1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2021 Xilinx, Inc. 4 * Copyright(c) 2017-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_byteorder.h> 11 #include <rte_tailq.h> 12 #include <rte_common.h> 13 #include <ethdev_driver.h> 14 #include <rte_ether.h> 15 #include <rte_flow.h> 16 #include <rte_flow_driver.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_debug.h" 22 #include "sfc_rx.h" 23 #include "sfc_filter.h" 24 #include "sfc_flow.h" 25 #include "sfc_flow_tunnel.h" 26 #include "sfc_log.h" 27 #include "sfc_dp_rx.h" 28 #include "sfc_mae_counter.h" 29 #include "sfc_switch.h" 30 31 struct sfc_flow_ops_by_spec { 32 sfc_flow_parse_cb_t *parse; 33 sfc_flow_verify_cb_t *verify; 34 sfc_flow_cleanup_cb_t *cleanup; 35 sfc_flow_insert_cb_t *insert; 36 sfc_flow_remove_cb_t *remove; 37 sfc_flow_query_cb_t *query; 38 }; 39 40 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_filter; 41 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_mae; 42 static sfc_flow_insert_cb_t sfc_flow_filter_insert; 43 static sfc_flow_remove_cb_t sfc_flow_filter_remove; 44 45 static const struct sfc_flow_ops_by_spec sfc_flow_ops_filter = { 46 .parse = sfc_flow_parse_rte_to_filter, 47 .verify = NULL, 48 .cleanup = NULL, 49 .insert = sfc_flow_filter_insert, 50 .remove = sfc_flow_filter_remove, 51 .query = NULL, 52 }; 53 54 static const struct sfc_flow_ops_by_spec sfc_flow_ops_mae = { 55 .parse = sfc_flow_parse_rte_to_mae, 56 .verify = sfc_mae_flow_verify, 57 .cleanup = sfc_mae_flow_cleanup, 58 .insert = sfc_mae_flow_insert, 59 .remove = sfc_mae_flow_remove, 60 .query = sfc_mae_flow_query, 61 }; 62 63 static const struct sfc_flow_ops_by_spec * 64 sfc_flow_get_ops_by_spec(struct rte_flow *flow) 65 { 66 struct sfc_flow_spec *spec = &flow->spec; 67 const struct sfc_flow_ops_by_spec *ops = NULL; 68 69 switch (spec->type) { 70 case SFC_FLOW_SPEC_FILTER: 71 ops = &sfc_flow_ops_filter; 72 break; 73 case SFC_FLOW_SPEC_MAE: 74 ops = &sfc_flow_ops_mae; 75 break; 76 default: 77 SFC_ASSERT(false); 78 break; 79 } 80 81 return ops; 82 } 83 84 /* 85 * Currently, filter-based (VNIC) flow API is implemented in such a manner 86 * that each flow rule is converted to one or more hardware filters. 87 * All elements of flow rule (attributes, pattern items, actions) 88 * correspond to one or more fields in the efx_filter_spec_s structure 89 * that is responsible for the hardware filter. 90 * If some required field is unset in the flow rule, then a handful 91 * of filter copies will be created to cover all possible values 92 * of such a field. 93 */ 94 95 static sfc_flow_item_parse sfc_flow_parse_void; 96 static sfc_flow_item_parse sfc_flow_parse_eth; 97 static sfc_flow_item_parse sfc_flow_parse_vlan; 98 static sfc_flow_item_parse sfc_flow_parse_ipv4; 99 static sfc_flow_item_parse sfc_flow_parse_ipv6; 100 static sfc_flow_item_parse sfc_flow_parse_tcp; 101 static sfc_flow_item_parse sfc_flow_parse_udp; 102 static sfc_flow_item_parse sfc_flow_parse_vxlan; 103 static sfc_flow_item_parse sfc_flow_parse_geneve; 104 static sfc_flow_item_parse sfc_flow_parse_nvgre; 105 static sfc_flow_item_parse sfc_flow_parse_pppoex; 106 107 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec, 108 unsigned int filters_count_for_one_val, 109 struct rte_flow_error *error); 110 111 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match, 112 efx_filter_spec_t *spec, 113 struct sfc_filter *filter); 114 115 struct sfc_flow_copy_flag { 116 /* EFX filter specification match flag */ 117 efx_filter_match_flags_t flag; 118 /* Number of values of corresponding field */ 119 unsigned int vals_count; 120 /* Function to set values in specifications */ 121 sfc_flow_spec_set_vals *set_vals; 122 /* 123 * Function to check that the specification is suitable 124 * for adding this match flag 125 */ 126 sfc_flow_spec_check *spec_check; 127 }; 128 129 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags; 130 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags; 131 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes; 132 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags; 133 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags; 134 static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag; 135 static sfc_flow_spec_check sfc_flow_check_outer_vid_flag; 136 137 static boolean_t 138 sfc_flow_is_zero(const uint8_t *buf, unsigned int size) 139 { 140 uint8_t sum = 0; 141 unsigned int i; 142 143 for (i = 0; i < size; i++) 144 sum |= buf[i]; 145 146 return (sum == 0) ? B_TRUE : B_FALSE; 147 } 148 149 /* 150 * Validate item and prepare structures spec and mask for parsing 151 */ 152 int 153 sfc_flow_parse_init(const struct rte_flow_item *item, 154 const void **spec_ptr, 155 const void **mask_ptr, 156 const void *supp_mask, 157 const void *def_mask, 158 unsigned int size, 159 struct rte_flow_error *error) 160 { 161 const uint8_t *spec; 162 const uint8_t *mask; 163 const uint8_t *last; 164 uint8_t supp; 165 unsigned int i; 166 167 if (item == NULL) { 168 rte_flow_error_set(error, EINVAL, 169 RTE_FLOW_ERROR_TYPE_ITEM, NULL, 170 "NULL item"); 171 return -rte_errno; 172 } 173 174 if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) { 175 rte_flow_error_set(error, EINVAL, 176 RTE_FLOW_ERROR_TYPE_ITEM, item, 177 "Mask or last is set without spec"); 178 return -rte_errno; 179 } 180 181 /* 182 * If "mask" is not set, default mask is used, 183 * but if default mask is NULL, "mask" should be set 184 */ 185 if (item->mask == NULL) { 186 if (def_mask == NULL) { 187 rte_flow_error_set(error, EINVAL, 188 RTE_FLOW_ERROR_TYPE_ITEM, NULL, 189 "Mask should be specified"); 190 return -rte_errno; 191 } 192 193 mask = def_mask; 194 } else { 195 mask = item->mask; 196 } 197 198 spec = item->spec; 199 last = item->last; 200 201 if (spec == NULL) 202 goto exit; 203 204 /* 205 * If field values in "last" are either 0 or equal to the corresponding 206 * values in "spec" then they are ignored 207 */ 208 if (last != NULL && 209 !sfc_flow_is_zero(last, size) && 210 memcmp(last, spec, size) != 0) { 211 rte_flow_error_set(error, ENOTSUP, 212 RTE_FLOW_ERROR_TYPE_ITEM, item, 213 "Ranging is not supported"); 214 return -rte_errno; 215 } 216 217 if (supp_mask == NULL) { 218 rte_flow_error_set(error, EINVAL, 219 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 220 "Supported mask for item should be specified"); 221 return -rte_errno; 222 } 223 224 /* Check that mask does not ask for more match than supp_mask */ 225 for (i = 0; i < size; i++) { 226 supp = ((const uint8_t *)supp_mask)[i]; 227 228 if (~supp & mask[i]) { 229 rte_flow_error_set(error, ENOTSUP, 230 RTE_FLOW_ERROR_TYPE_ITEM, item, 231 "Item's field is not supported"); 232 return -rte_errno; 233 } 234 } 235 236 exit: 237 *spec_ptr = spec; 238 *mask_ptr = mask; 239 return 0; 240 } 241 242 /* 243 * Protocol parsers. 244 * Masking is not supported, so masks in items should be either 245 * full or empty (zeroed) and set only for supported fields which 246 * are specified in the supp_mask. 247 */ 248 249 static int 250 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item, 251 __rte_unused struct sfc_flow_parse_ctx *parse_ctx, 252 __rte_unused struct rte_flow_error *error) 253 { 254 return 0; 255 } 256 257 /** 258 * Convert Ethernet item to EFX filter specification. 259 * 260 * @param item[in] 261 * Item specification. Outer frame specification may only comprise 262 * source/destination addresses and Ethertype field. 263 * Inner frame specification may contain destination address only. 264 * There is support for individual/group mask as well as for empty and full. 265 * If the mask is NULL, default mask will be used. Ranging is not supported. 266 * @param efx_spec[in, out] 267 * EFX filter specification to update. 268 * @param[out] error 269 * Perform verbose error reporting if not NULL. 270 */ 271 static int 272 sfc_flow_parse_eth(const struct rte_flow_item *item, 273 struct sfc_flow_parse_ctx *parse_ctx, 274 struct rte_flow_error *error) 275 { 276 int rc; 277 efx_filter_spec_t *efx_spec = parse_ctx->filter; 278 const struct rte_flow_item_eth *spec = NULL; 279 const struct rte_flow_item_eth *mask = NULL; 280 const struct rte_flow_item_eth supp_mask = { 281 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 282 .src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 283 .type = 0xffff, 284 }; 285 const struct rte_flow_item_eth ifrm_supp_mask = { 286 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 287 }; 288 const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = { 289 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 290 }; 291 const struct rte_flow_item_eth *supp_mask_p; 292 const struct rte_flow_item_eth *def_mask_p; 293 uint8_t *loc_mac = NULL; 294 boolean_t is_ifrm = (efx_spec->efs_encap_type != 295 EFX_TUNNEL_PROTOCOL_NONE); 296 297 if (is_ifrm) { 298 supp_mask_p = &ifrm_supp_mask; 299 def_mask_p = &ifrm_supp_mask; 300 loc_mac = efx_spec->efs_ifrm_loc_mac; 301 } else { 302 supp_mask_p = &supp_mask; 303 def_mask_p = &rte_flow_item_eth_mask; 304 loc_mac = efx_spec->efs_loc_mac; 305 } 306 307 rc = sfc_flow_parse_init(item, 308 (const void **)&spec, 309 (const void **)&mask, 310 supp_mask_p, def_mask_p, 311 sizeof(struct rte_flow_item_eth), 312 error); 313 if (rc != 0) 314 return rc; 315 316 /* If "spec" is not set, could be any Ethernet */ 317 if (spec == NULL) 318 return 0; 319 320 if (rte_is_same_ether_addr(&mask->dst, &supp_mask.dst)) { 321 efx_spec->efs_match_flags |= is_ifrm ? 322 EFX_FILTER_MATCH_IFRM_LOC_MAC : 323 EFX_FILTER_MATCH_LOC_MAC; 324 rte_memcpy(loc_mac, spec->dst.addr_bytes, 325 EFX_MAC_ADDR_LEN); 326 } else if (memcmp(mask->dst.addr_bytes, ig_mask, 327 EFX_MAC_ADDR_LEN) == 0) { 328 if (rte_is_unicast_ether_addr(&spec->dst)) 329 efx_spec->efs_match_flags |= is_ifrm ? 330 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST : 331 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST; 332 else 333 efx_spec->efs_match_flags |= is_ifrm ? 334 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST : 335 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST; 336 } else if (!rte_is_zero_ether_addr(&mask->dst)) { 337 goto fail_bad_mask; 338 } 339 340 /* 341 * ifrm_supp_mask ensures that the source address and 342 * ethertype masks are equal to zero in inner frame, 343 * so these fields are filled in only for the outer frame 344 */ 345 if (rte_is_same_ether_addr(&mask->src, &supp_mask.src)) { 346 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC; 347 rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes, 348 EFX_MAC_ADDR_LEN); 349 } else if (!rte_is_zero_ether_addr(&mask->src)) { 350 goto fail_bad_mask; 351 } 352 353 /* 354 * Ether type is in big-endian byte order in item and 355 * in little-endian in efx_spec, so byte swap is used 356 */ 357 if (mask->type == supp_mask.type) { 358 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 359 efx_spec->efs_ether_type = rte_bswap16(spec->type); 360 } else if (mask->type != 0) { 361 goto fail_bad_mask; 362 } 363 364 return 0; 365 366 fail_bad_mask: 367 rte_flow_error_set(error, EINVAL, 368 RTE_FLOW_ERROR_TYPE_ITEM, item, 369 "Bad mask in the ETH pattern item"); 370 return -rte_errno; 371 } 372 373 /** 374 * Convert VLAN item to EFX filter specification. 375 * 376 * @param item[in] 377 * Item specification. Only VID field is supported. 378 * The mask can not be NULL. Ranging is not supported. 