1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2020 Xilinx, Inc. 4 * Copyright(c) 2017-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_byteorder.h> 11 #include <rte_tailq.h> 12 #include <rte_common.h> 13 #include <rte_ethdev_driver.h> 14 #include <rte_ether.h> 15 #include <rte_flow.h> 16 #include <rte_flow_driver.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_debug.h" 22 #include "sfc_rx.h" 23 #include "sfc_filter.h" 24 #include "sfc_flow.h" 25 #include "sfc_log.h" 26 #include "sfc_dp_rx.h" 27 28 struct sfc_flow_ops_by_spec { 29 sfc_flow_parse_cb_t *parse; 30 sfc_flow_verify_cb_t *verify; 31 sfc_flow_cleanup_cb_t *cleanup; 32 sfc_flow_insert_cb_t *insert; 33 sfc_flow_remove_cb_t *remove; 34 }; 35 36 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_filter; 37 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_mae; 38 static sfc_flow_insert_cb_t sfc_flow_filter_insert; 39 static sfc_flow_remove_cb_t sfc_flow_filter_remove; 40 41 static const struct sfc_flow_ops_by_spec sfc_flow_ops_filter = { 42 .parse = sfc_flow_parse_rte_to_filter, 43 .verify = NULL, 44 .cleanup = NULL, 45 .insert = sfc_flow_filter_insert, 46 .remove = sfc_flow_filter_remove, 47 }; 48 49 static const struct sfc_flow_ops_by_spec sfc_flow_ops_mae = { 50 .parse = sfc_flow_parse_rte_to_mae, 51 .verify = sfc_mae_flow_verify, 52 .cleanup = sfc_mae_flow_cleanup, 53 .insert = sfc_mae_flow_insert, 54 .remove = sfc_mae_flow_remove, 55 }; 56 57 static const struct sfc_flow_ops_by_spec * 58 sfc_flow_get_ops_by_spec(struct rte_flow *flow) 59 { 60 struct sfc_flow_spec *spec = &flow->spec; 61 const struct sfc_flow_ops_by_spec *ops = NULL; 62 63 switch (spec->type) { 64 case SFC_FLOW_SPEC_FILTER: 65 ops = &sfc_flow_ops_filter; 66 break; 67 case SFC_FLOW_SPEC_MAE: 68 ops = &sfc_flow_ops_mae; 69 break; 70 default: 71 SFC_ASSERT(false); 72 break; 73 } 74 75 return ops; 76 } 77 78 /* 79 * Currently, filter-based (VNIC) flow API is implemented in such a manner 80 * that each flow rule is converted to one or more hardware filters. 81 * All elements of flow rule (attributes, pattern items, actions) 82 * correspond to one or more fields in the efx_filter_spec_s structure 83 * that is responsible for the hardware filter. 84 * If some required field is unset in the flow rule, then a handful 85 * of filter copies will be created to cover all possible values 86 * of such a field. 87 */ 88 89 static sfc_flow_item_parse sfc_flow_parse_void; 90 static sfc_flow_item_parse sfc_flow_parse_eth; 91 static sfc_flow_item_parse sfc_flow_parse_vlan; 92 static sfc_flow_item_parse sfc_flow_parse_ipv4; 93 static sfc_flow_item_parse sfc_flow_parse_ipv6; 94 static sfc_flow_item_parse sfc_flow_parse_tcp; 95 static sfc_flow_item_parse sfc_flow_parse_udp; 96 static sfc_flow_item_parse sfc_flow_parse_vxlan; 97 static sfc_flow_item_parse sfc_flow_parse_geneve; 98 static sfc_flow_item_parse sfc_flow_parse_nvgre; 99 100 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec, 101 unsigned int filters_count_for_one_val, 102 struct rte_flow_error *error); 103 104 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match, 105 efx_filter_spec_t *spec, 106 struct sfc_filter *filter); 107 108 struct sfc_flow_copy_flag { 109 /* EFX filter specification match flag */ 110 efx_filter_match_flags_t flag; 111 /* Number of values of corresponding field */ 112 unsigned int vals_count; 113 /* Function to set values in specifications */ 114 sfc_flow_spec_set_vals *set_vals; 115 /* 116 * Function to check that the specification is suitable 117 * for adding this match flag 118 */ 119 sfc_flow_spec_check *spec_check; 120 }; 121 122 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags; 123 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags; 124 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes; 125 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags; 126 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags; 127 static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag; 128 static sfc_flow_spec_check sfc_flow_check_outer_vid_flag; 129 130 static boolean_t 131 sfc_flow_is_zero(const uint8_t *buf, unsigned int size) 132 { 133 uint8_t sum = 0; 134 unsigned int i; 135 136 for (i = 0; i < size; i++) 137 sum |= buf[i]; 138 139 return (sum == 0) ? B_TRUE : B_FALSE; 140 } 141 142 /* 143 * Validate item and prepare structures spec and mask for parsing 144 */ 145 int 146 sfc_flow_parse_init(const struct rte_flow_item *item, 147 const void **spec_ptr, 148 const void **mask_ptr, 149 const void *supp_mask, 150 const void *def_mask, 151 unsigned int size, 152 struct rte_flow_error *error) 153 { 154 const uint8_t *spec; 155 const uint8_t *mask; 156 const uint8_t *last; 157 uint8_t supp; 158 unsigned int i; 159 160 if (item == NULL) { 161 rte_flow_error_set(error, EINVAL, 162 RTE_FLOW_ERROR_TYPE_ITEM, NULL, 163 "NULL item"); 164 return -rte_errno; 165 } 166 167 if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) { 168 rte_flow_error_set(error, EINVAL, 169 RTE_FLOW_ERROR_TYPE_ITEM, item, 170 "Mask or last is set without spec"); 171 return -rte_errno; 172 } 173 174 /* 175 * If "mask" is not set, default mask is used, 176 * but if default mask is NULL, "mask" should be set 177 */ 178 if (item->mask == NULL) { 179 if (def_mask == NULL) { 180 rte_flow_error_set(error, EINVAL, 181 RTE_FLOW_ERROR_TYPE_ITEM, NULL, 182 "Mask should be specified"); 183 return -rte_errno; 184 } 185 186 mask = def_mask; 187 } else { 188 mask = item->mask; 189 } 190 191 spec = item->spec; 192 last = item->last; 193 194 if (spec == NULL) 195 goto exit; 196 197 /* 198 * If field values in "last" are either 0 or equal to the corresponding 199 * values in "spec" then they are ignored 200 */ 201 if (last != NULL && 202 !sfc_flow_is_zero(last, size) && 203 memcmp(last, spec, size) != 0) { 204 rte_flow_error_set(error, ENOTSUP, 205 RTE_FLOW_ERROR_TYPE_ITEM, item, 206 "Ranging is not supported"); 207 return -rte_errno; 208 } 209 210 if (supp_mask == NULL) { 211 rte_flow_error_set(error, EINVAL, 212 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 213 "Supported mask for item should be specified"); 214 return -rte_errno; 215 } 216 217 /* Check that mask does not ask for more match than supp_mask */ 218 for (i = 0; i < size; i++) { 219 supp = ((const uint8_t *)supp_mask)[i]; 220 221 if (~supp & mask[i]) { 222 rte_flow_error_set(error, ENOTSUP, 223 RTE_FLOW_ERROR_TYPE_ITEM, item, 224 "Item's field is not supported"); 225 return -rte_errno; 226 } 227 } 228 229 exit: 230 *spec_ptr = spec; 231 *mask_ptr = mask; 232 return 0; 233 } 234 235 /* 236 * Protocol parsers. 