xref: /dpdk/drivers/net/sfc/sfc_flow.c (revision 9f3b3a96dec2f4c01cc92a132d763b8887d29e6a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2017-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_byteorder.h>
11 #include <rte_tailq.h>
12 #include <rte_common.h>
13 #include <rte_ethdev_driver.h>
14 #include <rte_ether.h>
15 #include <rte_flow.h>
16 #include <rte_flow_driver.h>
17 
18 #include "efx.h"
19 
20 #include "sfc.h"
21 #include "sfc_debug.h"
22 #include "sfc_rx.h"
23 #include "sfc_filter.h"
24 #include "sfc_flow.h"
25 #include "sfc_log.h"
26 #include "sfc_dp_rx.h"
27 
28 struct sfc_flow_ops_by_spec {
29 	sfc_flow_parse_cb_t	*parse;
30 	sfc_flow_verify_cb_t	*verify;
31 	sfc_flow_cleanup_cb_t	*cleanup;
32 	sfc_flow_insert_cb_t	*insert;
33 	sfc_flow_remove_cb_t	*remove;
34 };
35 
36 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_filter;
37 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_mae;
38 static sfc_flow_insert_cb_t sfc_flow_filter_insert;
39 static sfc_flow_remove_cb_t sfc_flow_filter_remove;
40 
41 static const struct sfc_flow_ops_by_spec sfc_flow_ops_filter = {
42 	.parse = sfc_flow_parse_rte_to_filter,
43 	.verify = NULL,
44 	.cleanup = NULL,
45 	.insert = sfc_flow_filter_insert,
46 	.remove = sfc_flow_filter_remove,
47 };
48 
49 static const struct sfc_flow_ops_by_spec sfc_flow_ops_mae = {
50 	.parse = sfc_flow_parse_rte_to_mae,
51 	.verify = sfc_mae_flow_verify,
52 	.cleanup = sfc_mae_flow_cleanup,
53 	.insert = sfc_mae_flow_insert,
54 	.remove = sfc_mae_flow_remove,
55 };
56 
57 static const struct sfc_flow_ops_by_spec *
58 sfc_flow_get_ops_by_spec(struct rte_flow *flow)
59 {
60 	struct sfc_flow_spec *spec = &flow->spec;
61 	const struct sfc_flow_ops_by_spec *ops = NULL;
62 
63 	switch (spec->type) {
64 	case SFC_FLOW_SPEC_FILTER:
65 		ops = &sfc_flow_ops_filter;
66 		break;
67 	case SFC_FLOW_SPEC_MAE:
68 		ops = &sfc_flow_ops_mae;
69 		break;
70 	default:
71 		SFC_ASSERT(false);
72 		break;
73 	}
74 
75 	return ops;
76 }
77 
78 /*
79  * Currently, filter-based (VNIC) flow API is implemented in such a manner
80  * that each flow rule is converted to one or more hardware filters.
81  * All elements of flow rule (attributes, pattern items, actions)
82  * correspond to one or more fields in the efx_filter_spec_s structure
83  * that is responsible for the hardware filter.
84  * If some required field is unset in the flow rule, then a handful
85  * of filter copies will be created to cover all possible values
86  * of such a field.
87  */
88 
89 static sfc_flow_item_parse sfc_flow_parse_void;
90 static sfc_flow_item_parse sfc_flow_parse_eth;
91 static sfc_flow_item_parse sfc_flow_parse_vlan;
92 static sfc_flow_item_parse sfc_flow_parse_ipv4;
93 static sfc_flow_item_parse sfc_flow_parse_ipv6;
94 static sfc_flow_item_parse sfc_flow_parse_tcp;
95 static sfc_flow_item_parse sfc_flow_parse_udp;
96 static sfc_flow_item_parse sfc_flow_parse_vxlan;
97 static sfc_flow_item_parse sfc_flow_parse_geneve;
98 static sfc_flow_item_parse sfc_flow_parse_nvgre;
99 
100 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec,
101 				     unsigned int filters_count_for_one_val,
102 				     struct rte_flow_error *error);
103 
104 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match,
105 					efx_filter_spec_t *spec,
106 					struct sfc_filter *filter);
107 
108 struct sfc_flow_copy_flag {
109 	/* EFX filter specification match flag */
110 	efx_filter_match_flags_t flag;
111 	/* Number of values of corresponding field */
112 	unsigned int vals_count;
113 	/* Function to set values in specifications */
114 	sfc_flow_spec_set_vals *set_vals;
115 	/*
116 	 * Function to check that the specification is suitable
117 	 * for adding this match flag
118 	 */
119 	sfc_flow_spec_check *spec_check;
120 };
121 
122 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags;
123 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags;
124 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes;
125 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags;
126 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags;
127 static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag;
128 static sfc_flow_spec_check sfc_flow_check_outer_vid_flag;
129 
130 static boolean_t
131 sfc_flow_is_zero(const uint8_t *buf, unsigned int size)
132 {
133 	uint8_t sum = 0;
134 	unsigned int i;
135 
136 	for (i = 0; i < size; i++)
137 		sum |= buf[i];
138 
139 	return (sum == 0) ? B_TRUE : B_FALSE;
140 }
141 
142 /*
143  * Validate item and prepare structures spec and mask for parsing
144  */
145 int
146 sfc_flow_parse_init(const struct rte_flow_item *item,
147 		    const void **spec_ptr,
148 		    const void **mask_ptr,
149 		    const void *supp_mask,
150 		    const void *def_mask,
151 		    unsigned int size,
152 		    struct rte_flow_error *error)
153 {
154 	const uint8_t *spec;
155 	const uint8_t *mask;
156 	const uint8_t *last;
157 	uint8_t supp;
158 	unsigned int i;
159 
160 	if (item == NULL) {
161 		rte_flow_error_set(error, EINVAL,
162 				   RTE_FLOW_ERROR_TYPE_ITEM, NULL,
163 				   "NULL item");
164 		return -rte_errno;
165 	}
166 
167 	if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) {
168 		rte_flow_error_set(error, EINVAL,
169 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
170 				   "Mask or last is set without spec");
171 		return -rte_errno;
172 	}
173 
174 	/*
175 	 * If "mask" is not set, default mask is used,
176 	 * but if default mask is NULL, "mask" should be set
177 	 */
178 	if (item->mask == NULL) {
179 		if (def_mask == NULL) {
180 			rte_flow_error_set(error, EINVAL,
181 				RTE_FLOW_ERROR_TYPE_ITEM, NULL,
182 				"Mask should be specified");
183 			return -rte_errno;
184 		}
185 
186 		mask = def_mask;
187 	} else {
188 		mask = item->mask;
189 	}
190 
191 	spec = item->spec;
192 	last = item->last;
193 
194 	if (spec == NULL)
195 		goto exit;
196 
197 	/*
198 	 * If field values in "last" are either 0 or equal to the corresponding
199 	 * values in "spec" then they are ignored
200 	 */
201 	if (last != NULL &&
202 	    !sfc_flow_is_zero(last, size) &&
203 	    memcmp(last, spec, size) != 0) {
204 		rte_flow_error_set(error, ENOTSUP,
205 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
206 				   "Ranging is not supported");
207 		return -rte_errno;
208 	}
209 
210 	if (supp_mask == NULL) {
211 		rte_flow_error_set(error, EINVAL,
212 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
213 			"Supported mask for item should be specified");
214 		return -rte_errno;
215 	}
216 
217 	/* Check that mask does not ask for more match than supp_mask */
218 	for (i = 0; i < size; i++) {
219 		supp = ((const uint8_t *)supp_mask)[i];
220 
221 		if (~supp & mask[i]) {
222 			rte_flow_error_set(error, ENOTSUP,
223 					   RTE_FLOW_ERROR_TYPE_ITEM, item,
224 					   "Item's field is not supported");
225 			return -rte_errno;
226 		}
227 	}
228 
229 exit:
230 	*spec_ptr = spec;
231 	*mask_ptr = mask;
232 	return 0;
233 }
234 
235 /*
236  * Protocol parsers.
237  * Masking is not supported, so masks in items should be either
238  * full or empty (zeroed) and set only for supported fields which
239  * are specified in the supp_mask.
240  */
241 
242 static int
243 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item,
244 		    __rte_unused struct sfc_flow_parse_ctx *parse_ctx,
245 		    __rte_unused struct rte_flow_error *error)
246 {
247 	return 0;
248 }
249 
250 /**
251  * Convert Ethernet item to EFX filter specification.
252  *
253  * @param item[in]
254  *   Item specification. Outer frame specification may only comprise
255  *   source/destination addresses and Ethertype field.
256  *   Inner frame specification may contain destination address only.
257  *   There is support for individual/group mask as well as for empty and full.
258  *   If the mask is NULL, default mask will be used. Ranging is not supported.
259  * @param efx_spec[in, out]
260  *   EFX filter specification to update.
261  * @param[out] error
262  *   Perform verbose error reporting if not NULL.
263  */
264 static int
265 sfc_flow_parse_eth(const struct rte_flow_item *item,
266 		   struct sfc_flow_parse_ctx *parse_ctx,
267 		   struct rte_flow_error *error)
268 {
269 	int rc;
270 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
271 	const struct rte_flow_item_eth *spec = NULL;
272 	const struct rte_flow_item_eth *mask = NULL;
273 	const struct rte_flow_item_eth supp_mask = {
274 		.dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
275 		.src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
276 		.type = 0xffff,
277 	};
278 	const struct rte_flow_item_eth ifrm_supp_mask = {
279 		.dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
280 	};
281 	const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = {
282 		0x01, 0x00, 0x00, 0x00, 0x00, 0x00
283 	};
284 	const struct rte_flow_item_eth *supp_mask_p;
285 	const struct rte_flow_item_eth *def_mask_p;
286 	uint8_t *loc_mac = NULL;
287 	boolean_t is_ifrm = (efx_spec->efs_encap_type !=
288 		EFX_TUNNEL_PROTOCOL_NONE);
289 
290 	if (is_ifrm) {
291 		supp_mask_p = &ifrm_supp_mask;
292 		def_mask_p = &ifrm_supp_mask;
293 		loc_mac = efx_spec->efs_ifrm_loc_mac;
294 	} else {
295 		supp_mask_p = &supp_mask;
296 		def_mask_p = &rte_flow_item_eth_mask;
297 		loc_mac = efx_spec->efs_loc_mac;
298 	}
299 
300 	rc = sfc_flow_parse_init(item,
301 				 (const void **)&spec,
302 				 (const void **)&mask,
303 				 supp_mask_p, def_mask_p,
304 				 sizeof(struct rte_flow_item_eth),
305 				 error);
306 	if (rc != 0)
307 		return rc;
308 
309 	/* If "spec" is not set, could be any Ethernet */
310 	if (spec == NULL)
311 		return 0;
312 
313 	if (rte_is_same_ether_addr(&mask->dst, &supp_mask.dst)) {
314 		efx_spec->efs_match_flags |= is_ifrm ?
315 			EFX_FILTER_MATCH_IFRM_LOC_MAC :
316 			EFX_FILTER_MATCH_LOC_MAC;
317 		rte_memcpy(loc_mac, spec->dst.addr_bytes,
318 			   EFX_MAC_ADDR_LEN);
319 	} else if (memcmp(mask->dst.addr_bytes, ig_mask,
320 			  EFX_MAC_ADDR_LEN) == 0) {
321 		if (rte_is_unicast_ether_addr(&spec->dst))
322 			efx_spec->efs_match_flags |= is_ifrm ?
323 				EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST :
324 				EFX_FILTER_MATCH_UNKNOWN_UCAST_DST;
325 		else
326 			efx_spec->efs_match_flags |= is_ifrm ?
