1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright 2017 6WIND S.A. 3 * Copyright 2017 Mellanox Technologies, Ltd 4 */ 5 6 #include <errno.h> 7 #include <string.h> 8 #include <unistd.h> 9 #include <sys/queue.h> 10 #include <sys/resource.h> 11 12 #include <rte_byteorder.h> 13 #include <rte_jhash.h> 14 #include <rte_malloc.h> 15 #include <rte_eth_tap.h> 16 #include <tap_flow.h> 17 #include <tap_autoconf.h> 18 #include <tap_tcmsgs.h> 19 #include <tap_rss.h> 20 21 #ifndef HAVE_TC_FLOWER 22 /* 23 * For kernels < 4.2, this enum is not defined. Runtime checks will be made to 24 * avoid sending TC messages the kernel cannot understand. 25 */ 26 enum { 27 TCA_FLOWER_UNSPEC, 28 TCA_FLOWER_CLASSID, 29 TCA_FLOWER_INDEV, 30 TCA_FLOWER_ACT, 31 TCA_FLOWER_KEY_ETH_DST, /* ETH_ALEN */ 32 TCA_FLOWER_KEY_ETH_DST_MASK, /* ETH_ALEN */ 33 TCA_FLOWER_KEY_ETH_SRC, /* ETH_ALEN */ 34 TCA_FLOWER_KEY_ETH_SRC_MASK, /* ETH_ALEN */ 35 TCA_FLOWER_KEY_ETH_TYPE, /* be16 */ 36 TCA_FLOWER_KEY_IP_PROTO, /* u8 */ 37 TCA_FLOWER_KEY_IPV4_SRC, /* be32 */ 38 TCA_FLOWER_KEY_IPV4_SRC_MASK, /* be32 */ 39 TCA_FLOWER_KEY_IPV4_DST, /* be32 */ 40 TCA_FLOWER_KEY_IPV4_DST_MASK, /* be32 */ 41 TCA_FLOWER_KEY_IPV6_SRC, /* struct in6_addr */ 42 TCA_FLOWER_KEY_IPV6_SRC_MASK, /* struct in6_addr */ 43 TCA_FLOWER_KEY_IPV6_DST, /* struct in6_addr */ 44 TCA_FLOWER_KEY_IPV6_DST_MASK, /* struct in6_addr */ 45 TCA_FLOWER_KEY_TCP_SRC, /* be16 */ 46 TCA_FLOWER_KEY_TCP_DST, /* be16 */ 47 TCA_FLOWER_KEY_UDP_SRC, /* be16 */ 48 TCA_FLOWER_KEY_UDP_DST, /* be16 */ 49 }; 50 #endif 51 #ifndef HAVE_TC_VLAN_ID 52 enum { 53 /* TCA_FLOWER_FLAGS, */ 54 TCA_FLOWER_KEY_VLAN_ID = TCA_FLOWER_KEY_UDP_DST + 2, /* be16 */ 55 TCA_FLOWER_KEY_VLAN_PRIO, /* u8 */ 56 TCA_FLOWER_KEY_VLAN_ETH_TYPE, /* be16 */ 57 }; 58 #endif 59 /* 60 * For kernels < 4.2 BPF related enums may not be defined. 61 * Runtime checks will be carried out to gracefully report on TC messages that 62 * are rejected by the kernel. Rejection reasons may be due to: 63 * 1. enum is not defined 64 * 2. enum is defined but kernel is not configured to support BPF system calls, 65 * BPF classifications or BPF actions. 66 */ 67 #ifndef HAVE_TC_BPF 68 enum { 69 TCA_BPF_UNSPEC, 70 TCA_BPF_ACT, 71 TCA_BPF_POLICE, 72 TCA_BPF_CLASSID, 73 TCA_BPF_OPS_LEN, 74 TCA_BPF_OPS, 75 }; 76 #endif 77 #ifndef HAVE_TC_BPF_FD 78 enum { 79 TCA_BPF_FD = TCA_BPF_OPS + 1, 80 TCA_BPF_NAME, 81 }; 82 #endif 83 #ifndef HAVE_TC_ACT_BPF 84 #define tc_gen \ 85 __u32 index; \ 86 __u32 capab; \ 87 int action; \ 88 int refcnt; \ 89 int bindcnt 90 91 struct tc_act_bpf { 92 tc_gen; 93 }; 94 95 enum { 96 TCA_ACT_BPF_UNSPEC, 97 TCA_ACT_BPF_TM, 98 TCA_ACT_BPF_PARMS, 99 TCA_ACT_BPF_OPS_LEN, 100 TCA_ACT_BPF_OPS, 101 }; 102 103 #endif 104 #ifndef HAVE_TC_ACT_BPF_FD 105 enum { 106 TCA_ACT_BPF_FD = TCA_ACT_BPF_OPS + 1, 107 TCA_ACT_BPF_NAME, 108 }; 109 #endif 110 111 /* RSS key management */ 112 enum bpf_rss_key_e { 113 KEY_CMD_GET = 1, 114 KEY_CMD_RELEASE, 115 KEY_CMD_INIT, 116 KEY_CMD_DEINIT, 117 }; 118 119 enum key_status_e { 120 KEY_STAT_UNSPEC, 121 KEY_STAT_USED, 122 KEY_STAT_AVAILABLE, 123 }; 124 125 #define ISOLATE_HANDLE 1 126 #define REMOTE_PROMISCUOUS_HANDLE 2 127 128 struct rte_flow { 129 LIST_ENTRY(rte_flow) next; /* Pointer to the next rte_flow structure */ 130 struct rte_flow *remote_flow; /* associated remote flow */ 131 int bpf_fd[SEC_MAX]; /* list of bfs fds per ELF section */ 132 uint32_t key_idx; /* RSS rule key index into BPF map */ 133 struct nlmsg msg; 134 }; 135 136 struct convert_data { 137 uint16_t eth_type; 138 uint16_t ip_proto; 139 uint8_t vlan; 140 struct rte_flow *flow; 141 }; 142 143 struct remote_rule { 144 struct rte_flow_attr attr; 145 struct rte_flow_item items[2]; 146 struct rte_flow_action actions[2]; 147 int mirred; 148 }; 149 150 struct action_data { 151 char id[16]; 152 153 union { 154 struct tc_gact gact; 155 struct tc_mirred mirred; 156 struct skbedit { 157 struct tc_skbedit skbedit; 158 uint16_t queue; 159 } skbedit; 160 struct bpf { 161 struct tc_act_bpf bpf; 162 int bpf_fd; 163 const char *annotation; 164 } bpf; 165 }; 166 }; 167 168 static int tap_flow_create_eth(const struct rte_flow_item *item, void *data); 169 static int tap_flow_create_vlan(const struct rte_flow_item *item, void *data); 170 static int tap_flow_create_ipv4(const struct rte_flow_item *item, void *data); 171 static int tap_flow_create_ipv6(const struct rte_flow_item *item, void *data); 172 static int tap_flow_create_udp(const struct rte_flow_item *item, void *data); 173 static int tap_flow_create_tcp(const struct rte_flow_item *item, void *data); 174 static int 175 tap_flow_validate(struct rte_eth_dev *dev, 176 const struct rte_flow_attr *attr, 177 const struct rte_flow_item items[], 178 const struct rte_flow_action actions[], 179 struct rte_flow_error *error); 180 181 static struct rte_flow * 182 tap_flow_create(struct rte_eth_dev *dev, 183 const struct rte_flow_attr *attr, 184 const struct rte_flow_item items[], 185 const struct rte_flow_action actions[], 186 struct rte_flow_error *error); 187 188 static void 189 tap_flow_free(struct pmd_internals *pmd, 190 struct rte_flow *flow); 191 192 static int 193 tap_flow_destroy(struct rte_eth_dev *dev, 194 struct rte_flow *flow, 195 struct rte_flow_error *error); 196 197 static int 198 tap_flow_isolate(struct rte_eth_dev *dev, 199 int set, 200 struct rte_flow_error *error); 201 202 static int bpf_rss_key(enum bpf_rss_key_e cmd, __u32 *key_idx); 203 static int rss_enable(struct pmd_internals *pmd, 204 const struct rte_flow_attr *attr, 205 struct rte_flow_error *error); 206 static int rss_add_actions(struct rte_flow *flow, struct pmd_internals *pmd, 207 const struct rte_flow_action_rss *rss, 208 struct rte_flow_error *error); 209 210 static const struct rte_flow_ops tap_flow_ops = { 211 .validate = tap_flow_validate, 212 .create = tap_flow_create, 213 .destroy = tap_flow_destroy, 214 .flush = tap_flow_flush, 215 .isolate = tap_flow_isolate, 216 }; 217 218 /* Static initializer for items. */ 219 #define ITEMS(...) \ 220 (const enum rte_flow_item_type []){ \ 221 __VA_ARGS__, RTE_FLOW_ITEM_TYPE_END, \ 222 } 223 224 /* Structure to generate a simple graph of layers supported by the NIC. */ 225 struct tap_flow_items { 226 /* Bit-mask corresponding to what is supported for this item. */ 227 const void *mask; 228 const unsigned int mask_sz; /* Bit-mask size in bytes. */ 229 /* 230 * Bit-mask corresponding to the default mask, if none is provided 231 * along with the item. 232 */ 233 const void *default_mask; 234 /** 235 * Conversion function from rte_flow to netlink attributes. 236 * 237 * @param item 238 * rte_flow item to convert. 239 * @param data 240 * Internal structure to store the conversion. 241 * 242 * @return 243 * 0 on success, negative value otherwise. 244 */ 245 int (*convert)(const struct rte_flow_item *item, void *data); 246 /** List of possible following items. */ 247 const enum rte_flow_item_type *const items; 248 }; 249 250 /* Graph of supported items and associated actions. */ 251 static const struct tap_flow_items tap_flow_items[] = { 252 [RTE_FLOW_ITEM_TYPE_END] = { 253 .items = ITEMS(RTE_FLOW_ITEM_TYPE_ETH), 254 }, 255 [RTE_FLOW_ITEM_TYPE_ETH] = { 256 .items = ITEMS( 257 RTE_FLOW_ITEM_TYPE_VLAN, 258 RTE_FLOW_ITEM_TYPE_IPV4, 259 RTE_FLOW_ITEM_TYPE_IPV6), 260 .mask = &(const struct rte_flow_item_eth){ 261 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 262 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff", 263 .type = -1, 264 }, 265 .mask_sz = sizeof(struct rte_flow_item_eth), 266 .default_mask = &rte_flow_item_eth_mask, 267 .convert = tap_flow_create_eth, 268 }, 269 [RTE_FLOW_ITEM_TYPE_VLAN] = { 270 .items = ITEMS(RTE_FLOW_ITEM_TYPE_IPV4, 271 RTE_FLOW_ITEM_TYPE_IPV6), 272 .mask = &(const struct rte_flow_item_vlan){ 273 /* DEI matching is not supported */ 274 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 275 .tci = 0xffef, 276 #else 277 .tci = 0xefff, 278 #endif 279 .inner_type = -1, 280 }, 281 .mask_sz = sizeof(struct rte_flow_item_vlan), 282 .default_mask = &rte_flow_item_vlan_mask, 283 .convert = tap_flow_create_vlan, 284 }, 285 [RTE_FLOW_ITEM_TYPE_IPV4] = { 286 .items = ITEMS(RTE_FLOW_ITEM_TYPE_UDP, 287 RTE_FLOW_ITEM_TYPE_TCP), 288 .mask = &(const struct rte_flow_item_ipv4){ 289 .hdr = { 290 .src_addr = -1, 291 .dst_addr = -1, 292 .next_proto_id = -1, 293 }, 294 }, 295 .mask_sz = sizeof(struct rte_flow_item_ipv4), 296 .default_mask = &rte_flow_item_ipv4_mask, 297 .convert = tap_flow_create_ipv4, 298 }, 299 [RTE_FLOW_ITEM_TYPE_IPV6] = { 300 .items = ITEMS(RTE_FLOW_ITEM_TYPE_UDP, 301 RTE_FLOW_ITEM_TYPE_TCP), 302 .mask = &(const struct rte_flow_item_ipv6){ 303 .hdr = { 304 .src_addr = { 305 "\xff\xff\xff\xff\xff\xff\xff\xff" 306 "\xff\xff\xff\xff\xff\xff\xff\xff", 307 }, 308 .dst_addr = { 309 "\xff\xff\xff\xff\xff\xff\xff\xff" 310 "\xff\xff\xff\xff\xff\xff\xff\xff", 311 }, 312 .proto = -1, 313 }, 314 }, 315 .mask_sz = sizeof(struct rte_flow_item_ipv6), 316 .default_mask = &rte_flow_item_ipv6_mask, 317 .convert = tap_flow_create_ipv6, 318 }, 319 [RTE_FLOW_ITEM_TYPE_UDP] = { 320 .mask = &(const struct rte_flow_item_udp){ 321 .hdr = { 322 .src_port = -1, 323 .dst_port = -1, 324 }, 325 }, 326 .mask_sz = sizeof(struct rte_flow_item_udp), 327 .default_mask = &rte_flow_item_udp_mask, 328 .convert = tap_flow_create_udp, 329 }, 330 [RTE_FLOW_ITEM_TYPE_TCP] = { 331 .mask = &(const struct rte_flow_item_tcp){ 332 .hdr = { 333 .src_port = -1, 334 .dst_port = -1, 335 }, 336 }, 337 .mask_sz = sizeof(struct rte_flow_item_tcp), 338 .default_mask = &rte_flow_item_tcp_mask, 339 .convert = tap_flow_create_tcp, 340 }, 341 }; 342 343 /* 344 * TC rules, by growing priority 345 * 346 * Remote netdevice Tap netdevice 347 * +-------------+-------------+ +-------------+-------------+ 348 * | Ingress | Egress | | Ingress | Egress | 349 * |-------------|-------------| |-------------|-------------| 350 * | | \ / | | | REMOTE TX | prio 1 351 * | | \ / | | | \ / | prio 2 352 * | EXPLICIT | \ / | | EXPLICIT | \ / | . 353 * | | \ / | | | \ / | . 354 * | RULES | X | | RULES | X | . 355 * | . | / \ | | . | / \ | . 356 * | . | / \ | | . | / \ | . 357 * | . | / \ | | . | / \ | . 358 * | . | / \ | | . | / \ | . 359 * 360 * .... .... .... .... 361 * 362 * | . | \ / | | . | \ / | . 363 * | . | \ / | | . | \ / | . 364 * | | \ / | | | \ / | 365 * | LOCAL_MAC | \ / | | \ / | \ / | last prio - 5 366 * | PROMISC | X | | \ / | X | last prio - 4 367 * | ALLMULTI | / \ | | X | / \ | last prio - 3 368 * | BROADCAST | / \ | | / \ | / \ | last prio - 2 369 * | BROADCASTV6 | / \ | | / \ | / \ | last prio - 1 370 * | xx | / \ | | ISOLATE | / \ | last prio 371 * +-------------+-------------+ +-------------+-------------+ 372 * 373 * The implicit flow rules are stored in a list in with mandatorily the last two 374 * being the ISOLATE and REMOTE_TX rules. e.g.: 375 * 376 * LOCAL_MAC -> BROADCAST -> BROADCASTV6 -> REMOTE_TX -> ISOLATE -> NULL 377 * 378 * That enables tap_flow_isolate() to remove implicit rules by popping the list 379 * head and remove it as long as it applies on the remote netdevice. The 380 * implicit rule for TX redirection is not removed, as isolate concerns only 381 * incoming traffic. 382 */ 383 384 static struct remote_rule implicit_rte_flows[TAP_REMOTE_MAX_IDX] = { 385 [TAP_REMOTE_LOCAL_MAC] = { 386 .attr = { 387 .group = MAX_GROUP, 388 .priority = PRIORITY_MASK - TAP_REMOTE_LOCAL_MAC, 389 .ingress = 1, 390 }, 391 .items[0] = { 392 .type = RTE_FLOW_ITEM_TYPE_ETH, 393 .mask = &(const struct rte_flow_item_eth){ 394 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 395 }, 396 }, 397 .items[1] = { 398 .type = RTE_FLOW_ITEM_TYPE_END, 399 }, 400 .mirred = TCA_EGRESS_REDIR, 401 }, 402 [TAP_REMOTE_BROADCAST] = { 403 .attr = { 404 .group = MAX_GROUP, 405 .priority = PRIORITY_MASK - TAP_REMOTE_BROADCAST, 406 .ingress = 1, 407 }, 408 .items[0] = { 409 .type = RTE_FLOW_ITEM_TYPE_ETH, 410 .mask = &(const struct rte_flow_item_eth){ 411 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 412 }, 413 .spec = &(const struct rte_flow_item_eth){ 414 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff", 415 }, 416 }, 417 .items[1] = { 418 .type = RTE_FLOW_ITEM_TYPE_END, 419 }, 420 .mirred = TCA_EGRESS_MIRROR, 421 }, 422 [TAP_REMOTE_BROADCASTV6] = { 423 .attr = { 424 .group = MAX_GROUP, 425 .priority = PRIORITY_MASK - TAP_REMOTE_BROADCASTV6, 426 .ingress = 1, 427 }, 428 .items[0] = { 429 .type = RTE_FLOW_ITEM_TYPE_ETH, 430 .mask = &(const struct rte_flow_item_eth){ 431 .dst.addr_bytes = "\x33\x33\x00\x00\x00\x00", 432 }, 433 .spec = &(const struct rte_flow_item_eth){ 434 .dst.addr_bytes = "\x33\x33\x00\x00\x00\x00", 435 }, 436 }, 437 .items[1] = { 438 .type = RTE_FLOW_ITEM_TYPE_END, 439 }, 440 .mirred = TCA_EGRESS_MIRROR, 441 }, 442 [TAP_REMOTE_PROMISC] = { 443 .attr = { 444 .group = MAX_GROUP, 445 .priority = PRIORITY_MASK - TAP_REMOTE_PROMISC, 446 .ingress = 1, 447 }, 448 .items[0] = { 449 .type = RTE_FLOW_ITEM_TYPE_VOID, 450 }, 451 .items[1] = { 452 .type = RTE_FLOW_ITEM_TYPE_END, 453 }, 454 .mirred = TCA_EGRESS_MIRROR, 455 }, 456 [TAP_REMOTE_ALLMULTI] = { 457 .attr = { 458 .group = MAX_GROUP, 459 .priority = PRIORITY_MASK - TAP_REMOTE_ALLMULTI, 460 .ingress = 1, 461 }, 462 .items[0] = { 463 .type = RTE_FLOW_ITEM_TYPE_ETH, 464 .mask = &(const struct rte_flow_item_eth){ 465 .dst.addr_bytes = "\x01\x00\x00\x00\x00\x00", 466 }, 467 .spec = &(const struct rte_flow_item_eth){ 468 .dst.addr_bytes = "\x01\x00\x00\x00\x00\x00", 469 }, 470 }, 471 .items[1] = { 472 .type = RTE_FLOW_ITEM_TYPE_END, 473 }, 474 .mirred = TCA_EGRESS_MIRROR, 475 }, 476 [TAP_REMOTE_TX] = { 477 .attr = { 478 .group = 0, 479 .priority = TAP_REMOTE_TX, 480 .egress = 1, 481 }, 482 .items[0] = { 483 .type = RTE_FLOW_ITEM_TYPE_VOID, 484 }, 485 .items[1] = { 486 .type = RTE_FLOW_ITEM_TYPE_END, 487 }, 488 .mirred = TCA_EGRESS_MIRROR, 489 }, 490 [TAP_ISOLATE] = { 491 .attr = { 492 .group = MAX_GROUP, 493 .priority = PRIORITY_MASK - TAP_ISOLATE, 494 .ingress = 1, 495 }, 496 .items[0] = { 497 .type = RTE_FLOW_ITEM_TYPE_VOID, 498 }, 499 .items[1] = { 500 .type = RTE_FLOW_ITEM_TYPE_END, 501 }, 502 }, 503 }; 504 505 /** 506 * Make as much checks as possible on an Ethernet item, and if a flow is 507 * provided, fill it appropriately with Ethernet info. 508 * 509 * @param[in] item 510 * Item specification. 511 * @param[in, out] data 512 * Additional data structure to tell next layers we've been here. 513 * 514 * @return 515 * 0 if checks are alright, -1 otherwise. 516 */ 517 static int 518 tap_flow_create_eth(const struct rte_flow_item *item, void *data) 519 { 520 struct convert_data *info = (struct convert_data *)data; 521 const struct rte_flow_item_eth *spec = item->spec; 522 const struct rte_flow_item_eth *mask = item->mask; 523 struct rte_flow *flow = info->flow; 524 struct nlmsg *msg; 525 526 /* use default mask if none provided */ 527 if (!mask) 528 mask = tap_flow_items[RTE_FLOW_ITEM_TYPE_ETH].default_mask; 529 /* TC does not support eth_type masking. Only accept if exact match. */ 530 if (mask->type && mask->type != 0xffff) 531 return -1; 532 if (!spec) 533 return 0; 534 /* store eth_type for consistency if ipv4/6 pattern item comes next */ 535 if (spec->type & mask->type) 536 info->eth_type = spec->type; 537 if (!flow) 538 return 0; 539 msg = &flow->msg; 540 if (!rte_is_zero_ether_addr(&mask->dst)) { 541 tap_nlattr_add(&msg->nh, TCA_FLOWER_KEY_ETH_DST, 542 RTE_ETHER_ADDR_LEN, 543 &spec->dst.addr_bytes); 544 tap_nlattr_add(&msg->nh, 545 TCA_FLOWER_KEY_ETH_DST_MASK, RTE_ETHER_ADDR_LEN, 546 &mask->dst.addr_bytes); 547 } 548 if (!rte_is_zero_ether_addr(&mask->src)) { 549 tap_nlattr_add(&msg->nh, TCA_FLOWER_KEY_ETH_SRC, 550 RTE_ETHER_ADDR_LEN, 551 &spec->src.addr_bytes); 552 tap_nlattr_add(&msg->nh, 553 TCA_FLOWER_KEY_ETH_SRC_MASK, RTE_ETHER_ADDR_LEN, 554 &mask->src.addr_bytes); 555 } 556 return 0; 557 } 558 559 /** 560 * Make as much checks as possible on a VLAN item, and if a flow is provided, 561 * fill it appropriately with VLAN info. 562 * 563 * @param[in] item 564 * Item specification. 565 * @param[in, out] data 566 * Additional data structure to tell next layers we've been here. 567 * 568 * @return 569 * 0 if checks are alright, -1 otherwise. 