237 * Masking is not supported, so masks in items should be either 238 * full or empty (zeroed) and set only for supported fields which 239 * are specified in the supp_mask. 240 */ 241 242 static int 243 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item, 244 __rte_unused struct sfc_flow_parse_ctx *parse_ctx, 245 __rte_unused struct rte_flow_error *error) 246 { 247 return 0; 248 } 249 250 /** 251 * Convert Ethernet item to EFX filter specification. 252 * 253 * @param item[in] 254 * Item specification. Outer frame specification may only comprise 255 * source/destination addresses and Ethertype field. 256 * Inner frame specification may contain destination address only. 257 * There is support for individual/group mask as well as for empty and full. 258 * If the mask is NULL, default mask will be used. Ranging is not supported. 259 * @param efx_spec[in, out] 260 * EFX filter specification to update. 261 * @param[out] error 262 * Perform verbose error reporting if not NULL. 263 */ 264 static int 265 sfc_flow_parse_eth(const struct rte_flow_item *item, 266 struct sfc_flow_parse_ctx *parse_ctx, 267 struct rte_flow_error *error) 268 { 269 int rc; 270 efx_filter_spec_t *efx_spec = parse_ctx->filter; 271 const struct rte_flow_item_eth *spec = NULL; 272 const struct rte_flow_item_eth *mask = NULL; 273 const struct rte_flow_item_eth supp_mask = { 274 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 275 .src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 276 .type = 0xffff, 277 }; 278 const struct rte_flow_item_eth ifrm_supp_mask = { 279 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 280 }; 281 const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = { 282 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 283 }; 284 const struct rte_flow_item_eth *supp_mask_p; 285 const struct rte_flow_item_eth *def_mask_p; 286 uint8_t *loc_mac = NULL; 287 boolean_t is_ifrm = (efx_spec->efs_encap_type != 288 EFX_TUNNEL_PROTOCOL_NONE); 289 290 if (is_ifrm) { 291 supp_mask_p = &ifrm_supp_mask; 292 def_mask_p = &ifrm_supp_mask; 293 loc_mac = efx_spec->efs_ifrm_loc_mac; 294 } else { 295 supp_mask_p = &supp_mask; 296 def_mask_p = &rte_flow_item_eth_mask; 297 loc_mac = efx_spec->efs_loc_mac; 298 } 299 300 rc = sfc_flow_parse_init(item, 301 (const void **)&spec, 302 (const void **)&mask, 303 supp_mask_p, def_mask_p, 304 sizeof(struct rte_flow_item_eth), 305 error); 306 if (rc != 0) 307 return rc; 308 309 /* If "spec" is not set, could be any Ethernet */ 310 if (spec == NULL) 311 return 0; 312 313 if (rte_is_same_ether_addr(&mask->dst, &supp_mask.dst)) { 314 efx_spec->efs_match_flags |= is_ifrm ? 315 EFX_FILTER_MATCH_IFRM_LOC_MAC : 316 EFX_FILTER_MATCH_LOC_MAC; 317 rte_memcpy(loc_mac, spec->dst.addr_bytes, 318 EFX_MAC_ADDR_LEN); 319 } else if (memcmp(mask->dst.addr_bytes, ig_mask, 320 EFX_MAC_ADDR_LEN) == 0) { 321 if (rte_is_unicast_ether_addr(&spec->dst)) 322 efx_spec->efs_match_flags |= is_ifrm ? 323 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST : 324 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST; 325 else 326 efx_spec->efs_match_flags |= is_ifrm ? 327 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST : 328 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST; 329 } else if (!rte_is_zero_ether_addr(&mask->dst)) { 330 goto fail_bad_mask; 331 } 332 333 /* 334 * ifrm_supp_mask ensures that the source address and 335 * ethertype masks are equal to zero in inner frame, 336 * so these fields are filled in only for the outer frame 337 */ 338 if (rte_is_same_ether_addr(&mask->src, &supp_mask.src)) { 339 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC; 340 rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes, 341 EFX_MAC_ADDR_LEN); 342 } else if (!rte_is_zero_ether_addr(&mask->src)) { 343 goto fail_bad_mask; 344 } 345 346 /* 347 * Ether type is in big-endian byte order in item and 348 * in little-endian in efx_spec, so byte swap is used 349 */ 350 if (mask->type == supp_mask.type) { 351 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 352 efx_spec->efs_ether_type = rte_bswap16(spec->type); 353 } else if (mask->type != 0) { 354 goto fail_bad_mask; 355 } 356 357 return 0; 358 359 fail_bad_mask: 360 rte_flow_error_set(error, EINVAL, 361 RTE_FLOW_ERROR_TYPE_ITEM, item, 362 "Bad mask in the ETH pattern item"); 363 return -rte_errno; 364 } 365 366 /** 367 * Convert VLAN item to EFX filter specification. 368 * 369 * @param item[in] 370 * Item specification. Only VID field is supported. 371 * The mask can not be NULL. Ranging is not supported. 372 * @param efx_spec[in, out] 373 * EFX filter specification to update. 374 * @param[out] error 375 * Perform verbose error reporting if not NULL. 376 */ 377 static int 378 sfc_flow_parse_vlan(const struct rte_flow_item *item, 379 struct sfc_flow_parse_ctx *parse_ctx, 380 struct rte_flow_error *error) 381 { 382 int rc; 383 uint16_t vid; 384 efx_filter_spec_t *efx_spec = parse_ctx->filter; 385 const struct rte_flow_item_vlan *spec = NULL; 386 const struct rte_flow_item_vlan *mask = NULL; 387 const struct rte_flow_item_vlan supp_mask = { 388 .tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX), 389 .inner_type = RTE_BE16(0xffff), 390 }; 391 392 rc = sfc_flow_parse_init(item, 393 (const void **)&spec, 394 (const void **)&mask, 395 &supp_mask, 396 NULL, 397 sizeof(struct rte_flow_item_vlan), 398 error); 399 if (rc != 0) 400 return rc; 401 402 /* 403 * VID is in big-endian byte order in item and 404 * in little-endian in efx_spec, so byte swap is used. 405 * If two VLAN items are included, the first matches 406 * the outer tag and the next matches the inner tag. 407 */ 408 if (mask->tci == supp_mask.tci) { 409 /* Apply mask to keep VID only */ 410 vid = rte_bswap16(spec->tci & mask->tci); 411 412 if (!(efx_spec->efs_match_flags & 413 EFX_FILTER_MATCH_OUTER_VID)) { 414 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID; 415 efx_spec->efs_outer_vid = vid; 416 } else if (!