327 				EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST :
328 				EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
329 	} else if (!rte_is_zero_ether_addr(&mask->dst)) {
330 		goto fail_bad_mask;
331 	}
332 
333 	/*
334 	 * ifrm_supp_mask ensures that the source address and
335 	 * ethertype masks are equal to zero in inner frame,
336 	 * so these fields are filled in only for the outer frame
337 	 */
338 	if (rte_is_same_ether_addr(&mask->src, &supp_mask.src)) {
339 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC;
340 		rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes,
341 			   EFX_MAC_ADDR_LEN);
342 	} else if (!rte_is_zero_ether_addr(&mask->src)) {
343 		goto fail_bad_mask;
344 	}
345 
346 	/*
347 	 * Ether type is in big-endian byte order in item and
348 	 * in little-endian in efx_spec, so byte swap is used
349 	 */
350 	if (mask->type == supp_mask.type) {
351 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
352 		efx_spec->efs_ether_type = rte_bswap16(spec->type);
353 	} else if (mask->type != 0) {
354 		goto fail_bad_mask;
355 	}
356 
357 	return 0;
358 
359 fail_bad_mask:
360 	rte_flow_error_set(error, EINVAL,
361 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
362 			   "Bad mask in the ETH pattern item");
363 	return -rte_errno;
364 }
365 
366 /**
367  * Convert VLAN item to EFX filter specification.
368  *
369  * @param item[in]
370  *   Item specification. Only VID field is supported.
371  *   The mask can not be NULL. Ranging is not supported.
372  * @param efx_spec[in, out]
373  *   EFX filter specification to update.
374  * @param[out] error
375  *   Perform verbose error reporting if not NULL.
376  */
377 static int
378 sfc_flow_parse_vlan(const struct rte_flow_item *item,
379 		    struct sfc_flow_parse_ctx *parse_ctx,
380 		    struct rte_flow_error *error)
381 {
382 	int rc;
383 	uint16_t vid;
384 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
385 	const struct rte_flow_item_vlan *spec = NULL;
386 	const struct rte_flow_item_vlan *mask = NULL;
387 	const struct rte_flow_item_vlan supp_mask = {
388 		.tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX),
389 		.inner_type = RTE_BE16(0xffff),
390 	};
391 
392 	rc = sfc_flow_parse_init(item,
393 				 (const void **)&spec,
394 				 (const void **)&mask,
395 				 &supp_mask,
396 				 NULL,
397 				 sizeof(struct rte_flow_item_vlan),
398 				 error);
399 	if (rc != 0)
400 		return rc;
401 
402 	/*
403 	 * VID is in big-endian byte order in item and
404 	 * in little-endian in efx_spec, so byte swap is used.
405 	 * If two VLAN items are included, the first matches
406 	 * the outer tag and the next matches the inner tag.
407 	 */
408 	if (mask->tci == supp_mask.tci) {
409 		/* Apply mask to keep VID only */
410 		vid = rte_bswap16(spec->tci & mask->tci);
411 
412 		if (!(efx_spec->efs_match_flags &
413 		      EFX_FILTER_MATCH_OUTER_VID)) {
414 			efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID;
415 			efx_spec->efs_outer_vid = vid;
416 		} else if (!(efx_spec->efs_match_flags &
417 			     EFX_FILTER_MATCH_INNER_VID)) {
418 			efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID;
419 			efx_spec->efs_inner_vid = vid;
420 		} else {
421 			rte_flow_error_set(error, EINVAL,
422 					   RTE_FLOW_ERROR_TYPE_ITEM, item,
423 					   "More than two VLAN items");
424 			return -rte_errno;
425 		}
426 	} else {
427 		rte_flow_error_set(error, EINVAL,
428 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
429 				   "VLAN ID in TCI match is required");
430 		return -rte_errno;
431 	}
432 
433 	if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) {
434 		rte_flow_error_set(error, EINVAL,
435 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
436 				   "VLAN TPID matching is not supported");
437 		return -rte_errno;
438 	}
439 	if (mask->inner_type == supp_mask.inner_type) {
440 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
441 		efx_spec->efs_ether_type = rte_bswap16(spec->inner_type);
442 	} else if (mask->inner_type) {
443 		rte_flow_error_set(error, EINVAL,
444 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
445 				   "Bad mask for VLAN inner_type");
446 		return -rte_errno;
447 	}
448 
449 	return 0;
450 }
451 
452 /**
453  * Convert IPv4 item to EFX filter specification.
454  *
455  * @param item[in]
456  *   Item specification. Only source and destination addresses and
457  *   protocol fields are supported. If the mask is NULL, default
458  *   mask will be used. Ranging is not supported.
459  * @param efx_spec[in, out]
460  *   EFX filter specification to update.
461  * @param[out] error
462  *   Perform verbose error reporting if not NULL.
463  */
464 static int
465 sfc_flow_parse_ipv4(const struct rte_flow_item *item,
466 		    struct sfc_flow_parse_ctx *parse_ctx,
467 		    struct rte_flow_error *error)
468 {
469 	int rc;
470 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
471 	const struct rte_flow_item_ipv4 *spec = NULL;
472 	const struct rte_flow_item_ipv4 *mask = NULL;
473 	const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4);
474 	const struct rte_flow_item_ipv4 supp_mask = {
475 		.hdr = {
476 			.src_addr = 0xffffffff,
477 			.dst_addr = 0xffffffff,
478 			.next_proto_id = 0xff,
479 		}
480 	};
481 
482 	rc = sfc_flow_parse_init(item,
483 				 (const void **)&spec,
484 				 (const void **)&mask,
485 				 &supp_mask,
486 				 &rte_flow_item_ipv4_mask,
487 				 sizeof(struct rte_flow_item_ipv4),
488 				 error);
489 	if (rc != 0)
490 		return rc;
491 
492 	/*
493 	 * Filtering by IPv4 source and destination addresses requires
494 	 * the appropriate ETHER_TYPE in hardware filters
495 	 */
496 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
497 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
498 		efx_spec->efs_ether_type = ether_type_ipv4;
499 	} else if (efx_spec->efs_ether_type != ether_type_ipv4) {
500 		rte_flow_error_set(error, EINVAL,
501 			RTE_FLOW_ERROR_TYPE_ITEM, item,
502 			"Ethertype in pattern with IPV4 item should be appropriate");
503 		return -rte_errno;
504 	}
505 
506 	if (spec == NULL)
507 		return 0;
508 
509 	/*
510 	 * IPv4 addresses are in big-endian byte order in item and in
511 	 * efx_spec
512 	 */
513 	if (mask->hdr.src_addr == supp_mask.hdr.src_addr) {
514 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
515 		efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr;
516 	} else if (mask->hdr.src_addr != 0) {
517 		goto fail_bad_mask;
518 	}
519 
520 	if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) {
521 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
522 		efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr;
523 	} else if (mask->hdr.dst_addr != 0) {
524 		goto fail_bad_mask;
525 	}
526 
527 	if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) {
528 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
529 		efx_spec->efs_ip_proto = spec->hdr.next_proto_id;
530 	} else if (mask->hdr.next_proto_id != 0) {
531 		goto fail_bad_mask;
532 	}
533 
534 	return 0;
535 
536 fail_bad_mask:
537 	rte_flow_error_set(error, EINVAL,
538 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
539 			   "Bad mask in the IPV4 pattern item");
540 	return -rte_errno;
541 }
542 
543 /**
544  * Convert IPv6 item to EFX filter specification.
545  *
546  * @param item[in]
547  *   Item specification. Only source and destination addresses and
548  *   next header fields are supported. If the mask is NULL, default
549  *   mask will be used. Ranging is not supported.
550  * @param efx_spec[in, out]
551  *   EFX filter specification to update.
552  * @param[out] error
553  *   Perform verbose error reporting if not NULL.
554  */
555 static int
556 sfc_flow_parse_ipv6(const struct rte_flow_item *item,
557 		    struct sfc_flow_parse_ctx *parse_ctx,
558 		    struct rte_flow_error *error)
559 {
560 	int rc;
561 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
562 	const struct rte_flow_item_ipv6 *spec = NULL;
563 	const struct rte_flow_item_ipv6 *mask = NULL;
564 	const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6);
565 	const struct rte_flow_item_ipv6 supp_mask = {
566 		.hdr = {
567 			.src_addr = { 0xff, 0xff, 0xff, 0xff,
568 				      0xff, 0xff, 0xff, 0xff,
569 				      0xff, 0xff, 0xff, 0xff,
570 				      0xff, 0xff, 0xff, 0xff },
571 			.dst_addr = { 0xff, 0xff, 0xff, 0xff,
572 				      0xff, 0xff, 0xff, 0xff,
573 				      0xff, 0xff, 0xff, 0xff,
574 				      0xff, 0xff, 0xff, 0xff },
575 			.proto = 0xff,
576 		}
577 	};
578 
579 	rc = sfc_flow_parse_init(item,
580 				 (const void **)&spec,
581 				 (const void **)&mask,
582 				 &supp_mask,
583 				 &rte_flow_item_ipv6_mask,
584 				 sizeof(struct rte_flow_item_ipv6),
585 				 error);
586 	if (rc != 0)
587 		return rc;
588 
589 	/*
590 	 * Filtering by IPv6 source and destination addresses requires
591 	 * the appropriate ETHER_TYPE in hardware filters
592 	 */
593 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
594 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
595 		efx_spec->efs_ether_type = ether_type_ipv6;
596 	} else if (efx_spec->efs_ether_type != ether_type_ipv6) {
597 		rte_flow_error_set(error, EINVAL,
598 			RTE_FLOW_ERROR_TYPE_ITEM, item,
599 			"Ethertype in pattern with IPV6 item should be appropriate");
600 		return -rte_errno;
601 	}
602 
603 	if (spec == NULL)
604 		return 0;
605 
606 	/*
607 	 * IPv6 addresses are in big-endian byte order in item and in
608 	 * efx_spec
609 	 */
610 	if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr,
611 		   sizeof(mask->hdr.src_addr)) == 0) {
612 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
613 
614 		RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) !=
615 				 sizeof(spec->hdr.src_addr));
616 		rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr,
617 			   sizeof(efx_spec->efs_rem_host));
618 	} else if (!sfc_flow_is_zero(mask->hdr.src_addr,
619 				     sizeof(mask->hdr.src_addr))) {
620 		goto fail_bad_mask;
621 	}
622 
623 	if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr,
624 		   sizeof(mask->hdr.dst_addr)) == 0) {
625 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
626 
627 		RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) !=
628 				 sizeof(spec->hdr.dst_addr));
629 		rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr,
630 			   sizeof(efx_spec->efs_loc_host));
631 	} else if (!sfc_flow_is_zero(mask->hdr.dst_addr,
632 				     sizeof(mask->hdr.dst_addr))) {
633 		goto fail_bad_mask;
634 	}
635 
636 	if (mask->hdr.proto == supp_mask.hdr.proto) {
637 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
638 		efx_spec->efs_ip_proto = spec->hdr.proto;
639 	} else if (mask->hdr.proto != 0) {
640 		goto fail_bad_mask;
641 	}
642 
643 	return 0;
644 
645 fail_bad_mask:
646 	rte_flow_error_set(error, EINVAL,
647 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
648 			   "Bad mask in the IPV6 pattern item");
649 	return -rte_errno;
650 }
651 
652 /**
653  * Convert TCP item to EFX filter specification.
654  *
655  * @param item[in]
656  *   Item specification. Only source and destination ports fields
657  *   are supported. If the mask is NULL, default mask will be used.
658  *   Ranging is not supported.
659  * @param efx_spec[in, out]
660  *   EFX filter specification to update.
661  * @param[out] error
662  *   Perform verbose error reporting if not NULL.
