xref: /dpdk/drivers/net/thunderx/nicvf_rxtx.c (revision 0857b942113874c69dc3db5df11a828ee3cc9b6b)
1 /*
2  *   BSD LICENSE
3  *
4  *   Copyright (C) Cavium networks Ltd. 2016.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Cavium networks nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <unistd.h>
34 #include <stdint.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 
38 #include <rte_atomic.h>
39 #include <rte_branch_prediction.h>
40 #include <rte_byteorder.h>
41 #include <rte_common.h>
42 #include <rte_cycles.h>
43 #include <rte_errno.h>
44 #include <rte_ethdev.h>
45 #include <rte_ether.h>
46 #include <rte_log.h>
47 #include <rte_mbuf.h>
48 #include <rte_prefetch.h>
49 
50 #include "base/nicvf_plat.h"
51 
52 #include "nicvf_ethdev.h"
53 #include "nicvf_rxtx.h"
54 #include "nicvf_logs.h"
55 
56 static inline void __hot
57 fill_sq_desc_header(union sq_entry_t *entry, struct rte_mbuf *pkt)
58 {
59 	/* Local variable sqe to avoid read from sq desc memory*/
60 	union sq_entry_t sqe;
61 	uint64_t ol_flags;
62 
63 	/* Fill SQ header descriptor */
64 	sqe.buff[0] = 0;
65 	sqe.hdr.subdesc_type = SQ_DESC_TYPE_HEADER;
66 	/* Number of sub-descriptors following this one */
67 	sqe.hdr.subdesc_cnt = pkt->nb_segs;
68 	sqe.hdr.tot_len = pkt->pkt_len;
69 
70 	ol_flags = pkt->ol_flags & NICVF_TX_OFFLOAD_MASK;
71 	if (unlikely(ol_flags)) {
72 		/* L4 cksum */
73 		uint64_t l4_flags = ol_flags & PKT_TX_L4_MASK;
74 		if (l4_flags == PKT_TX_TCP_CKSUM)
75 			sqe.hdr.csum_l4 = SEND_L4_CSUM_TCP;
76 		else if (l4_flags == PKT_TX_UDP_CKSUM)
77 			sqe.hdr.csum_l4 = SEND_L4_CSUM_UDP;
78 		else
79 			sqe.hdr.csum_l4 = SEND_L4_CSUM_DISABLE;
80 
81 		sqe.hdr.l3_offset = pkt->l2_len;
82 		sqe.hdr.l4_offset = pkt->l3_len + pkt->l2_len;
83 
84 		/* L3 cksum */
85 		if (ol_flags & PKT_TX_IP_CKSUM)
86 			sqe.hdr.csum_l3 = 1;
87 	}
88 
89 	entry->buff[0] = sqe.buff[0];
90 }
91 
92 void __hot
93 nicvf_single_pool_free_xmited_buffers(struct nicvf_txq *sq)
94 {
95 	int j = 0;
96 	uint32_t curr_head;
97 	uint32_t head = sq->head;
98 	struct rte_mbuf **txbuffs = sq->txbuffs;
99 	void *obj_p[NICVF_MAX_TX_FREE_THRESH] __rte_cache_aligned;
100 
101 	curr_head = nicvf_addr_read(sq->sq_head) >> 4;
102 	while (head != curr_head) {
103 		if (txbuffs[head])
104 			obj_p[j++] = txbuffs[head];
105 
106 		head = (head + 1) & sq->qlen_mask;
107 	}
108 
109 	rte_mempool_put_bulk(sq->pool, obj_p, j);
110 	sq->head = curr_head;
111 	sq->xmit_bufs -= j;
112 	NICVF_TX_ASSERT(sq->xmit_bufs >= 0);
113 }
114 
115 void __hot
116 nicvf_multi_pool_free_xmited_buffers(struct nicvf_txq *sq)
117 {
118 	uint32_t n = 0;
119 	uint32_t curr_head;
120 	uint32_t head = sq->head;
121 	struct rte_mbuf **txbuffs = sq->txbuffs;
122 
123 	curr_head = nicvf_addr_read(sq->sq_head) >> 4;
124 	while (head != curr_head) {
125 		if (txbuffs[head]) {
126 			rte_pktmbuf_free_seg(txbuffs[head]);
127 			n++;
