters(uint16_t nb_ports)
735 {
736 	int i;
737 	int ret;
738 	uint8_t evdev_id = 0;
739 	struct rx_adptr_services *adptr_services = NULL;
740 	struct rte_event_dev_info dev_info;
741 
742 	ret = rte_event_dev_info_get(evdev_id, &dev_info);
743 	adptr_services = rte_zmalloc(NULL, sizeof(struct rx_adptr_services), 0);
744 
745 	struct rte_event_port_conf adptr_p_conf = {
746 		.dequeue_depth = cdata.worker_cq_depth,
747 		.enqueue_depth = 64,
748 		.new_event_threshold = 4096,
749 	};
750 
751 	init_ports(nb_ports);
752 	if (adptr_p_conf.new_event_threshold > dev_info.max_num_events)
753 		adptr_p_conf.new_event_threshold = dev_info.max_num_events;
754 	if (adptr_p_conf.dequeue_depth > dev_info.max_event_port_dequeue_depth)
755 		adptr_p_conf.dequeue_depth =
756 			dev_info.max_event_port_dequeue_depth;
757 	if (adptr_p_conf.enqueue_depth > dev_info.max_event_port_enqueue_depth)
758 		adptr_p_conf.enqueue_depth =
759 			dev_info.max_event_port_enqueue_depth;
760 
761 	struct rte_event_eth_rx_adapter_queue_conf queue_conf;
762 	memset(&queue_conf, 0, sizeof(queue_conf));
763 	queue_conf.ev.sched_type = cdata.queue_type;
764 
765 	for (i = 0; i < nb_ports; i++) {
766 		uint32_t cap;
767 		uint32_t service_id;
768 
769 		ret = rte_event_eth_rx_adapter_create(i, evdev_id,
770 				&adptr_p_conf);
771 		if (ret)
772 			rte_exit(EXIT_FAILURE,
773 					"failed to create rx adapter[%d]", i);
774 
775 		ret = rte_event_eth_rx_adapter_caps_get(evdev_id, i, &cap);
776 		if (ret)
777 			rte_exit(EXIT_FAILURE,
778 					"failed to get event rx adapter "
779 					"capabilities");
780 
781 		queue_conf.ev.queue_id = cdata.rx_stride ?
782 			(i * cdata.rx_stride)
783 			: (uint8_t)cdata.qid[0];
784 
785 		ret = rte_event_eth_rx_adapter_queue_add(i, i, -1, &queue_conf);
786 		if (ret)
787 			rte_exit(EXIT_FAILURE,
788 					"Failed to add queues to Rx adapter");
789 
790 		/* Producer needs to be scheduled. */
791 		if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
792 			ret = rte_event_eth_rx_adapter_service_id_get(i,
793 					&service_id);
794 			if (ret != -ESRCH && ret != 0) {
795 				rte_exit(EXIT_FAILURE,
796 				"Error getting the service ID for rx adptr\n");
797 			}
798 
799 			rte_service_runstate_set(service_id, 1);
800 			rte_service_set_runstate_mapped_check(service_id, 0);
801 
802 			adptr_services->nb_rx_adptrs++;
803 			adptr_services->rx_adpt_arr = rte_realloc(
804 					adptr_services->rx_adpt_arr,
805 					adptr_services->nb_rx_adptrs *
806 					sizeof(uint32_t), 0);
807 			adptr_services->rx_adpt_arr[
808 				adptr_services->nb_rx_adptrs - 1] =
809 				service_id;
810 		}
811 
812 		ret = rte_event_eth_rx_adapter_start(i);
813 		if (ret)
814 			rte_exit(EXIT_FAILURE, "Rx adapter[%d] start failed",
815 					i);
816 	}
817 
818 	/* We already know that Tx adapter has INTERNAL port cap*/
819 	ret = rte_event_eth_tx_adapter_create(cdata.tx_adapter_id, evdev_id,
820 			&adptr_p_conf);
821 	if (ret)
822 		rte_exit(EXIT_FAILURE, "failed to create tx adapter[%d]",
823 				cdata.tx_adapter_id);
824 
825 	for (i = 0; i < nb_ports; i++) {
826 		ret = rte_event_eth_tx_adapter_queue_add(cdata.tx_adapter_id, i,
827 				-1);
828 		if (ret)
829 			rte_exit(EXIT_FAILURE,
830 					"Failed to add queues to Tx adapter");
831 	}
832 
833 	ret = rte_event_eth_tx_adapter_start(cdata.tx_adapter_id);
834 	if (ret)
835 		rte_exit(EXIT_FAILURE, "Tx adapter[%d] start failed",
836 				cdata.tx_adapter_id);
837 
838 	if (adptr_services->nb_rx_adptrs) {
839 		struct rte_service_spec service;
840 
841 		memset(&service, 0, sizeof(struct rte_service_spec));
842 		snprintf(service.name, sizeof(service.name), "rx_service");
843 		service.callback = service_rx_adapter;
844 		service.callback_userdata = (void *)adptr_services;
845 
846 		int32_t ret = rte_service_component_register(&service,
847 				&fdata->rxadptr_service_id);
848 		if (ret)
849 			rte_exit(EXIT_FAILURE,
850 				"Rx adapter service register failed");