379 * @param efx_spec[in, out] 380 * EFX filter specification to update. 381 * @param[out] error 382 * Perform verbose error reporting if not NULL. 383 */ 384 static int 385 sfc_flow_parse_vlan(const struct rte_flow_item *item, 386 struct sfc_flow_parse_ctx *parse_ctx, 387 struct rte_flow_error *error) 388 { 389 int rc; 390 uint16_t vid; 391 efx_filter_spec_t *efx_spec = parse_ctx->filter; 392 const struct rte_flow_item_vlan *spec = NULL; 393 const struct rte_flow_item_vlan *mask = NULL; 394 const struct rte_flow_item_vlan supp_mask = { 395 .tci = rte_cpu_to_be_16(RTE_ETH_VLAN_ID_MAX), 396 .inner_type = RTE_BE16(0xffff), 397 }; 398 399 rc = sfc_flow_parse_init(item, 400 (const void **)&spec, 401 (const void **)&mask, 402 &supp_mask, 403 NULL, 404 sizeof(struct rte_flow_item_vlan), 405 error); 406 if (rc != 0) 407 return rc; 408 409 /* 410 * VID is in big-endian byte order in item and 411 * in little-endian in efx_spec, so byte swap is used. 412 * If two VLAN items are included, the first matches 413 * the outer tag and the next matches the inner tag. 414 */ 415 if (mask->tci == supp_mask.tci) { 416 /* Apply mask to keep VID only */ 417 vid = rte_bswap16(spec->tci & mask->tci); 418 419 if (!(efx_spec->efs_match_flags & 420 EFX_FILTER_MATCH_OUTER_VID)) { 421 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID; 422 efx_spec->efs_outer_vid = vid; 423 } else if (!(efx_spec->efs_match_flags & 424 EFX_FILTER_MATCH_INNER_VID)) { 425 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID; 426 efx_spec->efs_inner_vid = vid; 427 } else { 428 rte_flow_error_set(error, EINVAL, 429 RTE_FLOW_ERROR_TYPE_ITEM, item, 430 "More than two VLAN items"); 431 return -rte_errno; 432 } 433 } else { 434 rte_flow_error_set(error, EINVAL, 435 RTE_FLOW_ERROR_TYPE_ITEM, item, 436 "VLAN ID in TCI match is required"); 437 return -rte_errno; 438 } 439 440 if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) { 441 rte_flow_error_set(error, EINVAL, 442 RTE_FLOW_ERROR_TYPE_ITEM, item, 443 "VLAN TPID matching is not supported"); 444 return -rte_errno; 445 } 446 if (mask->inner_type == supp_mask.inner_type) { 447 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 448 efx_spec->efs_ether_type = rte_bswap16(spec->inner_type); 449 } else if (mask->inner_type) { 450 rte_flow_error_set(error, EINVAL, 451 RTE_FLOW_ERROR_TYPE_ITEM, item, 452 "Bad mask for VLAN inner_type"); 453 return -rte_errno; 454 } 455 456 return 0; 457 } 458 459 /** 460 * Convert IPv4 item to EFX filter specification. 461 * 462 * @param item[in] 463 * Item specification. Only source and destination addresses and 464 * protocol fields are supported. If the mask is NULL, default 465 * mask will be used. Ranging is not supported. 466 * @param efx_spec[in, out] 467 * EFX filter specification to update. 468 * @param[out] error 469 * Perform verbose error reporting if not NULL. 470 */ 471 static int 472 sfc_flow_parse_ipv4(const struct rte_flow_item *item, 473 struct sfc_flow_parse_ctx *parse_ctx, 474 struct rte_flow_error *error) 475 { 476 int rc; 477 efx_filter_spec_t *efx_spec = parse_ctx->filter; 478 const struct rte_flow_item_ipv4 *spec = NULL; 479 const struct rte_flow_item_ipv4 *mask = NULL; 480 const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4); 481 const struct rte_flow_item_ipv4 supp_mask = { 482 .hdr = { 483 .src_addr = 0xffffffff, 484 .dst_addr = 0xffffffff, 485 .next_proto_id = 0xff, 486 } 487 }; 488 489 rc = sfc_flow_parse_init(item, 490 (const void **)&spec, 491 (const void **)&mask, 492 &supp_mask, 493 &rte_flow_item_ipv4_mask, 494 sizeof(struct rte_flow_item_ipv4), 495 error); 496 if (rc != 0) 497 return rc; 498 499 /* 500 * Filtering by IPv4 source and destination addresses requires 501 * the appropriate ETHER_TYPE in hardware filters 502 */ 503 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) { 504 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 505 efx_spec->efs_ether_type = ether_type_ipv4; 506 } else if (efx_spec->efs_ether_type != ether_type_ipv4) { 507 rte_flow_error_set(error, EINVAL, 508 RTE_FLOW_ERROR_TYPE_ITEM, item, 509 "Ethertype in pattern with IPV4 item should be appropriate"); 510 return -rte_errno; 511 } 512 513 if (spec == NULL) 514 return 0; 515 516 /* 517 * IPv4 addresses are in big-endian byte order in item and in 518 * efx_spec 519 */ 520 if (mask->hdr.src_addr == supp_mask.hdr.src_addr) { 521 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST; 522 efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr; 523 } else if (mask->hdr.src_addr != 0) { 524 goto fail_bad_mask; 525 } 526 527 if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) { 528 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST; 529 efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr; 530 } else if (mask->hdr.dst_addr != 0) { 531 goto fail_bad_mask; 532 } 533 534 if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) { 535 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 536 efx_spec->efs_ip_proto = spec->hdr.next_proto_id; 537 } else if (mask->hdr.next_proto_id != 0) { 538 goto fail_bad_mask; 539 } 540 541 return 0; 542 543 fail_bad_mask: 544 rte_flow_error_set(error, EINVAL, 545 RTE_FLOW_ERROR_TYPE_ITEM, item, 546 "Bad mask in the IPV4 pattern item"); 547 return -rte_errno; 548 } 549 550 /** 551 * Convert IPv6 item to EFX filter specification. 552 * 553 * @param item[in] 554 * Item specification. Only source and destination addresses and 555 * next header fields are supported. If the mask is NULL, default 556 * mask will be used. Ranging is not supported. 557 * @param efx_spec[in, out] 558 * EFX filter specification to update. 559 * @param[out] error 560 * Perform verbose error reporting if not NULL. 561 */ 562 static int 563 sfc_flow_parse_ipv6(const struct rte_flow_item *item, 564 struct sfc_flow_parse_ctx *parse_ctx, 565 struct rte_flow_error *error) 566 { 567 int rc; 568 efx_filter_spec_t *efx_spec = parse_ctx->filter; 569 const struct rte_flow_item_ipv6 *spec = NULL; 570 const struct rte_flow_item_ipv6 *mask = NULL; 571 const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6); 572 const struct rte_flow_item_ipv6 supp_mask = { 573 .hdr = { 574 .src_addr = { 0xff, 0xff, 0xff, 0xff, 575 0xff, 0xff, 0xff, 0xff, 576 0xff, 0xff, 0xff, 0xff, 577 0xff, 0xff, 0xff, 0xff }, 578 .dst_addr = { 0xff, 0xff, 0xff, 0xff, 579 0xff, 0xff, 0xff, 0xff, 580 0xff, 0xff, 0xff, 0xff, 581 0xff, 0xff, 0xff, 0xff }, 582 .proto = 0xff, 583 } 584 }; 585 586 rc = sfc_flow_parse_init(item, 587 (const void **)&spec, 588 (const void **)&mask, 589 &supp_mask, 590 &rte_flow_item_ipv6_mask, 591 sizeof(struct rte_flow_item_ipv6), 592 error); 593 if (rc != 0) 594 return rc; 595 596 /* 597 * Filtering by IPv6 source and destination addresses requires 598 * the appropriate ETHER_TYPE in hardware filters 599 */ 600 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) { 601 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 602 efx_spec->efs_ether_type = ether_type_ipv6; 603 } else if (efx_spec->efs_ether_type != ether_type_ipv6) { 604 rte_flow_error_set(error, EINVAL, 605 RTE_FLOW_ERROR_TYPE_ITEM, item, 606 "Ethertype in pattern with IPV6 item should be appropriate"); 607 return -rte_errno; 608 } 609 610 if (spec == NULL) 611 return 0; 612 613 /* 614 * IPv6 addresses are in big-endian byte order in item and in 615 * efx_spec 616 */ 617 if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr, 618 sizeof(mask->hdr.src_addr)) == 0) { 619 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST; 620 621 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) != 622 sizeof(spec->hdr.src_addr)); 623 rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr, 624 sizeof(efx_spec->efs_rem_host)); 625 } else if (!sfc_flow_is_zero(mask->hdr.src_addr, 626 sizeof(mask->hdr.src_addr))) { 627 goto fail_bad_mask; 628 } 629 630 if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr, 631 sizeof(mask->hdr.dst_addr)) == 0) { 632 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST; 633 634 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) != 635 sizeof(spec->hdr.dst_addr)); 636 rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr, 637 sizeof(efx_spec->efs_loc_host)); 638 } else if (!sfc_flow_is_zero(mask->hdr.dst_addr, 639 sizeof(mask->hdr.dst_addr))) { 640 goto fail_bad_mask; 641 } 642 643 if (mask->hdr.proto == supp_mask.hdr.proto) { 644 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 645 efx_spec->efs_ip_proto = spec->hdr.proto; 646 } else if (mask->hdr.proto != 0) { 647 goto fail_bad_mask; 648 } 649 650 return 0; 651 652 fail_bad_mask: 653 rte_flow_error_set(error, EINVAL, 654 RTE_FLOW_ERROR_TYPE_ITEM, item, 655 "Bad mask in the IPV6 pattern item"); 656 return -rte_errno; 657 } 658 659 /** 660 * Convert TCP item to EFX filter specification. 661 * 662 * @param item[in] 663 * Item specification. Only source and destination ports fields 664 * are supported. If the mask is NULL, default mask will be used. 665 * Ranging is not supported. 666 * @param efx_spec[in, out] 667 * EFX filter specification to update. 668 * @param[out] error 669 * Perform verbose error reporting if not NULL. 670 */ 671 static int 672 sfc_flow_parse_tcp(const struct rte_flow_item *item, 673 struct sfc_flow_parse_ctx *parse_ctx, 674 struct rte_flow_error *error) 675 { 676 int rc; 677 efx_filter_spec_t *efx_spec = parse_ctx->filter; 678 const struct rte_flow_item_tcp *spec = NULL; 679 const struct rte_flow_item_tcp *mask = NULL; 680 const struct rte_flow_item_tcp supp_mask = { 681 .hdr = { 682 .src_port = 0xffff, 683 .dst_port = 0xffff, 684 } 685 }; 686 687 rc = sfc_flow_parse_init(item, 688 (const void **)&spec, 689 (const void **)&mask, 690 &supp_mask, 691 &rte_flow_item_tcp_mask, 692 sizeof(struct rte_flow_item_tcp), 693 error); 694 if (rc != 0) 695 return rc; 696 697 /* 698 * Filtering by TCP source and destination ports requires 699 * the appropriate IP_PROTO in hardware filters 700 */ 701 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 702 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 703 efx_spec->efs_ip_proto = EFX_IPPROTO_TCP; 704 } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) { 705 rte_flow_error_set(error, EINVAL, 706 RTE_FLOW_ERROR_TYPE_ITEM, item, 707 "IP proto in pattern with TCP item should be appropriate"); 708 return -rte_errno; 709 } 710 711 if (spec == NULL) 712 return 0; 713 714 /* 715 * Source and destination ports are in big-endian byte order in item and 716 * in little-endian in efx_spec, so byte swap is used 717 */ 718 if (mask->hdr.src_port == supp_mask.hdr.src_port) { 719 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT; 720 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port); 721 } else if (mask->hdr.src_port != 0) { 722 goto fail_bad_mask; 723 } 724 725 if (mask->hdr.dst_port == supp_mask.hdr.dst_port) { 726 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT; 727 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port); 728 } else if (mask->hdr.dst_port != 0) { 729 goto fail_bad_mask; 730 } 731 732 return 0; 733 734 fail_bad_mask: 735 rte_flow_error_set(error, EINVAL, 736 RTE_FLOW_ERROR_TYPE_ITEM, item, 737 "Bad mask in the TCP pattern item"); 738 return -rte_errno; 739 } 740 741 /** 742 * Convert UDP item to EFX filter specification. 