128 		}
129 
130 		head = (head + 1) & sq->qlen_mask;
131 	}
132 
133 	sq->head = curr_head;
134 	sq->xmit_bufs -= n;
135 	NICVF_TX_ASSERT(sq->xmit_bufs >= 0);
136 }
137 
138 static inline uint32_t __hot
139 nicvf_free_tx_desc(struct nicvf_txq *sq)
140 {
141 	return ((sq->head - sq->tail - 1) & sq->qlen_mask);
142 }
143 
144 /* Send Header + Packet */
145 #define TX_DESC_PER_PKT 2
146 
147 static inline uint32_t __hot
148 nicvf_free_xmitted_buffers(struct nicvf_txq *sq, struct rte_mbuf **tx_pkts,
149 			    uint16_t nb_pkts)
150 {
151 	uint32_t free_desc = nicvf_free_tx_desc(sq);
152 
153 	if (free_desc < nb_pkts * TX_DESC_PER_PKT ||
154 			sq->xmit_bufs > sq->tx_free_thresh) {
155 		if (unlikely(sq->pool == NULL))
156 			sq->pool = tx_pkts[0]->pool;
157 
158 		sq->pool_free(sq);
159 		/* Freed now, let see the number of free descs again */
160 		free_desc = nicvf_free_tx_desc(sq);
161 	}
162 	return free_desc;
163 }
164 
165 uint16_t __hot
166 nicvf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
167 {
168 	int i;
169 	uint32_t free_desc;
170 	uint32_t tail;
171 	struct nicvf_txq *sq = tx_queue;
172 	union sq_entry_t *desc_ptr = sq->desc;
173 	struct rte_mbuf **txbuffs = sq->txbuffs;
174 	struct rte_mbuf *pkt;
175 	uint32_t qlen_mask = sq->qlen_mask;
176 
177 	tail = sq->tail;
178 	free_desc = nicvf_free_xmitted_buffers(sq, tx_pkts, nb_pkts);
179 
180 	for (i = 0; i < nb_pkts && (int)free_desc >= TX_DESC_PER_PKT; i++) {
181 		pkt = tx_pkts[i];
182 
183 		txbuffs[tail] = NULL;
184 		fill_sq_desc_header(desc_ptr + tail, pkt);
185 		tail = (tail + 1) & qlen_mask;
186 
187 		txbuffs[tail] = pkt;
188 		fill_sq_desc_gather(desc_ptr + tail, pkt);
189 		tail = (tail + 1) & qlen_mask;
190 		free_desc -= TX_DESC_PER_PKT;
191 	}
192 
193 	sq->tail = tail;
194 	sq->xmit_bufs += i;
195 	rte_wmb();
196 
197 	/* Inform HW to xmit the packets */
198 	nicvf_addr_write(sq->sq_door, i * TX_DESC_PER_PKT);
199 	return i;
200 }
201 
202 uint16_t __hot
203 nicvf_xmit_pkts_multiseg(void *tx_queue, struct rte_mbuf **tx_pkts,
204 			 uint16_t nb_pkts)
205 {
206 	int i, k;
207 	uint32_t used_desc, next_used_desc, used_bufs, free_desc, tail;
208 	struct nicvf_txq *sq = tx_queue;
209 	union sq_entry_t *desc_ptr = sq->desc;
210 	struct rte_mbuf **txbuffs = sq->txbuffs;
211 	struct rte_mbuf *pkt, *seg;
212 	uint32_t qlen_mask = sq->qlen_mask;
213 	uint16_t nb_segs;
214 
215 	tail = sq->tail;
216 	used_desc = 0;
217 	used_bufs = 0;
218 
219 	free_desc = nicvf_free_xmitted_buffers(sq, tx_pkts, nb_pkts);
220 
221 	for (i = 0; i < nb_pkts; i++) {
222 		pkt = tx_pkts[i];
223 
224 		nb_segs = pkt->nb_segs;
225 
226 		next_used_desc = used_desc + nb_segs + 1;
227 		if (next_used_desc > free_desc)
228 			break;
229 		used_desc = next_used_desc;
230 		used_bufs += nb_segs;
231 
232 		txbuffs[tail] = NULL;
233 		fill_sq_desc_header(desc_ptr + tail, pkt);