570 */ 571 static int 572 tap_flow_create_vlan(const struct rte_flow_item *item, void *data) 573 { 574 struct convert_data *info = (struct convert_data *)data; 575 const struct rte_flow_item_vlan *spec = item->spec; 576 const struct rte_flow_item_vlan *mask = item->mask; 577 struct rte_flow *flow = info->flow; 578 struct nlmsg *msg; 579 580 /* use default mask if none provided */ 581 if (!mask) 582 mask = tap_flow_items[RTE_FLOW_ITEM_TYPE_VLAN].default_mask; 583 /* Outer TPID cannot be matched. */ 584 if (info->eth_type) 585 return -1; 586 /* Double-tagging not supported. */ 587 if (info->vlan) 588 return -1; 589 info->vlan = 1; 590 if (mask->inner_type) { 591 /* TC does not support partial eth_type masking */ 592 if (mask->inner_type != RTE_BE16(0xffff)) 593 return -1; 594 info->eth_type = spec->inner_type; 595 } 596 if (!flow) 597 return 0; 598 msg = &flow->msg; 599 msg->t.tcm_info = TC_H_MAKE(msg->t.tcm_info, htons(ETH_P_8021Q)); 600 #define VLAN_PRIO(tci) ((tci) >> 13) 601 #define VLAN_ID(tci) ((tci) & 0xfff) 602 if (!spec) 603 return 0; 604 if (spec->tci) { 605 uint16_t tci = ntohs(spec->tci) & mask->tci; 606 uint16_t prio = VLAN_PRIO(tci); 607 uint8_t vid = VLAN_ID(tci); 608 609 if (prio) 610 tap_nlattr_add8(&msg->nh, 611 TCA_FLOWER_KEY_VLAN_PRIO, prio); 612 if (vid) 613 tap_nlattr_add16(&msg->nh, 614 TCA_FLOWER_KEY_VLAN_ID, vid); 615 } 616 return 0; 617 } 618 619 /** 620 * Make as much checks as possible on an IPv4 item, and if a flow is provided, 621 * fill it appropriately with IPv4 info. 622 * 623 * @param[in] item 624 * Item specification. 625 * @param[in, out] data 626 * Additional data structure to tell next layers we've been here. 627 * 628 * @return 629 * 0 if checks are alright, -1 otherwise. 630 */ 631 static int 632 tap_flow_create_ipv4(const struct rte_flow_item *item, void *data) 633 { 634 struct convert_data *info = (struct convert_data *)data; 635 const struct rte_flow_item_ipv4 *spec = item->spec; 636 const struct rte_flow_item_ipv4 *mask = item->mask; 637 struct rte_flow *flow = info->flow; 638 struct nlmsg *msg; 639 640 /* use default mask if none provided */ 641 if (!mask) 642 mask = tap_flow_items[RTE_FLOW_ITEM_TYPE_IPV4].default_mask; 643 /* check that previous eth type is compatible with ipv4 */ 644 if (info->eth_type && info->eth_type != htons(ETH_P_IP)) 645 return -1; 646 /* store ip_proto for consistency if udp/tcp pattern item comes next */ 647 if (spec) 648 info->ip_proto = spec->hdr.next_proto_id; 649 if (!flow) 650 return 0; 651 msg = &flow->msg; 652 if (!info->eth_type) 653 info->eth_type = htons(ETH_P_IP); 654 if (!spec) 655 return 0; 656 if (mask->hdr.dst_addr) { 657 tap_nlattr_add32(&msg->nh, TCA_FLOWER_KEY_IPV4_DST, 658 spec->hdr.dst_addr); 659 tap_nlattr_add32(&msg->nh, TCA_FLOWER_KEY_IPV4_DST_MASK, 660 mask->hdr.dst_addr); 661 } 662 if (mask->hdr.src_addr) { 663 tap_nlattr_add32(&msg->nh, TCA_FLOWER_KEY_IPV4_SRC, 664 spec->hdr.src_addr); 665 tap_nlattr_add32(&msg->nh, TCA_FLOWER_KEY_IPV4_SRC_MASK, 666 mask->hdr.src_addr); 667 } 668 if (spec->hdr.next_proto_id) 669 tap_nlattr_add8(&msg->nh, TCA_FLOWER_KEY_IP_PROTO, 670 spec->hdr.next_proto_id); 671 return 0; 672 } 673 674 /** 675 * Make as much checks as possible on an IPv6 item, and if a flow is provided, 676 * fill it appropriately with IPv6 info. 677 * 678 * @param[in] item 679 * Item specification. 680 * @param[in, out] data 681 * Additional data structure to tell next layers we've been here. 682 * 683 * @return 684 * 0 if checks are alright, -1 otherwise. 685 */ 686 static int 687 tap_flow_create_ipv6(const struct rte_flow_item *item, void *data) 688 { 689 struct convert_data *info = (struct convert_data *)data; 690 const struct rte_flow_item_ipv6 *spec = item->spec; 691 const struct rte_flow_item_ipv6 *mask = item->mask; 692 struct rte_flow *flow = info->flow; 693 uint8_t empty_addr[16] = { 0 }; 694 struct nlmsg *msg; 695 696 /* use default mask if none provided */ 697 if (!mask) 698 mask = tap_flow_items[RTE_FLOW_ITEM_TYPE_IPV6].default_mask; 699 /* check that previous eth type is compatible with ipv6 */ 700 if (info->eth_type && info->eth_type != htons(ETH_P_IPV6)) 701 return -1; 702 /* store ip_proto for consistency if udp/tcp pattern item comes next */ 703 if (spec) 704 info->ip_proto = spec->hdr.proto; 705 if (!flow) 706 return 0; 707 msg = &flow->msg; 708 if (!info->eth_type) 709 info->eth_type = htons(ETH_P_IPV6); 710 if (!spec) 711 return 0; 712 if (memcmp(mask->hdr.dst_addr, empty_addr, 16)) { 713 tap_nlattr_add(&msg->nh, TCA_FLOWER_KEY_IPV6_DST, 714 sizeof(spec->hdr.dst_addr), &spec->hdr.dst_addr); 715 tap_nlattr_add(&msg->nh, TCA_FLOWER_KEY_IPV6_DST_MASK, 716 sizeof(mask->hdr.dst_addr), &mask->hdr.dst_addr); 717 } 718 if (memcmp(mask->hdr.src_addr, empty_addr, 16)) { 719 tap_nlattr_add(&msg->nh, TCA_FLOWER_KEY_IPV6_SRC, 720 sizeof(spec->hdr.src_addr), &spec->hdr.src_addr); 721 tap_nlattr_add(&msg->nh, TCA_FLOWER_KEY_IPV6_SRC_MASK, 722 sizeof(mask->hdr.src_addr), &mask->hdr.src_addr); 723 } 724 if (spec->hdr.proto) 725 tap_nlattr_add8(&msg->nh, 726 TCA_FLOWER_KEY_IP_PROTO, spec->hdr.proto); 727 return 0; 728 } 729 730 /** 731 * Make as much checks as possible on a UDP item, and if a flow is provided, 732 * fill it appropriately with UDP info. 733 * 734 * @param[in] item 735 * Item specification. 736 * @param[in, out] data 737 * Additional data structure to tell next layers we've been here. 738 * 739 * @return 740 * 0 if checks are alright, -1 otherwise. 741 */ 742 static int 743 tap_flow_create_udp(const struct rte_flow_item *item, void *data) 744 { 745 struct convert_data *info = (struct convert_data *)data; 746 const struct rte_flow_item_udp *spec = item->spec; 747 const struct rte_flow_item_udp *mask = item->mask; 748 struct rte_flow *flow = info->flow; 749 struct nlmsg *msg; 750 751 /* use default mask if none provided */ 752 if (!mask) 753 mask = tap_flow_items[RTE_FLOW_ITEM_TYPE_UDP].default_mask; 754 /* check that previous ip_proto is compatible with udp */ 755 if (info->ip_proto && info->ip_proto != IPPROTO_UDP) 756 return -1; 757 /* TC does not support UDP port masking. Only accept if exact match. */ 758 if ((mask->hdr.src_port && mask->hdr.src_port != 0xffff) || 759 (mask->hdr.dst_port && mask->hdr.dst_port != 0xffff)) 760 return -1; 761 if (!flow) 762 return 0; 763 msg = &flow->msg; 764 tap_nlattr_add8(&msg->nh, TCA_FLOWER_KEY_IP_PROTO, IPPROTO_UDP); 765 if (!spec) 766 return 0; 767 if (mask->hdr.dst_port) 768 tap_nlattr_add16(&msg->nh, TCA_FLOWER_KEY_UDP_DST, 769 spec->hdr.dst_port); 770 if (mask->hdr.src_port) 771 tap_nlattr_add16(&msg->nh, TCA_FLOWER_KEY_UDP_SRC, 772 spec->hdr.src_port); 773 return 0; 774 } 775 776 /** 777 * Make as much checks as possible on a TCP item, and if a flow is provided, 778 * fill it appropriately with TCP info. 779 * 780 * @param[in] item 781 * Item specification. 782 * @param[in, out] data 783 * Additional data structure to tell next layers we've been here. 784 * 785 * @return 786 * 0 if checks are alright, -1 otherwise. 787 */ 788 static int 789 tap_flow_create_tcp(const struct rte_flow_item *item, void *data) 790 { 791 struct convert_data *info = (struct convert_data *)data; 792 const struct rte_flow_item_tcp *spec = item->spec; 793 const struct rte_flow_item_tcp *mask = item->mask; 794 struct rte_flow *flow = info->flow; 795 struct nlmsg *msg; 796 797 /* use default mask if none provided */ 798 if (!mask) 799 mask = tap_flow_items[RTE_FLOW_ITEM_TYPE_TCP].default_mask; 800 /* check that previous ip_proto is compatible with tcp */ 801 if (info->ip_proto && info->ip_proto != IPPROTO_TCP) 802 return -1; 803 /* TC does not support TCP port masking. Only accept if exact match. */ 804 if ((mask->hdr.src_port && mask->hdr.src_port != 0xffff) || 805 (mask->hdr.dst_port && mask->hdr.dst_port != 0xffff)) 806 return -1; 807 if (!flow) 808 return 0; 809 msg = &flow->msg; 810 tap_nlattr_add8(&msg->nh, TCA_FLOWER_KEY_IP_PROTO, IPPROTO_TCP); 811 if (!spec) 812 return 0; 813 if (mask->hdr.dst_port) 814 tap_nlattr_add16(&msg->nh, TCA_FLOWER_KEY_TCP_DST, 815 spec->hdr.dst_port); 816 if (mask->hdr.src_port) 817 tap_nlattr_add16(&msg->nh, TCA_FLOWER_KEY_TCP_SRC, 818 spec->hdr.src_port); 819 return 0; 820 } 821 822 /** 823 * Check support for a given item. 824 * 825 * @param[in] item 826 * Item specification. 