743 * 744 * @param item[in] 745 * Item specification. Only source and destination ports fields 746 * are supported. If the mask is NULL, default mask will be used. 747 * Ranging is not supported. 748 * @param efx_spec[in, out] 749 * EFX filter specification to update. 750 * @param[out] error 751 * Perform verbose error reporting if not NULL. 752 */ 753 static int 754 sfc_flow_parse_udp(const struct rte_flow_item *item, 755 struct sfc_flow_parse_ctx *parse_ctx, 756 struct rte_flow_error *error) 757 { 758 int rc; 759 efx_filter_spec_t *efx_spec = parse_ctx->filter; 760 const struct rte_flow_item_udp *spec = NULL; 761 const struct rte_flow_item_udp *mask = NULL; 762 const struct rte_flow_item_udp supp_mask = { 763 .hdr = { 764 .src_port = 0xffff, 765 .dst_port = 0xffff, 766 } 767 }; 768 769 rc = sfc_flow_parse_init(item, 770 (const void **)&spec, 771 (const void **)&mask, 772 &supp_mask, 773 &rte_flow_item_udp_mask, 774 sizeof(struct rte_flow_item_udp), 775 error); 776 if (rc != 0) 777 return rc; 778 779 /* 780 * Filtering by UDP source and destination ports requires 781 * the appropriate IP_PROTO in hardware filters 782 */ 783 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 784 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 785 efx_spec->efs_ip_proto = EFX_IPPROTO_UDP; 786 } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) { 787 rte_flow_error_set(error, EINVAL, 788 RTE_FLOW_ERROR_TYPE_ITEM, item, 789 "IP proto in pattern with UDP item should be appropriate"); 790 return -rte_errno; 791 } 792 793 if (spec == NULL) 794 return 0; 795 796 /* 797 * Source and destination ports are in big-endian byte order in item and 798 * in little-endian in efx_spec, so byte swap is used 799 */ 800 if (mask->hdr.src_port == supp_mask.hdr.src_port) { 801 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT; 802 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port); 803 } else if (mask->hdr.src_port != 0) { 804 goto fail_bad_mask; 805 } 806 807 if (mask->hdr.dst_port == supp_mask.hdr.dst_port) { 808 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT; 809 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port); 810 } else if (mask->hdr.dst_port != 0) { 811 goto fail_bad_mask; 812 } 813 814 return 0; 815 816 fail_bad_mask: 817 rte_flow_error_set(error, EINVAL, 818 RTE_FLOW_ERROR_TYPE_ITEM, item, 819 "Bad mask in the UDP pattern item"); 820 return -rte_errno; 821 } 822 823 /* 824 * Filters for encapsulated packets match based on the EtherType and IP 825 * protocol in the outer frame. 826 */ 827 static int 828 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item, 829 efx_filter_spec_t *efx_spec, 830 uint8_t ip_proto, 831 struct rte_flow_error *error) 832 { 833 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 834 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 835 efx_spec->efs_ip_proto = ip_proto; 836 } else if (efx_spec->efs_ip_proto != ip_proto) { 837 switch (ip_proto) { 838 case EFX_IPPROTO_UDP: 839 rte_flow_error_set(error, EINVAL, 840 RTE_FLOW_ERROR_TYPE_ITEM, item, 841 "Outer IP header protocol must be UDP " 842 "in VxLAN/GENEVE pattern"); 843 return -rte_errno; 844 845 case EFX_IPPROTO_GRE: 846 rte_flow_error_set(error, EINVAL, 847 RTE_FLOW_ERROR_TYPE_ITEM, item, 848 "Outer IP header protocol must be GRE " 849 "in NVGRE pattern"); 850 return -rte_errno; 851 852 default: 853 rte_flow_error_set(error, EINVAL, 854 RTE_FLOW_ERROR_TYPE_ITEM, item, 855 "Only VxLAN/GENEVE/NVGRE tunneling patterns " 856 "are supported"); 857 return -rte_errno; 858 } 859 } 860 861 if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE && 862 efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 && 863 efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) { 864 rte_flow_error_set(error, EINVAL, 865 RTE_FLOW_ERROR_TYPE_ITEM, item, 866 "Outer frame EtherType in pattern with tunneling " 867 "must be IPv4 or IPv6"); 868 return -rte_errno; 869 } 870 871 return 0; 872 } 873 874 static int 875 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec, 876 const uint8_t *vni_or_vsid_val, 877 const uint8_t *vni_or_vsid_mask, 878 const struct rte_flow_item *item, 879 struct rte_flow_error *error) 880 { 881 const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = { 882 0xff, 0xff, 0xff 883 }; 884 885 if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask, 886 EFX_VNI_OR_VSID_LEN) == 0) { 887 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID; 888 rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val, 889 EFX_VNI_OR_VSID_LEN); 890 } else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) { 891 rte_flow_error_set(error, EINVAL, 892 RTE_FLOW_ERROR_TYPE_ITEM, item, 893 "Unsupported VNI/VSID mask"); 894 return -rte_errno; 895 } 896 897 return 0; 898 } 899 900 /** 901 * Convert VXLAN item to EFX filter specification. 902 * 903 * @param item[in] 904 * Item specification. Only VXLAN network identifier field is supported. 905 * If the mask is NULL, default mask will be used. 906 * Ranging is not supported. 907 * @param efx_spec[in, out] 908 * EFX filter specification to update. 909 * @param[out] error 910 * Perform verbose error reporting if not NULL. 911 */ 912 static int 913 sfc_flow_parse_vxlan(const struct rte_flow_item *item, 914 struct sfc_flow_parse_ctx *parse_ctx, 915 struct rte_flow_error *error) 916 { 917 int rc; 918 efx_filter_spec_t *efx_spec = parse_ctx->filter; 919 const struct rte_flow_item_vxlan *spec = NULL; 920 const struct rte_flow_item_vxlan *mask = NULL; 921 const struct rte_flow_item_vxlan supp_mask = { 922 .vni = { 0xff, 0xff, 0xff } 923 }; 924 925 rc = sfc_flow_parse_init(item, 926 (const void **)&spec, 927 (const void **)&mask, 928 &supp_mask, 929 &rte_flow_item_vxlan_mask, 930 sizeof(struct rte_flow_item_vxlan), 931 error); 932 if (rc != 0) 933 return rc; 934 935 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 936 EFX_IPPROTO_UDP, error); 937 if (rc != 0) 938 return rc; 939 940 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN; 941 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 942 943 if (spec == NULL) 944 return 0; 945 946 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni, 947 mask->vni, item, error); 948 949 return rc; 950 } 951 952 /** 953 * Convert GENEVE item to EFX filter specification. 954 * 955 * @param item[in] 956 * Item specification. Only Virtual Network Identifier and protocol type 957 * fields are supported. But protocol type can be only Ethernet (0x6558). 958 * If the mask is NULL, default mask will be used. 959 * Ranging is not supported. 960 * @param efx_spec[in, out] 961 * EFX filter specification to update. 962 * @param[out] error 963 * Perform verbose error reporting if not NULL. 964 */ 965 static int 966 sfc_flow_parse_geneve(const struct rte_flow_item *item, 967 struct sfc_flow_parse_ctx *parse_ctx, 968 struct rte_flow_error *error) 969 { 970 int rc; 971 efx_filter_spec_t *efx_spec = parse_ctx->filter; 972 const struct rte_flow_item_geneve *spec = NULL; 973 const struct rte_flow_item_geneve *mask = NULL; 974 const struct rte_flow_item_geneve supp_mask = { 975 .protocol = RTE_BE16(0xffff), 976 .vni = { 0xff, 0xff, 0xff } 977 }; 978 979 rc = sfc_flow_parse_init(item, 980 (const void **)&spec, 981 (const void **)&mask, 982 &supp_mask, 983 &rte_flow_item_geneve_mask, 984 sizeof(struct rte_flow_item_geneve), 985 error); 986 if (rc != 0) 987 return rc; 988 989 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 990 EFX_IPPROTO_UDP, error); 991 if (rc != 0) 992 return rc; 993 994 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE; 995 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 996 997 if (spec == NULL) 998 return 0; 999 1000 if (mask->protocol == supp_mask.protocol) { 1001 if (spec->protocol != rte_cpu_to_be_16(RTE_ETHER_TYPE_TEB)) { 1002 rte_flow_error_set(error, EINVAL, 1003 RTE_FLOW_ERROR_TYPE_ITEM, item, 1004 "GENEVE encap. protocol must be Ethernet " 1005 "(0x6558) in the GENEVE pattern item"); 1006 return -rte_errno; 1007 } 1008 } else if (mask->protocol != 0) { 1009 rte_flow_error_set(error, EINVAL, 1010 RTE_FLOW_ERROR_TYPE_ITEM, item, 1011 "Unsupported mask for GENEVE encap. protocol"); 1012 return -rte_errno; 1013 } 1014 1015 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni, 1016 mask->vni, item, error); 1017 1018 return rc; 1019 } 1020 1021 /** 1022 * Convert NVGRE item to EFX filter specification. 1023 * 1024 * @param item[in] 1025 * Item specification. Only virtual subnet ID field is supported. 1026 * If the mask is NULL, default mask will be used. 1027 * Ranging is not supported. 1028 * @param efx_spec[in, out] 1029 * EFX filter specification to update. 1030 * @param[out] error 1031 * Perform verbose error reporting if not NULL. 1032 */ 1033 static int 1034 sfc_flow_parse_nvgre(const struct rte_flow_item *item, 1035 struct sfc_flow_parse_ctx *parse_ctx, 1036 struct rte_flow_error *error) 1037 { 1038 int rc; 1039 efx_filter_spec_t *efx_spec = parse_ctx->filter; 1040 const struct rte_flow_item_nvgre *spec = NULL; 1041 const struct rte_flow_item_nvgre *mask = NULL; 1042 const struct rte_flow_item_nvgre supp_mask = { 1043 .tni = { 0xff, 0xff, 0xff } 1044 }; 1045 1046 rc = sfc_flow_parse_init(item, 1047 (const void **)&spec, 1048 (const void **)&mask, 1049 &supp_mask, 1050 &rte_flow_item_nvgre_mask, 1051 sizeof(struct rte_flow_item_nvgre), 1052 error); 1053 if (rc != 0) 1054 return rc; 1055 1056 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 1057 EFX_IPPROTO_GRE, error); 1058 if (rc != 0) 1059 return rc; 1060 1061 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE; 1062 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 1063 1064 if (spec == NULL) 1065 return 0; 1066 1067 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni, 1068 mask->tni, item, error); 1069 1070 return rc; 1071 } 1072 1073 /** 1074 * Convert PPPoEx item to EFX filter specification. 1075 * 1076 * @param item[in] 1077 * Item specification. 1078 * Matching on PPPoEx fields is not supported. 1079 * This item can only be used to set or validate the EtherType filter. 1080 * Only zero masks are allowed. 1081 * Ranging is not supported. 1082 * @param efx_spec[in, out] 1083 * EFX filter specification to update. 