(efx_spec->efs_match_flags & 417 EFX_FILTER_MATCH_INNER_VID)) { 418 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID; 419 efx_spec->efs_inner_vid = vid; 420 } else { 421 rte_flow_error_set(error, EINVAL, 422 RTE_FLOW_ERROR_TYPE_ITEM, item, 423 "More than two VLAN items"); 424 return -rte_errno; 425 } 426 } else { 427 rte_flow_error_set(error, EINVAL, 428 RTE_FLOW_ERROR_TYPE_ITEM, item, 429 "VLAN ID in TCI match is required"); 430 return -rte_errno; 431 } 432 433 if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) { 434 rte_flow_error_set(error, EINVAL, 435 RTE_FLOW_ERROR_TYPE_ITEM, item, 436 "VLAN TPID matching is not supported"); 437 return -rte_errno; 438 } 439 if (mask->inner_type == supp_mask.inner_type) { 440 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 441 efx_spec->efs_ether_type = rte_bswap16(spec->inner_type); 442 } else if (mask->inner_type) { 443 rte_flow_error_set(error, EINVAL, 444 RTE_FLOW_ERROR_TYPE_ITEM, item, 445 "Bad mask for VLAN inner_type"); 446 return -rte_errno; 447 } 448 449 return 0; 450 } 451 452 /** 453 * Convert IPv4 item to EFX filter specification. 454 * 455 * @param item[in] 456 * Item specification. Only source and destination addresses and 457 * protocol fields are supported. If the mask is NULL, default 458 * mask will be used. Ranging is not supported. 459 * @param efx_spec[in, out] 460 * EFX filter specification to update. 461 * @param[out] error 462 * Perform verbose error reporting if not NULL. 463 */ 464 static int 465 sfc_flow_parse_ipv4(const struct rte_flow_item *item, 466 struct sfc_flow_parse_ctx *parse_ctx, 467 struct rte_flow_error *error) 468 { 469 int rc; 470 efx_filter_spec_t *efx_spec = parse_ctx->filter; 471 const struct rte_flow_item_ipv4 *spec = NULL; 472 const struct rte_flow_item_ipv4 *mask = NULL; 473 const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4); 474 const struct rte_flow_item_ipv4 supp_mask = { 475 .hdr = { 476 .src_addr = 0xffffffff, 477 .dst_addr = 0xffffffff, 478 .next_proto_id = 0xff, 479 } 480 }; 481 482 rc = sfc_flow_parse_init(item, 483 (const void **)&spec, 484 (const void **)&mask, 485 &supp_mask, 486 &rte_flow_item_ipv4_mask, 487 sizeof(struct rte_flow_item_ipv4), 488 error); 489 if (rc != 0) 490 return rc; 491 492 /* 493 * Filtering by IPv4 source and destination addresses requires 494 * the appropriate ETHER_TYPE in hardware filters 495 */ 496 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) { 497 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 498 efx_spec->efs_ether_type = ether_type_ipv4; 499 } else if (efx_spec->efs_ether_type != ether_type_ipv4) { 500 rte_flow_error_set(error, EINVAL, 501 RTE_FLOW_ERROR_TYPE_ITEM, item, 502 "Ethertype in pattern with IPV4 item should be appropriate"); 503 return -rte_errno; 504 } 505 506 if (spec == NULL) 507 return 0; 508 509 /* 510 * IPv4 addresses are in big-endian byte order in item and in 511 * efx_spec 512 */ 513 if (mask->hdr.src_addr == supp_mask.hdr.src_addr) { 514 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST; 515 efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr; 516 } else if (mask->hdr.src_addr != 0) { 517 goto fail_bad_mask; 518 } 519 520 if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) { 521 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST; 522 efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr; 523 } else if (mask->hdr.dst_addr != 0) { 524 goto fail_bad_mask; 525 } 526 527 if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) { 528 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 529 efx_spec->efs_ip_proto = spec->hdr.next_proto_id; 530 } else if (mask->hdr.next_proto_id != 0) { 531 goto fail_bad_mask; 532 } 533 534 return 0; 535 536 fail_bad_mask: 537 rte_flow_error_set(error, EINVAL, 538 RTE_FLOW_ERROR_TYPE_ITEM, item, 539 "Bad mask in the IPV4 pattern item"); 540 return -rte_errno; 541 } 542 543 /** 544 * Convert IPv6 item to EFX filter specification. 545 * 546 * @param item[in] 547 * Item specification. Only source and destination addresses and 548 * next header fields are supported. If the mask is NULL, default 549 * mask will be used. Ranging is not supported. 550 * @param efx_spec[in, out] 551 * EFX filter specification to update. 552 * @param[out] error 553 * Perform verbose error reporting if not NULL. 554 */ 555 static int 556 sfc_flow_parse_ipv6(const struct rte_flow_item *item, 557 struct sfc_flow_parse_ctx *parse_ctx, 558 struct rte_flow_error *error) 559 { 560 int rc; 561 efx_filter_spec_t *efx_spec = parse_ctx->filter; 562 const struct rte_flow_item_ipv6 *spec = NULL; 563 const struct rte_flow_item_ipv6 *mask = NULL; 564 const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6); 565 const struct rte_flow_item_ipv6 supp_mask = { 566 .hdr = { 567 .src_addr = { 0xff, 0xff, 0xff, 0xff, 568 0xff, 0xff, 0xff, 0xff, 569 0xff, 0xff, 0xff, 0xff, 570 0xff, 0xff, 0xff, 0xff }, 571 .dst_addr = { 0xff, 0xff, 0xff, 0xff, 572 0xff, 0xff, 0xff, 0xff, 573 0xff, 0xff, 0xff, 0xff, 574 0xff, 0xff, 0xff, 0xff }, 575 .proto = 0xff, 576 } 577 }; 578 579 rc = sfc_flow_parse_init(item, 580 (const void **)&spec, 581 (const void **)&mask, 582 &supp_mask, 583 &rte_flow_item_ipv6_mask, 584 sizeof(struct rte_flow_item_ipv6), 585 error); 586 if (rc != 0) 587 return rc; 588 589 /* 590 * Filtering by IPv6 source and destination addresses requires 591 * the appropriate ETHER_TYPE in hardware filters 592 */ 593 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) { 594 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 595 efx_spec->efs_ether_type = ether_type_ipv6; 596 } else if (efx_spec->efs_ether_type != ether_type_ipv6) { 597 rte_flow_error_set(error, EINVAL, 598 RTE_FLOW_ERROR_TYPE_ITEM, item, 599 "Ethertype in pattern with IPV6 item should be appropriate"); 600 return -rte_errno; 601 } 602 603 if (spec == NULL) 604 return 0; 605 606 /* 607 * IPv6 addresses are in big-endian byte order in item and in 608 * efx_spec 609 */ 610 if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr, 611 sizeof(mask->hdr.src_addr)) == 0) { 612 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST; 613 614 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) != 