xref: /dpdk/examples/eventdev_pipeline/pipeline_worker_generic.c (revision 655c901bf7345e2eb7e2bb603a6c30ac6feff3c9)
1 /*
2  * SPDX-License-Identifier: BSD-3-Clause
3  * Copyright 2016 Intel Corporation.
4  * Copyright 2017 Cavium, Inc.
5  */
6 
7 #include "pipeline_common.h"
8 
9 static __rte_always_inline int
10 worker_generic(void *arg)
11 {
12 	struct rte_event ev;
13 
14 	struct worker_data *data = (struct worker_data *)arg;
15 	uint8_t dev_id = data->dev_id;
16 	uint8_t port_id = data->port_id;
17 	size_t sent = 0, received = 0;
18 	unsigned int lcore_id = rte_lcore_id();
19 
20 	while (!fdata->done) {
21 
22 		if (fdata->cap.scheduler)
23 			fdata->cap.scheduler(lcore_id);
24 
25 		if (!fdata->worker_core[lcore_id]) {
26 			rte_pause();
27 			continue;
28 		}
29 
30 		const uint16_t nb_rx = rte_event_dequeue_burst(dev_id, port_id,
31 				&ev, 1, 0);
32 
33 		if (nb_rx == 0) {
34 			rte_pause();
35 			continue;
36 		}
37 		received++;
38 
39 		/* The first worker stage does classification */
40 		if (ev.queue_id == cdata.qid[0])
41 			ev.flow_id = ev.mbuf->hash.rss
42 						% cdata.num_fids;
43 
44 		ev.queue_id = cdata.next_qid[ev.queue_id];
45 		ev.op = RTE_EVENT_OP_FORWARD;
46 		ev.sched_type = cdata.queue_type;
47 
48 		work();
49 
50 		while (rte_event_enqueue_burst(dev_id, port_id, &ev, 1) != 1)
51 			rte_pause();
52 		sent++;
53 	}
54 
55 	if (!cdata.quiet)
56 		printf("  worker %u thread done. RX=%zu TX=%zu\n",
57 				rte_lcore_id(), received, sent);
58 
59 	return 0;
60 }
61 
62 static int
63 worker_generic_burst(void *arg)
64 {
65 	struct rte_event events[BATCH_SIZE];
66 
67 	struct worker_data *data = (struct worker_data *)arg;
68 	uint8_t dev_id = data->dev_id;
69 	uint8_t port_id = data->port_id;
70 	size_t sent = 0, received = 0;
71 	unsigned int lcore_id = rte_lcore_id();
72 
73 	while (!fdata->done) {
74 		uint16_t i;
75 
76 		if (fdata->cap.scheduler)
77 			fdata->cap.scheduler(lcore_id);
78 
79 		if (!fdata->worker_core[lcore_id]) {
80 			rte_pause();
81 			continue;
82 		}
83 
84 		const uint16_t nb_rx = rte_event_dequeue_burst(dev_id, port_id,
85 				events, RTE_DIM(events), 0);
86 
87 		if (nb_rx == 0) {
88 			rte_pause();
89 			continue;
90 		}
91 		received += nb_rx;
92 
93 		for (i = 0; i < nb_rx; i++) {
94 
95 			/* The first worker stage does classification */
96 			if (events[i].queue_id == cdata.qid[0])
97 				events[i].flow_id = events[i].mbuf->hash.rss
98 							% cdata.num_fids;
99 
100 			events[i].queue_id = cdata.next_qid[events[i].queue_id];
101 			events[i].op = RTE_EVENT_OP_FORWARD;
102 			events[i].sched_type = cdata.queue_type;
103 
104 			work();
105 		}
106 		uint16_t nb_tx = rte_event_enqueue_burst(dev_id, port_id,
107 				events, nb_rx);
108 		while (nb_tx < nb_rx && !fdata->done)
109 			nb_tx += rte_event_enqueue_burst(dev_id, port_id,
110 							events + nb_tx,
111 							nb_rx - nb_tx);
112 		sent += nb_tx;
113 	}
114 
115 	if (!cdata.quiet)
116 		printf("  worker %u thread done. RX=%zu TX=%zu\n",
117 				rte_lcore_id(), received, sent);
118 
119 	return 0;
120 }
121 
122 static __rte_always_inline int
123 consumer(void)
124 {
125 	const uint64_t freq_khz = rte_get_timer_hz() / 1000;
126 	struct rte_event packet;
127 
128 	static uint64_t received;
129 	static uint64_t last_pkts;
130 	static uint64_t last_time;
131 	static uint64_t start_time;
132 	int i;
133 	uint8_t dev_id = cons_data.dev_id;
134 	uint8_t port_id = cons_data.port_id;
135 
136 	do {
137 		uint16_t n = rte_event_dequeue_burst(dev_id, port_id,
138 				&packet, 1, 0);