663  */
664 static int
665 sfc_flow_parse_tcp(const struct rte_flow_item *item,
666 		   struct sfc_flow_parse_ctx *parse_ctx,
667 		   struct rte_flow_error *error)
668 {
669 	int rc;
670 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
671 	const struct rte_flow_item_tcp *spec = NULL;
672 	const struct rte_flow_item_tcp *mask = NULL;
673 	const struct rte_flow_item_tcp supp_mask = {
674 		.hdr = {
675 			.src_port = 0xffff,
676 			.dst_port = 0xffff,
677 		}
678 	};
679 
680 	rc = sfc_flow_parse_init(item,
681 				 (const void **)&spec,
682 				 (const void **)&mask,
683 				 &supp_mask,
684 				 &rte_flow_item_tcp_mask,
685 				 sizeof(struct rte_flow_item_tcp),
686 				 error);
687 	if (rc != 0)
688 		return rc;
689 
690 	/*
691 	 * Filtering by TCP source and destination ports requires
692 	 * the appropriate IP_PROTO in hardware filters
693 	 */
694 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
695 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
696 		efx_spec->efs_ip_proto = EFX_IPPROTO_TCP;
697 	} else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) {
698 		rte_flow_error_set(error, EINVAL,
699 			RTE_FLOW_ERROR_TYPE_ITEM, item,
700 			"IP proto in pattern with TCP item should be appropriate");
701 		return -rte_errno;
702 	}
703 
704 	if (spec == NULL)
705 		return 0;
706 
707 	/*
708 	 * Source and destination ports are in big-endian byte order in item and
709 	 * in little-endian in efx_spec, so byte swap is used
710 	 */
711 	if (mask->hdr.src_port == supp_mask.hdr.src_port) {
712 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
713 		efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
714 	} else if (mask->hdr.src_port != 0) {
715 		goto fail_bad_mask;
716 	}
717 
718 	if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
719 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
720 		efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
721 	} else if (mask->hdr.dst_port != 0) {
722 		goto fail_bad_mask;
723 	}
724 
725 	return 0;
726 
727 fail_bad_mask:
728 	rte_flow_error_set(error, EINVAL,
729 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
730 			   "Bad mask in the TCP pattern item");
731 	return -rte_errno;
732 }
733 
734 /**
735  * Convert UDP item to EFX filter specification.
736  *
737  * @param item[in]
738  *   Item specification. Only source and destination ports fields
739  *   are supported. If the mask is NULL, default mask will be used.
740  *   Ranging is not supported.
741  * @param efx_spec[in, out]
742  *   EFX filter specification to update.
743  * @param[out] error
744  *   Perform verbose error reporting if not NULL.
745  */
746 static int
747 sfc_flow_parse_udp(const struct rte_flow_item *item,
748 		   struct sfc_flow_parse_ctx *parse_ctx,
749 		   struct rte_flow_error *error)
750 {
751 	int rc;
752 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
753 	const struct rte_flow_item_udp *spec = NULL;
754 	const struct rte_flow_item_udp *mask = NULL;
755 	const struct rte_flow_item_udp supp_mask = {
756 		.hdr = {
757 			.src_port = 0xffff,
758 			.dst_port = 0xffff,
759 		}
760 	};
761 
762 	rc = sfc_flow_parse_init(item,
763 				 (const void **)&spec,
764 				 (const void **)&mask,
765 				 &supp_mask,
766 				 &rte_flow_item_udp_mask,
767 				 sizeof(struct rte_flow_item_udp),
768 				 error);
769 	if (rc != 0)
770 		return rc;
771 
772 	/*
773 	 * Filtering by UDP source and destination ports requires
774 	 * the appropriate IP_PROTO in hardware filters
775 	 */
776 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
777 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
778 		efx_spec->efs_ip_proto = EFX_IPPROTO_UDP;
779 	} else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) {
780 		rte_flow_error_set(error, EINVAL,
781 			RTE_FLOW_ERROR_TYPE_ITEM, item,
782 			"IP proto in pattern with UDP item should be appropriate");
783 		return -rte_errno;
784 	}
785 
786 	if (spec == NULL)
787 		return 0;
788 
789 	/*
790 	 * Source and destination ports are in big-endian byte order in item and
791 	 * in little-endian in efx_spec, so byte swap is used
792 	 */
793 	if (mask->hdr.src_port == supp_mask.hdr.src_port) {
794 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
795 		efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
796 	} else if (mask->hdr.src_port != 0) {
797 		goto fail_bad_mask;
798 	}
799 
800 	if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
801 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
802 		efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
803 	} else if (mask->hdr.dst_port != 0) {
804 		goto fail_bad_mask;
805 	}
806 
807 	return 0;
808 
809 fail_bad_mask:
810 	rte_flow_error_set(error, EINVAL,
811 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
812 			   "Bad mask in the UDP pattern item");
813 	return -rte_errno;
814 }
815 
816 /*
817  * Filters for encapsulated packets match based on the EtherType and IP
818  * protocol in the outer frame.
819  */
820 static int
821 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item,
822 					efx_filter_spec_t *efx_spec,
823 					uint8_t ip_proto,
824 					struct rte_flow_error *error)
825 {
826 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
827 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
828 		efx_spec->efs_ip_proto = ip_proto;
829 	} else if (efx_spec->efs_ip_proto != ip_proto) {
830 		switch (ip_proto) {
831 		case EFX_IPPROTO_UDP:
832 			rte_flow_error_set(error, EINVAL,
833 				RTE_FLOW_ERROR_TYPE_ITEM, item,
834 				"Outer IP header protocol must be UDP "
835 				"in VxLAN/GENEVE pattern");
836 			return -rte_errno;
837 
838 		case EFX_IPPROTO_GRE:
839 			rte_flow_error_set(error, EINVAL,
840 				RTE_FLOW_ERROR_TYPE_ITEM, item,
841 				"Outer IP header protocol must be GRE "
842 				"in NVGRE pattern");
843 			return -rte_errno;
844 
845 		default:
846 			rte_flow_error_set(error, EINVAL,
847 				RTE_FLOW_ERROR_TYPE_ITEM, item,
848 				"Only VxLAN/GENEVE/NVGRE tunneling patterns "
849 				"are supported");
850 			return -rte_errno;
851 		}
852 	}
853 
854 	if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE &&
855 	    efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 &&
856 	    efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) {
857 		rte_flow_error_set(error, EINVAL,
858 			RTE_FLOW_ERROR_TYPE_ITEM, item,
859 			"Outer frame EtherType in pattern with tunneling "
860 			"must be IPv4 or IPv6");
861 		return -rte_errno;
862 	}
863 
864 	return 0;
865 }
866 
867 static int
868 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec,
869 				  const uint8_t *vni_or_vsid_val,
870 				  const uint8_t *vni_or_vsid_mask,
871 				  const struct rte_flow_item *item,
872 				  struct rte_flow_error *error)
873 {
874 	const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = {
875 		0xff, 0xff, 0xff
876 	};
877 
878 	if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask,
879 		   EFX_VNI_OR_VSID_LEN) == 0) {
880 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID;
881 		rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val,
882 			   EFX_VNI_OR_VSID_LEN);
883 	} else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) {
884 		rte_flow_error_set(error, EINVAL,
885 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
886 				   "Unsupported VNI/VSID mask");
887 		return -rte_errno;
888 	}
889 
890 	return 0;
891 }
892 
893 /**
894  * Convert VXLAN item to EFX filter specification.
895  *
896  * @param item[in]
897  *   Item specification. Only VXLAN network identifier field is supported.
898  *   If the mask is NULL, default mask will be used.
899  *   Ranging is not supported.
900  * @param efx_spec[in, out]
901  *   EFX filter specification to update.
902  * @param[out] error
903  *   Perform verbose error reporting if not NULL.
904  */
905 static int
906 sfc_flow_parse_vxlan(const struct rte_flow_item *item,
907 		     struct sfc_flow_parse_ctx *parse_ctx,
908 		     struct rte_flow_error *error)
909 {
910 	int rc;
911 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
912 	const struct rte_flow_item_vxlan *spec = NULL;
913 	const struct rte_flow_item_vxlan *mask = NULL;
914 	const struct rte_flow_item_vxlan supp_mask = {
915 		.vni = { 0xff, 0xff, 0xff }
916 	};
917 
918 	rc = sfc_flow_parse_init(item,
919 				 (const void **)&spec,
920 				 (const void **)&mask,
921 				 &supp_mask,
922 				 &rte_flow_item_vxlan_mask,
923 				 sizeof(struct rte_flow_item_vxlan),
924 				 error);
925 	if (rc != 0)
926 		return rc;
927 
928 	rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
929 						     EFX_IPPROTO_UDP, error);
930 	if (rc != 0)
931 		return rc;
932 
933 	efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
934 	efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
935 
936 	if (spec == NULL)
937 		return 0;
938 
939 	rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
940 					       mask->vni, item, error);
941 
942 	return rc;
943 }
944 
945 /**
946  * Convert GENEVE item to EFX filter specification.
947  *
948  * @param item[in]
949  *   Item specification. Only Virtual Network Identifier and protocol type
950  *   fields are supported. But protocol type can be only Ethernet (0x6558).
951  *   If the mask is NULL, default mask will be used.
952  *   Ranging is not supported.
953  * @param efx_spec[in, out]
954  *   EFX filter specification to update.
955  * @param[out] error
956  *   Perform verbose error reporting if not NULL.
957  */
958 static int
959 sfc_flow_parse_geneve(const struct rte_flow_item *item,
960 		      struct sfc_flow_parse_ctx *parse_ctx,
961 		      struct rte_flow_error *error)
962 {
963 	int rc;
964 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
965 	const struct rte_flow_item_geneve *spec = NULL;
966 	const struct rte_flow_item_geneve *mask = NULL;
967 	const struct rte_flow_item_geneve supp_mask = {
968 		.protocol = RTE_BE16(0xffff),
969 		.vni = { 0xff, 0xff, 0xff }
970 	};
971 
972 	rc = sfc_flow_parse_init(item,
973 				 (const void **)&spec,
974 				 (const void **)&mask,
975 				 &supp_mask,
976 				 &rte_flow_item_geneve_mask,
977 				 sizeof(struct rte_flow_item_geneve),
978 				 error);
979 	if (rc != 0)
980 		return rc;
981 
982 	rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
983 						     EFX_IPPROTO_UDP, error);
984 	if (rc != 0)
985 		return rc;
986 
987 	efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
988 	efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
989 
990 	if (spec == NULL)
991 		return 0;
992 
993 	if (mask->protocol == supp_mask.protocol) {
994 		if (spec->protocol != rte_cpu_to_be_16(RTE_ETHER_TYPE_TEB)) {
995 			rte_flow_error_set(error, EINVAL,
996 				RTE_FLOW_ERROR_TYPE_ITEM, item,
997 				"GENEVE encap. protocol must be Ethernet "
998 				"(0x6558) in the GENEVE pattern item");
999 			return -rte_errno;
1000 		}
1001 	} else if (mask->protocol != 0) {
1002 		rte_flow_error_set(error, EINVAL,
1003 			RTE_FLOW_ERROR_TYPE_ITEM, item,
1004 			"Unsupported mask for GENEVE encap. protocol");
1005 		return -rte_errno;
1006 	}
1007 
1008 	rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
1009 					       mask->vni, item, error);
1010 
1011 	return rc;
1012 }
1013 
1014 /**
1015  * Convert NVGRE item to EFX filter specification.
1016  *
1017  * @param item[in]
1018  *   Item specification. Only virtual subnet ID field is supported.
1019  *   If the mask is NULL, default mask will be used.
1020  *   Ranging is not supported.
1021  * @param efx_spec[in, out]
1022  *   EFX filter specification to update.
1023  * @param[out] error
1024  *   Perform verbose error reporting if not NULL.