615 sizeof(spec->hdr.src_addr)); 616 rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr, 617 sizeof(efx_spec->efs_rem_host)); 618 } else if (!sfc_flow_is_zero(mask->hdr.src_addr, 619 sizeof(mask->hdr.src_addr))) { 620 goto fail_bad_mask; 621 } 622 623 if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr, 624 sizeof(mask->hdr.dst_addr)) == 0) { 625 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST; 626 627 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) != 628 sizeof(spec->hdr.dst_addr)); 629 rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr, 630 sizeof(efx_spec->efs_loc_host)); 631 } else if (!sfc_flow_is_zero(mask->hdr.dst_addr, 632 sizeof(mask->hdr.dst_addr))) { 633 goto fail_bad_mask; 634 } 635 636 if (mask->hdr.proto == supp_mask.hdr.proto) { 637 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 638 efx_spec->efs_ip_proto = spec->hdr.proto; 639 } else if (mask->hdr.proto != 0) { 640 goto fail_bad_mask; 641 } 642 643 return 0; 644 645 fail_bad_mask: 646 rte_flow_error_set(error, EINVAL, 647 RTE_FLOW_ERROR_TYPE_ITEM, item, 648 "Bad mask in the IPV6 pattern item"); 649 return -rte_errno; 650 } 651 652 /** 653 * Convert TCP item to EFX filter specification. 654 * 655 * @param item[in] 656 * Item specification. Only source and destination ports fields 657 * are supported. If the mask is NULL, default mask will be used. 658 * Ranging is not supported. 659 * @param efx_spec[in, out] 660 * EFX filter specification to update. 661 * @param[out] error 662 * Perform verbose error reporting if not NULL. 663 */ 664 static int 665 sfc_flow_parse_tcp(const struct rte_flow_item *item, 666 struct sfc_flow_parse_ctx *parse_ctx, 667 struct rte_flow_error *error) 668 { 669 int rc; 670 efx_filter_spec_t *efx_spec = parse_ctx->filter; 671 const struct rte_flow_item_tcp *spec = NULL; 672 const struct rte_flow_item_tcp *mask = NULL; 673 const struct rte_flow_item_tcp supp_mask = { 674 .hdr = { 675 .src_port = 0xffff, 676 .dst_port = 0xffff, 677 } 678 }; 679 680 rc = sfc_flow_parse_init(item, 681 (const void **)&spec, 682 (const void **)&mask, 683 &supp_mask, 684 &rte_flow_item_tcp_mask, 685 sizeof(struct rte_flow_item_tcp), 686 error); 687 if (rc != 0) 688 return rc; 689 690 /* 691 * Filtering by TCP source and destination ports requires 692 * the appropriate IP_PROTO in hardware filters 693 */ 694 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 695 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 696 efx_spec->efs_ip_proto = EFX_IPPROTO_TCP; 697 } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) { 698 rte_flow_error_set(error, EINVAL, 699 RTE_FLOW_ERROR_TYPE_ITEM, item, 700 "IP proto in pattern with TCP item should be appropriate"); 701 return -rte_errno; 702 } 703 704 if (spec == NULL) 705 return 0; 706 707 /* 708 * Source and destination ports are in big-endian byte order in item and 709 * in little-endian in efx_spec, so byte swap is used 710 */ 711 if (mask->hdr.src_port == supp_mask.hdr.src_port) { 712 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT; 713 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port); 714 } else if (mask->hdr.src_port != 0) { 715 goto fail_bad_mask; 716 } 717 718 if (mask->hdr.dst_port == supp_mask.hdr.dst_port) { 719 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT; 720 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port); 721 } else if (mask->hdr.dst_port != 0) { 722 goto fail_bad_mask; 723 } 724 725 return 0; 726 727 fail_bad_mask: 728 rte_flow_error_set(error, EINVAL, 729 RTE_FLOW_ERROR_TYPE_ITEM, item, 730 "Bad mask in the TCP pattern item"); 731 return -rte_errno; 732 } 733 734 /** 735 * Convert UDP item to EFX filter specification. 736 * 737 * @param item[in] 738 * Item specification. Only source and destination ports fields 739 * are supported. If the mask is NULL, default mask will be used. 740 * Ranging is not supported. 741 * @param efx_spec[in, out] 742 * EFX filter specification to update. 743 * @param[out] error 744 * Perform verbose error reporting if not NULL. 745 */ 746 static int 747 sfc_flow_parse_udp(const struct rte_flow_item *item, 748 struct sfc_flow_parse_ctx *parse_ctx, 749 struct rte_flow_error *error) 750 { 751 int rc; 752 efx_filter_spec_t *efx_spec = parse_ctx->filter; 753 const struct rte_flow_item_udp *spec = NULL; 754 const struct rte_flow_item_udp *mask = NULL; 755 const struct rte_flow_item_udp supp_mask = { 756 .hdr = { 757 .src_port = 0xffff, 758 .dst_port = 0xffff, 759 } 760 }; 761 762 rc = sfc_flow_parse_init(item, 763 (const void **)&spec, 764 (const void **)&mask, 765 &supp_mask, 766 &rte_flow_item_udp_mask, 767 sizeof(struct rte_flow_item_udp), 768 error); 769 if (rc != 0) 770 return rc; 771 772 /* 773 * Filtering by UDP source and destination ports requires 774 * the appropriate IP_PROTO in hardware filters 775 */ 776 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 777 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 778 efx_spec->efs_ip_proto = EFX_IPPROTO_UDP; 779 } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) { 780 rte_flow_error_set(error, EINVAL, 781 RTE_FLOW_ERROR_TYPE_ITEM, item, 782 "IP proto in pattern with UDP item should be appropriate"); 783 return -rte_errno; 784 } 785 786 if (spec == NULL) 787 return 0; 788 789 /* 790 * Source and destination ports are in big-endian byte order in item and 791 * in little-endian in efx_spec, so byte swap is used 792 */ 793 if (mask->hdr.src_port == supp_mask.hdr.src_port) { 794 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT; 795 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port); 796 } else if (mask->hdr.src_port != 0) { 797 goto fail_bad_mask; 798 } 799 800 if (mask->hdr.dst_port == supp_mask.hdr.dst_port) { 801 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT; 802 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port); 803 } else if (mask->hdr.dst_port != 0) { 804 goto fail_bad_mask; 805 } 806 807 return 0; 808 809 fail_bad_mask: 810 rte_flow_error_set(error, EINVAL, 811 RTE_FLOW_ERROR_TYPE_ITEM, item, 812 "Bad mask in the UDP pattern item"); 813 return -rte_errno; 814 } 815 816 /* 817 * Filters for encapsulated packets match based on the EtherType and IP 818 * protocol in the outer frame. 