234 		tail = (tail + 1) & qlen_mask;
235 
236 		txbuffs[tail] = pkt;
237 		fill_sq_desc_gather(desc_ptr + tail, pkt);
238 		tail = (tail + 1) & qlen_mask;
239 
240 		seg = pkt->next;
241 		for (k = 1; k < nb_segs; k++) {
242 			txbuffs[tail] = seg;
243 			fill_sq_desc_gather(desc_ptr + tail, seg);
244 			tail = (tail + 1) & qlen_mask;
245 			seg = seg->next;
246 		}
247 	}
248 
249 	sq->tail = tail;
250 	sq->xmit_bufs += used_bufs;
251 	rte_wmb();
252 
253 	/* Inform HW to xmit the packets */
254 	nicvf_addr_write(sq->sq_door, used_desc);
255 	return nb_pkts;
256 }
257 
258 static const uint32_t ptype_table[16][16] __rte_cache_aligned = {
259 	[L3_NONE][L4_NONE] = RTE_PTYPE_UNKNOWN,
260 	[L3_NONE][L4_IPSEC_ESP] = RTE_PTYPE_UNKNOWN,
261 	[L3_NONE][L4_IPFRAG] = RTE_PTYPE_L4_FRAG,
262 	[L3_NONE][L4_IPCOMP] = RTE_PTYPE_UNKNOWN,
263 	[L3_NONE][L4_TCP] = RTE_PTYPE_L4_TCP,
264 	[L3_NONE][L4_UDP_PASS1] = RTE_PTYPE_L4_UDP,
265 	[L3_NONE][L4_GRE] = RTE_PTYPE_TUNNEL_GRE,
266 	[L3_NONE][L4_UDP_PASS2] = RTE_PTYPE_L4_UDP,
267 	[L3_NONE][L4_UDP_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
268 	[L3_NONE][L4_UDP_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
269 	[L3_NONE][L4_NVGRE] = RTE_PTYPE_TUNNEL_NVGRE,
270 
271 	[L3_IPV4][L4_NONE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_UNKNOWN,
272 	[L3_IPV4][L4_IPSEC_ESP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L3_IPV4,
273 	[L3_IPV4][L4_IPFRAG] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_FRAG,
274 	[L3_IPV4][L4_IPCOMP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_UNKNOWN,
275 	[L3_IPV4][L4_TCP] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
276 	[L3_IPV4][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
277 	[L3_IPV4][L4_GRE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_GRE,
278 	[L3_IPV4][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
279 	[L3_IPV4][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_GENEVE,
280 	[L3_IPV4][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_VXLAN,
281 	[L3_IPV4][L4_NVGRE] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_NVGRE,
282 
283 	[L3_IPV4_OPT][L4_NONE] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_UNKNOWN,
284 	[L3_IPV4_OPT][L4_IPSEC_ESP] =  RTE_PTYPE_L3_IPV4_EXT |
285 				RTE_PTYPE_L3_IPV4,
286 	[L3_IPV4_OPT][L4_IPFRAG] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_FRAG,
287 	[L3_IPV4_OPT][L4_IPCOMP] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_UNKNOWN,
288 	[L3_IPV4_OPT][L4_TCP] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
289 	[L3_IPV4_OPT][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
290 	[L3_IPV4_OPT][L4_GRE] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_GRE,
291 	[L3_IPV4_OPT][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
292 	[L3_IPV4_OPT][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV4_EXT |
293 				RTE_PTYPE_TUNNEL_GENEVE,