1025  */
1026 static int
1027 sfc_flow_parse_nvgre(const struct rte_flow_item *item,
1028 		     struct sfc_flow_parse_ctx *parse_ctx,
1029 		     struct rte_flow_error *error)
1030 {
1031 	int rc;
1032 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
1033 	const struct rte_flow_item_nvgre *spec = NULL;
1034 	const struct rte_flow_item_nvgre *mask = NULL;
1035 	const struct rte_flow_item_nvgre supp_mask = {
1036 		.tni = { 0xff, 0xff, 0xff }
1037 	};
1038 
1039 	rc = sfc_flow_parse_init(item,
1040 				 (const void **)&spec,
1041 				 (const void **)&mask,
1042 				 &supp_mask,
1043 				 &rte_flow_item_nvgre_mask,
1044 				 sizeof(struct rte_flow_item_nvgre),
1045 				 error);
1046 	if (rc != 0)
1047 		return rc;
1048 
1049 	rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
1050 						     EFX_IPPROTO_GRE, error);
1051 	if (rc != 0)
1052 		return rc;
1053 
1054 	efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
1055 	efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
1056 
1057 	if (spec == NULL)
1058 		return 0;
1059 
1060 	rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni,
1061 					       mask->tni, item, error);
1062 
1063 	return rc;
1064 }
1065 
1066 static const struct sfc_flow_item sfc_flow_items[] = {
1067 	{
1068 		.type = RTE_FLOW_ITEM_TYPE_VOID,
1069 		.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
1070 		.layer = SFC_FLOW_ITEM_ANY_LAYER,
1071 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1072 		.parse = sfc_flow_parse_void,
1073 	},
1074 	{
1075 		.type = RTE_FLOW_ITEM_TYPE_ETH,
1076 		.prev_layer = SFC_FLOW_ITEM_START_LAYER,
1077 		.layer = SFC_FLOW_ITEM_L2,
1078 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1079 		.parse = sfc_flow_parse_eth,
1080 	},
1081 	{
1082 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
1083 		.prev_layer = SFC_FLOW_ITEM_L2,
1084 		.layer = SFC_FLOW_ITEM_L2,
1085 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1086 		.parse = sfc_flow_parse_vlan,
1087 	},
1088 	{
1089 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
1090 		.prev_layer = SFC_FLOW_ITEM_L2,
1091 		.layer = SFC_FLOW_ITEM_L3,
1092 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1093 		.parse = sfc_flow_parse_ipv4,
1094 	},
1095 	{
1096 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
1097 		.prev_layer = SFC_FLOW_ITEM_L2,
1098 		.layer = SFC_FLOW_ITEM_L3,
1099 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1100 		.parse = sfc_flow_parse_ipv6,
1101 	},
1102 	{
1103 		.type = RTE_FLOW_ITEM_TYPE_TCP,
1104 		.prev_layer = SFC_FLOW_ITEM_L3,
1105 		.layer = SFC_FLOW_ITEM_L4,
1106 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1107 		.parse = sfc_flow_parse_tcp,
1108 	},
1109 	{
1110 		.type = RTE_FLOW_ITEM_TYPE_UDP,
1111 		.prev_layer = SFC_FLOW_ITEM_L3,
1112 		.layer = SFC_FLOW_ITEM_L4,
1113 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1114 		.parse = sfc_flow_parse_udp,
1115 	},
1116 	{
1117 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
1118 		.prev_layer = SFC_FLOW_ITEM_L4,
1119 		.layer = SFC_FLOW_ITEM_START_LAYER,
1120 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1121 		.parse = sfc_flow_parse_vxlan,
1122 	},
1123 	{
1124 		.type = RTE_FLOW_ITEM_TYPE_GENEVE,
1125 		.prev_layer = SFC_FLOW_ITEM_L4,
1126 		.layer = SFC_FLOW_ITEM_START_LAYER,
1127 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1128 		.parse = sfc_flow_parse_geneve,
1129 	},
1130 	{
1131 		.type = RTE_FLOW_ITEM_TYPE_NVGRE,
1132 		.prev_layer = SFC_FLOW_ITEM_L3,
1133 		.layer = SFC_FLOW_ITEM_START_LAYER,
1134 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1135 		.parse = sfc_flow_parse_nvgre,
1136 	},
1137 };
1138 
1139 /*
1140  * Protocol-independent flow API support
1141  */
1142 static int
1143 sfc_flow_parse_attr(struct sfc_adapter *sa,
1144 		    const struct rte_flow_attr *attr,
1145 		    struct rte_flow *flow,
1146 		    struct rte_flow_error *error)
1147 {
1148 	struct sfc_flow_spec *spec = &flow->spec;
1149 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1150 	struct sfc_flow_spec_mae *spec_mae = &spec->mae;
1151 	struct sfc_mae *mae = &sa->mae;
1152 
1153 	if (attr == NULL) {
1154 		rte_flow_error_set(error, EINVAL,
1155 				   RTE_FLOW_ERROR_TYPE_ATTR, NULL,
1156 				   "NULL attribute");
1157 		return -rte_errno;
1158 	}
1159 	if (attr->group != 0) {
1160 		rte_flow_error_set(error, ENOTSUP,
1161 				   RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
1162 				   "Groups are not supported");
1163 		return -rte_errno;
1164 	}
1165 	if (attr->egress != 0) {
1166 		rte_flow_error_set(error, ENOTSUP,
1167 				   RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr,
1168 				   "Egress is not supported");
1169 		return -rte_errno;
1170 	}
1171 	if (attr->ingress == 0) {
1172 		rte_flow_error_set(error, ENOTSUP,
1173 				   RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr,
1174 				   "Ingress is compulsory");
1175 		return -rte_errno;
1176 	}
1177 	if (attr->transfer == 0) {
1178 		if (attr->priority != 0) {
1179 			rte_flow_error_set(error, ENOTSUP,
1180 					   RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1181 					   attr, "Priorities are unsupported");
1182 			return -rte_errno;
1183 		}
1184 		spec->type = SFC_FLOW_SPEC_FILTER;
1185 		spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX;
1186 		spec_filter->template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1187 		spec_filter->template.efs_priority = EFX_FILTER_PRI_MANUAL;
1188 	} else {
1189 		if (mae->status != SFC_MAE_STATUS_SUPPORTED) {
1190 			rte_flow_error_set(error, ENOTSUP,
1191 					   RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1192 					   attr, "Transfer is not supported");
1193 			return -rte_errno;
1194 		}
1195 		if (attr->priority > mae->nb_action_rule_prios_max) {
1196 			rte_flow_error_set(error, ENOTSUP,
1197 					   RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1198 					   attr, "Unsupported priority level");
1199 			return -rte_errno;
1200 		}
1201 		spec->type = SFC_FLOW_SPEC_MAE;
1202 		spec_mae->priority = attr->priority;
1203 		spec_mae->match_spec = NULL;
1204 		spec_mae->action_set = NULL;
1205 		spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 /* Get item from array sfc_flow_items */
1212 static const struct sfc_flow_item *
1213 sfc_flow_get_item(const struct sfc_flow_item *items,
1214 		  unsigned int nb_items,
1215 		  enum rte_flow_item_type type)
1216 {
1217 	unsigned int i;
1218 
1219 	for (i = 0; i < nb_items; i++)
1220 		if (items[i].type == type)
1221 			return &items[i];
1222 
1223 	return NULL;
1224 }
1225 
1226 int
1227 sfc_flow_parse_pattern(const struct sfc_flow_item *flow_items,
1228 		       unsigned int nb_flow_items,
1229 		       const struct rte_flow_item pattern[],
1230 		       struct sfc_flow_parse_ctx *parse_ctx,
1231 		       struct rte_flow_error *error)
1232 {
1233 	int rc;
1234 	unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER;
1235 	boolean_t is_ifrm = B_FALSE;
1236 	const struct sfc_flow_item *item;
1237 
1238 	if (pattern == NULL) {
1239 		rte_flow_error_set(error, EINVAL,
1240 				   RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
1241 				   "NULL pattern");
1242 		return -rte_errno;
1243 	}
1244 
1245 	for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
1246 		item = sfc_flow_get_item(flow_items, nb_flow_items,
1247 					 pattern->type);
1248 		if (item == NULL) {
1249 			rte_flow_error_set(error, ENOTSUP,
1250 					   RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1251 					   "Unsupported pattern item");
1252 			return -rte_errno;
1253 		}
1254 
1255 		/*
1256 		 * Omitting one or several protocol layers at the beginning
1257 		 * of pattern is supported
1258 		 */
1259 		if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1260 		    prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1261 		    item->prev_layer != prev_layer) {
1262 			rte_flow_error_set(error, ENOTSUP,
1263 					   RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1264 					   "Unexpected sequence of pattern items");
1265 			return -rte_errno;
1266 		}
1267 
1268 		/*
1269 		 * Allow only VOID and ETH pattern items in the inner frame.
1270 		 * Also check that there is only one tunneling protocol.
1271 		 */
1272 		switch (item->type) {
1273 		case RTE_FLOW_ITEM_TYPE_VOID:
1274 		case RTE_FLOW_ITEM_TYPE_ETH:
1275 			break;
1276 
1277 		case RTE_FLOW_ITEM_TYPE_VXLAN:
1278 		case RTE_FLOW_ITEM_TYPE_GENEVE:
1279 		case RTE_FLOW_ITEM_TYPE_NVGRE:
1280 			if (is_ifrm) {
1281 				rte_flow_error_set(error, EINVAL,
1282 					RTE_FLOW_ERROR_TYPE_ITEM,
1283 					pattern,
1284 					"More than one tunneling protocol");
1285 				return -rte_errno;
1286 			}
1287 			is_ifrm = B_TRUE;
1288 			break;
1289 
1290 		default:
1291 			if (parse_ctx->type == SFC_FLOW_PARSE_CTX_FILTER &&
1292 			    is_ifrm) {
1293 				rte_flow_error_set(error, EINVAL,
1294 					RTE_FLOW_ERROR_TYPE_ITEM,
1295 					pattern,
1296 					"There is an unsupported pattern item "
1297 					"in the inner frame");
1298 				return -rte_errno;
1299 			}
1300 			break;
1301 		}
1302 
1303 		if (parse_ctx->type != item->ctx_type) {
1304 			rte_flow_error_set(error, EINVAL,
1305 					RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1306 					"Parse context type mismatch");
1307 			return -rte_errno;
1308 		}
1309 
1310 		rc = item->parse(pattern, parse_ctx, error);
1311 		if (rc != 0)
1312 			return rc;
1313 
1314 		if (item->layer != SFC_FLOW_ITEM_ANY_LAYER)
1315 			prev_layer = item->layer;
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 static int
1322 sfc_flow_parse_queue(struct sfc_adapter *sa,
1323 		     const struct rte_flow_action_queue *queue,
1324 		     struct rte_flow *flow)
1325 {
1326 	struct sfc_flow_spec *spec = &flow->spec;
1327 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1328 	struct sfc_rxq *rxq;
1329 	struct sfc_rxq_info *rxq_info;
1330 
1331 	if (queue->index >= sfc_sa2shared(sa)->rxq_count)
1332 		return -EINVAL;
1333 
1334 	rxq = &sa->rxq_ctrl[queue->index];
1335 	spec_filter->template.efs_dmaq_id = (uint16_t)rxq->hw_index;
1336 
1337 	rxq_info = &sfc_sa2shared(sa)->rxq_info[queue->index];
1338 	spec_filter->rss_hash_required = !!(rxq_info->rxq_flags &
1339 					    SFC_RXQ_FLAG_RSS_HASH);
1340 
1341 	return 0;
1342 }
1343 
1344 static int
1345 sfc_flow_parse_rss(struct sfc_adapter *sa,
1346 		   const struct rte_flow_action_rss *action_rss,
1347 		   struct rte_flow *flow)
1348 {
1349 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1350 	struct sfc_rss *rss = &sas->rss;
1351 	unsigned int rxq_sw_index;
1352 	struct sfc_rxq *rxq;
1353 	unsigned int rxq_hw_index_min;
1354 	unsigned int rxq_hw_index_max;
1355 	efx_rx_hash_type_t efx_hash_types;
1356 	const uint8_t *rss_key;
1357 	struct sfc_flow_spec *spec = &flow->spec;
1358 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1359 	struct sfc_flow_rss *sfc_rss_conf = &spec_filter->rss_conf;
1360 	unsigned int i;
1361 
1362 	if (action_rss->queue_num == 0)
1363 		return -EINVAL;
1364 
1365 	rxq_sw_index = sfc_sa2shared(sa)->rxq_count - 1;
1366 	rxq = &sa->rxq_ctrl[rxq_sw_index];
1367 	rxq_hw_index_min = rxq->hw_index;
1368 	rxq_hw_index_max = 0;
1369 
1370 	for (i = 0; i < action_rss->queue_num; ++i) {
1371 		rxq_sw_index = action_rss->queue[i];
1372 
1373 		if (rxq_sw_index >= sfc_sa2shared(sa)->rxq_count)
1374 			return -EINVAL;
1375 
1376 		rxq = &sa->rxq_ctrl[rxq_sw_index];
1377 
1378 		if (rxq->hw_index < rxq_hw_index_min)
1379 			rxq_hw_index_min = rxq->hw_index;
1380 
1381 		if (rxq->hw_index > rxq_hw_index_max)
1382 			rxq_hw_index_max = rxq->hw_index;
1383 	}
1384 
1385 	switch (action_rss->func) {
1386 	case RTE_ETH_HASH_FUNCTION_DEFAULT:
1387 	case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1388 		break;
1389 	default:
1390 		return -EINVAL;
1391 	}
1392 
1393 	if (action_rss->level)
1394 		return -EINVAL;
1395 
1396 	/*
1397 	 * Dummy RSS action with only one queue and no specific settings
1398 	 * for hash types and key does not require dedicated RSS context
1399 	 * and may be simplified to single queue action.