851 
852 		rte_service_runstate_set(fdata->rxadptr_service_id, 1);
853 		rte_service_component_runstate_set(fdata->rxadptr_service_id,
854 				1);
855 		rte_service_set_runstate_mapped_check(fdata->rxadptr_service_id,
856 				0);
857 	} else {
858 		memset(fdata->rx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
859 		rte_free(adptr_services);
860 	}
861 
862 	if (!adptr_services->nb_rx_adptrs && (dev_info.event_dev_cap &
863 			 RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))
864 		fdata->cap.scheduler = NULL;
865 }
866 
867 static void
868 worker_tx_enq_opt_check(void)
869 {
870 	int i;
871 	int ret;
872 	uint32_t cap = 0;
873 	uint8_t rx_needed = 0;
874 	uint8_t sched_needed = 0;
875 	struct rte_event_dev_info eventdev_info;
876 
877 	memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info));
878 	rte_event_dev_info_get(0, &eventdev_info);
879 
880 	if (cdata.all_type_queues && !(eventdev_info.event_dev_cap &
881 				RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES))
882 		rte_exit(EXIT_FAILURE,
883 				"Event dev doesn't support all type queues\n");
884 	sched_needed = !(eventdev_info.event_dev_cap &
885 		RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED);
886 
887 	RTE_ETH_FOREACH_DEV(i) {
888 		ret = rte_event_eth_rx_adapter_caps_get(0, i, &cap);
889 		if (ret)
890 			rte_exit(EXIT_FAILURE,
891 				"failed to get event rx adapter capabilities");
892 		rx_needed |=
893 			!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT);
894 	}
895 
896 	if (cdata.worker_lcore_mask == 0 ||
897 			(rx_needed && cdata.rx_lcore_mask == 0) ||
898 			(sched_needed && cdata.sched_lcore_mask == 0)) {
899 		printf("Core part of pipeline was not assigned any cores. "
900 			"This will stall the pipeline, please check core masks "
901 			"(use -h for details on setting core masks):\n"
902 			"\trx: %"PRIu64"\n\tsched: %"PRIu64
903 			"\n\tworkers: %"PRIu64"\n", cdata.rx_lcore_mask,
904 			cdata.sched_lcore_mask, cdata.worker_lcore_mask);
905 		rte_exit(-1, "Fix core masks\n");
906 	}
907 
908 	if (!sched_needed)
909 		memset(fdata->sched_core, 0,
910 				sizeof(unsigned int) * MAX_NUM_CORE);
911 	if (!rx_needed)
912 		memset(fdata->rx_core, 0,
913 				sizeof(unsigned int) * MAX_NUM_CORE);
914 
915 	memset(fdata->tx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
916 }
917 
918 static worker_loop
919 get_worker_loop_single_burst(uint8_t atq)
920 {
921 	if (atq)
922 		return worker_do_tx_single_burst_atq;
923 
924 	return worker_do_tx_single_burst;
925 }
926 
927 static worker_loop
928 get_worker_loop_single_non_burst(uint8_t atq)
929 {
930 	if (atq)
931 		return worker_do_tx_single_atq;
932 
933 	return worker_do_tx_single;
934 }
935 
936 static worker_loop
937 get_worker_loop_burst(uint8_t atq)
938 {
939 	if (atq)
940 		return worker_do_tx_burst_atq;
941 
942 	return worker_do_tx_burst;
943 }
944 
945 static worker_loop
946 get_worker_loop_non_burst(uint8_t atq)
947 {
948 	if (atq)
949 		return worker_do_tx_atq;
950 
951 	return worker_do_tx;
952 }
953 
954 static worker_loop
955 get_worker_single_stage(bool burst)
956 {
957 	uint8_t atq = cdata.all_type_queues ? 1 : 0;
958 
959 	if (burst)
960 		return get_worker_loop_single_burst(atq);
961 
962 	return get_worker_loop_single_non_burst(atq);
963 }
964 
965 static worker_loop
966 get_worker_multi_stage(bool burst)
967 {
968 	uint8_t atq = cdata.all_type_queues ? 1 : 0;
969 
970 	if (burst)
971 		return get_worker_loop_burst(atq);
972 
973 	return get_worker_loop_non_burst(atq);
974 }
975 
976 void
977 set_worker_tx_enq_setup_data(struct setup_data *caps, bool burst)
978 {
979 	if (cdata.num_stages == 1)
980 		caps->worker = get_worker_single_stage(burst);
981 	else
982 		caps->worker = get_worker_multi_stage(burst);
983 
984 	caps->check_opt = worker_tx_enq_opt_check;
985 	caps->scheduler = schedule_devices;
986 	caps->evdev_setup = setup_eventdev_worker_tx_enq;
987 	caps->adptr_setup = init_adapters;
988 }
989