819 */ 820 static int 821 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item, 822 efx_filter_spec_t *efx_spec, 823 uint8_t ip_proto, 824 struct rte_flow_error *error) 825 { 826 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 827 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 828 efx_spec->efs_ip_proto = ip_proto; 829 } else if (efx_spec->efs_ip_proto != ip_proto) { 830 switch (ip_proto) { 831 case EFX_IPPROTO_UDP: 832 rte_flow_error_set(error, EINVAL, 833 RTE_FLOW_ERROR_TYPE_ITEM, item, 834 "Outer IP header protocol must be UDP " 835 "in VxLAN/GENEVE pattern"); 836 return -rte_errno; 837 838 case EFX_IPPROTO_GRE: 839 rte_flow_error_set(error, EINVAL, 840 RTE_FLOW_ERROR_TYPE_ITEM, item, 841 "Outer IP header protocol must be GRE " 842 "in NVGRE pattern"); 843 return -rte_errno; 844 845 default: 846 rte_flow_error_set(error, EINVAL, 847 RTE_FLOW_ERROR_TYPE_ITEM, item, 848 "Only VxLAN/GENEVE/NVGRE tunneling patterns " 849 "are supported"); 850 return -rte_errno; 851 } 852 } 853 854 if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE && 855 efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 && 856 efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) { 857 rte_flow_error_set(error, EINVAL, 858 RTE_FLOW_ERROR_TYPE_ITEM, item, 859 "Outer frame EtherType in pattern with tunneling " 860 "must be IPv4 or IPv6"); 861 return -rte_errno; 862 } 863 864 return 0; 865 } 866 867 static int 868 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec, 869 const uint8_t *vni_or_vsid_val, 870 const uint8_t *vni_or_vsid_mask, 871 const struct rte_flow_item *item, 872 struct rte_flow_error *error) 873 { 874 const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = { 875 0xff, 0xff, 0xff 876 }; 877 878 if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask, 879 EFX_VNI_OR_VSID_LEN) == 0) { 880 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID; 881 rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val, 882 EFX_VNI_OR_VSID_LEN); 883 } else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) { 884 rte_flow_error_set(error, EINVAL, 885 RTE_FLOW_ERROR_TYPE_ITEM, item, 886 "Unsupported VNI/VSID mask"); 887 return -rte_errno; 888 } 889 890 return 0; 891 } 892 893 /** 894 * Convert VXLAN item to EFX filter specification. 895 * 896 * @param item[in] 897 * Item specification. Only VXLAN network identifier field is supported. 898 * If the mask is NULL, default mask will be used. 899 * Ranging is not supported. 900 * @param efx_spec[in, out] 901 * EFX filter specification to update. 902 * @param[out] error 903 * Perform verbose error reporting if not NULL. 904 */ 905 static int 906 sfc_flow_parse_vxlan(const struct rte_flow_item *item, 907 struct sfc_flow_parse_ctx *parse_ctx, 908 struct rte_flow_error *error) 909 { 910 int rc; 911 efx_filter_spec_t *efx_spec = parse_ctx->filter; 912 const struct rte_flow_item_vxlan *spec = NULL; 913 const struct rte_flow_item_vxlan *mask = NULL; 914 const struct rte_flow_item_vxlan supp_mask = { 915 .vni = { 0xff, 0xff, 0xff } 916 }; 917 918 rc = sfc_flow_parse_init(item, 919 (const void **)&spec, 920 (const void **)&mask, 921 &supp_mask, 922 &rte_flow_item_vxlan_mask, 923 sizeof(struct rte_flow_item_vxlan), 924 error); 925 if (rc != 0) 926 return rc; 927 928 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 929 EFX_IPPROTO_UDP, error); 930 if (rc != 0) 931 return rc; 932 933 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN; 934 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 935 936 if (spec == NULL) 937 return 0; 938 939 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni, 940 mask->vni, item, error); 941 942 return rc; 943 } 944 945 /** 946 * Convert GENEVE item to EFX filter specification. 947 * 948 * @param item[in] 949 * Item specification. Only Virtual Network Identifier and protocol type 950 * fields are supported. But protocol type can be only Ethernet (0x6558). 951 * If the mask is NULL, default mask will be used. 952 * Ranging is not supported. 953 * @param efx_spec[in, out] 954 * EFX filter specification to update. 955 * @param[out] error 956 * Perform verbose error reporting if not NULL. 957 */ 958 static int 959 sfc_flow_parse_geneve(const struct rte_flow_item *item, 960 struct sfc_flow_parse_ctx *parse_ctx, 961 struct rte_flow_error *error) 962 { 963 int rc; 964 efx_filter_spec_t *efx_spec = parse_ctx->filter; 965 const struct rte_flow_item_geneve *spec = NULL; 966 const struct rte_flow_item_geneve *mask = NULL; 967 const struct rte_flow_item_geneve supp_mask = { 968 .protocol = RTE_BE16(0xffff), 969 .vni = { 0xff, 0xff, 0xff } 970 }; 971 972 rc = sfc_flow_parse_init(item, 973 (const void **)&spec, 974 (const void **)&mask, 975 &supp_mask, 976 &rte_flow_item_geneve_mask, 977 sizeof(struct rte_flow_item_geneve), 978 error); 979 if (rc != 0) 980 return rc; 981 982 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 983 EFX_IPPROTO_UDP, error); 984 if (rc != 0) 985 return rc; 986 987 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE; 988 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 989 990 if (spec == NULL) 991 return 0; 992 993 if (mask->protocol == supp_mask.protocol) { 994 if (spec->protocol != rte_cpu_to_be_16(RTE_ETHER_TYPE_TEB)) { 995 rte_flow_error_set(error, EINVAL, 996 RTE_FLOW_ERROR_TYPE_ITEM, item, 997 "GENEVE encap. protocol must be Ethernet " 998 "(0x6558) in the GENEVE pattern item"); 999 return -rte_errno; 1000 } 1001 } else if (mask->protocol != 0) { 1002 rte_flow_error_set(error, EINVAL, 1003 RTE_FLOW_ERROR_TYPE_ITEM, item, 1004 "Unsupported mask for GENEVE encap. protocol"); 1005 return -rte_errno; 1006 } 1007 1008 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni, 1009 mask->vni, item, error); 1010 1011 return rc; 1012 } 1013 1014 /** 1015 * Convert NVGRE item to EFX filter specification. 1016 * 1017 * @param item[in] 1018 * Item specification. Only virtual subnet ID field is supported. 1019 * If the mask is NULL, default mask will be used. 1020 * Ranging is not supported. 1021 * @param efx_spec[in, out] 1022 * EFX filter specification to update. 