1400 	 */
1401 	if (action_rss->queue_num == 1 && action_rss->types == 0 &&
1402 	    action_rss->key_len == 0) {
1403 		spec_filter->template.efs_dmaq_id = rxq_hw_index_min;
1404 		return 0;
1405 	}
1406 
1407 	if (action_rss->types) {
1408 		int rc;
1409 
1410 		rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types,
1411 					  &efx_hash_types);
1412 		if (rc != 0)
1413 			return -rc;
1414 	} else {
1415 		unsigned int i;
1416 
1417 		efx_hash_types = 0;
1418 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
1419 			efx_hash_types |= rss->hf_map[i].efx;
1420 	}
1421 
1422 	if (action_rss->key_len) {
1423 		if (action_rss->key_len != sizeof(rss->key))
1424 			return -EINVAL;
1425 
1426 		rss_key = action_rss->key;
1427 	} else {
1428 		rss_key = rss->key;
1429 	}
1430 
1431 	spec_filter->rss = B_TRUE;
1432 
1433 	sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min;
1434 	sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max;
1435 	sfc_rss_conf->rss_hash_types = efx_hash_types;
1436 	rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key));
1437 
1438 	for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) {
1439 		unsigned int nb_queues = action_rss->queue_num;
1440 		unsigned int rxq_sw_index = action_rss->queue[i % nb_queues];
1441 		struct sfc_rxq *rxq = &sa->rxq_ctrl[rxq_sw_index];
1442 
1443 		sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min;
1444 	}
1445 
1446 	return 0;
1447 }
1448 
1449 static int
1450 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec,
1451 		    unsigned int filters_count)
1452 {
1453 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1454 	unsigned int i;
1455 	int ret = 0;
1456 
1457 	for (i = 0; i < filters_count; i++) {
1458 		int rc;
1459 
1460 		rc = efx_filter_remove(sa->nic, &spec_filter->filters[i]);
1461 		if (ret == 0 && rc != 0) {
1462 			sfc_err(sa, "failed to remove filter specification "
1463 				"(rc = %d)", rc);
1464 			ret = rc;
1465 		}
1466 	}
1467 
1468 	return ret;
1469 }
1470 
1471 static int
1472 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1473 {
1474 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1475 	unsigned int i;
1476 	int rc = 0;
1477 
1478 	for (i = 0; i < spec_filter->count; i++) {
1479 		rc = efx_filter_insert(sa->nic, &spec_filter->filters[i]);
1480 		if (rc != 0) {
1481 			sfc_flow_spec_flush(sa, spec, i);
1482 			break;
1483 		}
1484 	}
1485 
1486 	return rc;
1487 }
1488 
1489 static int
1490 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1491 {
1492 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1493 
1494 	return sfc_flow_spec_flush(sa, spec, spec_filter->count);
1495 }
1496 
1497 static int
1498 sfc_flow_filter_insert(struct sfc_adapter *sa,
1499 		       struct rte_flow *flow)
1500 {
1501 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1502 	struct sfc_rss *rss = &sas->rss;
1503 	struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1504 	struct sfc_flow_rss *flow_rss = &spec_filter->rss_conf;
1505 	uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1506 	boolean_t create_context;
1507 	unsigned int i;
1508 	int rc = 0;
1509 
1510 	create_context = spec_filter->rss || (spec_filter->rss_hash_required &&
1511 			rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT);
1512 
1513 	if (create_context) {
1514 		unsigned int rss_spread;
1515 		unsigned int rss_hash_types;
1516 		uint8_t *rss_key;
1517 
1518 		if (spec_filter->rss) {
1519 			rss_spread = MIN(flow_rss->rxq_hw_index_max -
1520 					flow_rss->rxq_hw_index_min + 1,
1521 					EFX_MAXRSS);
1522 			rss_hash_types = flow_rss->rss_hash_types;
1523 			rss_key = flow_rss->rss_key;
1524 		} else {
1525 			/*
1526 			 * Initialize dummy RSS context parameters to have
1527 			 * valid RSS hash. Use default RSS hash function and
1528 			 * key.
1529 			 */
1530 			rss_spread = 1;
1531 			rss_hash_types = rss->hash_types;
1532 			rss_key = rss->key;
1533 		}
1534 
1535 		rc = efx_rx_scale_context_alloc(sa->nic,
1536 						EFX_RX_SCALE_EXCLUSIVE,
1537 						rss_spread,
1538 						&efs_rss_context);
1539 		if (rc != 0)
1540 			goto fail_scale_context_alloc;
1541 
1542 		rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context,
1543 					   rss->hash_alg,
1544 					   rss_hash_types, B_TRUE);
1545 		if (rc != 0)
1546 			goto fail_scale_mode_set;
1547 
1548 		rc = efx_rx_scale_key_set(sa->nic, efs_rss_context,
1549 					  rss_key, sizeof(rss->key));
1550 		if (rc != 0)
1551 			goto fail_scale_key_set;
1552 	} else {
1553 		efs_rss_context = rss->dummy_rss_context;
1554 	}
1555 
1556 	if (spec_filter->rss || spec_filter->rss_hash_required) {
1557 		/*
1558 		 * At this point, fully elaborated filter specifications
1559 		 * have been produced from the template. To make sure that
1560 		 * RSS behaviour is consistent between them, set the same
1561 		 * RSS context value everywhere.
1562 		 */
1563 		for (i = 0; i < spec_filter->count; i++) {
1564 			efx_filter_spec_t *spec = &spec_filter->filters[i];
1565 
1566 			spec->efs_rss_context = efs_rss_context;
1567 			spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS;
1568 			if (spec_filter->rss)
1569 				spec->efs_dmaq_id = flow_rss->rxq_hw_index_min;
1570 		}
1571 	}
1572 
1573 	rc = sfc_flow_spec_insert(sa, &flow->spec);
1574 	if (rc != 0)
1575 		goto fail_filter_insert;
1576 
1577 	if (create_context) {
1578 		unsigned int dummy_tbl[RTE_DIM(flow_rss->rss_tbl)] = {0};
1579 		unsigned int *tbl;
1580 
1581 		tbl = spec_filter->rss ? flow_rss->rss_tbl : dummy_tbl;
1582 
1583 		/*
1584 		 * Scale table is set after filter insertion because
1585 		 * the table entries are relative to the base RxQ ID
1586 		 * and the latter is submitted to the HW by means of
1587 		 * inserting a filter, so by the time of the request
1588 		 * the HW knows all the information needed to verify
1589 		 * the table entries, and the operation will succeed
1590 		 */
1591 		rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context,
1592 					  tbl, RTE_DIM(flow_rss->rss_tbl));
1593 		if (rc != 0)
1594 			goto fail_scale_tbl_set;
1595 
1596 		/* Remember created dummy RSS context */
1597 		if (!spec_filter->rss)
1598 			rss->dummy_rss_context = efs_rss_context;
1599 	}
1600 
1601 	return 0;
1602 
1603 fail_scale_tbl_set:
1604 	sfc_flow_spec_remove(sa, &flow->spec);
1605 
1606 fail_filter_insert:
1607 fail_scale_key_set:
1608 fail_scale_mode_set:
1609 	if (create_context)
1610 		efx_rx_scale_context_free(sa->nic, efs_rss_context);
1611 
1612 fail_scale_context_alloc:
1613 	return rc;
1614 }
1615 
1616 static int
1617 sfc_flow_filter_remove(struct sfc_adapter *sa,
1618 		       struct rte_flow *flow)
1619 {
1620 	struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1621 	int rc = 0;
1622 
1623 	rc = sfc_flow_spec_remove(sa, &flow->spec);
1624 	if (rc != 0)
1625 		return rc;
1626 
1627 	if (spec_filter->rss) {
1628 		/*
1629 		 * All specifications for a given flow rule have the same RSS
1630 		 * context, so that RSS context value is taken from the first
1631 		 * filter specification
1632 		 */
1633 		efx_filter_spec_t *spec = &spec_filter->filters[0];
1634 
1635 		rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context);
1636 	}
1637 
1638 	return rc;
1639 }
1640 
1641 static int
1642 sfc_flow_parse_mark(struct sfc_adapter *sa,
1643 		    const struct rte_flow_action_mark *mark,
1644 		    struct rte_flow *flow)
1645 {
1646 	struct sfc_flow_spec *spec = &flow->spec;
1647 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1648 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1649 
1650 	if (mark == NULL || mark->id > encp->enc_filter_action_mark_max)
1651 		return EINVAL;
1652 
1653 	spec_filter->template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK;
1654 	spec_filter->template.efs_mark = mark->id;
1655 
1656 	return 0;
1657 }
1658 
1659 static int
1660 sfc_flow_parse_actions(struct sfc_adapter *sa,
1661 		       const struct rte_flow_action actions[],
1662 		       struct rte_flow *flow,
1663 		       struct rte_flow_error *error)
1664 {
1665 	int rc;
1666 	struct sfc_flow_spec *spec = &flow->spec;
1667 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1668 	const unsigned int dp_rx_features = sa->priv.dp_rx->features;
1669 	uint32_t actions_set = 0;
1670 	const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) |
1671 					   (1UL << RTE_FLOW_ACTION_TYPE_RSS) |
1672 					   (1UL << RTE_FLOW_ACTION_TYPE_DROP);
1673 	const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) |
1674 					   (1UL << RTE_FLOW_ACTION_TYPE_FLAG);
1675 
1676 	if (actions == NULL) {
1677 		rte_flow_error_set(error, EINVAL,
1678 				   RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
1679 				   "NULL actions");
1680 		return -rte_errno;
1681 	}
1682 
1683 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1684 		switch (actions->type) {
1685 		case RTE_FLOW_ACTION_TYPE_VOID:
1686 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID,
1687 					       actions_set);
1688 			break;
1689 
1690 		case RTE_FLOW_ACTION_TYPE_QUEUE:
1691 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE,
1692 					       actions_set);
1693 			if ((actions_set & fate_actions_mask) != 0)
1694 				goto fail_fate_actions;
1695 
1696 			rc = sfc_flow_parse_queue(sa, actions->conf, flow);
1697 			if (rc != 0) {
1698 				rte_flow_error_set(error, EINVAL,
1699 					RTE_FLOW_ERROR_TYPE_ACTION, actions,
1700 					"Bad QUEUE action");
1701 				return -rte_errno;
1702 			}
1703 			break;
1704 
1705 		case RTE_FLOW_ACTION_TYPE_RSS:
1706 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS,
1707 					       actions_set);
1708 			if ((actions_set & fate_actions_mask) != 0)
1709 				goto fail_fate_actions;
1710 
1711 			rc = sfc_flow_parse_rss(sa, actions->conf, flow);
1712 			if (rc != 0) {
1713 				rte_flow_error_set(error, -rc,
1714 					RTE_FLOW_ERROR_TYPE_ACTION, actions,
1715 					"Bad RSS action");
1716 				return -rte_errno;
1717 			}
1718 			break;
1719 
1720 		case RTE_FLOW_ACTION_TYPE_DROP:
1721 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
1722 					       actions_set);
1723 			if ((actions_set & fate_actions_mask) != 0)
1724 				goto fail_fate_actions;
1725 
1726 			spec_filter->template.efs_dmaq_id =
1727 				EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1728 			break;
1729 
1730 		case RTE_FLOW_ACTION_TYPE_FLAG:
1731 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
1732 					       actions_set);
1733 			if ((actions_set & mark_actions_mask) != 0)
1734 				goto fail_actions_overlap;
1735 
1736 			if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) {
1737 				rte_flow_error_set(error, ENOTSUP,
1738 					RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1739 					"FLAG action is not supported on the current Rx datapath");
1740 				return -rte_errno;
1741 			}
1742 
1743 			spec_filter->template.efs_flags |=
1744 				EFX_FILTER_FLAG_ACTION_FLAG;
1745 			break;
1746 
1747 		case RTE_FLOW_ACTION_TYPE_MARK:
1748 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
1749 					       actions_set);
1750 			if ((actions_set & mark_actions_mask) != 0)
1751 				goto fail_actions_overlap;
1752 
1753 			if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) {
1754 				rte_flow_error_set(error, ENOTSUP,
1755 					RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1756 					"MARK action is not supported on the current Rx datapath");
1757 				return -rte_errno;
1758 			}
1759 
1760 			rc = sfc_flow_parse_mark(sa, actions->conf, flow);
1761 			if (rc != 0) {
1762 				rte_flow_error_set(error, rc,
1763 					RTE_FLOW_ERROR_TYPE_ACTION, actions,
1764 					"Bad MARK action");
1765 				return -rte_errno;
1766 			}
1767 			break;
1768 
1769 		default:
1770 			rte_flow_error_set(error, ENOTSUP,
1771 					   RTE_FLOW_ERROR_TYPE_ACTION, actions,
1772 					   "Action is not supported");
1773 			return -rte_errno;
1774 		}
1775 
1776 		actions_set |= (1UL << actions->type);
1777 	}
1778 
1779 	/* When fate is unknown, drop traffic. */
1780 	if ((actions_set & fate_actions_mask) == 0) {
1781 		spec_filter->template.efs_dmaq_id =
1782 			EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1783 	}
1784 
1785 	return 0;
1786 
1787 fail_fate_actions:
1788 	rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1789 			   "Cannot combine several fate-deciding actions, "
1790 			   "choose between QUEUE, RSS or DROP");
1791 	return -rte_errno;
1792 
1793 fail_actions_overlap:
1794 	rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1795 			   "Overlapping actions are not supported");
1796 	return -rte_errno;
1797 }
1798 
1799 /**
1800  * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST
1801  * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same
1802  * specifications after copying.