1084 * @param[out] error 1085 * Perform verbose error reporting if not NULL. 1086 */ 1087 static int 1088 sfc_flow_parse_pppoex(const struct rte_flow_item *item, 1089 struct sfc_flow_parse_ctx *parse_ctx, 1090 struct rte_flow_error *error) 1091 { 1092 efx_filter_spec_t *efx_spec = parse_ctx->filter; 1093 const struct rte_flow_item_pppoe *spec = NULL; 1094 const struct rte_flow_item_pppoe *mask = NULL; 1095 const struct rte_flow_item_pppoe supp_mask = {}; 1096 const struct rte_flow_item_pppoe def_mask = {}; 1097 uint16_t ether_type; 1098 int rc; 1099 1100 rc = sfc_flow_parse_init(item, 1101 (const void **)&spec, 1102 (const void **)&mask, 1103 &supp_mask, 1104 &def_mask, 1105 sizeof(struct rte_flow_item_pppoe), 1106 error); 1107 if (rc != 0) 1108 return rc; 1109 1110 if (item->type == RTE_FLOW_ITEM_TYPE_PPPOED) 1111 ether_type = RTE_ETHER_TYPE_PPPOE_DISCOVERY; 1112 else 1113 ether_type = RTE_ETHER_TYPE_PPPOE_SESSION; 1114 1115 if ((efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) != 0) { 1116 if (efx_spec->efs_ether_type != ether_type) { 1117 rte_flow_error_set(error, EINVAL, 1118 RTE_FLOW_ERROR_TYPE_ITEM, item, 1119 "Invalid EtherType for a PPPoE flow item"); 1120 return -rte_errno; 1121 } 1122 } else { 1123 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 1124 efx_spec->efs_ether_type = ether_type; 1125 } 1126 1127 return 0; 1128 } 1129 1130 static const struct sfc_flow_item sfc_flow_items[] = { 1131 { 1132 .type = RTE_FLOW_ITEM_TYPE_VOID, 1133 .name = "VOID", 1134 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER, 1135 .layer = SFC_FLOW_ITEM_ANY_LAYER, 1136 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1137 .parse = sfc_flow_parse_void, 1138 }, 1139 { 1140 .type = RTE_FLOW_ITEM_TYPE_ETH, 1141 .name = "ETH", 1142 .prev_layer = SFC_FLOW_ITEM_START_LAYER, 1143 .layer = SFC_FLOW_ITEM_L2, 1144 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1145 .parse = sfc_flow_parse_eth, 1146 }, 1147 { 1148 .type = RTE_FLOW_ITEM_TYPE_VLAN, 1149 .name = "VLAN", 1150 .prev_layer = SFC_FLOW_ITEM_L2, 1151 .layer = SFC_FLOW_ITEM_L2, 1152 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1153 .parse = sfc_flow_parse_vlan, 1154 }, 1155 { 1156 .type = RTE_FLOW_ITEM_TYPE_PPPOED, 1157 .name = "PPPOED", 1158 .prev_layer = SFC_FLOW_ITEM_L2, 1159 .layer = SFC_FLOW_ITEM_L2, 1160 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1161 .parse = sfc_flow_parse_pppoex, 1162 }, 1163 { 1164 .type = RTE_FLOW_ITEM_TYPE_PPPOES, 1165 .name = "PPPOES", 1166 .prev_layer = SFC_FLOW_ITEM_L2, 1167 .layer = SFC_FLOW_ITEM_L2, 1168 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1169 .parse = sfc_flow_parse_pppoex, 1170 }, 1171 { 1172 .type = RTE_FLOW_ITEM_TYPE_IPV4, 1173 .name = "IPV4", 1174 .prev_layer = SFC_FLOW_ITEM_L2, 1175 .layer = SFC_FLOW_ITEM_L3, 1176 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1177 .parse = sfc_flow_parse_ipv4, 1178 }, 1179 { 1180 .type = RTE_FLOW_ITEM_TYPE_IPV6, 1181 .name = "IPV6", 1182 .prev_layer = SFC_FLOW_ITEM_L2, 1183 .layer = SFC_FLOW_ITEM_L3, 1184 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1185 .parse = sfc_flow_parse_ipv6, 1186 }, 1187 { 1188 .type = RTE_FLOW_ITEM_TYPE_TCP, 1189 .name = "TCP", 1190 .prev_layer = SFC_FLOW_ITEM_L3, 1191 .layer = SFC_FLOW_ITEM_L4, 1192 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1193 .parse = sfc_flow_parse_tcp, 1194 }, 1195 { 1196 .type = RTE_FLOW_ITEM_TYPE_UDP, 1197 .name = "UDP", 1198 .prev_layer = SFC_FLOW_ITEM_L3, 1199 .layer = SFC_FLOW_ITEM_L4, 1200 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1201 .parse = sfc_flow_parse_udp, 1202 }, 1203 { 1204 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 1205 .name = "VXLAN", 1206 .prev_layer = SFC_FLOW_ITEM_L4, 1207 .layer = SFC_FLOW_ITEM_START_LAYER, 1208 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1209 .parse = sfc_flow_parse_vxlan, 1210 }, 1211 { 1212 .type = RTE_FLOW_ITEM_TYPE_GENEVE, 1213 .name = "GENEVE", 1214 .prev_layer = SFC_FLOW_ITEM_L4, 1215 .layer = SFC_FLOW_ITEM_START_LAYER, 1216 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1217 .parse = sfc_flow_parse_geneve, 1218 }, 1219 { 1220 .type = RTE_FLOW_ITEM_TYPE_NVGRE, 1221 .name = "NVGRE", 1222 .prev_layer = SFC_FLOW_ITEM_L3, 1223 .layer = SFC_FLOW_ITEM_START_LAYER, 1224 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1225 .parse = sfc_flow_parse_nvgre, 1226 }, 1227 }; 1228 1229 /* 1230 * Protocol-independent flow API support 1231 */ 1232 static int 1233 sfc_flow_parse_attr(struct sfc_adapter *sa, 1234 const struct rte_flow_attr *attr, 1235 struct rte_flow *flow, 1236 struct rte_flow_error *error) 1237 { 1238 struct sfc_flow_spec *spec = &flow->spec; 1239 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1240 struct sfc_flow_spec_mae *spec_mae = &spec->mae; 1241 struct sfc_mae *mae = &sa->mae; 1242 1243 if (attr == NULL) { 1244 rte_flow_error_set(error, EINVAL, 1245 RTE_FLOW_ERROR_TYPE_ATTR, NULL, 1246 "NULL attribute"); 1247 return -rte_errno; 1248 } 1249 if (attr->group != 0) { 1250 rte_flow_error_set(error, ENOTSUP, 1251 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr, 1252 "Groups are not supported"); 1253 return -rte_errno; 1254 } 1255 if (attr->egress != 0 && attr->transfer == 0) { 1256 rte_flow_error_set(error, ENOTSUP, 1257 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, 1258 "Egress is not supported"); 1259 return -rte_errno; 1260 } 1261 if (attr->ingress == 0 && attr->transfer == 0) { 1262 rte_flow_error_set(error, ENOTSUP, 1263 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, 1264 "Ingress is compulsory"); 1265 return -rte_errno; 1266 } 1267 if (attr->transfer == 0) { 1268 if (attr->priority != 0) { 1269 rte_flow_error_set(error, ENOTSUP, 1270 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1271 attr, "Priorities are unsupported"); 1272 return -rte_errno; 1273 } 1274 spec->type = SFC_FLOW_SPEC_FILTER; 1275 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX; 1276 spec_filter->template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT; 1277 spec_filter->template.efs_priority = EFX_FILTER_PRI_MANUAL; 1278 } else { 1279 if (mae->status != SFC_MAE_STATUS_ADMIN) { 1280 rte_flow_error_set(error, ENOTSUP, 1281 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1282 attr, "Transfer is not supported"); 1283 return -rte_errno; 1284 } 1285 if (attr->priority > mae->nb_action_rule_prios_max) { 1286 rte_flow_error_set(error, ENOTSUP, 1287 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1288 attr, "Unsupported priority level"); 1289 return -rte_errno; 1290 } 1291 spec->type = SFC_FLOW_SPEC_MAE; 1292 spec_mae->priority = attr->priority; 1293 spec_mae->match_spec = NULL; 1294 spec_mae->action_set = NULL; 1295 spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID; 1296 } 1297 1298 return 0; 1299 } 1300 1301 /* Get item from array sfc_flow_items */ 1302 static const struct sfc_flow_item * 1303 sfc_flow_get_item(const struct sfc_flow_item *items, 1304 unsigned int nb_items, 1305 enum rte_flow_item_type type) 1306 { 1307 unsigned int i; 1308 1309 for (i = 0; i < nb_items; i++) 1310 if (items[i].type == type) 1311 return &items[i]; 1312 1313 return NULL; 1314 } 1315 1316 int 1317 sfc_flow_parse_pattern(struct sfc_adapter *sa, 1318 const struct sfc_flow_item *flow_items, 1319 unsigned int nb_flow_items, 1320 const struct rte_flow_item pattern[], 1321 struct sfc_flow_parse_ctx *parse_ctx, 1322 struct rte_flow_error *error) 1323 { 1324 int rc; 1325 unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER; 1326 boolean_t is_ifrm = B_FALSE; 1327 const struct sfc_flow_item *item; 1328 1329 if (pattern == NULL) { 1330 rte_flow_error_set(error, EINVAL, 1331 RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, 1332 "NULL pattern"); 1333 return -rte_errno; 1334 } 1335 1336 for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) { 1337 item = sfc_flow_get_item(flow_items, nb_flow_items, 1338 pattern->type); 1339 if (item == NULL) { 1340 rte_flow_error_set(error, ENOTSUP, 1341 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1342 "Unsupported pattern item"); 1343 return -rte_errno; 1344 } 1345 1346 /* 1347 * Omitting one or several protocol layers at the beginning 1348 * of pattern is supported 1349 */ 1350 if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER && 1351 prev_layer != SFC_FLOW_ITEM_ANY_LAYER && 1352 item->prev_layer != prev_layer) { 1353 rte_flow_error_set(error, ENOTSUP, 1354 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1355 "Unexpected sequence of pattern items"); 1356 return -rte_errno; 1357 } 1358 1359 /* 1360 * Allow only VOID and ETH pattern items in the inner frame. 1361 * Also check that there is only one tunneling protocol. 1362 */ 1363 switch (item->type) { 1364 case RTE_FLOW_ITEM_TYPE_VOID: 1365 case RTE_FLOW_ITEM_TYPE_ETH: 1366 break; 1367 1368 case RTE_FLOW_ITEM_TYPE_VXLAN: 1369 case RTE_FLOW_ITEM_TYPE_GENEVE: 1370 case RTE_FLOW_ITEM_TYPE_NVGRE: 1371 if (is_ifrm) { 1372 rte_flow_error_set(error, EINVAL, 1373 RTE_FLOW_ERROR_TYPE_ITEM, 1374 pattern, 1375 "More than one tunneling protocol"); 1376 return -rte_errno; 1377 } 1378 is_ifrm = B_TRUE; 1379 break; 1380 1381 default: 1382 if (parse_ctx->type == SFC_FLOW_PARSE_CTX_FILTER && 1383 is_ifrm) { 1384 rte_flow_error_set(error, EINVAL, 1385 RTE_FLOW_ERROR_TYPE_ITEM, 1386 pattern, 1387 "There is an unsupported pattern item " 1388 "in the inner frame"); 1389 return -rte_errno; 1390 } 1391 break; 1392 } 1393 1394 if (parse_ctx->type != item->ctx_type) { 1395 rte_flow_error_set(error, EINVAL, 1396 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1397 "Parse context type mismatch"); 1398 return -rte_errno; 1399 } 1400 1401 rc = item->parse(pattern, parse_ctx, error); 1402 if (rc != 0) { 1403 sfc_err(sa, "failed to parse item %s: %s", 1404 item->name, strerror(-rc)); 1405 return rc; 1406 } 1407 1408 if (item->layer != SFC_FLOW_ITEM_ANY_LAYER) 1409 prev_layer = item->layer; 1410 } 1411 1412 return 0; 1413 } 1414 1415 static int 1416 sfc_flow_parse_queue(struct sfc_adapter *sa, 1417 const struct rte_flow_action_queue *queue, 1418 struct rte_flow *flow) 1419 { 1420 struct sfc_flow_spec *spec = &flow->spec; 1421 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1422 struct sfc_rxq *rxq; 1423 struct sfc_rxq_info *rxq_info; 1424 1425 if (queue->index >= sfc_sa2shared(sa)->ethdev_rxq_count) 1426 return -EINVAL; 1427 1428 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, queue->index); 1429 spec_filter->template.efs_dmaq_id = (uint16_t)rxq->hw_index; 1430 1431 rxq_info = &sfc_sa2shared(sa)->rxq_info[queue->index]; 1432 spec_filter->rss_hash_required = !!(rxq_info->rxq_flags & 1433 SFC_RXQ_FLAG_RSS_HASH); 1434 1435 return 0; 1436 } 1437 1438 static int 1439 sfc_flow_parse_rss(struct sfc_adapter *sa, 1440 const struct rte_flow_action_rss *action_rss, 1441 struct rte_flow *flow) 1442 { 1443 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1444 struct sfc_rss *rss = &sas->rss; 1445 sfc_ethdev_qid_t ethdev_qid; 1446 struct sfc_rxq *rxq; 1447 unsigned int rxq_hw_index_min; 1448 unsigned int rxq_hw_index_max; 1449 efx_rx_hash_type_t efx_hash_types; 1450 const uint8_t *rss_key; 1451 struct sfc_flow_spec *spec = &flow->spec; 1452 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1453 struct sfc_flow_rss *sfc_rss_conf = &spec_filter->rss_conf; 1454 unsigned int i; 1455 1456 if (action_rss->queue_num == 0) 1457 return -EINVAL; 1458 1459 ethdev_qid = sfc_sa2shared(sa)->ethdev_rxq_count - 1; 1460 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid); 1461 rxq_hw_index_min = rxq->hw_index; 1462 rxq_hw_index_max = 0; 1463 1464 for (i = 0; i < action_rss->queue_num; ++i) { 1465 ethdev_qid = action_rss->queue[i]; 1466 1467 if ((unsigned int)ethdev_qid >= 1468 sfc_sa2shared(sa)->ethdev_rxq_count) 1469 return -EINVAL; 1470 1471 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid); 1472 1473 if (rxq->hw_index < rxq_hw_index_min) 1474 rxq_hw_index_min = rxq->hw_index; 1475 1476 if (rxq->hw_index > rxq_hw_index_max) 1477 rxq_hw_index_max = rxq->hw_index; 1478 } 1479 1480 switch (action_rss->func) { 1481 case RTE_ETH_HASH_FUNCTION_DEFAULT: 1482 case RTE_ETH_HASH_FUNCTION_TOEPLITZ: 1483 break; 1484 default: 1485 return -EINVAL; 1486 } 1487 1488 if (action_rss->level) 1489 return -EINVAL; 1490 1491 /* 1492 * Dummy RSS action with only one queue and no specific settings 1493 * for hash types and key does not require dedicated RSS context 1494 * and may be simplified to single queue action. 