1023 * @param[out] error 1024 * Perform verbose error reporting if not NULL. 1025 */ 1026 static int 1027 sfc_flow_parse_nvgre(const struct rte_flow_item *item, 1028 struct sfc_flow_parse_ctx *parse_ctx, 1029 struct rte_flow_error *error) 1030 { 1031 int rc; 1032 efx_filter_spec_t *efx_spec = parse_ctx->filter; 1033 const struct rte_flow_item_nvgre *spec = NULL; 1034 const struct rte_flow_item_nvgre *mask = NULL; 1035 const struct rte_flow_item_nvgre supp_mask = { 1036 .tni = { 0xff, 0xff, 0xff } 1037 }; 1038 1039 rc = sfc_flow_parse_init(item, 1040 (const void **)&spec, 1041 (const void **)&mask, 1042 &supp_mask, 1043 &rte_flow_item_nvgre_mask, 1044 sizeof(struct rte_flow_item_nvgre), 1045 error); 1046 if (rc != 0) 1047 return rc; 1048 1049 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 1050 EFX_IPPROTO_GRE, error); 1051 if (rc != 0) 1052 return rc; 1053 1054 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE; 1055 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 1056 1057 if (spec == NULL) 1058 return 0; 1059 1060 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni, 1061 mask->tni, item, error); 1062 1063 return rc; 1064 } 1065 1066 static const struct sfc_flow_item sfc_flow_items[] = { 1067 { 1068 .type = RTE_FLOW_ITEM_TYPE_VOID, 1069 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER, 1070 .layer = SFC_FLOW_ITEM_ANY_LAYER, 1071 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1072 .parse = sfc_flow_parse_void, 1073 }, 1074 { 1075 .type = RTE_FLOW_ITEM_TYPE_ETH, 1076 .prev_layer = SFC_FLOW_ITEM_START_LAYER, 1077 .layer = SFC_FLOW_ITEM_L2, 1078 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1079 .parse = sfc_flow_parse_eth, 1080 }, 1081 { 1082 .type = RTE_FLOW_ITEM_TYPE_VLAN, 1083 .prev_layer = SFC_FLOW_ITEM_L2, 1084 .layer = SFC_FLOW_ITEM_L2, 1085 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1086 .parse = sfc_flow_parse_vlan, 1087 }, 1088 { 1089 .type = RTE_FLOW_ITEM_TYPE_IPV4, 1090 .prev_layer = SFC_FLOW_ITEM_L2, 1091 .layer = SFC_FLOW_ITEM_L3, 1092 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1093 .parse = sfc_flow_parse_ipv4, 1094 }, 1095 { 1096 .type = RTE_FLOW_ITEM_TYPE_IPV6, 1097 .prev_layer = SFC_FLOW_ITEM_L2, 1098 .layer = SFC_FLOW_ITEM_L3, 1099 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1100 .parse = sfc_flow_parse_ipv6, 1101 }, 1102 { 1103 .type = RTE_FLOW_ITEM_TYPE_TCP, 1104 .prev_layer = SFC_FLOW_ITEM_L3, 1105 .layer = SFC_FLOW_ITEM_L4, 1106 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1107 .parse = sfc_flow_parse_tcp, 1108 }, 1109 { 1110 .type = RTE_FLOW_ITEM_TYPE_UDP, 1111 .prev_layer = SFC_FLOW_ITEM_L3, 1112 .layer = SFC_FLOW_ITEM_L4, 1113 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1114 .parse = sfc_flow_parse_udp, 1115 }, 1116 { 1117 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 1118 .prev_layer = SFC_FLOW_ITEM_L4, 1119 .layer = SFC_FLOW_ITEM_START_LAYER, 1120 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1121 .parse = sfc_flow_parse_vxlan, 1122 }, 1123 { 1124 .type = RTE_FLOW_ITEM_TYPE_GENEVE, 1125 .prev_layer = SFC_FLOW_ITEM_L4, 1126 .layer = SFC_FLOW_ITEM_START_LAYER, 1127 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1128 .parse = sfc_flow_parse_geneve, 1129 }, 1130 { 1131 .type = RTE_FLOW_ITEM_TYPE_NVGRE, 1132 .prev_layer = SFC_FLOW_ITEM_L3, 1133 .layer = SFC_FLOW_ITEM_START_LAYER, 1134 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1135 .parse = sfc_flow_parse_nvgre, 1136 }, 1137 }; 1138 1139 /* 1140 * Protocol-independent flow API support 1141 */ 1142 static int 1143 sfc_flow_parse_attr(struct sfc_adapter *sa, 1144 const struct rte_flow_attr *attr, 1145 struct rte_flow *flow, 1146 struct rte_flow_error *error) 1147 { 1148 struct sfc_flow_spec *spec = &flow->spec; 1149 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1150 struct sfc_flow_spec_mae *spec_mae = &spec->mae; 1151 struct sfc_mae *mae = &sa->mae; 1152 1153 if (attr == NULL) { 1154 rte_flow_error_set(error, EINVAL, 1155 RTE_FLOW_ERROR_TYPE_ATTR, NULL, 1156 "NULL attribute"); 1157 return -rte_errno; 1158 } 1159 if (attr->group != 0) { 1160 rte_flow_error_set(error, ENOTSUP, 1161 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr, 1162 "Groups are not supported"); 1163 return -rte_errno; 1164 } 1165 if (attr->egress != 0) { 1166 rte_flow_error_set(error, ENOTSUP, 1167 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, 1168 "Egress is not supported"); 1169 return -rte_errno; 1170 } 1171 if (attr->ingress == 0) { 1172 rte_flow_error_set(error, ENOTSUP, 1173 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, 1174 "Ingress is compulsory"); 1175 return -rte_errno; 1176 } 1177 if (attr->transfer == 0) { 1178 if (attr->priority != 0) { 1179 rte_flow_error_set(error, ENOTSUP, 1180 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1181 attr, "Priorities are unsupported"); 1182 return -rte_errno; 1183 } 1184 spec->type = SFC_FLOW_SPEC_FILTER; 1185 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX; 1186 spec_filter->template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT; 1187 spec_filter->template.efs_priority = EFX_FILTER_PRI_MANUAL; 1188 } else { 1189 if (mae->status != SFC_MAE_STATUS_SUPPORTED) { 1190 rte_flow_error_set(error, ENOTSUP, 1191 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1192 attr, "Transfer is not supported"); 1193 return -rte_errno; 1194 } 1195 if (attr->priority > mae->nb_action_rule_prios_max) { 1196 rte_flow_error_set(error, ENOTSUP, 1197 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1198 attr, "Unsupported priority level"); 1199 return -rte_errno; 1200 } 1201 spec->type = SFC_FLOW_SPEC_MAE; 1202 spec_mae->priority = attr->priority; 1203 spec_mae->match_spec = NULL; 1204 spec_mae->action_set = NULL; 1205 spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID; 1206 } 1207 1208 return 0; 1209 } 1210 1211 /* Get item from array sfc_flow_items */ 1212 static const struct sfc_flow_item * 1213 sfc_flow_get_item(const struct sfc_flow_item *items, 1214 unsigned int nb_items, 1215 enum rte_flow_item_type type) 1216 { 1217 unsigned int i; 1218 1219 for (i = 0; i < nb_items; i++) 1220 if (items[i].type == type) 1221 return &items[i]; 1222 1223 return NULL; 1224 } 1225 1226 int 1227 sfc_flow_parse_pattern(const struct sfc_flow_item *flow_items, 1228 unsigned int nb_flow_items, 1229 const struct rte_flow_item pattern[], 