1803  *
1804  * @param spec[in, out]
1805  *   SFC flow specification to update.
1806  * @param filters_count_for_one_val[in]
1807  *   How many specifications should have the same match flag, what is the
1808  *   number of specifications before copying.
1809  * @param error[out]
1810  *   Perform verbose error reporting if not NULL.
1811  */
1812 static int
1813 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec,
1814 			       unsigned int filters_count_for_one_val,
1815 			       struct rte_flow_error *error)
1816 {
1817 	unsigned int i;
1818 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1819 	static const efx_filter_match_flags_t vals[] = {
1820 		EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
1821 		EFX_FILTER_MATCH_UNKNOWN_MCAST_DST
1822 	};
1823 
1824 	if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1825 		rte_flow_error_set(error, EINVAL,
1826 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1827 			"Number of specifications is incorrect while copying "
1828 			"by unknown destination flags");
1829 		return -rte_errno;
1830 	}
1831 
1832 	for (i = 0; i < spec_filter->count; i++) {
1833 		/* The check above ensures that divisor can't be zero here */
1834 		spec_filter->filters[i].efs_match_flags |=
1835 			vals[i / filters_count_for_one_val];
1836 	}
1837 
1838 	return 0;
1839 }
1840 
1841 /**
1842  * Check that the following conditions are met:
1843  * - the list of supported filters has a filter
1844  *   with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of
1845  *   EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also
1846  *   be inserted.
1847  *
1848  * @param match[in]
1849  *   The match flags of filter.
1850  * @param spec[in]
1851  *   Specification to be supplemented.
1852  * @param filter[in]
1853  *   SFC filter with list of supported filters.
1854  */
1855 static boolean_t
1856 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match,
1857 				 __rte_unused efx_filter_spec_t *spec,
1858 				 struct sfc_filter *filter)
1859 {
1860 	unsigned int i;
1861 	efx_filter_match_flags_t match_mcast_dst;
1862 
1863 	match_mcast_dst =
1864 		(match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) |
1865 		EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
1866 	for (i = 0; i < filter->supported_match_num; i++) {
1867 		if (match_mcast_dst == filter->supported_match[i])
1868 			return B_TRUE;
1869 	}
1870 
1871 	return B_FALSE;
1872 }
1873 
1874 /**
1875  * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and
1876  * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same
1877  * specifications after copying.
1878  *
1879  * @param spec[in, out]
1880  *   SFC flow specification to update.
1881  * @param filters_count_for_one_val[in]
1882  *   How many specifications should have the same EtherType value, what is the
1883  *   number of specifications before copying.
1884  * @param error[out]
1885  *   Perform verbose error reporting if not NULL.
1886  */
1887 static int
1888 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec,
1889 			unsigned int filters_count_for_one_val,
1890 			struct rte_flow_error *error)
1891 {
1892 	unsigned int i;
1893 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1894 	static const uint16_t vals[] = {
1895 		EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6
1896 	};
1897 
1898 	if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1899 		rte_flow_error_set(error, EINVAL,
1900 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1901 			"Number of specifications is incorrect "
1902 			"while copying by Ethertype");
1903 		return -rte_errno;
1904 	}
1905 
1906 	for (i = 0; i < spec_filter->count; i++) {
1907 		spec_filter->filters[i].efs_match_flags |=
1908 			EFX_FILTER_MATCH_ETHER_TYPE;
1909 
1910 		/*
1911 		 * The check above ensures that
1912 		 * filters_count_for_one_val is not 0
1913 		 */
1914 		spec_filter->filters[i].efs_ether_type =
1915 			vals[i / filters_count_for_one_val];
1916 	}
1917 
1918 	return 0;
1919 }
1920 
1921 /**
1922  * Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0
1923  * in the same specifications after copying.
1924  *
1925  * @param spec[in, out]
1926  *   SFC flow specification to update.
1927  * @param filters_count_for_one_val[in]
1928  *   How many specifications should have the same match flag, what is the
1929  *   number of specifications before copying.
1930  * @param error[out]
1931  *   Perform verbose error reporting if not NULL.
1932  */
1933 static int
1934 sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec,
1935 			    unsigned int filters_count_for_one_val,
1936 			    struct rte_flow_error *error)
1937 {
1938 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1939 	unsigned int i;
1940 
1941 	if (filters_count_for_one_val != spec_filter->count) {
1942 		rte_flow_error_set(error, EINVAL,
1943 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1944 			"Number of specifications is incorrect "
1945 			"while copying by outer VLAN ID");
1946 		return -rte_errno;
1947 	}
1948 
1949 	for (i = 0; i < spec_filter->count; i++) {
1950 		spec_filter->filters[i].efs_match_flags |=
1951 			EFX_FILTER_MATCH_OUTER_VID;
1952 
1953 		spec_filter->filters[i].efs_outer_vid = 0;
1954 	}
1955 
1956 	return 0;
1957 }
1958 
1959 /**
1960  * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and
1961  * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same
1962  * specifications after copying.
1963  *
1964  * @param spec[in, out]
1965  *   SFC flow specification to update.
1966  * @param filters_count_for_one_val[in]
1967  *   How many specifications should have the same match flag, what is the
1968  *   number of specifications before copying.
1969  * @param error[out]
1970  *   Perform verbose error reporting if not NULL.
1971  */
1972 static int
1973 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec,
1974 				    unsigned int filters_count_for_one_val,
1975 				    struct rte_flow_error *error)
1976 {
1977 	unsigned int i;
1978 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1979 	static const efx_filter_match_flags_t vals[] = {
1980 		EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
1981 		EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST
1982 	};
1983 
1984 	if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1985 		rte_flow_error_set(error, EINVAL,
1986 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1987 			"Number of specifications is incorrect while copying "
1988 			"by inner frame unknown destination flags");
1989 		return -rte_errno;
1990 	}
1991 
1992 	for (i = 0; i < spec_filter->count; i++) {
1993 		/* The check above ensures that divisor can't be zero here */
1994 		spec_filter->filters[i].efs_match_flags |=
1995 			vals[i / filters_count_for_one_val];
1996 	}
1997 
1998 	return 0;
1999 }
2000 
2001 /**
2002  * Check that the following conditions are met:
2003  * - the specification corresponds to a filter for encapsulated traffic
2004  * - the list of supported filters has a filter
2005  *   with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of
2006  *   EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also
2007  *   be inserted.
2008  *
2009  * @param match[in]
2010  *   The match flags of filter.
2011  * @param spec[in]
2012  *   Specification to be supplemented.
2013  * @param filter[in]
2014  *   SFC filter with list of supported filters.
2015  */
2016 static boolean_t
2017 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match,
2018 				      efx_filter_spec_t *spec,
2019 				      struct sfc_filter *filter)
2020 {
2021 	unsigned int i;
2022 	efx_tunnel_protocol_t encap_type = spec->efs_encap_type;
2023 	efx_filter_match_flags_t match_mcast_dst;
2024 
2025 	if (encap_type == EFX_TUNNEL_PROTOCOL_NONE)
2026 		return B_FALSE;
2027 
2028 	match_mcast_dst =
2029 		(match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) |
2030 		EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST;
2031 	for (i = 0; i < filter->supported_match_num; i++) {
2032 		if (match_mcast_dst == filter->supported_match[i])
2033 			return B_TRUE;
2034 	}
2035 
2036 	return B_FALSE;
2037 }
2038 
2039 /**
2040  * Check that the list of supported filters has a filter that differs
2041  * from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID
2042  * in this case that filter will be used and the flag
2043  * EFX_FILTER_MATCH_OUTER_VID is not needed.
2044  *
2045  * @param match[in]
2046  *   The match flags of filter.
2047  * @param spec[in]
2048  *   Specification to be supplemented.
2049  * @param filter[in]
2050  *   SFC filter with list of supported filters.
2051  */
2052 static boolean_t
2053 sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match,
2054 			      __rte_unused efx_filter_spec_t *spec,
2055 			      struct sfc_filter *filter)
2056 {
2057 	unsigned int i;
2058 	efx_filter_match_flags_t match_without_vid =
2059 		match & ~EFX_FILTER_MATCH_OUTER_VID;
2060 
2061 	for (i = 0; i < filter->supported_match_num; i++) {
2062 		if (match_without_vid == filter->supported_match[i])
2063 			return B_FALSE;
2064 	}
2065 
2066 	return B_TRUE;
2067 }
2068 
2069 /*
2070  * Match flags that can be automatically added to filters.
2071  * Selecting the last minimum when searching for the copy flag ensures that the
2072  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than
2073  * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter
2074  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported
2075  * filters.