1495 */ 1496 if (action_rss->queue_num == 1 && action_rss->types == 0 && 1497 action_rss->key_len == 0) { 1498 spec_filter->template.efs_dmaq_id = rxq_hw_index_min; 1499 return 0; 1500 } 1501 1502 if (action_rss->types) { 1503 int rc; 1504 1505 rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types, 1506 &efx_hash_types); 1507 if (rc != 0) 1508 return -rc; 1509 } else { 1510 unsigned int i; 1511 1512 efx_hash_types = 0; 1513 for (i = 0; i < rss->hf_map_nb_entries; ++i) 1514 efx_hash_types |= rss->hf_map[i].efx; 1515 } 1516 1517 if (action_rss->key_len) { 1518 if (action_rss->key_len != sizeof(rss->key)) 1519 return -EINVAL; 1520 1521 rss_key = action_rss->key; 1522 } else { 1523 rss_key = rss->key; 1524 } 1525 1526 spec_filter->rss = B_TRUE; 1527 1528 sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min; 1529 sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max; 1530 sfc_rss_conf->rss_hash_types = efx_hash_types; 1531 rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key)); 1532 1533 for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) { 1534 unsigned int nb_queues = action_rss->queue_num; 1535 struct sfc_rxq *rxq; 1536 1537 ethdev_qid = action_rss->queue[i % nb_queues]; 1538 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid); 1539 sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min; 1540 } 1541 1542 return 0; 1543 } 1544 1545 static int 1546 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec, 1547 unsigned int filters_count) 1548 { 1549 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1550 unsigned int i; 1551 int ret = 0; 1552 1553 for (i = 0; i < filters_count; i++) { 1554 int rc; 1555 1556 rc = efx_filter_remove(sa->nic, &spec_filter->filters[i]); 1557 if (ret == 0 && rc != 0) { 1558 sfc_err(sa, "failed to remove filter specification " 1559 "(rc = %d)", rc); 1560 ret = rc; 1561 } 1562 } 1563 1564 return ret; 1565 } 1566 1567 static int 1568 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec) 1569 { 1570 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1571 unsigned int i; 1572 int rc = 0; 1573 1574 for (i = 0; i < spec_filter->count; i++) { 1575 rc = efx_filter_insert(sa->nic, &spec_filter->filters[i]); 1576 if (rc != 0) { 1577 sfc_flow_spec_flush(sa, spec, i); 1578 break; 1579 } 1580 } 1581 1582 return rc; 1583 } 1584 1585 static int 1586 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec) 1587 { 1588 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1589 1590 return sfc_flow_spec_flush(sa, spec, spec_filter->count); 1591 } 1592 1593 static int 1594 sfc_flow_filter_insert(struct sfc_adapter *sa, 1595 struct rte_flow *flow) 1596 { 1597 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1598 struct sfc_rss *rss = &sas->rss; 1599 struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter; 1600 struct sfc_flow_rss *flow_rss = &spec_filter->rss_conf; 1601 uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT; 1602 boolean_t create_context; 1603 unsigned int i; 1604 int rc = 0; 1605 1606 create_context = spec_filter->rss || (spec_filter->rss_hash_required && 1607 rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT); 1608 1609 if (create_context) { 1610 unsigned int rss_spread; 1611 unsigned int rss_hash_types; 1612 uint8_t *rss_key; 1613 1614 if (spec_filter->rss) { 1615 rss_spread = MIN(flow_rss->rxq_hw_index_max - 1616 flow_rss->rxq_hw_index_min + 1, 1617 EFX_MAXRSS); 1618 rss_hash_types = flow_rss->rss_hash_types; 1619 rss_key = flow_rss->rss_key; 1620 } else { 1621 /* 1622 * Initialize dummy RSS context parameters to have 1623 * valid RSS hash. Use default RSS hash function and 1624 * key. 1625 */ 1626 rss_spread = 1; 1627 rss_hash_types = rss->hash_types; 1628 rss_key = rss->key; 1629 } 1630 1631 rc = efx_rx_scale_context_alloc(sa->nic, 1632 EFX_RX_SCALE_EXCLUSIVE, 1633 rss_spread, 1634 &efs_rss_context); 1635 if (rc != 0) 1636 goto fail_scale_context_alloc; 1637 1638 rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context, 1639 rss->hash_alg, 1640 rss_hash_types, B_TRUE); 1641 if (rc != 0) 1642 goto fail_scale_mode_set; 1643 1644 rc = efx_rx_scale_key_set(sa->nic, efs_rss_context, 1645 rss_key, sizeof(rss->key)); 1646 if (rc != 0) 1647 goto fail_scale_key_set; 1648 } else { 1649 efs_rss_context = rss->dummy_rss_context; 1650 } 1651 1652 if (spec_filter->rss || spec_filter->rss_hash_required) { 1653 /* 1654 * At this point, fully elaborated filter specifications 1655 * have been produced from the template. To make sure that 1656 * RSS behaviour is consistent between them, set the same 1657 * RSS context value everywhere. 1658 */ 1659 for (i = 0; i < spec_filter->count; i++) { 1660 efx_filter_spec_t *spec = &spec_filter->filters[i]; 1661 1662 spec->efs_rss_context = efs_rss_context; 1663 spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS; 1664 if (spec_filter->rss) 1665 spec->efs_dmaq_id = flow_rss->rxq_hw_index_min; 1666 } 1667 } 1668 1669 rc = sfc_flow_spec_insert(sa, &flow->spec); 1670 if (rc != 0) 1671 goto fail_filter_insert; 1672 1673 if (create_context) { 1674 unsigned int dummy_tbl[RTE_DIM(flow_rss->rss_tbl)] = {0}; 1675 unsigned int *tbl; 1676 1677 tbl = spec_filter->rss ? flow_rss->rss_tbl : dummy_tbl; 1678 1679 /* 1680 * Scale table is set after filter insertion because 1681 * the table entries are relative to the base RxQ ID 1682 * and the latter is submitted to the HW by means of 1683 * inserting a filter, so by the time of the request 1684 * the HW knows all the information needed to verify 1685 * the table entries, and the operation will succeed 1686 */ 1687 rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context, 1688 tbl, RTE_DIM(flow_rss->rss_tbl)); 1689 if (rc != 0) 1690 goto fail_scale_tbl_set; 1691 1692 /* Remember created dummy RSS context */ 1693 if (!spec_filter->rss) 1694 rss->dummy_rss_context = efs_rss_context; 1695 } 1696 1697 return 0; 1698 1699 fail_scale_tbl_set: 1700 sfc_flow_spec_remove(sa, &flow->spec); 1701 1702 fail_filter_insert: 1703 fail_scale_key_set: 1704 fail_scale_mode_set: 1705 if (create_context) 1706 efx_rx_scale_context_free(sa->nic, efs_rss_context); 1707 1708 fail_scale_context_alloc: 1709 return rc; 1710 } 1711 1712 static int 1713 sfc_flow_filter_remove(struct sfc_adapter *sa, 1714 struct rte_flow *flow) 1715 { 1716 struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter; 1717 int rc = 0; 1718 1719 rc = sfc_flow_spec_remove(sa, &flow->spec); 1720 if (rc != 0) 1721 return rc; 1722 1723 if (spec_filter->rss) { 1724 /* 1725 * All specifications for a given flow rule have the same RSS 1726 * context, so that RSS context value is taken from the first 1727 * filter specification 1728 */ 1729 efx_filter_spec_t *spec = &spec_filter->filters[0]; 1730 1731 rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context); 1732 } 1733 1734 return rc; 1735 } 1736 1737 static int 1738 sfc_flow_parse_mark(struct sfc_adapter *sa, 1739 const struct rte_flow_action_mark *mark, 1740 struct rte_flow *flow) 1741 { 1742 struct sfc_flow_spec *spec = &flow->spec; 1743 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1744 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1745 uint32_t mark_max; 1746 1747 mark_max = encp->enc_filter_action_mark_max; 1748 if (sfc_flow_tunnel_is_active(sa)) 1749 mark_max = RTE_MIN(mark_max, SFC_FT_USER_MARK_MASK); 1750 1751 if (mark == NULL || mark->id > mark_max) 1752 return EINVAL; 1753 1754 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK; 1755 spec_filter->template.efs_mark = mark->id; 1756 1757 return 0; 1758 } 1759 1760 static int 1761 sfc_flow_parse_actions(struct sfc_adapter *sa, 1762 const struct rte_flow_action actions[], 1763 struct rte_flow *flow, 1764 struct rte_flow_error *error) 1765 { 1766 int rc; 1767 struct sfc_flow_spec *spec = &flow->spec; 1768 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1769 const unsigned int dp_rx_features = sa->priv.dp_rx->features; 1770 const uint64_t rx_metadata = sa->negotiated_rx_metadata; 1771 uint32_t actions_set = 0; 1772 const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) | 1773 (1UL << RTE_FLOW_ACTION_TYPE_RSS) | 1774 (1UL << RTE_FLOW_ACTION_TYPE_DROP); 1775 const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) | 1776 (1UL << RTE_FLOW_ACTION_TYPE_FLAG); 1777 1778 if (actions == NULL) { 1779 rte_flow_error_set(error, EINVAL, 1780 RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, 1781 "NULL actions"); 1782 return -rte_errno; 1783 } 1784 1785 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 1786 switch (actions->type) { 1787 case RTE_FLOW_ACTION_TYPE_VOID: 1788 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID, 1789 actions_set); 1790 break; 1791 1792 case RTE_FLOW_ACTION_TYPE_QUEUE: 1793 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE, 1794 actions_set); 1795 if ((actions_set & fate_actions_mask) != 0) 1796 goto fail_fate_actions; 1797 1798 rc = sfc_flow_parse_queue(sa, actions->conf, flow); 1799 if (rc != 0) { 1800 rte_flow_error_set(error, EINVAL, 1801 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1802 "Bad QUEUE action"); 1803 return -rte_errno; 1804 } 1805 break; 1806 1807 case RTE_FLOW_ACTION_TYPE_RSS: 1808 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS, 1809 actions_set); 1810 if ((actions_set & fate_actions_mask) != 0) 1811 goto fail_fate_actions; 1812 1813 rc = sfc_flow_parse_rss(sa, actions->conf, flow); 1814 if (rc != 0) { 1815 rte_flow_error_set(error, -rc, 1816 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1817 "Bad RSS action"); 1818 return -rte_errno; 1819 } 1820 break; 1821 1822 case RTE_FLOW_ACTION_TYPE_DROP: 1823 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP, 1824 actions_set); 1825 if ((actions_set & fate_actions_mask) != 0) 1826 goto fail_fate_actions; 1827 1828 spec_filter->template.efs_dmaq_id = 1829 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP; 1830 break; 1831 1832 case RTE_FLOW_ACTION_TYPE_FLAG: 1833 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG, 1834 actions_set); 1835 if ((actions_set & mark_actions_mask) != 0) 1836 goto fail_actions_overlap; 1837 1838 if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) { 1839 rte_flow_error_set(error, ENOTSUP, 1840 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1841 "FLAG action is not supported on the current Rx datapath"); 1842 return -rte_errno; 1843 } else if ((rx_metadata & 1844 RTE_ETH_RX_METADATA_USER_FLAG) == 0) { 1845 rte_flow_error_set(error, ENOTSUP, 1846 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1847 "flag delivery has not been negotiated"); 1848 return -rte_errno; 1849 } 1850 1851 spec_filter->template.efs_flags |= 1852 EFX_FILTER_FLAG_ACTION_FLAG; 1853 break; 1854 1855 case RTE_FLOW_ACTION_TYPE_MARK: 1856 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK, 1857 actions_set); 1858 if ((actions_set & mark_actions_mask) != 0) 1859 goto fail_actions_overlap; 1860 1861 if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) { 1862 rte_flow_error_set(error, ENOTSUP, 1863 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1864 "MARK action is not supported on the current Rx datapath"); 1865 return -rte_errno; 1866 } else if ((rx_metadata & 1867 RTE_ETH_RX_METADATA_USER_MARK) == 0) { 1868 rte_flow_error_set(error, ENOTSUP, 1869 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1870 "mark delivery has not been negotiated"); 1871 return -rte_errno; 1872 } 1873 1874 rc = sfc_flow_parse_mark(sa, actions->conf, flow); 1875 if (rc != 0) { 1876 rte_flow_error_set(error, rc, 1877 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1878 "Bad MARK action"); 1879 return -rte_errno; 1880 } 1881 break; 1882 1883 default: 1884 rte_flow_error_set(error, ENOTSUP, 1885 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1886 "Action is not supported"); 1887 return -rte_errno; 1888 } 1889 1890 actions_set |= (1UL << actions->type); 1891 } 1892 1893 /* When fate is unknown, drop traffic. */ 1894 if ((actions_set & fate_actions_mask) == 0) { 1895 spec_filter->template.efs_dmaq_id = 1896 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP; 1897 } 1898 1899 return 0; 1900 1901 fail_fate_actions: 1902 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions, 1903 "Cannot combine several fate-deciding actions, " 1904 "choose between QUEUE, RSS or DROP"); 1905 return -rte_errno; 1906 1907 fail_actions_overlap: 1908 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions, 1909 "Overlapping actions are not supported"); 1910 return -rte_errno; 1911 } 1912 1913 /** 1914 * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST 1915 * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same 1916 * specifications after copying. 