139 
140 		if (n == 0) {
141 			for (i = 0; i < rte_eth_dev_count(); i++)
142 				rte_eth_tx_buffer_flush(i, 0, fdata->tx_buf[i]);
143 			return 0;
144 		}
145 		if (start_time == 0)
146 			last_time = start_time = rte_get_timer_cycles();
147 
148 		received++;
149 		uint8_t outport = packet.mbuf->port;
150 
151 		exchange_mac(packet.mbuf);
152 		rte_eth_tx_buffer(outport, 0, fdata->tx_buf[outport],
153 				packet.mbuf);
154 
155 		if (cons_data.release)
156 			rte_event_enqueue_burst(dev_id, port_id,
157 								&packet, n);
158 
159 		/* Print out mpps every 1<22 packets */
160 		if (!cdata.quiet && received >= last_pkts + (1<<22)) {
161 			const uint64_t now = rte_get_timer_cycles();
162 			const uint64_t total_ms = (now - start_time) / freq_khz;
163 			const uint64_t delta_ms = (now - last_time) / freq_khz;
164 			uint64_t delta_pkts = received - last_pkts;
165 
166 			printf("# %s RX=%"PRIu64", time %"PRIu64 "ms, "
167 					"avg %.3f mpps [current %.3f mpps]\n",
168 					__func__,
169 					received,
170 					total_ms,
171 					received / (total_ms * 1000.0),
172 					delta_pkts / (delta_ms * 1000.0));
173 			last_pkts = received;
174 			last_time = now;
175 		}
176 
177 		cdata.num_packets--;
178 		if (cdata.num_packets <= 0)
179 			fdata->done = 1;
180 	/* Be stuck in this loop if single. */
181 	} while (!fdata->done && fdata->tx_single);
182 
183 	return 0;
184 }
185 
186 static __rte_always_inline int
187 consumer_burst(void)
188 {
189 	const uint64_t freq_khz = rte_get_timer_hz() / 1000;
190 	struct rte_event packets[BATCH_SIZE];
191 
192 	static uint64_t received;
193 	static uint64_t last_pkts;
194 	static uint64_t last_time;
195 	static uint64_t start_time;
196 	unsigned int i, j;
197 	uint8_t dev_id = cons_data.dev_id;
198 	uint8_t port_id = cons_data.port_id;
199 	uint16_t nb_ports = rte_eth_dev_count();
200 
201 	do {
202 		uint16_t n = rte_event_dequeue_burst(dev_id, port_id,
203 				packets, RTE_DIM(packets), 0);
204 
205 		if (n == 0) {
206 			for (j = 0; j < nb_ports; j++)
207 				rte_eth_tx_buffer_flush(j, 0, fdata->tx_buf[j]);
208 			return 0;
209 		}
210 		if (start_time == 0)
211 			last_time = start_time = rte_get_timer_cycles();
212 
213 		received += n;
214 		for (i = 0; i < n; i++) {
215 			uint8_t outport = packets[i].mbuf->port;
216 
217 			exchange_mac(packets[i].mbuf);
218 			rte_eth_tx_buffer(outport, 0, fdata->tx_buf[outport],
219 					packets[i].mbuf);
220 
221 			packets[i].op = RTE_EVENT_OP_RELEASE;
222 		}
223 
224 		if (cons_data.release) {
225 			uint16_t nb_tx;
226 
227 			nb_tx = rte_event_enqueue_burst(dev_id, port_id,
228 								packets, n);
229 			while (nb_tx < n)
230 				nb_tx += rte_event_enqueue_burst(dev_id,
231 						port_id, packets + nb_tx,
232 						n - nb_tx);
233 		}
234 
235 		/* Print out mpps every 1<22 packets */
236 		if (!cdata.quiet && received >= last_pkts + (1<<22)) {
237 			const uint64_t now = rte_get_timer_cycles();
238 			const uint64_t total_ms = (now - start_time) / freq_khz;
239 			const uint64_t delta_ms = (now - last_time) / freq_khz;
240 			uint64_t delta_pkts = received - last_pkts;
241 
242 			printf("# consumer RX=%"PRIu64", time %"PRIu64 "ms, "
243 					"avg %.3f mpps [current %.3f mpps]\n",
244 					received,
245 					total_ms,
246 					received / (total_ms * 1000.0),
247 					delta_pkts / (delta_ms * 1000.0));
248 			last_pkts = received;
249 			last_time = now;
250 		}
251 
252 		cdata.num_packets -= n;
253 		if (cdata.num_packets <= 0)
254 			fdata->done = 1;
255 	/* Be stuck in this loop if single. */