1230 struct sfc_flow_parse_ctx *parse_ctx, 1231 struct rte_flow_error *error) 1232 { 1233 int rc; 1234 unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER; 1235 boolean_t is_ifrm = B_FALSE; 1236 const struct sfc_flow_item *item; 1237 1238 if (pattern == NULL) { 1239 rte_flow_error_set(error, EINVAL, 1240 RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, 1241 "NULL pattern"); 1242 return -rte_errno; 1243 } 1244 1245 for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) { 1246 item = sfc_flow_get_item(flow_items, nb_flow_items, 1247 pattern->type); 1248 if (item == NULL) { 1249 rte_flow_error_set(error, ENOTSUP, 1250 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1251 "Unsupported pattern item"); 1252 return -rte_errno; 1253 } 1254 1255 /* 1256 * Omitting one or several protocol layers at the beginning 1257 * of pattern is supported 1258 */ 1259 if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER && 1260 prev_layer != SFC_FLOW_ITEM_ANY_LAYER && 1261 item->prev_layer != prev_layer) { 1262 rte_flow_error_set(error, ENOTSUP, 1263 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1264 "Unexpected sequence of pattern items"); 1265 return -rte_errno; 1266 } 1267 1268 /* 1269 * Allow only VOID and ETH pattern items in the inner frame. 1270 * Also check that there is only one tunneling protocol. 1271 */ 1272 switch (item->type) { 1273 case RTE_FLOW_ITEM_TYPE_VOID: 1274 case RTE_FLOW_ITEM_TYPE_ETH: 1275 break; 1276 1277 case RTE_FLOW_ITEM_TYPE_VXLAN: 1278 case RTE_FLOW_ITEM_TYPE_GENEVE: 1279 case RTE_FLOW_ITEM_TYPE_NVGRE: 1280 if (is_ifrm) { 1281 rte_flow_error_set(error, EINVAL, 1282 RTE_FLOW_ERROR_TYPE_ITEM, 1283 pattern, 1284 "More than one tunneling protocol"); 1285 return -rte_errno; 1286 } 1287 is_ifrm = B_TRUE; 1288 break; 1289 1290 default: 1291 if (parse_ctx->type == SFC_FLOW_PARSE_CTX_FILTER && 1292 is_ifrm) { 1293 rte_flow_error_set(error, EINVAL, 1294 RTE_FLOW_ERROR_TYPE_ITEM, 1295 pattern, 1296 "There is an unsupported pattern item " 1297 "in the inner frame"); 1298 return -rte_errno; 1299 } 1300 break; 1301 } 1302 1303 if (parse_ctx->type != item->ctx_type) { 1304 rte_flow_error_set(error, EINVAL, 1305 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1306 "Parse context type mismatch"); 1307 return -rte_errno; 1308 } 1309 1310 rc = item->parse(pattern, parse_ctx, error); 1311 if (rc != 0) 1312 return rc; 1313 1314 if (item->layer != SFC_FLOW_ITEM_ANY_LAYER) 1315 prev_layer = item->layer; 1316 } 1317 1318 return 0; 1319 } 1320 1321 static int 1322 sfc_flow_parse_queue(struct sfc_adapter *sa, 1323 const struct rte_flow_action_queue *queue, 1324 struct rte_flow *flow) 1325 { 1326 struct sfc_flow_spec *spec = &flow->spec; 1327 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1328 struct sfc_rxq *rxq; 1329 struct sfc_rxq_info *rxq_info; 1330 1331 if (queue->index >= sfc_sa2shared(sa)->rxq_count) 1332 return -EINVAL; 1333 1334 rxq = &sa->rxq_ctrl[queue->index]; 1335 spec_filter->template.efs_dmaq_id = (uint16_t)rxq->hw_index; 1336 1337 rxq_info = &sfc_sa2shared(sa)->rxq_info[queue->index]; 1338 spec_filter->rss_hash_required = !!(rxq_info->rxq_flags & 1339 SFC_RXQ_FLAG_RSS_HASH); 1340 1341 return 0; 1342 } 1343 1344 static int 1345 sfc_flow_parse_rss(struct sfc_adapter *sa, 1346 const struct rte_flow_action_rss *action_rss, 1347 struct rte_flow *flow) 1348 { 1349 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1350 struct sfc_rss *rss = &sas->rss; 1351 unsigned int rxq_sw_index; 1352 struct sfc_rxq *rxq; 1353 unsigned int rxq_hw_index_min; 1354 unsigned int rxq_hw_index_max; 1355 efx_rx_hash_type_t efx_hash_types; 1356 const uint8_t *rss_key; 1357 struct sfc_flow_spec *spec = &flow->spec; 1358 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1359 struct sfc_flow_rss *sfc_rss_conf = &spec_filter->rss_conf; 1360 unsigned int i; 1361 1362 if (action_rss->queue_num == 0) 1363 return -EINVAL; 1364 1365 rxq_sw_index = sfc_sa2shared(sa)->rxq_count - 1; 1366 rxq = &sa->rxq_ctrl[rxq_sw_index]; 1367 rxq_hw_index_min = rxq->hw_index; 1368 rxq_hw_index_max = 0; 1369 1370 for (i = 0; i < action_rss->queue_num; ++i) { 1371 rxq_sw_index = action_rss->queue[i]; 1372 1373 if (rxq_sw_index >= sfc_sa2shared(sa)->rxq_count) 1374 return -EINVAL; 1375 1376 rxq = &sa->rxq_ctrl[rxq_sw_index]; 1377 1378 if (rxq->hw_index < rxq_hw_index_min) 1379 rxq_hw_index_min = rxq->hw_index; 1380 1381 if (rxq->hw_index > rxq_hw_index_max) 1382 rxq_hw_index_max = rxq->hw_index; 1383 } 1384 1385 switch (action_rss->func) { 1386 case RTE_ETH_HASH_FUNCTION_DEFAULT: 1387 case RTE_ETH_HASH_FUNCTION_TOEPLITZ: 1388 break; 1389 default: 1390 return -EINVAL; 1391 } 1392 1393 if (action_rss->level) 1394 return -EINVAL; 1395 1396 /* 1397 * Dummy RSS action with only one queue and no specific settings 1398 * for hash types and key does not require dedicated RSS context 1399 * and may be simplified to single queue action. 1400 */ 1401 if (action_rss->queue_num == 1 && action_rss->types == 0 && 1402 action_rss->key_len == 0) { 1403 spec_filter->template.efs_dmaq_id = rxq_hw_index_min; 1404 return 0; 1405 } 1406 1407 if (action_rss->types) { 1408 int rc; 1409 1410 rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types, 1411 &efx_hash_types); 1412 if (rc != 0) 1413 return -rc; 1414 } else { 1415 unsigned int i; 1416 1417 efx_hash_types = 0; 1418 for (i = 0; i < rss->hf_map_nb_entries; ++i) 1419 efx_hash_types |= rss->hf_map[i].efx; 1420 } 1421 1422 if (action_rss->key_len) { 1423 if (action_rss->key_len != sizeof(rss->key)) 1424 return -EINVAL; 1425 1426 rss_key = action_rss->key; 1427 } else { 1428 rss_key = rss->key; 1429 } 1430 1431 spec_filter->rss = B_TRUE; 1432 1433 sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min; 1434 sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max; 1435 sfc_rss_conf->rss_hash_types = efx_hash_types; 1436 rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key)); 1437 1438 for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) { 1439 unsigned int nb_queues = action_rss->queue_num; 1440 unsigned int rxq_sw_index = action_rss->queue[i % nb_queues]; 1441 struct sfc_rxq *rxq = &sa->rxq_ctrl[rxq_sw_index]; 1442 1443 sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min; 