1917 * 1918 * @param spec[in, out] 1919 * SFC flow specification to update. 1920 * @param filters_count_for_one_val[in] 1921 * How many specifications should have the same match flag, what is the 1922 * number of specifications before copying. 1923 * @param error[out] 1924 * Perform verbose error reporting if not NULL. 1925 */ 1926 static int 1927 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec, 1928 unsigned int filters_count_for_one_val, 1929 struct rte_flow_error *error) 1930 { 1931 unsigned int i; 1932 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1933 static const efx_filter_match_flags_t vals[] = { 1934 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, 1935 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST 1936 }; 1937 1938 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 1939 rte_flow_error_set(error, EINVAL, 1940 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1941 "Number of specifications is incorrect while copying " 1942 "by unknown destination flags"); 1943 return -rte_errno; 1944 } 1945 1946 for (i = 0; i < spec_filter->count; i++) { 1947 /* The check above ensures that divisor can't be zero here */ 1948 spec_filter->filters[i].efs_match_flags |= 1949 vals[i / filters_count_for_one_val]; 1950 } 1951 1952 return 0; 1953 } 1954 1955 /** 1956 * Check that the following conditions are met: 1957 * - the list of supported filters has a filter 1958 * with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of 1959 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also 1960 * be inserted. 1961 * 1962 * @param match[in] 1963 * The match flags of filter. 1964 * @param spec[in] 1965 * Specification to be supplemented. 1966 * @param filter[in] 1967 * SFC filter with list of supported filters. 1968 */ 1969 static boolean_t 1970 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match, 1971 __rte_unused efx_filter_spec_t *spec, 1972 struct sfc_filter *filter) 1973 { 1974 unsigned int i; 1975 efx_filter_match_flags_t match_mcast_dst; 1976 1977 match_mcast_dst = 1978 (match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) | 1979 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST; 1980 for (i = 0; i < filter->supported_match_num; i++) { 1981 if (match_mcast_dst == filter->supported_match[i]) 1982 return B_TRUE; 1983 } 1984 1985 return B_FALSE; 1986 } 1987 1988 /** 1989 * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and 1990 * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same 1991 * specifications after copying. 1992 * 1993 * @param spec[in, out] 1994 * SFC flow specification to update. 1995 * @param filters_count_for_one_val[in] 1996 * How many specifications should have the same EtherType value, what is the 1997 * number of specifications before copying. 1998 * @param error[out] 1999 * Perform verbose error reporting if not NULL. 2000 */ 2001 static int 2002 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec, 2003 unsigned int filters_count_for_one_val, 2004 struct rte_flow_error *error) 2005 { 2006 unsigned int i; 2007 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2008 static const uint16_t vals[] = { 2009 EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6 2010 }; 2011 2012 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 2013 rte_flow_error_set(error, EINVAL, 2014 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2015 "Number of specifications is incorrect " 2016 "while copying by Ethertype"); 2017 return -rte_errno; 2018 } 2019 2020 for (i = 0; i < spec_filter->count; i++) { 2021 spec_filter->filters[i].efs_match_flags |= 2022 EFX_FILTER_MATCH_ETHER_TYPE; 2023 2024 /* 2025 * The check above ensures that 2026 * filters_count_for_one_val is not 0 2027 */ 2028 spec_filter->filters[i].efs_ether_type = 2029 vals[i / filters_count_for_one_val]; 2030 } 2031 2032 return 0; 2033 } 2034 2035 /** 2036 * Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0 2037 * in the same specifications after copying. 2038 * 2039 * @param spec[in, out] 2040 * SFC flow specification to update. 2041 * @param filters_count_for_one_val[in] 2042 * How many specifications should have the same match flag, what is the 2043 * number of specifications before copying. 2044 * @param error[out] 2045 * Perform verbose error reporting if not NULL. 2046 */ 2047 static int 2048 sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec, 2049 unsigned int filters_count_for_one_val, 2050 struct rte_flow_error *error) 2051 { 2052 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2053 unsigned int i; 2054 2055 if (filters_count_for_one_val != spec_filter->count) { 2056 rte_flow_error_set(error, EINVAL, 2057 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2058 "Number of specifications is incorrect " 2059 "while copying by outer VLAN ID"); 2060 return -rte_errno; 2061 } 2062 2063 for (i = 0; i < spec_filter->count; i++) { 2064 spec_filter->filters[i].efs_match_flags |= 2065 EFX_FILTER_MATCH_OUTER_VID; 2066 2067 spec_filter->filters[i].efs_outer_vid = 0; 2068 } 2069 2070 return 0; 2071 } 2072 2073 /** 2074 * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and 2075 * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same 2076 * specifications after copying. 2077 * 2078 * @param spec[in, out] 2079 * SFC flow specification to update. 2080 * @param filters_count_for_one_val[in] 2081 * How many specifications should have the same match flag, what is the 2082 * number of specifications before copying. 2083 * @param error[out] 2084 * Perform verbose error reporting if not NULL. 2085 */ 2086 static int 2087 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec, 2088 unsigned int filters_count_for_one_val, 2089 struct rte_flow_error *error) 2090 { 2091 unsigned int i; 2092 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2093 static const efx_filter_match_flags_t vals[] = { 2094 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, 2095 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST 2096 }; 2097 2098 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 2099 rte_flow_error_set(error, EINVAL, 2100 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2101 "Number of specifications is incorrect while copying " 2102 "by inner frame unknown destination flags"); 2103 return -rte_errno; 2104 } 2105 2106 for (i = 0; i < spec_filter->count; i++) { 2107 /* The check above ensures that divisor can't be zero here */ 2108 spec_filter->filters[i].efs_match_flags |= 2109 vals[i / filters_count_for_one_val]; 2110 } 2111 2112 return 0; 2113 } 2114 2115 /** 2116 * Check that the following conditions are met: 2117 * - the specification corresponds to a filter for encapsulated traffic 2118 * - the list of supported filters has a filter 2119 * with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of 2120 * EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also 2121 * be inserted. 2122 * 2123 * @param match[in] 2124 * The match flags of filter. 2125 * @param spec[in] 2126 * Specification to be supplemented. 2127 * @param filter[in] 2128 * SFC filter with list of supported filters. 2129 */ 2130 static boolean_t 2131 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match, 2132 efx_filter_spec_t *spec, 2133 struct sfc_filter *filter) 2134 { 2135 unsigned int i; 2136 efx_tunnel_protocol_t encap_type = spec->efs_encap_type; 2137 efx_filter_match_flags_t match_mcast_dst; 2138 2139 if (encap_type == EFX_TUNNEL_PROTOCOL_NONE) 2140 return B_FALSE; 2141 2142 match_mcast_dst = 2143 (match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) | 2144 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST; 2145 for (i = 0; i < filter->supported_match_num; i++) { 2146 if (match_mcast_dst == filter->supported_match[i]) 2147 return B_TRUE; 2148 } 2149 2150 return B_FALSE; 2151 } 2152 2153 /** 2154 * Check that the list of supported filters has a filter that differs 2155 * from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID 2156 * in this case that filter will be used and the flag 2157 * EFX_FILTER_MATCH_OUTER_VID is not needed. 2158 * 2159 * @param match[in] 2160 * The match flags of filter. 2161 * @param spec[in] 2162 * Specification to be supplemented. 2163 * @param filter[in] 2164 * SFC filter with list of supported filters. 2165 */ 2166 static boolean_t 2167 sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match, 2168 __rte_unused efx_filter_spec_t *spec, 2169 struct sfc_filter *filter) 2170 { 2171 unsigned int i; 2172 efx_filter_match_flags_t match_without_vid = 2173 match & ~EFX_FILTER_MATCH_OUTER_VID; 2174 2175 for (i = 0; i < filter->supported_match_num; i++) { 2176 if (match_without_vid == filter->supported_match[i]) 2177 return B_FALSE; 2178 } 2179 2180 return B_TRUE; 2181 } 2182 2183 /* 2184 * Match flags that can be automatically added to filters. 2185 * Selecting the last minimum when searching for the copy flag ensures that the 2186 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than 2187 * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter 2188 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported 2189 * filters. 2190 */ 2191 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = { 2192 { 2193 .flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, 2194 .vals_count = 2, 2195 .set_vals = sfc_flow_set_unknown_dst_flags, 2196 .spec_check = sfc_flow_check_unknown_dst_flags, 2197 }, 2198 { 2199 .flag = EFX_FILTER_MATCH_ETHER_TYPE, 2200 .vals_count = 2, 2201 .set_vals = sfc_flow_set_ethertypes, 2202 .spec_check = NULL, 2203 }, 2204 { 2205 .flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, 2206 .vals_count = 2, 2207 .set_vals = sfc_flow_set_ifrm_unknown_dst_flags, 2208 .spec_check = sfc_flow_check_ifrm_unknown_dst_flags, 2209 }, 2210 { 2211 .flag = EFX_FILTER_MATCH_OUTER_VID, 2212 .vals_count = 1, 2213 .set_vals = sfc_flow_set_outer_vid_flag, 2214 .spec_check = sfc_flow_check_outer_vid_flag, 2215 }, 2216 }; 2217 2218 /* Get item from array sfc_flow_copy_flags */ 2219 static const struct sfc_flow_copy_flag * 2220 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag) 2221 { 2222 unsigned int i; 2223 2224 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2225 if (sfc_flow_copy_flags[i].flag == flag) 2226 return &sfc_flow_copy_flags[i]; 2227 } 2228 2229 return NULL; 2230 } 2231 2232 /** 2233 * Make copies of the specifications, set match flag and values 2234 * of the field that corresponds to it. 2235 * 2236 * @param spec[in, out] 2237 * SFC flow specification to update. 