256 	} while (!fdata->done && fdata->tx_single);
257 
258 	return 0;
259 }
260 
261 static int
262 setup_eventdev_generic(struct cons_data *cons_data,
263 		struct worker_data *worker_data)
264 {
265 	const uint8_t dev_id = 0;
266 	/* +1 stages is for a SINGLE_LINK TX stage */
267 	const uint8_t nb_queues = cdata.num_stages + 1;
268 	/* + 1 is one port for consumer */
269 	const uint8_t nb_ports = cdata.num_workers + 1;
270 	struct rte_event_dev_config config = {
271 			.nb_event_queues = nb_queues,
272 			.nb_event_ports = nb_ports,
273 			.nb_events_limit  = 4096,
274 			.nb_event_queue_flows = 1024,
275 			.nb_event_port_dequeue_depth = 128,
276 			.nb_event_port_enqueue_depth = 128,
277 	};
278 	struct rte_event_port_conf wkr_p_conf = {
279 			.dequeue_depth = cdata.worker_cq_depth,
280 			.enqueue_depth = 64,
281 			.new_event_threshold = 4096,
282 	};
283 	struct rte_event_queue_conf wkr_q_conf = {
284 			.schedule_type = cdata.queue_type,
285 			.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
286 			.nb_atomic_flows = 1024,
287 		.nb_atomic_order_sequences = 1024,
288 	};
289 	struct rte_event_port_conf tx_p_conf = {
290 			.dequeue_depth = 128,
291 			.enqueue_depth = 128,
292 			.new_event_threshold = 4096,
293 	};
294 	struct rte_event_queue_conf tx_q_conf = {
295 			.priority = RTE_EVENT_DEV_PRIORITY_HIGHEST,
296 			.event_queue_cfg = RTE_EVENT_QUEUE_CFG_SINGLE_LINK,
297 	};
298 
299 	struct port_link worker_queues[MAX_NUM_STAGES];
300 	uint8_t disable_implicit_release;
301 	struct port_link tx_queue;
302 	unsigned int i;
303 
304 	int ret, ndev = rte_event_dev_count();
305 	if (ndev < 1) {
306 		printf("%d: No Eventdev Devices Found\n", __LINE__);
307 		return -1;
308 	}
309 
310 	struct rte_event_dev_info dev_info;
311 	ret = rte_event_dev_info_get(dev_id, &dev_info);
312 	printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name);
313 
314 	disable_implicit_release = (dev_info.event_dev_cap &
315 			RTE_EVENT_DEV_CAP_IMPLICIT_RELEASE_DISABLE);
316 
317 	wkr_p_conf.disable_implicit_release = disable_implicit_release;
318 	tx_p_conf.disable_implicit_release = disable_implicit_release;
319 
320 	if (dev_info.max_event_port_dequeue_depth <
321 			config.nb_event_port_dequeue_depth)
322 		config.nb_event_port_dequeue_depth =
323 				dev_info.max_event_port_dequeue_depth;
324 	if (dev_info.max_event_port_enqueue_depth <
325 			config.nb_event_port_enqueue_depth)
326 		config.nb_event_port_enqueue_depth =
327 				dev_info.max_event_port_enqueue_depth;
328 
329 	ret = rte_event_dev_configure(dev_id, &config);
330 	if (ret < 0) {
331 		printf("%d: Error configuring device\n", __LINE__);
332 		return -1;
333 	}
334 
335 	/* Q creation - one load balanced per pipeline stage*/
336 	printf("  Stages:\n");
337 	for (i = 0; i < cdata.num_stages; i++) {
338 		if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) {
339 			printf("%d: error creating qid %d\n", __LINE__, i);
340 			return -1;
341 		}
342 		cdata.qid[i] = i;
343 		cdata.next_qid[i] = i+1;
344 		worker_queues[i].queue_id = i;
345 		if (cdata.enable_queue_priorities) {
346 			/* calculate priority stepping for each stage, leaving
347 			 * headroom of 1 for the SINGLE_LINK TX below
348 			 */
349 			const uint32_t prio_delta =
350 				(RTE_EVENT_DEV_PRIORITY_LOWEST-1) /  nb_queues;
351 
352 			/* higher priority for queues closer to tx */
353 			wkr_q_conf.priority =
354 				RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta * i;
355 		}
356 
357 		const char *type_str = "Atomic";