827 * @param size 828 * Bit-Mask size in bytes. 829 * @param[in] supported_mask 830 * Bit-mask covering supported fields to compare with spec, last and mask in 831 * \item. 832 * @param[in] default_mask 833 * Bit-mask default mask if none is provided in \item. 834 * 835 * @return 836 * 0 on success. 837 */ 838 static int 839 tap_flow_item_validate(const struct rte_flow_item *item, 840 unsigned int size, 841 const uint8_t *supported_mask, 842 const uint8_t *default_mask) 843 { 844 int ret = 0; 845 846 /* An empty layer is allowed, as long as all fields are NULL */ 847 if (!item->spec && (item->mask || item->last)) 848 return -1; 849 /* Is the item spec compatible with what the NIC supports? */ 850 if (item->spec && !item->mask) { 851 unsigned int i; 852 const uint8_t *spec = item->spec; 853 854 for (i = 0; i < size; ++i) 855 if ((spec[i] | supported_mask[i]) != supported_mask[i]) 856 return -1; 857 /* Is the default mask compatible with what the NIC supports? */ 858 for (i = 0; i < size; i++) 859 if ((default_mask[i] | supported_mask[i]) != 860 supported_mask[i]) 861 return -1; 862 } 863 /* Is the item last compatible with what the NIC supports? */ 864 if (item->last && !item->mask) { 865 unsigned int i; 866 const uint8_t *spec = item->last; 867 868 for (i = 0; i < size; ++i) 869 if ((spec[i] | supported_mask[i]) != supported_mask[i]) 870 return -1; 871 } 872 /* Is the item mask compatible with what the NIC supports? */ 873 if (item->mask) { 874 unsigned int i; 875 const uint8_t *spec = item->mask; 876 877 for (i = 0; i < size; ++i) 878 if ((spec[i] | supported_mask[i]) != supported_mask[i]) 879 return -1; 880 } 881 /** 882 * Once masked, Are item spec and item last equal? 883 * TC does not support range so anything else is invalid. 884 */ 885 if (item->spec && item->last) { 886 uint8_t spec[size]; 887 uint8_t last[size]; 888 const uint8_t *apply = default_mask; 889 unsigned int i; 890 891 if (item->mask) 892 apply = item->mask; 893 for (i = 0; i < size; ++i) { 894 spec[i] = ((const uint8_t *)item->spec)[i] & apply[i]; 895 last[i] = ((const uint8_t *)item->last)[i] & apply[i]; 896 } 897 ret = memcmp(spec, last, size); 898 } 899 return ret; 900 } 901 902 /** 903 * Configure the kernel with a TC action and its configured parameters 904 * Handled actions: "gact", "mirred", "skbedit", "bpf" 905 * 906 * @param[in] flow 907 * Pointer to rte flow containing the netlink message 908 * 909 * @param[in, out] act_index 910 * Pointer to action sequence number in the TC command 911 * 912 * @param[in] adata 913 * Pointer to struct holding the action parameters 914 * 915 * @return 916 * -1 on failure, 0 on success 917 */ 918 static int 919 add_action(struct rte_flow *flow, size_t *act_index, struct action_data *adata) 920 { 921 struct nlmsg *msg = &flow->msg; 922 923 if (tap_nlattr_nested_start(msg, (*act_index)++) < 0) 924 return -1; 925 926 tap_nlattr_add(&msg->nh, TCA_ACT_KIND, 927 strlen(adata->id) + 1, adata->id); 928 if (tap_nlattr_nested_start(msg, TCA_ACT_OPTIONS) < 0) 929 return -1; 930 if (strcmp("gact", adata->id) == 0) { 931 tap_nlattr_add(&msg->nh, TCA_GACT_PARMS, sizeof(adata->gact), 932 &adata->gact); 933 } else if (strcmp("mirred", adata->id) == 0) { 934 if (adata->mirred.eaction == TCA_EGRESS_MIRROR) 935 adata->mirred.action = TC_ACT_PIPE; 936 else /* REDIRECT */ 937 adata->mirred.action = TC_ACT_STOLEN; 938 tap_nlattr_add(&msg->nh, TCA_MIRRED_PARMS, 939 sizeof(adata->mirred), 940 &adata->mirred); 941 } else if (strcmp("skbedit", adata->id) == 0) { 942 tap_nlattr_add(&msg->nh, TCA_SKBEDIT_PARMS, 943 sizeof(adata->skbedit.skbedit), 944 &adata->skbedit.skbedit); 945 tap_nlattr_add16(&msg->nh, TCA_SKBEDIT_QUEUE_MAPPING, 946 adata->skbedit.queue); 947 } else if (strcmp("bpf", adata->id) == 0) { 948 tap_nlattr_add32(&msg->nh, TCA_ACT_BPF_FD, adata->bpf.bpf_fd); 949 tap_nlattr_add(&msg->nh, TCA_ACT_BPF_NAME, 950 strlen(adata->bpf.annotation) + 1, 951 adata->bpf.annotation); 952 tap_nlattr_add(&msg->nh, TCA_ACT_BPF_PARMS, 953 sizeof(adata->bpf.bpf), 954 &adata->bpf.bpf); 955 } else { 956 return -1; 957 } 958 tap_nlattr_nested_finish(msg); /* nested TCA_ACT_OPTIONS */ 959 tap_nlattr_nested_finish(msg); /* nested act_index */ 960 return 0; 961 } 962 963 /** 964 * Helper function to send a serie of TC actions to the kernel 965 * 966 * @param[in] flow 967 * Pointer to rte flow containing the netlink message 968 * 969 * @param[in] nb_actions 970 * Number of actions in an array of action structs 971 * 972 * @param[in] data 973 * Pointer to an array of action structs 974 * 975 * @param[in] classifier_actions 976 * The classifier on behave of which the actions are configured 977 * 978 * @return 979 * -1 on failure, 0 on success 980 */ 981 static int 982 add_actions(struct rte_flow *flow, int nb_actions, struct action_data *data, 983 int classifier_action) 984 { 985 struct nlmsg *msg = &flow->msg; 986 size_t act_index = 1; 987 int i; 988 989 if (tap_nlattr_nested_start(msg, classifier_action) < 0) 990 return -1; 991 for (i = 0; i < nb_actions; i++) 992 if (add_action(flow, &act_index, data + i) < 0) 993 return -1; 994 tap_nlattr_nested_finish(msg); /* nested TCA_FLOWER_ACT */ 995 return 0; 996 } 997 998 /** 999 * Validate a flow supported by TC. 1000 * If flow param is not NULL, then also fill the netlink message inside. 1001 * 1002 * @param pmd 1003 * Pointer to private structure. 1004 * @param[in] attr 1005 * Flow rule attributes. 1006 * @param[in] pattern 1007 * Pattern specification (list terminated by the END pattern item). 1008 * @param[in] actions 1009 * Associated actions (list terminated by the END action). 1010 * @param[out] error 1011 * Perform verbose error reporting if not NULL. 1012 * @param[in, out] flow 1013 * Flow structure to update. 1014 * @param[in] mirred 1015 * If set to TCA_EGRESS_REDIR, provided actions will be replaced with a 1016 * redirection to the tap netdevice, and the TC rule will be configured 1017 * on the remote netdevice in pmd. 1018 * If set to TCA_EGRESS_MIRROR, provided actions will be replaced with a 1019 * mirroring to the tap netdevice, and the TC rule will be configured 1020 * on the remote netdevice in pmd. Matching packets will thus be duplicated. 1021 * If set to 0, the standard behavior is to be used: set correct actions for 1022 * the TC rule, and apply it on the tap netdevice. 1023 * 1024 * @return 1025 * 0 on success, a negative errno value otherwise and rte_errno is set. 1026 */ 1027 static int 1028 priv_flow_process(struct pmd_internals *pmd, 1029 const struct rte_flow_attr *attr, 1030 const struct rte_flow_item items[], 1031 const struct rte_flow_action actions[], 1032 struct rte_flow_error *error, 1033 struct rte_flow *flow, 1034 int mirred) 1035 { 1036 const struct tap_flow_items *cur_item = tap_flow_items; 1037 struct convert_data data = { 1038 .eth_type = 0, 1039 .ip_proto = 0, 1040 .flow = flow, 1041 }; 1042 int action = 0; /* Only one action authorized for now */ 1043 1044 if (attr->transfer) { 1045 rte_flow_error_set( 1046 error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1047 NULL, "transfer is not supported"); 1048 return -rte_errno; 1049 } 1050 if (attr->group > MAX_GROUP) { 1051 rte_flow_error_set( 1052 error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_GROUP, 1053 NULL, "group value too big: cannot exceed 15"); 1054 return -rte_errno; 1055 } 1056 if (attr->priority > MAX_PRIORITY) { 1057 rte_flow_error_set( 1058 error, EINVAL, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1059 NULL, "priority value too big"); 1060 return -rte_errno; 1061 } else if (flow) { 1062 uint16_t group = attr->group << GROUP_SHIFT; 1063 uint16_t prio = group | (attr->priority + 1064 RSS_PRIORITY_OFFSET + PRIORITY_OFFSET); 1065 flow->msg.t.tcm_info = TC_H_MAKE(prio << 16, 1066 flow->msg.t.tcm_info); 1067 } 1068 if (flow) { 1069 if (mirred) { 1070 /* 1071 * If attr->ingress, the rule applies on remote ingress 1072 * to match incoming packets 1073 * If attr->egress, the rule applies on tap ingress (as 1074 * seen from the kernel) to deal with packets going out 1075 * from the DPDK app. 1076 */ 1077 