2076  */
2077 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = {
2078 	{
2079 		.flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
2080 		.vals_count = 2,
2081 		.set_vals = sfc_flow_set_unknown_dst_flags,
2082 		.spec_check = sfc_flow_check_unknown_dst_flags,
2083 	},
2084 	{
2085 		.flag = EFX_FILTER_MATCH_ETHER_TYPE,
2086 		.vals_count = 2,
2087 		.set_vals = sfc_flow_set_ethertypes,
2088 		.spec_check = NULL,
2089 	},
2090 	{
2091 		.flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
2092 		.vals_count = 2,
2093 		.set_vals = sfc_flow_set_ifrm_unknown_dst_flags,
2094 		.spec_check = sfc_flow_check_ifrm_unknown_dst_flags,
2095 	},
2096 	{
2097 		.flag = EFX_FILTER_MATCH_OUTER_VID,
2098 		.vals_count = 1,
2099 		.set_vals = sfc_flow_set_outer_vid_flag,
2100 		.spec_check = sfc_flow_check_outer_vid_flag,
2101 	},
2102 };
2103 
2104 /* Get item from array sfc_flow_copy_flags */
2105 static const struct sfc_flow_copy_flag *
2106 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag)
2107 {
2108 	unsigned int i;
2109 
2110 	for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2111 		if (sfc_flow_copy_flags[i].flag == flag)
2112 			return &sfc_flow_copy_flags[i];
2113 	}
2114 
2115 	return NULL;
2116 }
2117 
2118 /**
2119  * Make copies of the specifications, set match flag and values
2120  * of the field that corresponds to it.
2121  *
2122  * @param spec[in, out]
2123  *   SFC flow specification to update.
2124  * @param flag[in]
2125  *   The match flag to add.
2126  * @param error[out]
2127  *   Perform verbose error reporting if not NULL.
2128  */
2129 static int
2130 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec,
2131 			     efx_filter_match_flags_t flag,
2132 			     struct rte_flow_error *error)
2133 {
2134 	unsigned int i;
2135 	unsigned int new_filters_count;
2136 	unsigned int filters_count_for_one_val;
2137 	const struct sfc_flow_copy_flag *copy_flag;
2138 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2139 	int rc;
2140 
2141 	copy_flag = sfc_flow_get_copy_flag(flag);
2142 	if (copy_flag == NULL) {
2143 		rte_flow_error_set(error, ENOTSUP,
2144 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2145 				   "Unsupported spec field for copying");
2146 		return -rte_errno;
2147 	}
2148 
2149 	new_filters_count = spec_filter->count * copy_flag->vals_count;
2150 	if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) {
2151 		rte_flow_error_set(error, EINVAL,
2152 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2153 			"Too much EFX specifications in the flow rule");
2154 		return -rte_errno;
2155 	}
2156 
2157 	/* Copy filters specifications */
2158 	for (i = spec_filter->count; i < new_filters_count; i++) {
2159 		spec_filter->filters[i] =
2160 			spec_filter->filters[i - spec_filter->count];
2161 	}
2162 
2163 	filters_count_for_one_val = spec_filter->count;
2164 	spec_filter->count = new_filters_count;
2165 
2166 	rc = copy_flag->set_vals(spec, filters_count_for_one_val, error);
2167 	if (rc != 0)
2168 		return rc;
2169 
2170 	return 0;
2171 }
2172 
2173 /**
2174  * Check that the given set of match flags missing in the original filter spec
2175  * could be covered by adding spec copies which specify the corresponding
2176  * flags and packet field values to match.
2177  *
2178  * @param miss_flags[in]
2179  *   Flags that are missing until the supported filter.
2180  * @param spec[in]
2181  *   Specification to be supplemented.
2182  * @param filter[in]
2183  *   SFC filter.
2184  *
2185  * @return
2186  *   Number of specifications after copy or 0, if the flags can not be added.
2187  */
2188 static unsigned int
2189 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags,
2190 			     efx_filter_spec_t *spec,
2191 			     struct sfc_filter *filter)
2192 {
2193 	unsigned int i;
2194 	efx_filter_match_flags_t copy_flags = 0;
2195 	efx_filter_match_flags_t flag;
2196 	efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags;
2197 	sfc_flow_spec_check *check;
2198 	unsigned int multiplier = 1;
2199 
2200 	for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2201 		flag = sfc_flow_copy_flags[i].flag;
2202 		check = sfc_flow_copy_flags[i].spec_check;
2203 		if ((flag & miss_flags) == flag) {
2204 			if (check != NULL && (!check(match, spec, filter)))
2205 				continue;
2206 
2207 			copy_flags |= flag;
2208 			multiplier *= sfc_flow_copy_flags[i].vals_count;
2209 		}
2210 	}
2211 
2212 	if (copy_flags == miss_flags)
2213 		return multiplier;
2214 
2215 	return 0;
2216 }
2217 
2218 /**
2219  * Attempt to supplement the specification template to the minimally
2220  * supported set of match flags. To do this, it is necessary to copy
2221  * the specifications, filling them with the values of fields that
2222  * correspond to the missing flags.
2223  * The necessary and sufficient filter is built from the fewest number
2224  * of copies which could be made to cover the minimally required set
2225  * of flags.
2226  *
2227  * @param sa[in]
2228  *   SFC adapter.
2229  * @param spec[in, out]
2230  *   SFC flow specification to update.
2231  * @param error[out]
2232  *   Perform verbose error reporting if not NULL.
2233  */
2234 static int
2235 sfc_flow_spec_filters_complete(struct sfc_adapter *sa,
2236 			       struct sfc_flow_spec *spec,
2237 			       struct rte_flow_error *error)
2238 {
2239 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2240 	struct sfc_filter *filter = &sa->filter;
2241 	efx_filter_match_flags_t miss_flags;
2242 	efx_filter_match_flags_t min_miss_flags = 0;
2243 	efx_filter_match_flags_t match;
2244 	unsigned int min_multiplier = UINT_MAX;
2245 	unsigned int multiplier;
2246 	unsigned int i;
2247 	int rc;
2248 
2249 	match = spec_filter->template.efs_match_flags;
2250 	for (i = 0; i < filter->supported_match_num; i++) {
2251 		if ((match & filter->supported_match[i]) == match) {
2252 			miss_flags = filter->supported_match[i] & (~match);
2253 			multiplier = sfc_flow_check_missing_flags(miss_flags,
2254 				&spec_filter->template, filter);
2255 			if (multiplier > 0) {
2256 				if (multiplier <= min_multiplier) {
2257 					min_multiplier = multiplier;
2258 					min_miss_flags = miss_flags;
2259 				}
2260 			}
2261 		}
2262 	}
2263 
2264 	if (min_multiplier == UINT_MAX) {
2265 		rte_flow_error_set(error, ENOTSUP,
2266 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2267 				   "The flow rule pattern is unsupported");
2268 		return -rte_errno;
2269 	}
2270 
2271 	for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2272 		efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag;
2273 
2274 		if ((flag & min_miss_flags) == flag) {
2275 			rc = sfc_flow_spec_add_match_flag(spec, flag, error);
2276 			if (rc != 0)
2277 				return rc;
2278 		}
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 /**
2285  * Check that set of match flags is referred to by a filter. Filter is
2286  * described by match flags with the ability to add OUTER_VID and INNER_VID
2287  * flags.
2288  *
2289  * @param match_flags[in]
2290  *   Set of match flags.
2291  * @param flags_pattern[in]
2292  *   Pattern of filter match flags.
2293  */
2294 static boolean_t
2295 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags,
2296 			    efx_filter_match_flags_t flags_pattern)
2297 {
2298 	if ((match_flags & flags_pattern) != flags_pattern)
2299 		return B_FALSE;
2300 
2301 	switch (match_flags & ~flags_pattern) {
2302 	case 0:
2303 	case EFX_FILTER_MATCH_OUTER_VID:
2304 	case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID:
2305 		return B_TRUE;
2306 	default:
2307 		return B_FALSE;
2308 	}
2309 }
2310 
2311 /**
2312  * Check whether the spec maps to a hardware filter which is known to be
2313  * ineffective despite being valid.
2314  *
2315  * @param filter[in]
2316  *   SFC filter with list of supported filters.
2317  * @param spec[in]
2318  *   SFC flow specification.
2319  */
2320 static boolean_t
2321 sfc_flow_is_match_flags_exception(struct sfc_filter *filter,
2322 				  struct sfc_flow_spec *spec)
2323 {
2324 	unsigned int i;
2325 	uint16_t ether_type;
2326 	uint8_t ip_proto;
2327 	efx_filter_match_flags_t match_flags;
2328 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2329 
2330 	for (i = 0; i < spec_filter->count; i++) {
2331 		match_flags = spec_filter->filters[i].efs_match_flags;
2332 
2333 		if (sfc_flow_is_match_with_vids(match_flags,
2334 						EFX_FILTER_MATCH_ETHER_TYPE) ||
2335 		    sfc_flow_is_match_with_vids(match_flags,
2336 						EFX_FILTER_MATCH_ETHER_TYPE |
2337 						EFX_FILTER_MATCH_LOC_MAC)) {
2338 			ether_type = spec_filter->filters[i].efs_ether_type;
2339 			if (filter->supports_ip_proto_or_addr_filter &&
2340 			    (ether_type == EFX_ETHER_TYPE_IPV4 ||
2341 			     ether_type == EFX_ETHER_TYPE_IPV6))
2342 				return B_TRUE;
2343 		} else if (sfc_flow_is_match_with_vids(match_flags,
2344 				EFX_FILTER_MATCH_ETHER_TYPE |
2345 				EFX_FILTER_MATCH_IP_PROTO) ||
2346 			   sfc_flow_is_match_with_vids(match_flags,
2347 				EFX_FILTER_MATCH_ETHER_TYPE |
2348 				EFX_FILTER_MATCH_IP_PROTO |
2349 				EFX_FILTER_MATCH_LOC_MAC)) {
2350 			ip_proto = spec_filter->filters[i].efs_ip_proto;
2351 			if (filter->supports_rem_or_local_port_filter &&
2352 			    (ip_proto == EFX_IPPROTO_TCP ||
2353 			     ip_proto == EFX_IPPROTO_UDP))
2354 				return B_TRUE;
2355 		}
2356 	}
2357 
2358 	return B_FALSE;
2359 }
2360 
2361 static int
2362 sfc_flow_validate_match_flags(struct sfc_adapter *sa,
2363 			      struct rte_flow *flow,
2364 			      struct rte_flow_error *error)
2365 {
2366 	struct sfc_flow_spec *spec = &flow->spec;
2367 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2368 	efx_filter_spec_t *spec_tmpl = &spec_filter->template;
2369 	efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags;
2370 	int rc;
2371 
2372 	/* Initialize the first filter spec with template */
2373 	spec_filter->filters[0] = *spec_tmpl;
2374 	spec_filter->count = 1;
2375 
2376 	if (!sfc_filter_is_match_supported(sa, match_flags)) {
2377 		rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error);
2378 		if (rc != 0)
2379 			return rc;
2380 	}
2381 
2382 	if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) {
2383 		rte_flow_error_set(error, ENOTSUP,
2384 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2385 			"The flow rule pattern is unsupported");
2386 		return -rte_errno;
2387 	}
2388 
2389 	return 0;
2390 }
2391 
2392 static int
2393 sfc_flow_parse_rte_to_filter(struct rte_eth_dev *dev,
2394 			     const struct rte_flow_item pattern[],
2395 			     const struct rte_flow_action actions[],
2396 			     struct rte_flow *flow,
2397 			     struct rte_flow_error *error)
2398 {
2399 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2400 	struct sfc_flow_spec *spec = &flow->spec;
2401 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2402 	struct sfc_flow_parse_ctx ctx;