358 		switch (wkr_q_conf.schedule_type) {
359 		case RTE_SCHED_TYPE_ORDERED:
360 			type_str = "Ordered";
361 			break;
362 		case RTE_SCHED_TYPE_PARALLEL:
363 			type_str = "Parallel";
364 			break;
365 		}
366 		printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str,
367 				wkr_q_conf.priority);
368 	}
369 	printf("\n");
370 
371 	/* final queue for sending to TX core */
372 	if (rte_event_queue_setup(dev_id, i, &tx_q_conf) < 0) {
373 		printf("%d: error creating qid %d\n", __LINE__, i);
374 		return -1;
375 	}
376 	tx_queue.queue_id = i;
377 	tx_queue.priority = RTE_EVENT_DEV_PRIORITY_HIGHEST;
378 
379 	if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
380 		wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
381 	if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
382 		wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
383 
384 	/* set up one port per worker, linking to all stage queues */
385 	for (i = 0; i < cdata.num_workers; i++) {
386 		struct worker_data *w = &worker_data[i];
387 		w->dev_id = dev_id;
388 		if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) {
389 			printf("Error setting up port %d\n", i);
390 			return -1;
391 		}
392 
393 		uint32_t s;
394 		for (s = 0; s < cdata.num_stages; s++) {
395 			if (rte_event_port_link(dev_id, i,
396 						&worker_queues[s].queue_id,
397 						&worker_queues[s].priority,
398 						1) != 1) {
399 				printf("%d: error creating link for port %d\n",
400 						__LINE__, i);
401 				return -1;
402 			}
403 		}
404 		w->port_id = i;
405 	}
406 
407 	if (tx_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
408 		tx_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
409 	if (tx_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
410 		tx_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
411 
412 	/* port for consumer, linked to TX queue */
413 	if (rte_event_port_setup(dev_id, i, &tx_p_conf) < 0) {
414 		printf("Error setting up port %d\n", i);
415 		return -1;
416 	}
417 	if (rte_event_port_link(dev_id, i, &tx_queue.queue_id,
418 				&tx_queue.priority, 1) != 1) {
419 		printf("%d: error creating link for port %d\n",
420 				__LINE__, i);
421 		return -1;
422 	}
423 	*cons_data = (struct cons_data){.dev_id = dev_id,
424 					.port_id = i,
425 					.release = disable_implicit_release };
426 
427 	ret = rte_event_dev_service_id_get(dev_id,
428 				&fdata->evdev_service_id);
429 	if (ret != -ESRCH && ret != 0) {
430 		printf("Error getting the service ID for sw eventdev\n");
431 		return -1;
432 	}
433 	rte_service_runstate_set(fdata->evdev_service_id, 1);
434 	rte_service_set_runstate_mapped_check(fdata->evdev_service_id, 0);
435 	if (rte_event_dev_start(dev_id) < 0) {
436 		printf("Error starting eventdev\n");
437 		return -1;
438 	}
439 
440 	return dev_id;
441 }
442 
443 static void
444 init_rx_adapter(uint16_t nb_ports)
445 {
446 	int i;
447 	int ret;
448 	uint8_t evdev_id = 0;
449 	struct rte_event_dev_info dev_info;
450 
451 	ret = rte_event_dev_info_get(evdev_id, &dev_info);
452 
453 	struct rte_event_port_conf rx_p_conf = {
454 		.dequeue_depth = 8,
455 		.enqueue_depth = 8,
456 		.new_event_threshold = 1200,
457 	};
458 
459 	if (rx_p_conf.dequeue_depth > dev_info.max_event_port_dequeue_depth)
460 		rx_p_conf.dequeue_depth = dev_info.max_event_port_dequeue_depth;
461 	if (rx_p_conf.enqueue_depth > dev_info.max_event_port_enqueue_depth)
462 		rx_p_conf.enqueue_depth = dev_info.max_event_port_enqueue_depth;
463 
464 	/* Create one adapter for all the ethernet ports. */