flow->msg.t.tcm_parent = TC_H_MAKE(TC_H_INGRESS, 0); 1078 } else { 1079 /* Standard rule on tap egress (kernel standpoint). */ 1080 flow->msg.t.tcm_parent = 1081 TC_H_MAKE(MULTIQ_MAJOR_HANDLE, 0); 1082 } 1083 /* use flower filter type */ 1084 tap_nlattr_add(&flow->msg.nh, TCA_KIND, sizeof("flower"), "flower"); 1085 if (tap_nlattr_nested_start(&flow->msg, TCA_OPTIONS) < 0) 1086 goto exit_item_not_supported; 1087 } 1088 for (; items->type != RTE_FLOW_ITEM_TYPE_END; ++items) { 1089 const struct tap_flow_items *token = NULL; 1090 unsigned int i; 1091 int err = 0; 1092 1093 if (items->type == RTE_FLOW_ITEM_TYPE_VOID) 1094 continue; 1095 for (i = 0; 1096 cur_item->items && 1097 cur_item->items[i] != RTE_FLOW_ITEM_TYPE_END; 1098 ++i) { 1099 if (cur_item->items[i] == items->type) { 1100 token = &tap_flow_items[items->type]; 1101 break; 1102 } 1103 } 1104 if (!token) 1105 goto exit_item_not_supported; 1106 cur_item = token; 1107 err = tap_flow_item_validate( 1108 items, cur_item->mask_sz, 1109 (const uint8_t *)cur_item->mask, 1110 (const uint8_t *)cur_item->default_mask); 1111 if (err) 1112 goto exit_item_not_supported; 1113 if (flow && cur_item->convert) { 1114 err = cur_item->convert(items, &data); 1115 if (err) 1116 goto exit_item_not_supported; 1117 } 1118 } 1119 if (flow) { 1120 if (data.vlan) { 1121 tap_nlattr_add16(&flow->msg.nh, TCA_FLOWER_KEY_ETH_TYPE, 1122 htons(ETH_P_8021Q)); 1123 tap_nlattr_add16(&flow->msg.nh, 1124 TCA_FLOWER_KEY_VLAN_ETH_TYPE, 1125 data.eth_type ? 1126 data.eth_type : htons(ETH_P_ALL)); 1127 } else if (data.eth_type) { 1128 tap_nlattr_add16(&flow->msg.nh, TCA_FLOWER_KEY_ETH_TYPE, 1129 data.eth_type); 1130 } 1131 } 1132 if (mirred && flow) { 1133 struct action_data adata = { 1134 .id = "mirred", 1135 .mirred = { 1136 .eaction = mirred, 1137 }, 1138 }; 1139 1140 /* 1141 * If attr->egress && mirred, then this is a special 1142 * case where the rule must be applied on the tap, to 1143 * redirect packets coming from the DPDK App, out 1144 * through the remote netdevice. 1145 */ 1146 adata.mirred.ifindex = attr->ingress ? pmd->if_index : 1147 pmd->remote_if_index; 1148 if (mirred == TCA_EGRESS_MIRROR) 1149 adata.mirred.action = TC_ACT_PIPE; 1150 else 1151 adata.mirred.action = TC_ACT_STOLEN; 1152 if (add_actions(flow, 1, &adata, TCA_FLOWER_ACT) < 0) 1153 goto exit_action_not_supported; 1154 else 1155 goto end; 1156 } 1157 actions: 1158 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; ++actions) { 1159 int err = 0; 1160 1161 if (actions->type == RTE_FLOW_ACTION_TYPE_VOID) { 1162 continue; 1163 } else if (actions->type == RTE_FLOW_ACTION_TYPE_DROP) { 1164 if (action) 1165 goto exit_action_not_supported; 1166 action = 1; 1167 if (flow) { 1168 struct action_data adata = { 1169 .id = "gact", 1170 .gact = { 1171 .action = TC_ACT_SHOT, 1172 }, 1173 }; 1174 1175 err = add_actions(flow, 1, &adata, 1176 TCA_FLOWER_ACT); 1177 } 1178 } else if (actions->type == RTE_FLOW_ACTION_TYPE_PASSTHRU) { 1179 if (action) 1180 goto exit_action_not_supported; 1181 action = 1; 1182 if (flow) { 1183 struct action_data adata = { 1184 .id = "gact", 1185 .gact = { 1186 /* continue */ 1187 .action = TC_ACT_UNSPEC, 1188 }, 1189 }; 1190 1191 err = add_actions(flow, 1, &adata, 1192 TCA_FLOWER_ACT); 1193 } 1194 } else if (actions->type == RTE_FLOW_ACTION_TYPE_QUEUE) { 1195 const struct rte_flow_action_queue *queue = 1196 (const struct rte_flow_action_queue *) 1197 actions->conf; 1198 1199 if (action) 1200 goto exit_action_not_supported; 1201 action = 1; 1202 if (!queue || 1203 (queue->index > pmd->dev->data->nb_rx_queues - 1)) 1204 goto exit_action_not_supported; 1205 if (flow) { 1206 struct action_data adata = { 1207 .id = "skbedit", 1208 .skbedit = { 1209 .skbedit = { 1210 .action = TC_ACT_PIPE, 1211 }, 1212 .queue = queue->index, 1213 }, 1214 }; 1215 1216 err = add_actions(flow, 1, &adata, 1217 TCA_FLOWER_ACT); 1218 } 1219 } else if (actions->type == RTE_FLOW_ACTION_TYPE_RSS) { 1220 const struct rte_flow_action_rss *rss = 1221 (const struct rte_flow_action_rss *) 1222 actions->conf; 1223 1224 if (action++) 1225 goto exit_action_not_supported; 1226 1227 if (!pmd->rss_enabled) { 1228 err = rss_enable(pmd, attr, error); 1229 if (err) 1230 goto exit_action_not_supported; 1231 } 1232 if (flow) 1233 err = rss_add_actions(flow, pmd, rss, error); 1234 } else { 1235 goto exit_action_not_supported; 1236 } 1237 if (err) 1238 goto exit_action_not_supported; 1239 } 1240 /* When fate is unknown, drop traffic. */ 1241 if (!action) { 1242 static const struct rte_flow_action drop[] = { 1243 { .type = RTE_FLOW_ACTION_TYPE_DROP, }, 1244 { .type = RTE_FLOW_ACTION_TYPE_END, }, 1245 }; 1246 1247 actions = drop; 1248 goto actions; 1249 } 1250 end: 1251 if (flow) 1252 tap_nlattr_nested_finish(&flow->msg); /* nested TCA_OPTIONS */ 1253 return 0; 1254 exit_item_not_supported: 1255 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, 1256 items, "item not supported"); 1257 return -rte_errno; 1258 exit_action_not_supported: 1259 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, 1260 actions, "action not supported"); 1261 return -rte_errno; 1262 } 1263 1264 1265 1266 /** 1267 * Validate a flow. 1268 * 1269 * @see rte_flow_validate() 1270 * @see rte_flow_ops 1271 */ 1272 static int 1273 tap_flow_validate(struct rte_eth_dev *dev, 1274 const struct rte_flow_attr *attr, 1275 const struct rte_flow_item items[], 1276 const struct rte_flow_action actions[], 1277 struct rte_flow_error *error) 1278 { 1279 struct pmd_internals *pmd = dev->data->dev_private; 1280 1281 return priv_flow_process(pmd, attr, items, actions, error, NULL, 0); 1282 } 1283 1284 /** 1285 * Set a unique handle in a flow. 1286 * 1287 * The kernel supports TC rules with equal priority, as long as they use the 1288 * same matching fields (e.g.: dst mac and ipv4) with different values (and 1289 * full mask to ensure no collision is possible). 1290 * In those rules, the handle (uint32_t) is the part that would identify 1291 * specifically each rule. 1292 * 1293 * On 32-bit architectures, the handle can simply be the flow's pointer address. 1294 * On 64-bit architectures, we rely on jhash(flow) to find a (sufficiently) 1295 * unique handle. 1296 * 1297 * @param[in, out] flow 1298 * The flow that needs its handle set. 1299 */ 1300 static void 1301 tap_flow_set_handle(struct rte_flow *flow) 1302 { 1303 union { 1304 struct rte_flow *flow; 1305 const void *key; 1306 } tmp; 1307 uint32_t handle = 0; 1308 1309 tmp.flow = flow; 1310 1311 if (sizeof(flow) > 4) 1312 handle = rte_jhash(tmp.key, sizeof(flow), 1); 1313 else 1314 handle = (uintptr_t)flow; 1315 /* must be at least 1 to avoid letting the kernel choose one for us */ 1316 if (!handle) 1317 handle = 1; 1318 flow->msg.t.tcm_handle = handle; 1319 } 1320 1321 /** 1322 * Free the flow opened file descriptors and allocated memory 1323 * 1324 * @param[in] flow 1325 * Pointer to the flow to free 1326 * 1327 */ 1328 static void 1329 tap_flow_free(struct pmd_internals *pmd, struct rte_flow *flow) 1330 { 1331 int i; 1332 1333 if (!flow) 1334 return; 1335 1336 if (pmd->rss_enabled) { 1337 /* Close flow BPF file descriptors */ 1338 for (i = 0; i < SEC_MAX; i++) 1339 if (flow->bpf_fd[i] != 0) { 1340 close(flow->bpf_fd[i]); 1341 flow->bpf_fd[i] = 0; 1342 } 1343 1344 /* Release the map key for this RSS rule */ 1345 bpf_rss_key(KEY_CMD_RELEASE, &flow->key_idx); 1346 flow->key_idx = 0; 1347 } 1348 1349 /* Free flow allocated memory */ 1350 rte_free(flow); 1351 } 1352 1353 /** 1354 * Create a flow. 1355 * 1356 * @see rte_flow_create() 1357 * @see rte_flow_ops 1358 */ 1359 static struct rte_flow * 1360 tap_flow_create(struct rte_eth_dev *dev, 1361 const struct rte_flow_attr *attr, 1362 const struct rte_flow_item items[], 1363 const struct rte_flow_action actions[], 1364 struct rte_flow_error *error) 1365 { 1366 struct pmd_internals *pmd = dev->data->dev_private; 1367 struct rte_flow *remote_flow = NULL; 1368 struct rte_flow *flow = NULL; 1369 struct nlmsg *msg = NULL; 1370 int err; 1371 1372 if (!pmd->if_index) { 1373 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE, 1374 NULL, 1375 "can't create rule, ifindex not found"); 1376 goto fail; 1377 } 1378 /* 1379 * No rules configured through standard rte_flow should be set on the 1380 * priorities used by implicit rules. 