2403 	int rc;
2404 
2405 	ctx.type = SFC_FLOW_PARSE_CTX_FILTER;
2406 	ctx.filter = &spec_filter->template;
2407 
2408 	rc = sfc_flow_parse_pattern(sfc_flow_items, RTE_DIM(sfc_flow_items),
2409 				    pattern, &ctx, error);
2410 	if (rc != 0)
2411 		goto fail_bad_value;
2412 
2413 	rc = sfc_flow_parse_actions(sa, actions, flow, error);
2414 	if (rc != 0)
2415 		goto fail_bad_value;
2416 
2417 	rc = sfc_flow_validate_match_flags(sa, flow, error);
2418 	if (rc != 0)
2419 		goto fail_bad_value;
2420 
2421 	return 0;
2422 
2423 fail_bad_value:
2424 	return rc;
2425 }
2426 
2427 static int
2428 sfc_flow_parse_rte_to_mae(struct rte_eth_dev *dev,
2429 			  const struct rte_flow_item pattern[],
2430 			  const struct rte_flow_action actions[],
2431 			  struct rte_flow *flow,
2432 			  struct rte_flow_error *error)
2433 {
2434 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2435 	struct sfc_flow_spec *spec = &flow->spec;
2436 	struct sfc_flow_spec_mae *spec_mae = &spec->mae;
2437 	int rc;
2438 
2439 	rc = sfc_mae_rule_parse_pattern(sa, pattern, spec_mae, error);
2440 	if (rc != 0)
2441 		return rc;
2442 
2443 	rc = sfc_mae_rule_parse_actions(sa, actions, &spec_mae->action_set,
2444 					error);
2445 	if (rc != 0)
2446 		return rc;
2447 
2448 	return 0;
2449 }
2450 
2451 static int
2452 sfc_flow_parse(struct rte_eth_dev *dev,
2453 	       const struct rte_flow_attr *attr,
2454 	       const struct rte_flow_item pattern[],
2455 	       const struct rte_flow_action actions[],
2456 	       struct rte_flow *flow,
2457 	       struct rte_flow_error *error)
2458 {
2459 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2460 	const struct sfc_flow_ops_by_spec *ops;
2461 	int rc;
2462 
2463 	rc = sfc_flow_parse_attr(sa, attr, flow, error);
2464 	if (rc != 0)
2465 		return rc;
2466 
2467 	ops = sfc_flow_get_ops_by_spec(flow);
2468 	if (ops == NULL || ops->parse == NULL) {
2469 		rte_flow_error_set(error, ENOTSUP,
2470 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2471 				   "No backend to handle this flow");
2472 		return -rte_errno;
2473 	}
2474 
2475 	return ops->parse(dev, pattern, actions, flow, error);
2476 }
2477 
2478 static struct rte_flow *
2479 sfc_flow_zmalloc(struct rte_flow_error *error)
2480 {
2481 	struct rte_flow *flow;
2482 
2483 	flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0);
2484 	if (flow == NULL) {
2485 		rte_flow_error_set(error, ENOMEM,
2486 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2487 				   "Failed to allocate memory");
2488 	}
2489 
2490 	return flow;
2491 }
2492 
2493 static void
2494 sfc_flow_free(struct sfc_adapter *sa, struct rte_flow *flow)
2495 {
2496 	const struct sfc_flow_ops_by_spec *ops;
2497 
2498 	ops = sfc_flow_get_ops_by_spec(flow);
2499 	if (ops != NULL && ops->cleanup != NULL)
2500 		ops->cleanup(sa, flow);
2501 
2502 	rte_free(flow);
2503 }
2504 
2505 static int
2506 sfc_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow,
2507 		struct rte_flow_error *error)
2508 {
2509 	const struct sfc_flow_ops_by_spec *ops;
2510 	int rc;
2511 
2512 	ops = sfc_flow_get_ops_by_spec(flow);
2513 	if (ops == NULL || ops->insert == NULL) {
2514 		rte_flow_error_set(error, ENOTSUP,
2515 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2516 				   "No backend to handle this flow");
2517 		return rte_errno;
2518 	}
2519 
2520 	rc = ops->insert(sa, flow);
2521 	if (rc != 0) {
2522 		rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2523 				   NULL, "Failed to insert the flow rule");
2524 	}
2525 
2526 	return rc;
2527 }
2528 
2529 static int
2530 sfc_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow,
2531 		struct rte_flow_error *error)
2532 {
2533 	const struct sfc_flow_ops_by_spec *ops;
2534 	int rc;
2535 
2536 	ops = sfc_flow_get_ops_by_spec(flow);
2537 	if (ops == NULL || ops->remove == NULL) {
2538 		rte_flow_error_set(error, ENOTSUP,
2539 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2540 				   "No backend to handle this flow");
2541 		return rte_errno;
2542 	}
2543 
2544 	rc = ops->remove(sa, flow);
2545 	if (rc != 0) {
2546 		rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2547 				   NULL, "Failed to remove the flow rule");
2548 	}
2549 
2550 	return rc;
2551 }
2552 
2553 static int
2554 sfc_flow_verify(struct sfc_adapter *sa, struct rte_flow *flow,
2555 		struct rte_flow_error *error)
2556 {
2557 	const struct sfc_flow_ops_by_spec *ops;
2558 	int rc = 0;
2559 
2560 	ops = sfc_flow_get_ops_by_spec(flow);
2561 	if (ops == NULL) {
2562 		rte_flow_error_set(error, ENOTSUP,
2563 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2564 				   "No backend to handle this flow");
2565 		return -rte_errno;
2566 	}
2567 
2568 	if (ops->verify != NULL) {
2569 		SFC_ASSERT(sfc_adapter_is_locked(sa));
2570 		rc = ops->verify(sa, flow);
2571 	}
2572 
2573 	if (rc != 0) {
2574 		rte_flow_error_set(error, rc,
2575 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2576 			"Failed to verify flow validity with FW");
2577 		return -rte_errno;
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 static int
2584 sfc_flow_validate(struct rte_eth_dev *dev,
2585 		  const struct rte_flow_attr *attr,
2586 		  const struct rte_flow_item pattern[],
2587 		  const struct rte_flow_action actions[],
2588 		  struct rte_flow_error *error)
2589 {
2590 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2591 	struct rte_flow *flow;
2592 	int rc;
2593 
2594 	flow = sfc_flow_zmalloc(error);
2595 	if (flow == NULL)
2596 		return -rte_errno;
2597 
2598 	sfc_adapter_lock(sa);
2599 
2600 	rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2601 	if (rc == 0)
2602 		rc = sfc_flow_verify(sa, flow, error);
2603 
2604 	sfc_flow_free(sa, flow);
2605 
2606 	sfc_adapter_unlock(sa);
2607 
2608 	return rc;
2609 }
2610 
2611 static struct rte_flow *
2612 sfc_flow_create(struct rte_eth_dev *dev,
2613 		const struct rte_flow_attr *attr,
2614 		const struct rte_flow_item pattern[],
2615 		const struct rte_flow_action actions[],
2616 		struct rte_flow_error *error)
2617 {
2618 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2619 	struct rte_flow *flow = NULL;
2620 	int rc;
2621 
2622 	flow = sfc_flow_zmalloc(error);
2623 	if (flow == NULL)
2624 		goto fail_no_mem;
2625 
2626 	sfc_adapter_lock(sa);
2627 
2628 	rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2629 	if (rc != 0)
2630 		goto fail_bad_value;
2631 
2632 	TAILQ_INSERT_TAIL(&sa->flow_list, flow, entries);
2633 
2634 	if (sa->state == SFC_ADAPTER_STARTED) {
2635 		rc = sfc_flow_insert(sa, flow, error);
2636 		if (rc != 0)
2637 			goto fail_flow_insert;
2638 	}
2639 
2640 	sfc_adapter_unlock(sa);
2641 
2642 	return flow;
2643 
2644 fail_flow_insert:
2645 	TAILQ_REMOVE(&sa->flow_list, flow, entries);
2646 
2647 fail_bad_value:
2648 	sfc_flow_free(sa, flow);
2649 	sfc_adapter_unlock(sa);
2650 
2651 fail_no_mem:
2652 	return NULL;
2653 }
2654 
2655 static int
2656 sfc_flow_destroy(struct rte_eth_dev *dev,
2657 		 struct rte_flow *flow,
2658 		 struct rte_flow_error *error)
2659 {
2660 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2661 	struct rte_flow *flow_ptr;
2662 	int rc = EINVAL;
2663 
2664 	sfc_adapter_lock(sa);
2665 
2666 	TAILQ_FOREACH(flow_ptr, &sa->flow_list, entries) {
2667 		if (flow_ptr == flow)
2668 			rc = 0;
2669 	}
2670 	if (rc != 0) {
2671 		rte_flow_error_set(error, rc,
2672 				   RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
2673 				   "Failed to find flow rule to destroy");
2674 		goto fail_bad_value;
2675 	}
2676 
2677 	if (sa->state == SFC_ADAPTER_STARTED)
2678 		rc = sfc_flow_remove(sa, flow, error);
2679 
2680 	TAILQ_REMOVE(&sa->flow_list, flow, entries);
2681 	sfc_flow_free(sa, flow);
2682 
2683 fail_bad_value:
2684 	sfc_adapter_unlock(sa);
2685 
2686 	return -rc;
2687 }
2688 
2689 static int
2690 sfc_flow_flush(struct rte_eth_dev *dev,
2691 	       struct rte_flow_error *error)
2692 {
2693 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2694 	struct rte_flow *flow;
2695 	int ret = 0;
2696 
2697 	sfc_adapter_lock(sa);
2698 
2699 	while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2700 		if (sa->state == SFC_ADAPTER_STARTED) {
2701 			int rc;
2702 
2703 			rc = sfc_flow_remove(sa, flow, error);
2704 			if (rc != 0)
2705 				ret = rc;
2706 		}
2707 
2708 		TAILQ_REMOVE(&sa->flow_list, flow, entries);
2709 		sfc_flow_free(sa, flow);
2710 	}
2711 
2712 	sfc_adapter_unlock(sa);
2713 
2714 	return -ret;
2715 }
2716 
2717 static int
2718 sfc_flow_isolate(struct rte_eth_dev *dev, int enable,
2719 		 struct rte_flow_error *error)
2720 {
2721 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2722 	int ret = 0;
2723 
2724 	sfc_adapter_lock(sa);
2725 	if (sa->state != SFC_ADAPTER_INITIALIZED) {
2726 		rte_flow_error_set(error, EBUSY,
2727 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2728 				   NULL, "please close the port first");
2729 		ret = -rte_errno;
2730 	} else {
2731 		sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE;
2732 	}
2733 	sfc_adapter_unlock(sa);
2734 
2735 	return ret;
2736 }
2737 
2738 const struct rte_flow_ops sfc_flow_ops = {
2739 	.validate = sfc_flow_validate,
2740 	.create = sfc_flow_create,
2741 	.destroy = sfc_flow_destroy,
2742 	.flush = sfc_flow_flush,
2743 	.query = NULL,
2744 	.isolate = sfc_flow_isolate,
2745 };
2746 
2747 void
2748 sfc_flow_init(struct sfc_adapter *sa)
2749 {
2750 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2751 
2752 	TAILQ_INIT(&sa->flow_list);
2753 }
2754 
2755 void
2756 sfc_flow_fini(struct sfc_adapter *sa)
2757 {
2758 	struct rte_flow *flow;
2759 
2760 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2761 
2762 	while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2763 		TAILQ_REMOVE(&sa->flow_list, flow, entries);
2764 		sfc_flow_free(sa, flow);
2765 	}
2766 }
2767 
2768 void
2769 sfc_flow_stop(struct sfc_adapter *sa)
2770 {
2771 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
2772 	struct sfc_rss *rss = &sas->rss;
2773 	struct rte_flow *flow;
2774 
2775 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2776 
2777 	TAILQ_FOREACH(flow, &sa->flow_list, entries)
2778 		sfc_flow_remove(sa, flow, NULL);
2779 
2780 	if (rss->dummy_rss_context != EFX_RSS_CONTEXT_DEFAULT) {
2781 		efx_rx_scale_context_free(sa->nic, rss->dummy_rss_context);
2782 		rss->dummy_rss_context = EFX_RSS_CONTEXT_DEFAULT;
2783 	}
2784 }
2785 
2786 int
2787 sfc_flow_start(struct sfc_adapter *sa)
2788 {
2789 	struct rte_flow *flow;
2790 	int rc = 0;
2791 
2792 	sfc_log_init(sa, "entry");
2793 
2794 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2795 
2796 	TAILQ_FOREACH(flow, &sa->flow_list, entries) {
2797 		rc = sfc_flow_insert(sa, flow, NULL);
2798 		if (rc != 0)
2799 			goto fail_bad_flow;
2800 	}
2801 
2802 	sfc_log_init(sa, "done");
2803 
2804 fail_bad_flow:
2805 	return rc;
2806 }
2807