465 	ret = rte_event_eth_rx_adapter_create(cdata.rx_adapter_id, evdev_id,
466 			&rx_p_conf);
467 	if (ret)
468 		rte_exit(EXIT_FAILURE, "failed to create rx adapter[%d]",
469 				cdata.rx_adapter_id);
470 
471 	struct rte_event_eth_rx_adapter_queue_conf queue_conf = {
472 		.ev.sched_type = cdata.queue_type,
473 		.ev.queue_id = cdata.qid[0],
474 	};
475 
476 	for (i = 0; i < nb_ports; i++) {
477 		uint32_t cap;
478 
479 		ret = rte_event_eth_rx_adapter_caps_get(evdev_id, i, &cap);
480 		if (ret)
481 			rte_exit(EXIT_FAILURE,
482 					"failed to get event rx adapter "
483 					"capabilities");
484 
485 		ret = rte_event_eth_rx_adapter_queue_add(cdata.rx_adapter_id, i,
486 				-1, &queue_conf);
487 		if (ret)
488 			rte_exit(EXIT_FAILURE,
489 					"Failed to add queues to Rx adapter");
490 	}
491 
492 	ret = rte_event_eth_rx_adapter_service_id_get(cdata.rx_adapter_id,
493 				&fdata->rxadptr_service_id);
494 	if (ret != -ESRCH && ret != 0) {
495 		rte_exit(EXIT_FAILURE,
496 			"Error getting the service ID for sw eventdev\n");
497 	}
498 	rte_service_runstate_set(fdata->rxadptr_service_id, 1);
499 	rte_service_set_runstate_mapped_check(fdata->rxadptr_service_id, 0);
500 
501 	ret = rte_event_eth_rx_adapter_start(cdata.rx_adapter_id);
502 	if (ret)
503 		rte_exit(EXIT_FAILURE, "Rx adapter[%d] start failed",
504 				cdata.rx_adapter_id);
505 }
506 
507 static void
508 generic_opt_check(void)
509 {
510 	int i;
511 	int ret;
512 	uint32_t cap = 0;
513 	uint8_t rx_needed = 0;
514 	struct rte_event_dev_info eventdev_info;
515 
516 	memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info));
517 	rte_event_dev_info_get(0, &eventdev_info);
518 
519 	if (cdata.all_type_queues && !(eventdev_info.event_dev_cap &
520 				RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES))
521 		rte_exit(EXIT_FAILURE,
522 				"Event dev doesn't support all type queues\n");
523 
524 	for (i = 0; i < rte_eth_dev_count(); i++) {
525 		ret = rte_event_eth_rx_adapter_caps_get(0, i, &cap);
526 		if (ret)
527 			rte_exit(EXIT_FAILURE,
528 				"failed to get event rx adapter capabilities");
529 		rx_needed |=
530 			!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT);
531 	}
532 
533 	if (cdata.worker_lcore_mask == 0 ||
534 			(rx_needed && cdata.rx_lcore_mask == 0) ||
535 			cdata.tx_lcore_mask == 0 || (cdata.sched_lcore_mask == 0
536 				&& !(eventdev_info.event_dev_cap &
537 					RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))) {
538 		printf("Core part of pipeline was not assigned any cores. "
539 			"This will stall the pipeline, please check core masks "
540 			"(use -h for details on setting core masks):\n"
541 			"\trx: %"PRIu64"\n\ttx: %"PRIu64"\n\tsched: %"PRIu64
542 			"\n\tworkers: %"PRIu64"\n",
543 			cdata.rx_lcore_mask, cdata.tx_lcore_mask,
544 			cdata.sched_lcore_mask,
545 			cdata.worker_lcore_mask);
546 		rte_exit(-1, "Fix core masks\n");
547 	}
548 
549 	if (eventdev_info.event_dev_cap & RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED)
550 		memset(fdata->sched_core, 0,
551 				sizeof(unsigned int) * MAX_NUM_CORE);
552 }
553 
554 void
555 set_worker_generic_setup_data(struct setup_data *caps, bool burst)
556 {
557 	if (burst) {
558 		caps->consumer = consumer_burst;
559 		caps->worker = worker_generic_burst;
560 	} else {
561 		caps->consumer = consumer;
562 		caps->worker = worker_generic;
563 	}
564 
565 	caps->adptr_setup = init_rx_adapter;
566 	caps->scheduler = schedule_devices;
567 	caps->evdev_setup = setup_eventdev_generic;
568 	caps->check_opt = generic_opt_check;
569 }
570