294 	[L3_IPV4_OPT][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV4_EXT |
295 				RTE_PTYPE_TUNNEL_VXLAN,
296 	[L3_IPV4_OPT][L4_NVGRE] = RTE_PTYPE_L3_IPV4_EXT |
297 				RTE_PTYPE_TUNNEL_NVGRE,
298 
299 	[L3_IPV6][L4_NONE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_UNKNOWN,
300 	[L3_IPV6][L4_IPSEC_ESP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L3_IPV4,
301 	[L3_IPV6][L4_IPFRAG] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_FRAG,
302 	[L3_IPV6][L4_IPCOMP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_UNKNOWN,
303 	[L3_IPV6][L4_TCP] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
304 	[L3_IPV6][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
305 	[L3_IPV6][L4_GRE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_GRE,
306 	[L3_IPV6][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
307 	[L3_IPV6][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_GENEVE,
308 	[L3_IPV6][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_VXLAN,
309 	[L3_IPV6][L4_NVGRE] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_TUNNEL_NVGRE,
310 
311 	[L3_IPV6_OPT][L4_NONE] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_UNKNOWN,
312 	[L3_IPV6_OPT][L4_IPSEC_ESP] =  RTE_PTYPE_L3_IPV6_EXT |
313 					RTE_PTYPE_L3_IPV4,
314 	[L3_IPV6_OPT][L4_IPFRAG] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_FRAG,
315 	[L3_IPV6_OPT][L4_IPCOMP] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_UNKNOWN,
316 	[L3_IPV6_OPT][L4_TCP] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
317 	[L3_IPV6_OPT][L4_UDP_PASS1] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
318 	[L3_IPV6_OPT][L4_GRE] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_TUNNEL_GRE,
319 	[L3_IPV6_OPT][L4_UDP_PASS2] = RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
320 	[L3_IPV6_OPT][L4_UDP_GENEVE] = RTE_PTYPE_L3_IPV6_EXT |
321 					RTE_PTYPE_TUNNEL_GENEVE,
322 	[L3_IPV6_OPT][L4_UDP_VXLAN] = RTE_PTYPE_L3_IPV6_EXT |
323 					RTE_PTYPE_TUNNEL_VXLAN,
324 	[L3_IPV6_OPT][L4_NVGRE] = RTE_PTYPE_L3_IPV6_EXT |
325 					RTE_PTYPE_TUNNEL_NVGRE,
326 
327 	[L3_ET_STOP][L4_NONE] = RTE_PTYPE_UNKNOWN,
328 	[L3_ET_STOP][L4_IPSEC_ESP] = RTE_PTYPE_UNKNOWN,
329 	[L3_ET_STOP][L4_IPFRAG] = RTE_PTYPE_L4_FRAG,
330 	[L3_ET_STOP][L4_IPCOMP] = RTE_PTYPE_UNKNOWN,
331 	[L3_ET_STOP][L4_TCP] = RTE_PTYPE_L4_TCP,
332 	[L3_ET_STOP][L4_UDP_PASS1] = RTE_PTYPE_L4_UDP,
333 	[L3_ET_STOP][L4_GRE] = RTE_PTYPE_TUNNEL_GRE,
334 	[L3_ET_STOP][L4_UDP_PASS2] = RTE_PTYPE_L4_UDP,
335 	[L3_ET_STOP][L4_UDP_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
336 	[L3_ET_STOP][L4_UDP_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
337 	[L3_ET_STOP][L4_NVGRE] = RTE_PTYPE_TUNNEL_NVGRE,
338 
339 	[L3_OTHER][L4_NONE] = RTE_PTYPE_UNKNOWN,
340 	[L3_OTHER][L4_IPSEC_ESP] = RTE_PTYPE_UNKNOWN,
341 	[L3_OTHER][L4_IPFRAG] = RTE_PTYPE_L4_FRAG,
342 	[L3_OTHER][L4_IPCOMP] = RTE_PTYPE_UNKNOWN,