1381 */ 1382 if ((attr->group == MAX_GROUP) && 1383 attr->priority > (MAX_PRIORITY - TAP_REMOTE_MAX_IDX)) { 1384 rte_flow_error_set( 1385 error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1386 NULL, "priority value too big"); 1387 goto fail; 1388 } 1389 flow = rte_zmalloc(__func__, sizeof(struct rte_flow), 0); 1390 if (!flow) { 1391 rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE, 1392 NULL, "cannot allocate memory for rte_flow"); 1393 goto fail; 1394 } 1395 msg = &flow->msg; 1396 tc_init_msg(msg, pmd->if_index, RTM_NEWTFILTER, 1397 NLM_F_REQUEST | NLM_F_ACK | NLM_F_EXCL | NLM_F_CREATE); 1398 msg->t.tcm_info = TC_H_MAKE(0, htons(ETH_P_ALL)); 1399 tap_flow_set_handle(flow); 1400 if (priv_flow_process(pmd, attr, items, actions, error, flow, 0)) 1401 goto fail; 1402 err = tap_nl_send(pmd->nlsk_fd, &msg->nh); 1403 if (err < 0) { 1404 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE, 1405 NULL, "couldn't send request to kernel"); 1406 goto fail; 1407 } 1408 err = tap_nl_recv_ack(pmd->nlsk_fd); 1409 if (err < 0) { 1410 TAP_LOG(ERR, 1411 "Kernel refused TC filter rule creation (%d): %s", 1412 errno, strerror(errno)); 1413 rte_flow_error_set(error, EEXIST, RTE_FLOW_ERROR_TYPE_HANDLE, 1414 NULL, 1415 "overlapping rules or Kernel too old for flower support"); 1416 goto fail; 1417 } 1418 LIST_INSERT_HEAD(&pmd->flows, flow, next); 1419 /** 1420 * If a remote device is configured, a TC rule with identical items for 1421 * matching must be set on that device, with a single action: redirect 1422 * to the local pmd->if_index. 1423 */ 1424 if (pmd->remote_if_index) { 1425 remote_flow = rte_zmalloc(__func__, sizeof(struct rte_flow), 0); 1426 if (!remote_flow) { 1427 rte_flow_error_set( 1428 error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 1429 "cannot allocate memory for rte_flow"); 1430 goto fail; 1431 } 1432 msg = &remote_flow->msg; 1433 /* set the rule if_index for the remote netdevice */ 1434 tc_init_msg( 1435 msg, pmd->remote_if_index, RTM_NEWTFILTER, 1436 NLM_F_REQUEST | NLM_F_ACK | NLM_F_EXCL | NLM_F_CREATE); 1437 msg->t.tcm_info = TC_H_MAKE(0, htons(ETH_P_ALL)); 1438 tap_flow_set_handle(remote_flow); 1439 if (priv_flow_process(pmd, attr, items, NULL, 1440 error, remote_flow, TCA_EGRESS_REDIR)) { 1441 rte_flow_error_set( 1442 error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE, 1443 NULL, "rte flow rule validation failed"); 1444 goto fail; 1445 } 1446 err = tap_nl_send(pmd->nlsk_fd, &msg->nh); 1447 if (err < 0) { 1448 rte_flow_error_set( 1449 error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE, 1450 NULL, "Failure sending nl request"); 1451 goto fail; 1452 } 1453 err = tap_nl_recv_ack(pmd->nlsk_fd); 1454 if (err < 0) { 1455 TAP_LOG(ERR, 1456 "Kernel refused TC filter rule creation (%d): %s", 1457 errno, strerror(errno)); 1458 rte_flow_error_set( 1459 error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE, 1460 NULL, 1461 "overlapping rules or Kernel too old for flower support"); 1462 goto fail; 1463 } 1464 flow->remote_flow = remote_flow; 1465 } 1466 return flow; 1467 fail: 1468 if (remote_flow) 1469 rte_free(remote_flow); 1470 if (flow) 1471 tap_flow_free(pmd, flow); 1472 return NULL; 1473 } 1474 1475 /** 1476 * Destroy a flow using pointer to pmd_internal. 1477 * 1478 * @param[in, out] pmd 1479 * Pointer to private structure. 1480 * @param[in] flow 1481 * Pointer to the flow to destroy. 1482 * @param[in, out] error 1483 * Pointer to the flow error handler 1484 * 1485 * @return 0 if the flow could be destroyed, -1 otherwise. 1486 */ 1487 static int 1488 tap_flow_destroy_pmd(struct pmd_internals *pmd, 1489 struct rte_flow *flow, 1490 struct rte_flow_error *error) 1491 { 1492 struct rte_flow *remote_flow = flow->remote_flow; 1493 int ret = 0; 1494 1495 LIST_REMOVE(flow, next); 1496 flow->msg.nh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; 1497 flow->msg.nh.nlmsg_type = RTM_DELTFILTER; 1498 1499 ret = tap_nl_send(pmd->nlsk_fd, &flow->msg.nh); 1500 if (ret < 0) { 1501 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE, 1502 NULL, "couldn't send request to kernel"); 1503 goto end; 1504 } 1505 ret = tap_nl_recv_ack(pmd->nlsk_fd); 1506 /* If errno is ENOENT, the rule is already no longer in the kernel. */ 1507 if (ret < 0 && errno == ENOENT) 1508 ret = 0; 1509 if (ret < 0) { 1510 TAP_LOG(ERR, 1511 "Kernel refused TC filter rule deletion (%d): %s", 1512 errno, strerror(errno)); 1513 rte_flow_error_set( 1514 error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 1515 "couldn't receive kernel ack to our request"); 1516 goto end; 1517 } 1518 1519 if (remote_flow) { 1520 remote_flow->msg.nh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; 1521 remote_flow->msg.nh.nlmsg_type = RTM_DELTFILTER; 1522 1523 ret = tap_nl_send(pmd->nlsk_fd, &remote_flow->msg.nh); 1524 if (ret < 0) { 1525 rte_flow_error_set( 1526 error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE, 1527 NULL, "Failure sending nl request"); 1528 goto end; 1529 } 1530 ret = tap_nl_recv_ack(pmd->nlsk_fd); 1531 if (ret < 0 && errno == ENOENT) 1532 ret = 0; 1533 if (ret < 0) { 1534 TAP_LOG(ERR, 1535 "Kernel refused TC filter rule deletion (%d): %s", 1536 errno, strerror(errno)); 1537 rte_flow_error_set( 1538 error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE, 1539 NULL, "Failure trying to receive nl ack"); 1540 goto end; 1541 } 1542 } 1543 end: 1544 if (remote_flow) 1545 rte_free(remote_flow); 1546 tap_flow_free(pmd, flow); 1547 return ret; 1548 } 1549 1550 /** 1551 * Destroy a flow. 1552 * 1553 * @see rte_flow_destroy() 1554 * @see rte_flow_ops 1555 */ 1556 static int 1557 tap_flow_destroy(struct rte_eth_dev *dev, 1558 struct rte_flow *flow, 1559 struct rte_flow_error *error) 1560 { 1561 struct pmd_internals *pmd = dev->data->dev_private; 1562 1563 return tap_flow_destroy_pmd(pmd, flow, error); 1564 } 1565 1566 /** 1567 * Enable/disable flow isolation. 1568 * 1569 * @see rte_flow_isolate() 1570 * @see rte_flow_ops 1571 */ 1572 static int 1573 tap_flow_isolate(struct rte_eth_dev *dev, 1574 int set, 1575 struct rte_flow_error *error __rte_unused) 1576 { 1577 struct pmd_internals *pmd = dev->data->dev_private; 1578 struct pmd_process_private *process_private = dev->process_private; 1579 1580 /* normalize 'set' variable to contain 0 or 1 values */ 1581 if (set) 1582 set = 1; 1583 /* if already in the right isolation mode - nothing to do */ 1584 if ((set ^ pmd->flow_isolate) == 0) 1585 return 0; 1586 /* mark the isolation mode for tap_flow_implicit_create() */ 1587 pmd->flow_isolate = set; 1588 /* 1589 * If netdevice is there, setup appropriate flow rules immediately. 1590 * Otherwise it will be set when bringing up the netdevice (tun_alloc). 1591 */ 1592 if (!process_private->rxq_fds[0]) 1593 return 0; 1594 if (set) { 1595 struct rte_flow *remote_flow; 1596 1597 while (1) { 1598 remote_flow = LIST_FIRST(&pmd->implicit_flows); 1599 if (!remote_flow) 1600 break; 1601 /* 1602 * Remove all implicit rules on the remote. 1603 * Keep the local rule to redirect packets on TX. 1604 * Keep also the last implicit local rule: ISOLATE. 1605 */ 1606 if (remote_flow->msg.t.tcm_ifindex == pmd->if_index) 1607 break; 1608 if (tap_flow_destroy_pmd(pmd, remote_flow, NULL) < 0) 1609 goto error; 1610 } 1611 /* Switch the TC rule according to pmd->flow_isolate */ 1612 if (tap_flow_implicit_create(pmd, TAP_ISOLATE) == -1) 1613 goto error; 1614 } else { 1615 /* Switch the TC rule according to pmd->flow_isolate */ 1616 if (tap_flow_implicit_create(pmd, TAP_ISOLATE) == -1) 1617 goto error; 1618 if (!pmd->remote_if_index) 1619 return 0; 1620 if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0) 1621 goto error; 1622 if (tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0) 1623 goto error; 1624 if (tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0) 1625 goto error; 1626 if (tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) 1627 goto error; 1628 if (dev->data->promiscuous && 1629 tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC) < 0) 1630 goto error; 1631 if (dev->data->all_multicast && 1632 tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI) < 0) 1633 goto error; 1634 } 1635 return 0; 1636 error: 1637 pmd->flow_isolate = 0; 1638 return rte_flow_error_set( 1639 error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1640 "TC rule creation failed"); 1641 } 1642 1643 /** 1644 * Destroy all flows. 