2238 * @param flag[in] 2239 * The match flag to add. 2240 * @param error[out] 2241 * Perform verbose error reporting if not NULL. 2242 */ 2243 static int 2244 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec, 2245 efx_filter_match_flags_t flag, 2246 struct rte_flow_error *error) 2247 { 2248 unsigned int i; 2249 unsigned int new_filters_count; 2250 unsigned int filters_count_for_one_val; 2251 const struct sfc_flow_copy_flag *copy_flag; 2252 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2253 int rc; 2254 2255 copy_flag = sfc_flow_get_copy_flag(flag); 2256 if (copy_flag == NULL) { 2257 rte_flow_error_set(error, ENOTSUP, 2258 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2259 "Unsupported spec field for copying"); 2260 return -rte_errno; 2261 } 2262 2263 new_filters_count = spec_filter->count * copy_flag->vals_count; 2264 if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) { 2265 rte_flow_error_set(error, EINVAL, 2266 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2267 "Too much EFX specifications in the flow rule"); 2268 return -rte_errno; 2269 } 2270 2271 /* Copy filters specifications */ 2272 for (i = spec_filter->count; i < new_filters_count; i++) { 2273 spec_filter->filters[i] = 2274 spec_filter->filters[i - spec_filter->count]; 2275 } 2276 2277 filters_count_for_one_val = spec_filter->count; 2278 spec_filter->count = new_filters_count; 2279 2280 rc = copy_flag->set_vals(spec, filters_count_for_one_val, error); 2281 if (rc != 0) 2282 return rc; 2283 2284 return 0; 2285 } 2286 2287 /** 2288 * Check that the given set of match flags missing in the original filter spec 2289 * could be covered by adding spec copies which specify the corresponding 2290 * flags and packet field values to match. 2291 * 2292 * @param miss_flags[in] 2293 * Flags that are missing until the supported filter. 2294 * @param spec[in] 2295 * Specification to be supplemented. 2296 * @param filter[in] 2297 * SFC filter. 2298 * 2299 * @return 2300 * Number of specifications after copy or 0, if the flags can not be added. 2301 */ 2302 static unsigned int 2303 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags, 2304 efx_filter_spec_t *spec, 2305 struct sfc_filter *filter) 2306 { 2307 unsigned int i; 2308 efx_filter_match_flags_t copy_flags = 0; 2309 efx_filter_match_flags_t flag; 2310 efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags; 2311 sfc_flow_spec_check *check; 2312 unsigned int multiplier = 1; 2313 2314 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2315 flag = sfc_flow_copy_flags[i].flag; 2316 check = sfc_flow_copy_flags[i].spec_check; 2317 if ((flag & miss_flags) == flag) { 2318 if (check != NULL && (!check(match, spec, filter))) 2319 continue; 2320 2321 copy_flags |= flag; 2322 multiplier *= sfc_flow_copy_flags[i].vals_count; 2323 } 2324 } 2325 2326 if (copy_flags == miss_flags) 2327 return multiplier; 2328 2329 return 0; 2330 } 2331 2332 /** 2333 * Attempt to supplement the specification template to the minimally 2334 * supported set of match flags. To do this, it is necessary to copy 2335 * the specifications, filling them with the values of fields that 2336 * correspond to the missing flags. 2337 * The necessary and sufficient filter is built from the fewest number 2338 * of copies which could be made to cover the minimally required set 2339 * of flags. 2340 * 2341 * @param sa[in] 2342 * SFC adapter. 2343 * @param spec[in, out] 2344 * SFC flow specification to update. 2345 * @param error[out] 2346 * Perform verbose error reporting if not NULL. 2347 */ 2348 static int 2349 sfc_flow_spec_filters_complete(struct sfc_adapter *sa, 2350 struct sfc_flow_spec *spec, 2351 struct rte_flow_error *error) 2352 { 2353 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2354 struct sfc_filter *filter = &sa->filter; 2355 efx_filter_match_flags_t miss_flags; 2356 efx_filter_match_flags_t min_miss_flags = 0; 2357 efx_filter_match_flags_t match; 2358 unsigned int min_multiplier = UINT_MAX; 2359 unsigned int multiplier; 2360 unsigned int i; 2361 int rc; 2362 2363 match = spec_filter->template.efs_match_flags; 2364 for (i = 0; i < filter->supported_match_num; i++) { 2365 if ((match & filter->supported_match[i]) == match) { 2366 miss_flags = filter->supported_match[i] & (~match); 2367 multiplier = sfc_flow_check_missing_flags(miss_flags, 2368 &spec_filter->template, filter); 2369 if (multiplier > 0) { 2370 if (multiplier <= min_multiplier) { 2371 min_multiplier = multiplier; 2372 min_miss_flags = miss_flags; 2373 } 2374 } 2375 } 2376 } 2377 2378 if (min_multiplier == UINT_MAX) { 2379 rte_flow_error_set(error, ENOTSUP, 2380 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2381 "The flow rule pattern is unsupported"); 2382 return -rte_errno; 2383 } 2384 2385 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2386 efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag; 2387 2388 if ((flag & min_miss_flags) == flag) { 2389 rc = sfc_flow_spec_add_match_flag(spec, flag, error); 2390 if (rc != 0) 2391 return rc; 2392 } 2393 } 2394 2395 return 0; 2396 } 2397 2398 /** 2399 * Check that set of match flags is referred to by a filter. Filter is 2400 * described by match flags with the ability to add OUTER_VID and INNER_VID 2401 * flags. 2402 * 2403 * @param match_flags[in] 2404 * Set of match flags. 2405 * @param flags_pattern[in] 2406 * Pattern of filter match flags. 2407 */ 2408 static boolean_t 2409 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags, 2410 efx_filter_match_flags_t flags_pattern) 2411 { 2412 if ((match_flags & flags_pattern) != flags_pattern) 2413 return B_FALSE; 2414 2415 switch (match_flags & ~flags_pattern) { 2416 case 0: 2417 case EFX_FILTER_MATCH_OUTER_VID: 2418 case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID: 2419 return B_TRUE; 2420 default: 2421 return B_FALSE; 2422 } 2423 } 2424 2425 /** 2426 * Check whether the spec maps to a hardware filter which is known to be 2427 * ineffective despite being valid. 2428 * 2429 * @param filter[in] 2430 * SFC filter with list of supported filters. 2431 * @param spec[in] 2432 * SFC flow specification. 2433 */ 2434 static boolean_t 2435 sfc_flow_is_match_flags_exception(struct sfc_filter *filter, 2436 struct sfc_flow_spec *spec) 2437 { 2438 unsigned int i; 2439 uint16_t ether_type; 2440 uint8_t ip_proto; 2441 efx_filter_match_flags_t match_flags; 2442 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2443 2444 for (i = 0; i < spec_filter->count; i++) { 2445 match_flags = spec_filter->filters[i].efs_match_flags; 2446 2447 if (sfc_flow_is_match_with_vids(match_flags, 2448 EFX_FILTER_MATCH_ETHER_TYPE) || 2449 sfc_flow_is_match_with_vids(match_flags, 2450 EFX_FILTER_MATCH_ETHER_TYPE | 2451 EFX_FILTER_MATCH_LOC_MAC)) { 2452 ether_type = spec_filter->filters[i].efs_ether_type; 2453 if (filter->supports_ip_proto_or_addr_filter && 2454 (ether_type == EFX_ETHER_TYPE_IPV4 || 2455 ether_type == EFX_ETHER_TYPE_IPV6)) 2456 return B_TRUE; 2457 } else if (sfc_flow_is_match_with_vids(match_flags, 2458 EFX_FILTER_MATCH_ETHER_TYPE | 2459 EFX_FILTER_MATCH_IP_PROTO) || 2460 sfc_flow_is_match_with_vids(match_flags, 2461 EFX_FILTER_MATCH_ETHER_TYPE | 2462 EFX_FILTER_MATCH_IP_PROTO | 2463 EFX_FILTER_MATCH_LOC_MAC)) { 2464 ip_proto = spec_filter->filters[i].efs_ip_proto; 2465 if (filter->supports_rem_or_local_port_filter && 2466 (ip_proto == EFX_IPPROTO_TCP || 2467 ip_proto == EFX_IPPROTO_UDP)) 2468 return B_TRUE; 2469 } 2470 } 2471 2472 return B_FALSE; 2473 } 2474 2475 static int 2476 sfc_flow_validate_match_flags(struct sfc_adapter *sa, 2477 struct rte_flow *flow, 2478 struct rte_flow_error *error) 2479 { 2480 struct sfc_flow_spec *spec = &flow->spec; 2481 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2482 efx_filter_spec_t *spec_tmpl = &spec_filter->template; 2483 efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags; 2484 int rc; 2485 2486 /* Initialize the first filter spec with template */ 2487 spec_filter->filters[0] = *spec_tmpl; 2488 spec_filter->count = 1; 2489 2490 if (!sfc_filter_is_match_supported(sa, match_flags)) { 2491 rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error); 2492 if (rc != 0) 2493 return rc; 2494 } 2495 2496 if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) { 2497 rte_flow_error_set(error, ENOTSUP, 2498 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2499 "The flow rule pattern is unsupported"); 2500 return -rte_errno; 2501 } 2502 2503 return 0; 2504 } 2505 2506 static int 2507 sfc_flow_parse_rte_to_filter(struct rte_eth_dev *dev, 2508 const struct rte_flow_item pattern[], 2509 const struct rte_flow_action actions[], 2510 struct rte_flow *flow, 2511 struct rte_flow_error *error) 2512 { 2513 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2514 struct sfc_flow_spec *spec = &flow->spec; 2515 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2516 struct sfc_flow_parse_ctx ctx; 2517 int rc; 2518 2519 ctx.type = SFC_FLOW_PARSE_CTX_FILTER; 2520 ctx.filter = &spec_filter->template; 2521 2522 rc = sfc_flow_parse_pattern(sa, sfc_flow_items, RTE_DIM(sfc_flow_items), 2523 pattern, &ctx, error); 2524 if (rc != 0) 2525 goto fail_bad_value; 2526 2527 rc = sfc_flow_parse_actions(sa, actions, flow, error); 2528 if (rc != 0) 2529 goto fail_bad_value; 2530 2531 rc = sfc_flow_validate_match_flags(sa, flow, error); 2532 if (rc != 0) 2533 goto fail_bad_value; 2534 2535 return 0; 2536 2537 fail_bad_value: 2538 return rc; 2539 } 2540 2541 static int 2542 sfc_flow_parse_rte_to_mae(struct rte_eth_dev *dev, 2543 const struct rte_flow_item pattern[], 2544 const struct rte_flow_action actions[], 2545 struct rte_flow *flow, 2546 struct rte_flow_error *error) 2547 { 2548 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2549 struct sfc_flow_spec *spec = &flow->spec; 2550 struct sfc_flow_spec_mae *spec_mae = &spec->mae; 2551 int rc; 2552 2553 /* 2554 * If the flow is meant to be a JUMP rule in tunnel offload, 2555 * preparse its actions and save its properties in spec_mae. 2556 */ 2557 rc = sfc_flow_tunnel_detect_jump_rule(sa, actions, spec_mae, error); 2558 if (rc != 0) 2559 goto fail; 2560 2561 rc = sfc_mae_rule_parse_pattern(sa, pattern, spec_mae, error); 2562 if (rc != 0) 2563 goto fail; 2564 2565 if (spec_mae->ft_rule_type == SFC_FT_RULE_JUMP) { 2566 /* 2567 * By design, this flow should be represented solely by the 2568 * outer rule. But the HW/FW hasn't got support for setting 2569 * Rx mark from RECIRC_ID on outer rule lookup yet. Neither 2570 * does it support outer rule counters. As a workaround, an 2571 * action rule of lower priority is used to do the job. 2572 * 2573 * So don't skip sfc_mae_rule_parse_actions() below. 