343 	[L3_OTHER][L4_TCP] = RTE_PTYPE_L4_TCP,
344 	[L3_OTHER][L4_UDP_PASS1] = RTE_PTYPE_L4_UDP,
345 	[L3_OTHER][L4_GRE] = RTE_PTYPE_TUNNEL_GRE,
346 	[L3_OTHER][L4_UDP_PASS2] = RTE_PTYPE_L4_UDP,
347 	[L3_OTHER][L4_UDP_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
348 	[L3_OTHER][L4_UDP_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
349 	[L3_OTHER][L4_NVGRE] = RTE_PTYPE_TUNNEL_NVGRE,
350 };
351 
352 static inline uint32_t __hot
353 nicvf_rx_classify_pkt(cqe_rx_word0_t cqe_rx_w0)
354 {
355 	return ptype_table[cqe_rx_w0.l3_type][cqe_rx_w0.l4_type];
356 }
357 
358 static inline int __hot
359 nicvf_fill_rbdr(struct nicvf_rxq *rxq, int to_fill)
360 {
361 	int i;
362 	uint32_t ltail, next_tail;
363 	struct nicvf_rbdr *rbdr = rxq->shared_rbdr;
364 	uint64_t mbuf_phys_off = rxq->mbuf_phys_off;
365 	struct rbdr_entry_t *desc = rbdr->desc;
366 	uint32_t qlen_mask = rbdr->qlen_mask;
367 	uintptr_t door = rbdr->rbdr_door;
368 	void *obj_p[NICVF_MAX_RX_FREE_THRESH] __rte_cache_aligned;
369 
370 	if (unlikely(rte_mempool_get_bulk(rxq->pool, obj_p, to_fill) < 0)) {
371 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
372 			to_fill;
373 		return 0;
374 	}
375 
376 	NICVF_RX_ASSERT((unsigned int)to_fill <= (qlen_mask -
377 		(nicvf_addr_read(rbdr->rbdr_status) & NICVF_RBDR_COUNT_MASK)));
378 
379 	next_tail = __atomic_fetch_add(&rbdr->next_tail, to_fill,
380 					__ATOMIC_ACQUIRE);
381 	ltail = next_tail;
382 	for (i = 0; i < to_fill; i++) {
383 		struct rbdr_entry_t *entry = desc + (ltail & qlen_mask);
384 
385 		entry->full_addr = nicvf_mbuff_virt2phy((uintptr_t)obj_p[i],
386 							mbuf_phys_off);
387 		ltail++;
388 	}
389 
390 	while (__atomic_load_n(&rbdr->tail, __ATOMIC_RELAXED) != next_tail)
391 		rte_pause();
392 
393 	__atomic_store_n(&rbdr->tail, ltail, __ATOMIC_RELEASE);
394 	nicvf_addr_write(door, to_fill);
395 	return to_fill;
396 }
397 
398 static inline int32_t __hot
399 nicvf_rx_pkts_to_process(struct nicvf_rxq *rxq, uint16_t nb_pkts,
400 			 int32_t available_space)
401 {
402 	if (unlikely(available_space < nb_pkts))
403 		rxq->available_space = nicvf_addr_read(rxq->cq_status)
404 						& NICVF_CQ_CQE_COUNT_MASK;
405 
406 	return RTE_MIN(nb_pkts, available_space);
407 }
408 
409 static inline void __hot
410 nicvf_rx_offload(cqe_rx_word0_t cqe_rx_w0, cqe_rx_word2_t cqe_rx_w2,
411 		 struct rte_mbuf *pkt)
412 {
413 	if (likely(cqe_rx_w0.rss_alg)) {
414 		pkt->hash.rss = cqe_rx_w2.rss_tag;
415 		pkt->ol_flags |= PKT_RX_RSS_HASH;
416 	}
417 }
418 
419 uint16_t __hot
420 nicvf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
421 {
422 	uint32_t i, to_process;
423 	struct cqe_rx_t *cqe_rx;
424 	struct rte_mbuf *pkt;
425 	cqe_rx_word0_t cqe_rx_w0;
426 	cqe_rx_word1_t cqe_rx_w1;
427 	cqe_rx_word2_t cqe_rx_w2;
428 	cqe_rx_word3_t cqe_rx_w3;
429 	struct nicvf_rxq *rxq = rx_queue;
430 	union cq_entry_t *desc = rxq->desc;