1645 * 1646 * @see rte_flow_flush() 1647 * @see rte_flow_ops 1648 */ 1649 int 1650 tap_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *error) 1651 { 1652 struct pmd_internals *pmd = dev->data->dev_private; 1653 struct rte_flow *flow; 1654 1655 while (!LIST_EMPTY(&pmd->flows)) { 1656 flow = LIST_FIRST(&pmd->flows); 1657 if (tap_flow_destroy(dev, flow, error) < 0) 1658 return -1; 1659 } 1660 return 0; 1661 } 1662 1663 /** 1664 * Add an implicit flow rule on the remote device to make sure traffic gets to 1665 * the tap netdevice from there. 1666 * 1667 * @param pmd 1668 * Pointer to private structure. 1669 * @param[in] idx 1670 * The idx in the implicit_rte_flows array specifying which rule to apply. 1671 * 1672 * @return -1 if the rule couldn't be applied, 0 otherwise. 1673 */ 1674 int tap_flow_implicit_create(struct pmd_internals *pmd, 1675 enum implicit_rule_index idx) 1676 { 1677 uint16_t flags = NLM_F_REQUEST | NLM_F_ACK | NLM_F_EXCL | NLM_F_CREATE; 1678 struct rte_flow_action *actions = implicit_rte_flows[idx].actions; 1679 struct rte_flow_action isolate_actions[2] = { 1680 [1] = { 1681 .type = RTE_FLOW_ACTION_TYPE_END, 1682 }, 1683 }; 1684 struct rte_flow_item *items = implicit_rte_flows[idx].items; 1685 struct rte_flow_attr *attr = &implicit_rte_flows[idx].attr; 1686 struct rte_flow_item_eth eth_local = { .type = 0 }; 1687 uint16_t if_index = pmd->remote_if_index; 1688 struct rte_flow *remote_flow = NULL; 1689 struct nlmsg *msg = NULL; 1690 int err = 0; 1691 struct rte_flow_item items_local[2] = { 1692 [0] = { 1693 .type = items[0].type, 1694 .spec = ð_local, 1695 .mask = items[0].mask, 1696 }, 1697 [1] = { 1698 .type = items[1].type, 1699 } 1700 }; 1701 1702 remote_flow = rte_zmalloc(__func__, sizeof(struct rte_flow), 0); 1703 if (!remote_flow) { 1704 TAP_LOG(ERR, "Cannot allocate memory for rte_flow"); 1705 goto fail; 1706 } 1707 msg = &remote_flow->msg; 1708 if (idx == TAP_REMOTE_TX) { 1709 if_index = pmd->if_index; 1710 } else if (idx == TAP_ISOLATE) { 1711 if_index = pmd->if_index; 1712 /* Don't be exclusive for this rule, it can be changed later. */ 1713 flags = NLM_F_REQUEST | NLM_F_ACK | NLM_F_CREATE; 1714 isolate_actions[0].type = pmd->flow_isolate ? 1715 RTE_FLOW_ACTION_TYPE_DROP : 1716 RTE_FLOW_ACTION_TYPE_PASSTHRU; 1717 actions = isolate_actions; 1718 } else if (idx == TAP_REMOTE_LOCAL_MAC) { 1719 /* 1720 * eth addr couldn't be set in implicit_rte_flows[] as it is not 1721 * known at compile time. 1722 */ 1723 memcpy(ð_local.dst, &pmd->eth_addr, sizeof(pmd->eth_addr)); 1724 items = items_local; 1725 } 1726 tc_init_msg(msg, if_index, RTM_NEWTFILTER, flags); 1727 msg->t.tcm_info = TC_H_MAKE(0, htons(ETH_P_ALL)); 1728 /* 1729 * The ISOLATE rule is always present and must have a static handle, as 1730 * the action is changed whether the feature is enabled (DROP) or 1731 * disabled (PASSTHRU). 1732 * There is just one REMOTE_PROMISCUOUS rule in all cases. It should 1733 * have a static handle such that adding it twice will fail with EEXIST 1734 * with any kernel version. Remark: old kernels may falsely accept the 1735 * same REMOTE_PROMISCUOUS rules if they had different handles. 1736 */ 1737 if (idx == TAP_ISOLATE) 1738 remote_flow->msg.t.tcm_handle = ISOLATE_HANDLE; 1739 else if (idx == TAP_REMOTE_PROMISC) 1740 remote_flow->msg.t.tcm_handle = REMOTE_PROMISCUOUS_HANDLE; 1741 else 1742 tap_flow_set_handle(remote_flow); 1743 if (priv_flow_process(pmd, attr, items, actions, NULL, 1744 remote_flow, implicit_rte_flows[idx].mirred)) { 1745 TAP_LOG(ERR, "rte flow rule validation failed"); 1746 goto fail; 1747 } 1748 err = tap_nl_send(pmd->nlsk_fd, &msg->nh); 1749 if (err < 0) { 1750 TAP_LOG(ERR, "Failure sending nl request"); 1751 goto fail; 1752 } 1753 err = tap_nl_recv_ack(pmd->nlsk_fd); 1754 if (err < 0) { 1755 /* Silently ignore re-entering existing rule */ 1756 if (errno == EEXIST) 1757 goto success; 1758 TAP_LOG(ERR, 1759 "Kernel refused TC filter rule creation (%d): %s", 1760 errno, strerror(errno)); 1761 goto fail; 1762 } 1763 LIST_INSERT_HEAD(&pmd->implicit_flows, remote_flow, next); 1764 success: 1765 return 0; 1766 fail: 1767 if (remote_flow) 1768 rte_free(remote_flow); 1769 return -1; 1770 } 1771 1772 /** 1773 * Remove specific implicit flow rule on the remote device. 1774 * 1775 * @param[in, out] pmd 1776 * Pointer to private structure. 1777 * @param[in] idx 1778 * The idx in the implicit_rte_flows array specifying which rule to remove. 1779 * 1780 * @return -1 if one of the implicit rules couldn't be created, 0 otherwise. 1781 */ 1782 int tap_flow_implicit_destroy(struct pmd_internals *pmd, 1783 enum implicit_rule_index idx) 1784 { 1785 struct rte_flow *remote_flow; 1786 int cur_prio = -1; 1787 int idx_prio = implicit_rte_flows[idx].attr.priority + PRIORITY_OFFSET; 1788 1789 for (remote_flow = LIST_FIRST(&pmd->implicit_flows); 1790 remote_flow; 1791 remote_flow = LIST_NEXT(remote_flow, next)) { 1792 cur_prio = (remote_flow->msg.t.tcm_info >> 16) & PRIORITY_MASK; 1793 if (cur_prio != idx_prio) 1794 continue; 1795 return tap_flow_destroy_pmd(pmd, remote_flow, NULL); 1796 } 1797 return 0; 1798 } 1799 1800 /** 1801 * Destroy all implicit flows. 1802 * 1803 * @see rte_flow_flush() 1804 */ 1805 int 1806 tap_flow_implicit_flush(struct pmd_internals *pmd, struct rte_flow_error *error) 1807 { 1808 struct rte_flow *remote_flow; 1809 1810 while (!LIST_EMPTY(&pmd->implicit_flows)) { 1811 remote_flow = LIST_FIRST(&pmd->implicit_flows); 1812 if (tap_flow_destroy_pmd(pmd, remote_flow, error) < 0) 1813 return -1; 1814 } 1815 return 0; 1816 } 1817 1818 #define MAX_RSS_KEYS 256 1819 #define KEY_IDX_OFFSET (3 * MAX_RSS_KEYS) 1820 #define SEC_NAME_CLS_Q "cls_q" 1821 1822 static const char *sec_name[SEC_MAX] = { 1823 [SEC_L3_L4] = "l3_l4", 1824 }; 1825 1826 /** 1827 * Enable RSS on tap: create TC rules for queuing. 1828 * 1829 * @param[in, out] pmd 1830 * Pointer to private structure. 1831 * 1832 * @param[in] attr 1833 * Pointer to rte_flow to get flow group 1834 * 1835 * @param[out] error 1836 * Pointer to error reporting if not NULL. 1837 * 1838 * @return 0 on success, negative value on failure. 1839 */ 1840 static int rss_enable(struct pmd_internals *pmd, 1841 const struct rte_flow_attr *attr, 1842 struct rte_flow_error *error) 1843 { 1844 struct rte_flow *rss_flow = NULL; 1845 struct nlmsg *msg = NULL; 1846 /* 4096 is the maximum number of instructions for a BPF program */ 1847 char annotation[64]; 1848 int i; 1849 int err = 0; 1850 1851 /* unlimit locked memory */ 1852 struct rlimit memlock_limit = { 1853 .rlim_cur = RLIM_INFINITY, 1854 .rlim_max = RLIM_INFINITY, 1855 }; 1856 setrlimit(RLIMIT_MEMLOCK, &memlock_limit); 1857 1858 /* Get a new map key for a new RSS rule */ 1859 err = bpf_rss_key(KEY_CMD_INIT, NULL); 1860 if (err < 0) { 1861 rte_flow_error_set( 1862 error, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 1863 "Failed to initialize BPF RSS keys"); 1864 1865 return -1; 1866 } 1867 1868 /* 1869 * Create BPF RSS MAP 1870 */ 1871 pmd->map_fd = tap_flow_bpf_rss_map_create(sizeof(__u32), /* key size */ 1872 sizeof(struct rss_key), 1873 MAX_RSS_KEYS); 1874 if (pmd->map_fd < 0) { 1875 TAP_LOG(ERR, 1876 "Failed to create BPF map (%d): %s", 1877 errno, strerror(errno)); 1878 rte_flow_error_set( 1879 error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 1880 "Kernel too old or not configured " 1881 "to support BPF maps"); 1882 1883 return -ENOTSUP; 1884 } 1885 1886 /* 1887 * Add a rule per queue to match reclassified packets and direct them to 1888 * the correct queue. 