2574 */ 2575 } 2576 2577 rc = sfc_mae_rule_parse_actions(sa, actions, spec_mae, error); 2578 if (rc != 0) 2579 goto fail; 2580 2581 if (spec_mae->ft != NULL) { 2582 if (spec_mae->ft_rule_type == SFC_FT_RULE_JUMP) 2583 spec_mae->ft->jump_rule_is_set = B_TRUE; 2584 2585 ++(spec_mae->ft->refcnt); 2586 } 2587 2588 return 0; 2589 2590 fail: 2591 /* Reset these values to avoid confusing sfc_mae_flow_cleanup(). */ 2592 spec_mae->ft_rule_type = SFC_FT_RULE_NONE; 2593 spec_mae->ft = NULL; 2594 2595 return rc; 2596 } 2597 2598 static int 2599 sfc_flow_parse(struct rte_eth_dev *dev, 2600 const struct rte_flow_attr *attr, 2601 const struct rte_flow_item pattern[], 2602 const struct rte_flow_action actions[], 2603 struct rte_flow *flow, 2604 struct rte_flow_error *error) 2605 { 2606 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2607 const struct sfc_flow_ops_by_spec *ops; 2608 int rc; 2609 2610 rc = sfc_flow_parse_attr(sa, attr, flow, error); 2611 if (rc != 0) 2612 return rc; 2613 2614 ops = sfc_flow_get_ops_by_spec(flow); 2615 if (ops == NULL || ops->parse == NULL) { 2616 rte_flow_error_set(error, ENOTSUP, 2617 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2618 "No backend to handle this flow"); 2619 return -rte_errno; 2620 } 2621 2622 return ops->parse(dev, pattern, actions, flow, error); 2623 } 2624 2625 static struct rte_flow * 2626 sfc_flow_zmalloc(struct rte_flow_error *error) 2627 { 2628 struct rte_flow *flow; 2629 2630 flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0); 2631 if (flow == NULL) { 2632 rte_flow_error_set(error, ENOMEM, 2633 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2634 "Failed to allocate memory"); 2635 } 2636 2637 return flow; 2638 } 2639 2640 static void 2641 sfc_flow_free(struct sfc_adapter *sa, struct rte_flow *flow) 2642 { 2643 const struct sfc_flow_ops_by_spec *ops; 2644 2645 ops = sfc_flow_get_ops_by_spec(flow); 2646 if (ops != NULL && ops->cleanup != NULL) 2647 ops->cleanup(sa, flow); 2648 2649 rte_free(flow); 2650 } 2651 2652 static int 2653 sfc_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow, 2654 struct rte_flow_error *error) 2655 { 2656 const struct sfc_flow_ops_by_spec *ops; 2657 int rc; 2658 2659 ops = sfc_flow_get_ops_by_spec(flow); 2660 if (ops == NULL || ops->insert == NULL) { 2661 rte_flow_error_set(error, ENOTSUP, 2662 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2663 "No backend to handle this flow"); 2664 return rte_errno; 2665 } 2666 2667 rc = ops->insert(sa, flow); 2668 if (rc != 0) { 2669 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2670 NULL, "Failed to insert the flow rule"); 2671 } 2672 2673 return rc; 2674 } 2675 2676 static int 2677 sfc_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow, 2678 struct rte_flow_error *error) 2679 { 2680 const struct sfc_flow_ops_by_spec *ops; 2681 int rc; 2682 2683 ops = sfc_flow_get_ops_by_spec(flow); 2684 if (ops == NULL || ops->remove == NULL) { 2685 rte_flow_error_set(error, ENOTSUP, 2686 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2687 "No backend to handle this flow"); 2688 return rte_errno; 2689 } 2690 2691 rc = ops->remove(sa, flow); 2692 if (rc != 0) { 2693 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2694 NULL, "Failed to remove the flow rule"); 2695 } 2696 2697 return rc; 2698 } 2699 2700 static int 2701 sfc_flow_verify(struct sfc_adapter *sa, struct rte_flow *flow, 2702 struct rte_flow_error *error) 2703 { 2704 const struct sfc_flow_ops_by_spec *ops; 2705 int rc = 0; 2706 2707 ops = sfc_flow_get_ops_by_spec(flow); 2708 if (ops == NULL) { 2709 rte_flow_error_set(error, ENOTSUP, 2710 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2711 "No backend to handle this flow"); 2712 return -rte_errno; 2713 } 2714 2715 if (ops->verify != NULL) { 2716 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2717 rc = ops->verify(sa, flow); 2718 } 2719 2720 if (rc != 0) { 2721 rte_flow_error_set(error, rc, 2722 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2723 "Failed to verify flow validity with FW"); 2724 return -rte_errno; 2725 } 2726 2727 return 0; 2728 } 2729 2730 static int 2731 sfc_flow_validate(struct rte_eth_dev *dev, 2732 const struct rte_flow_attr *attr, 2733 const struct rte_flow_item pattern[], 2734 const struct rte_flow_action actions[], 2735 struct rte_flow_error *error) 2736 { 2737 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2738 struct rte_flow *flow; 2739 int rc; 2740 2741 flow = sfc_flow_zmalloc(error); 2742 if (flow == NULL) 2743 return -rte_errno; 2744 2745 sfc_adapter_lock(sa); 2746 2747 rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error); 2748 if (rc == 0) 2749 rc = sfc_flow_verify(sa, flow, error); 2750 2751 sfc_flow_free(sa, flow); 2752 2753 sfc_adapter_unlock(sa); 2754 2755 return rc; 2756 } 2757 2758 static struct rte_flow * 2759 sfc_flow_create(struct rte_eth_dev *dev, 2760 const struct rte_flow_attr *attr, 2761 const struct rte_flow_item pattern[], 2762 const struct rte_flow_action actions[], 2763 struct rte_flow_error *error) 2764 { 2765 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2766 struct rte_flow *flow = NULL; 2767 int rc; 2768 2769 flow = sfc_flow_zmalloc(error); 2770 if (flow == NULL) 2771 goto fail_no_mem; 2772 2773 sfc_adapter_lock(sa); 2774 2775 rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error); 2776 if (rc != 0) 2777 goto fail_bad_value; 2778 2779 TAILQ_INSERT_TAIL(&sa->flow_list, flow, entries); 2780 2781 if (sa->state == SFC_ETHDEV_STARTED) { 2782 rc = sfc_flow_insert(sa, flow, error); 2783 if (rc != 0) 2784 goto fail_flow_insert; 2785 } 2786 2787 sfc_adapter_unlock(sa); 2788 2789 return flow; 2790 2791 fail_flow_insert: 2792 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2793 2794 fail_bad_value: 2795 sfc_flow_free(sa, flow); 2796 sfc_adapter_unlock(sa); 2797 2798 fail_no_mem: 2799 return NULL; 2800 } 2801 2802 static int 2803 sfc_flow_destroy(struct rte_eth_dev *dev, 2804 struct rte_flow *flow, 2805 struct rte_flow_error *error) 2806 { 2807 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2808 struct rte_flow *flow_ptr; 2809 int rc = EINVAL; 2810 2811 sfc_adapter_lock(sa); 2812 2813 TAILQ_FOREACH(flow_ptr, &sa->flow_list, entries) { 2814 if (flow_ptr == flow) 2815 rc = 0; 2816 } 2817 if (rc != 0) { 2818 rte_flow_error_set(error, rc, 2819 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 2820 "Failed to find flow rule to destroy"); 2821 goto fail_bad_value; 2822 } 2823 2824 if (sa->state == SFC_ETHDEV_STARTED) 2825 rc = sfc_flow_remove(sa, flow, error); 2826 2827 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2828 sfc_flow_free(sa, flow); 2829 2830 fail_bad_value: 2831 sfc_adapter_unlock(sa); 2832 2833 return -rc; 2834 } 2835 2836 static int 2837 sfc_flow_flush(struct rte_eth_dev *dev, 2838 struct rte_flow_error *error) 2839 { 2840 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2841 struct rte_flow *flow; 2842 int ret = 0; 2843 2844 sfc_adapter_lock(sa); 2845 2846 while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) { 2847 if (sa->state == SFC_ETHDEV_STARTED) { 2848 int rc; 2849 2850 rc = sfc_flow_remove(sa, flow, error); 2851 if (rc != 0) 2852 ret = rc; 2853 } 2854 2855 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2856 sfc_flow_free(sa, flow); 2857 } 2858 2859 sfc_adapter_unlock(sa); 2860 2861 return -ret; 2862 } 2863 2864 static int 2865 sfc_flow_query(struct rte_eth_dev *dev, 2866 struct rte_flow *flow, 2867 const struct rte_flow_action *action, 2868 void *data, 2869 struct rte_flow_error *error) 2870 { 2871 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2872 const struct sfc_flow_ops_by_spec *ops; 2873 int ret; 2874 2875 sfc_adapter_lock(sa); 2876 2877 ops = sfc_flow_get_ops_by_spec(flow); 2878 if (ops == NULL || ops->query == NULL) { 2879 ret = rte_flow_error_set(error, ENOTSUP, 2880 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2881 "No backend to handle this flow"); 2882 goto fail_no_backend; 2883 } 2884 2885 if (sa->state != SFC_ETHDEV_STARTED) { 2886 ret = rte_flow_error_set(error, EINVAL, 2887 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2888 "Can't query the flow: the adapter is not started"); 2889 goto fail_not_started; 2890 } 2891 2892 ret = ops->query(dev, flow, action, data, error); 2893 if (ret != 0) 2894 goto fail_query; 2895 2896 sfc_adapter_unlock(sa); 2897 2898 return 0; 2899 2900 fail_query: 2901 fail_not_started: 2902 fail_no_backend: 2903 sfc_adapter_unlock(sa); 2904 return ret; 2905 } 2906 2907 static int 2908 sfc_flow_isolate(struct rte_eth_dev *dev, int enable, 2909 struct rte_flow_error *error) 2910 { 2911 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2912 int ret = 0; 2913 2914 sfc_adapter_lock(sa); 2915 if (sa->state != SFC_ETHDEV_INITIALIZED) { 2916 rte_flow_error_set(error, EBUSY, 2917 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2918 NULL, "please close the port first"); 2919 ret = -rte_errno; 2920 } else { 2921 sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE; 2922 } 2923 sfc_adapter_unlock(sa); 2924 2925 return ret; 2926 } 2927 2928 static int 2929 sfc_flow_pick_transfer_proxy(struct rte_eth_dev *dev, 2930 uint16_t *transfer_proxy_port, 2931 struct rte_flow_error *error) 2932 { 2933 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2934 int ret; 2935 2936 ret = sfc_mae_get_switch_domain_admin(sa->mae.switch_domain_id, 2937 transfer_proxy_port); 2938 if (ret != 0) { 2939 return rte_flow_error_set(error, ret, 2940 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2941 NULL, NULL); 2942 } 2943 2944 return 0; 2945 } 2946 2947 const struct rte_flow_ops sfc_flow_ops = { 2948 .validate = sfc_flow_validate, 2949 .create = sfc_flow_create, 2950 .destroy = sfc_flow_destroy, 2951 .flush = sfc_flow_flush, 2952 .query = sfc_flow_query, 2953 .isolate = sfc_flow_isolate, 2954 .tunnel_decap_set = sfc_flow_tunnel_decap_set, 2955 .tunnel_match = sfc_flow_tunnel_match, 2956 .tunnel_action_decap_release = sfc_flow_tunnel_action_decap_release, 2957 .tunnel_item_release = sfc_flow_tunnel_item_release, 2958 .get_restore_info = sfc_flow_tunnel_get_restore_info, 2959 .pick_transfer_proxy = sfc_flow_pick_transfer_proxy, 2960 }; 2961 2962 void 2963 sfc_flow_init(struct sfc_adapter *sa) 2964 { 2965 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2966 2967 TAILQ_INIT(&sa->flow_list); 2968 } 2969 2970 void 2971 sfc_flow_fini(struct sfc_adapter *sa) 2972 { 2973 struct rte_flow *flow; 2974 2975 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2976 2977 while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) { 2978 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2979 sfc_flow_free(sa, flow); 2980 } 2981 } 2982 2983 void 2984 sfc_flow_stop(struct sfc_adapter *sa) 2985 { 2986 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 2987 struct sfc_rss *rss = &sas->rss; 2988 struct rte_flow *flow; 2989 2990 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2991 2992 TAILQ_FOREACH(flow, &sa->flow_list, entries) 2993 sfc_flow_remove(sa, flow, NULL); 2994 2995 if (rss->dummy_rss_context != EFX_RSS_CONTEXT_DEFAULT) { 2996 efx_rx_scale_context_free(sa->nic, rss->dummy_rss_context); 2997 rss->dummy_rss_context = EFX_RSS_CONTEXT_DEFAULT; 2998 } 2999 3000 /* 3001 * MAE counter service is not stopped on flow rule remove to avoid 3002 * extra work. Make sure that it is stopped here. 3003 */ 3004 sfc_mae_counter_stop(sa); 3005 } 3006 3007 int 3008 sfc_flow_start(struct sfc_adapter *sa) 3009 { 3010 struct rte_flow *flow; 3011 int rc = 0; 3012 3013 sfc_log_init(sa, "entry"); 3014 3015 SFC_ASSERT(sfc_adapter_is_locked(sa)); 3016 3017 sfc_flow_tunnel_reset_hit_counters(sa); 3018 3019 TAILQ_FOREACH(flow, &sa->flow_list, entries) { 3020 rc = sfc_flow_insert(sa, flow, NULL); 3021 if (rc != 0) 3022 goto fail_bad_flow; 3023 } 3024 3025 sfc_log_init(sa, "done"); 3026 3027 fail_bad_flow: 3028 return rc; 3029 } 3030