431 	const uint64_t cqe_mask = rxq->qlen_mask;
432 	uint64_t rb0_ptr, mbuf_phys_off = rxq->mbuf_phys_off;
433 	uint32_t cqe_head = rxq->head & cqe_mask;
434 	int32_t available_space = rxq->available_space;
435 	uint8_t port_id = rxq->port_id;
436 	const uint8_t rbptr_offset = rxq->rbptr_offset;
437 
438 	to_process = nicvf_rx_pkts_to_process(rxq, nb_pkts, available_space);
439 
440 	for (i = 0; i < to_process; i++) {
441 		rte_prefetch_non_temporal(&desc[cqe_head + 2]);
442 		cqe_rx = (struct cqe_rx_t *)&desc[cqe_head];
443 		NICVF_RX_ASSERT(((struct cq_entry_type_t *)cqe_rx)->cqe_type
444 						 == CQE_TYPE_RX);
445 
446 		NICVF_LOAD_PAIR(cqe_rx_w0.u64, cqe_rx_w1.u64, cqe_rx);
447 		NICVF_LOAD_PAIR(cqe_rx_w2.u64, cqe_rx_w3.u64, &cqe_rx->word2);
448 		rb0_ptr = *((uint64_t *)cqe_rx + rbptr_offset);
449 		pkt = (struct rte_mbuf *)nicvf_mbuff_phy2virt
450 				(rb0_ptr - cqe_rx_w1.align_pad, mbuf_phys_off);
451 
452 		pkt->ol_flags = 0;
453 		pkt->port = port_id;
454 		pkt->data_len = cqe_rx_w3.rb0_sz;
455 		pkt->data_off = RTE_PKTMBUF_HEADROOM + cqe_rx_w1.align_pad;
456 		pkt->nb_segs = 1;
457 		pkt->pkt_len = cqe_rx_w3.rb0_sz;
458 		pkt->packet_type = nicvf_rx_classify_pkt(cqe_rx_w0);
459 
460 		nicvf_rx_offload(cqe_rx_w0, cqe_rx_w2, pkt);
461 		rte_mbuf_refcnt_set(pkt, 1);
462 		rx_pkts[i] = pkt;
463 		cqe_head = (cqe_head + 1) & cqe_mask;
464 		nicvf_prefetch_store_keep(pkt);
465 	}
466 
467 	if (likely(to_process)) {
468 		rxq->available_space -= to_process;
469 		rxq->head = cqe_head;
470 		nicvf_addr_write(rxq->cq_door, to_process);
471 		rxq->recv_buffers += to_process;
472 		if (rxq->recv_buffers > rxq->rx_free_thresh) {
473 			rxq->recv_buffers -= nicvf_fill_rbdr(rxq,
474 						rxq->rx_free_thresh);
475 			NICVF_RX_ASSERT(rxq->recv_buffers >= 0);
476 		}
477 	}
478 
479 	return to_process;
480 }
481 
482 static inline uint16_t __hot
483 nicvf_process_cq_mseg_entry(struct cqe_rx_t *cqe_rx,
484 			uint64_t mbuf_phys_off, uint8_t port_id,
485 			struct rte_mbuf **rx_pkt, uint8_t rbptr_offset)
486 {
487 	struct rte_mbuf *pkt, *seg, *prev;
488 	cqe_rx_word0_t cqe_rx_w0;
489 	cqe_rx_word1_t cqe_rx_w1;
490 	cqe_rx_word2_t cqe_rx_w2;
491 	uint16_t *rb_sz, nb_segs, seg_idx;
492 	uint64_t *rb_ptr;
493 
494 	NICVF_LOAD_PAIR(cqe_rx_w0.u64, cqe_rx_w1.u64, cqe_rx);
495 	NICVF_RX_ASSERT(cqe_rx_w0.cqe_type == CQE_TYPE_RX);
496 	cqe_rx_w2 = cqe_rx->word2;
497 	rb_sz = &cqe_rx->word3.rb0_sz;
498 	rb_ptr = (uint64_t *)cqe_rx + rbptr_offset;
499 	nb_segs = cqe_rx_w0.rb_cnt;
500 	pkt = (struct rte_mbuf *)nicvf_mbuff_phy2virt
501 			(rb_ptr[0] - cqe_rx_w1.align_pad, mbuf_phys_off);
502 
503 	pkt->ol_flags = 0;
504 	pkt->port = port_id;
505 	pkt->data_off = RTE_PKTMBUF_HEADROOM + cqe_rx_w1.align_pad;
506 	pkt->nb_segs = nb_segs;
507 	pkt->pkt_len = cqe_rx_w1.pkt_len;
508 	pkt->data_len = rb_sz[nicvf_frag_num(0)];
509 	rte_mbuf_refcnt_set(pkt, 1);