1889 */ 1890 for (i = 0; i < pmd->dev->data->nb_rx_queues; i++) { 1891 pmd->bpf_fd[i] = tap_flow_bpf_cls_q(i); 1892 if (pmd->bpf_fd[i] < 0) { 1893 TAP_LOG(ERR, 1894 "Failed to load BPF section %s for queue %d", 1895 SEC_NAME_CLS_Q, i); 1896 rte_flow_error_set( 1897 error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE, 1898 NULL, 1899 "Kernel too old or not configured " 1900 "to support BPF programs loading"); 1901 1902 return -ENOTSUP; 1903 } 1904 1905 rss_flow = rte_zmalloc(__func__, sizeof(struct rte_flow), 0); 1906 if (!rss_flow) { 1907 TAP_LOG(ERR, 1908 "Cannot allocate memory for rte_flow"); 1909 return -1; 1910 } 1911 msg = &rss_flow->msg; 1912 tc_init_msg(msg, pmd->if_index, RTM_NEWTFILTER, NLM_F_REQUEST | 1913 NLM_F_ACK | NLM_F_EXCL | NLM_F_CREATE); 1914 msg->t.tcm_info = TC_H_MAKE(0, htons(ETH_P_ALL)); 1915 tap_flow_set_handle(rss_flow); 1916 uint16_t group = attr->group << GROUP_SHIFT; 1917 uint16_t prio = group | (i + PRIORITY_OFFSET); 1918 msg->t.tcm_info = TC_H_MAKE(prio << 16, msg->t.tcm_info); 1919 msg->t.tcm_parent = TC_H_MAKE(MULTIQ_MAJOR_HANDLE, 0); 1920 1921 tap_nlattr_add(&msg->nh, TCA_KIND, sizeof("bpf"), "bpf"); 1922 if (tap_nlattr_nested_start(msg, TCA_OPTIONS) < 0) 1923 return -1; 1924 tap_nlattr_add32(&msg->nh, TCA_BPF_FD, pmd->bpf_fd[i]); 1925 snprintf(annotation, sizeof(annotation), "[%s%d]", 1926 SEC_NAME_CLS_Q, i); 1927 tap_nlattr_add(&msg->nh, TCA_BPF_NAME, strlen(annotation) + 1, 1928 annotation); 1929 /* Actions */ 1930 { 1931 struct action_data adata = { 1932 .id = "skbedit", 1933 .skbedit = { 1934 .skbedit = { 1935 .action = TC_ACT_PIPE, 1936 }, 1937 .queue = i, 1938 }, 1939 }; 1940 if (add_actions(rss_flow, 1, &adata, TCA_BPF_ACT) < 0) 1941 return -1; 1942 } 1943 tap_nlattr_nested_finish(msg); /* nested TCA_OPTIONS */ 1944 1945 /* Netlink message is now ready to be sent */ 1946 if (tap_nl_send(pmd->nlsk_fd, &msg->nh) < 0) 1947 return -1; 1948 err = tap_nl_recv_ack(pmd->nlsk_fd); 1949 if (err < 0) { 1950 TAP_LOG(ERR, 1951 "Kernel refused TC filter rule creation (%d): %s", 1952 errno, strerror(errno)); 1953 return err; 1954 } 1955 LIST_INSERT_HEAD(&pmd->rss_flows, rss_flow, next); 1956 } 1957 1958 pmd->rss_enabled = 1; 1959 return err; 1960 } 1961 1962 /** 1963 * Manage bpf RSS keys repository with operations: init, get, release 1964 * 1965 * @param[in] cmd 1966 * Command on RSS keys: init, get, release 1967 * 1968 * @param[in, out] key_idx 1969 * Pointer to RSS Key index (out for get command, in for release command) 1970 * 1971 * @return -1 if couldn't get, release or init the RSS keys, 0 otherwise. 1972 */ 1973 static int bpf_rss_key(enum bpf_rss_key_e cmd, __u32 *key_idx) 1974 { 1975 __u32 i; 1976 int err = 0; 1977 static __u32 num_used_keys; 1978 static __u32 rss_keys[MAX_RSS_KEYS] = {KEY_STAT_UNSPEC}; 1979 static __u32 rss_keys_initialized; 1980 __u32 key; 1981 1982 switch (cmd) { 1983 case KEY_CMD_GET: 1984 if (!rss_keys_initialized) { 1985 err = -1; 1986 break; 1987 } 1988 1989 if (num_used_keys == RTE_DIM(rss_keys)) { 1990 err = -1; 1991 break; 1992 } 1993 1994 *key_idx = num_used_keys % RTE_DIM(rss_keys); 1995 while (rss_keys[*key_idx] == KEY_STAT_USED) 1996 *key_idx = (*key_idx + 1) % RTE_DIM(rss_keys); 1997 1998 rss_keys[*key_idx] = KEY_STAT_USED; 1999 2000 /* 2001 * Add an offset to key_idx in order to handle a case of 2002 * RSS and non RSS flows mixture. 2003 * If a non RSS flow is destroyed it has an eBPF map 2004 * index 0 (initialized on flow creation) and might 2005 * unintentionally remove RSS entry 0 from eBPF map. 2006 * To avoid this issue, add an offset to the real index 2007 * during a KEY_CMD_GET operation and subtract this offset 2008 * during a KEY_CMD_RELEASE operation in order to restore 2009 * the real index. 2010 */ 2011 *key_idx += KEY_IDX_OFFSET; 2012 num_used_keys++; 2013 break; 2014 2015 case KEY_CMD_RELEASE: 2016 if (!rss_keys_initialized) 2017 break; 2018 2019 /* 2020 * Subtract offest to restore real key index 2021 * If a non RSS flow is falsely trying to release map 2022 * entry 0 - the offset subtraction will calculate the real 2023 * map index as an out-of-range value and the release operation 2024 * will be silently ignored. 2025 */ 2026 key = *key_idx - KEY_IDX_OFFSET; 2027 if (key >= RTE_DIM(rss_keys)) 2028 break; 2029 2030 if (rss_keys[key] == KEY_STAT_USED) { 2031 rss_keys[key] = KEY_STAT_AVAILABLE; 2032 num_used_keys--; 2033 } 2034 break; 2035 2036 case KEY_CMD_INIT: 2037 for (i = 0; i < RTE_DIM(rss_keys); i++) 2038 rss_keys[i] = KEY_STAT_AVAILABLE; 2039 2040 rss_keys_initialized = 1; 2041 num_used_keys = 0; 2042 break; 2043 2044 case KEY_CMD_DEINIT: 2045 for (i = 0; i < RTE_DIM(rss_keys); i++) 2046 rss_keys[i] = KEY_STAT_UNSPEC; 2047 2048 rss_keys_initialized = 0; 2049 num_used_keys = 0; 2050 break; 2051 2052 default: 2053 break; 2054 } 2055 2056 return err; 2057 } 2058 2059 /** 2060 * Add RSS hash calculations and queue selection 2061 * 2062 * @param[in, out] pmd 2063 * Pointer to internal structure. Used to set/get RSS map fd 2064 * 2065 * @param[in] rss 2066 * Pointer to RSS flow actions 2067 * 2068 * @param[out] error 2069 * Pointer to error reporting if not NULL. 2070 * 2071 * @return 0 on success, negative value on failure 2072 */ 2073 static int rss_add_actions(struct rte_flow *flow, struct pmd_internals *pmd, 2074 const struct rte_flow_action_rss *rss, 2075 struct rte_flow_error *error) 2076 { 2077 /* 4096 is the maximum number of instructions for a BPF program */ 2078 unsigned int i; 2079 int err; 2080 struct rss_key rss_entry = { .hash_fields = 0, 2081 .key_size = 0 }; 2082 2083 /* Check supported RSS features */ 2084 if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT) 2085 return rte_flow_error_set 2086 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2087 "non-default RSS hash functions are not supported"); 2088 if (rss->level) 2089 return rte_flow_error_set 2090 (error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2091 "a nonzero RSS encapsulation level is not supported"); 2092 2093 /* Get a new map key for a new RSS rule */ 2094 err = bpf_rss_key(KEY_CMD_GET, &flow->key_idx); 2095 if (err < 0) { 2096 rte_flow_error_set( 2097 error, EINVAL, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 2098 "Failed to get BPF RSS key"); 2099 2100 return -1; 2101 } 2102 2103 /* Update RSS map entry with queues */ 2104 rss_entry.nb_queues = rss->queue_num; 2105 for (i = 0; i < rss->queue_num; i++) 2106 rss_entry.queues[i] = rss->queue[i]; 2107 rss_entry.hash_fields = 2108 (1 << HASH_FIELD_IPV4_L3_L4) | (1 << HASH_FIELD_IPV6_L3_L4); 2109 2110 /* Add this RSS entry to map */ 2111 err = tap_flow_bpf_update_rss_elem(pmd->map_fd, 2112 &flow->key_idx, &rss_entry); 2113 2114 if (err) { 2115 TAP_LOG(ERR, 2116 "Failed to update BPF map entry #%u (%d): %s", 2117 flow->key_idx, errno, strerror(errno)); 2118 rte_flow_error_set( 2119 error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 2120 "Kernel too old or not configured " 2121 "to support BPF maps updates"); 2122 2123 return -ENOTSUP; 2124 } 2125 2126 2127 /* 2128 * Load bpf rules to calculate hash for this key_idx 2129 */ 2130 2131 flow->bpf_fd[SEC_L3_L4] = 2132 tap_flow_bpf_calc_l3_l4_hash(flow->key_idx, pmd->map_fd); 2133 if (flow->bpf_fd[SEC_L3_L4] < 0) { 2134 TAP_LOG(ERR, 2135 "Failed to load BPF section %s (%d): %s", 2136 sec_name[SEC_L3_L4], errno, strerror(errno)); 2137 rte_flow_error_set( 2138 error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 2139 "Kernel too old or not configured " 2140 "to support BPF program loading"); 2141 2142 return -ENOTSUP; 2143 } 2144 2145 /* Actions */ 2146 { 2147 struct action_data adata[] = { 2148 { 2149 .id = "bpf", 2150 .bpf = { 2151 .bpf_fd = flow->bpf_fd[SEC_L3_L4], 2152 .annotation = sec_name[SEC_L3_L4], 2153 .bpf = { 2154 .action = TC_ACT_PIPE, 2155 }, 2156 }, 2157 }, 2158 }; 2159 2160 if (add_actions(flow, RTE_DIM(adata), adata, 2161 TCA_FLOWER_ACT) < 0) 2162 return -1; 2163 } 2164 2165 return 0; 2166 } 2167 2168 /** 2169 * Get rte_flow operations. 2170 * 2171 * @param dev 2172 * Pointer to Ethernet device structure. 2173 * @param ops 2174 * Pointer to operation-specific structure. 2175 * 2176 * @return 2177 * 0 on success, negative errno value on failure. 2178 */ 2179 int 2180 tap_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused, 2181 const struct rte_flow_ops **ops) 2182 { 2183 *ops = &tap_flow_ops; 2184 return 0; 2185 } 2186