510 	pkt->packet_type = nicvf_rx_classify_pkt(cqe_rx_w0);
511 	nicvf_rx_offload(cqe_rx_w0, cqe_rx_w2, pkt);
512 
513 	*rx_pkt = pkt;
514 	prev = pkt;
515 	for (seg_idx = 1; seg_idx < nb_segs; seg_idx++) {
516 		seg = (struct rte_mbuf *)nicvf_mbuff_phy2virt
517 			(rb_ptr[seg_idx], mbuf_phys_off);
518 
519 		prev->next = seg;
520 		seg->data_len = rb_sz[nicvf_frag_num(seg_idx)];
521 		seg->port = port_id;
522 		seg->data_off = RTE_PKTMBUF_HEADROOM;
523 		rte_mbuf_refcnt_set(seg, 1);
524 
525 		prev = seg;
526 	}
527 	prev->next = NULL;
528 	return nb_segs;
529 }
530 
531 uint16_t __hot
532 nicvf_recv_pkts_multiseg(void *rx_queue, struct rte_mbuf **rx_pkts,
533 			 uint16_t nb_pkts)
534 {
535 	union cq_entry_t *cq_entry;
536 	struct cqe_rx_t *cqe_rx;
537 	struct nicvf_rxq *rxq = rx_queue;
538 	union cq_entry_t *desc = rxq->desc;
539 	const uint64_t cqe_mask = rxq->qlen_mask;
540 	uint64_t mbuf_phys_off = rxq->mbuf_phys_off;
541 	uint32_t i, to_process, cqe_head, buffers_consumed = 0;
542 	int32_t available_space = rxq->available_space;
543 	uint16_t nb_segs;
544 	const uint8_t port_id = rxq->port_id;
545 	const uint8_t rbptr_offset = rxq->rbptr_offset;
546 
547 	cqe_head = rxq->head & cqe_mask;
548 	to_process = nicvf_rx_pkts_to_process(rxq, nb_pkts, available_space);
549 
550 	for (i = 0; i < to_process; i++) {
551 		rte_prefetch_non_temporal(&desc[cqe_head + 2]);
552 		cq_entry = &desc[cqe_head];
553 		cqe_rx = (struct cqe_rx_t *)cq_entry;
554 		nb_segs = nicvf_process_cq_mseg_entry(cqe_rx, mbuf_phys_off,
555 				port_id, rx_pkts + i, rbptr_offset);
556 		buffers_consumed += nb_segs;
557 		cqe_head = (cqe_head + 1) & cqe_mask;
558 		nicvf_prefetch_store_keep(rx_pkts[i]);
559 	}
560 
561 	if (likely(to_process)) {
562 		rxq->available_space -= to_process;
563 		rxq->head = cqe_head;
564 		nicvf_addr_write(rxq->cq_door, to_process);
565 		rxq->recv_buffers += buffers_consumed;
566 		if (rxq->recv_buffers > rxq->rx_free_thresh) {
567 			rxq->recv_buffers -=
568 				nicvf_fill_rbdr(rxq, rxq->rx_free_thresh);
569 			NICVF_RX_ASSERT(rxq->recv_buffers >= 0);
570 		}
571 	}
572 
573 	return to_process;
574 }
575 
576 uint32_t
577 nicvf_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t queue_idx)
578 {
579 	struct nicvf_rxq *rxq;
580 
581 	rxq = dev->data->rx_queues[queue_idx];
582 	return nicvf_addr_read(rxq->cq_status) & NICVF_CQ_CQE_COUNT_MASK;
583 }
584 
585 uint32_t
586 nicvf_dev_rbdr_refill(struct rte_eth_dev *dev, uint16_t queue_idx)
587 {
588 	struct nicvf_rxq *rxq;
589 	uint32_t to_process;
590 	uint32_t rx_free;
591 
592 	rxq = dev->data->rx_queues[queue_idx];
593 	to_process = rxq->recv_buffers;
594 	while (rxq->recv_buffers > 0) {
595 		rx_free = RTE_MIN(rxq->recv_buffers, NICVF_MAX_RX_FREE_THRESH);
596 		rxq->recv_buffers -= nicvf_fill_rbdr(rxq, rx_free);
597 	}
598 
599 	assert(rxq->recv_buffers == 0);
600 	return to_process;
601 }
602