1444 } 1445 1446 return 0; 1447 } 1448 1449 static int 1450 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec, 1451 unsigned int filters_count) 1452 { 1453 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1454 unsigned int i; 1455 int ret = 0; 1456 1457 for (i = 0; i < filters_count; i++) { 1458 int rc; 1459 1460 rc = efx_filter_remove(sa->nic, &spec_filter->filters[i]); 1461 if (ret == 0 && rc != 0) { 1462 sfc_err(sa, "failed to remove filter specification " 1463 "(rc = %d)", rc); 1464 ret = rc; 1465 } 1466 } 1467 1468 return ret; 1469 } 1470 1471 static int 1472 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec) 1473 { 1474 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1475 unsigned int i; 1476 int rc = 0; 1477 1478 for (i = 0; i < spec_filter->count; i++) { 1479 rc = efx_filter_insert(sa->nic, &spec_filter->filters[i]); 1480 if (rc != 0) { 1481 sfc_flow_spec_flush(sa, spec, i); 1482 break; 1483 } 1484 } 1485 1486 return rc; 1487 } 1488 1489 static int 1490 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec) 1491 { 1492 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1493 1494 return sfc_flow_spec_flush(sa, spec, spec_filter->count); 1495 } 1496 1497 static int 1498 sfc_flow_filter_insert(struct sfc_adapter *sa, 1499 struct rte_flow *flow) 1500 { 1501 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1502 struct sfc_rss *rss = &sas->rss; 1503 struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter; 1504 struct sfc_flow_rss *flow_rss = &spec_filter->rss_conf; 1505 uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT; 1506 boolean_t create_context; 1507 unsigned int i; 1508 int rc = 0; 1509 1510 create_context = spec_filter->rss || (spec_filter->rss_hash_required && 1511 rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT); 1512 1513 if (create_context) { 1514 unsigned int rss_spread; 1515 unsigned int rss_hash_types; 1516 uint8_t *rss_key; 1517 1518 if (spec_filter->rss) { 1519 rss_spread = MIN(flow_rss->rxq_hw_index_max - 1520 flow_rss->rxq_hw_index_min + 1, 1521 EFX_MAXRSS); 1522 rss_hash_types = flow_rss->rss_hash_types; 1523 rss_key = flow_rss->rss_key; 1524 } else { 1525 /* 1526 * Initialize dummy RSS context parameters to have 1527 * valid RSS hash. Use default RSS hash function and 1528 * key. 1529 */ 1530 rss_spread = 1; 1531 rss_hash_types = rss->hash_types; 1532 rss_key = rss->key; 1533 } 1534 1535 rc = efx_rx_scale_context_alloc(sa->nic, 1536 EFX_RX_SCALE_EXCLUSIVE, 1537 rss_spread, 1538 &efs_rss_context); 1539 if (rc != 0) 1540 goto fail_scale_context_alloc; 1541 1542 rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context, 1543 rss->hash_alg, 1544 rss_hash_types, B_TRUE); 1545 if (rc != 0) 1546 goto fail_scale_mode_set; 1547 1548 rc = efx_rx_scale_key_set(sa->nic, efs_rss_context, 1549 rss_key, sizeof(rss->key)); 1550 if (rc != 0) 1551 goto fail_scale_key_set; 1552 } else { 1553 efs_rss_context = rss->dummy_rss_context; 1554 } 1555 1556 if (spec_filter->rss || spec_filter->rss_hash_required) { 1557 /* 1558 * At this point, fully elaborated filter specifications 1559 * have been produced from the template. To make sure that 1560 * RSS behaviour is consistent between them, set the same 1561 * RSS context value everywhere. 1562 */ 1563 for (i = 0; i < spec_filter->count; i++) { 1564 efx_filter_spec_t *spec = &spec_filter->filters[i]; 1565 1566 spec->efs_rss_context = efs_rss_context; 1567 spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS; 1568 if (spec_filter->rss) 1569 spec->efs_dmaq_id = flow_rss->rxq_hw_index_min; 1570 } 1571 } 1572 1573 rc = sfc_flow_spec_insert(sa, &flow->spec); 1574 if (rc != 0) 1575 goto fail_filter_insert; 1576 1577 if (create_context) { 1578 unsigned int dummy_tbl[RTE_DIM(flow_rss->rss_tbl)] = {0}; 1579 unsigned int *tbl; 1580 1581 tbl = spec_filter->rss ? flow_rss->rss_tbl : dummy_tbl; 1582 1583 /* 1584 * Scale table is set after filter insertion because 1585 * the table entries are relative to the base RxQ ID 1586 * and the latter is submitted to the HW by means of 1587 * inserting a filter, so by the time of the request 1588 * the HW knows all the information needed to verify 1589 * the table entries, and the operation will succeed 1590 */ 1591 rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context, 1592 tbl, RTE_DIM(flow_rss->rss_tbl)); 1593 if (rc != 0) 1594 goto fail_scale_tbl_set; 1595 1596 /* Remember created dummy RSS context */ 1597 if (!spec_filter->rss) 1598 rss->dummy_rss_context = efs_rss_context; 1599 } 1600 1601 return 0; 1602 1603 fail_scale_tbl_set: 1604 sfc_flow_spec_remove(sa, &flow->spec); 1605 1606 fail_filter_insert: 1607 fail_scale_key_set: 1608 fail_scale_mode_set: 1609 if (create_context) 1610 efx_rx_scale_context_free(sa->nic, efs_rss_context); 1611 1612 fail_scale_context_alloc: 1613 return rc; 1614 } 1615 1616 static int 1617 sfc_flow_filter_remove(struct sfc_adapter *sa, 1618 struct rte_flow *flow) 1619 { 1620 struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter; 1621 int rc = 0; 1622 1623 rc = sfc_flow_spec_remove(sa, &flow->spec); 1624 if (rc != 0) 1625 return rc; 1626 1627 if (spec_filter->rss) { 1628 /* 1629 * All specifications for a given flow rule have the same RSS 1630 * context, so that RSS context value is taken from the first 1631 * filter specification 1632 */ 1633 efx_filter_spec_t *spec = &spec_filter->filters[0]; 1634 1635 rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context); 1636 } 1637 1638 return rc; 1639 } 1640 1641 static int 1642 sfc_flow_parse_mark(struct sfc_adapter *sa, 1643 const struct rte_flow_action_mark *mark, 1644 struct rte_flow *flow) 1645 { 1646 struct sfc_flow_spec *spec = &flow->spec; 1647 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1648 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1649 1650 if (mark == NULL || mark->id > encp->enc_filter_action_mark_max) 1651 return EINVAL; 1652 1653 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK; 1654 spec_filter->template.efs_mark = mark->id; 1655 1656 return 0; 1657 } 1658 1659 static int 1660 sfc_flow_parse_actions(struct sfc_adapter *sa, 1661 const struct rte_flow_action actions[], 1662 struct rte_flow *flow, 1663 struct rte_flow_error *error) 1664 { 1665 int rc; 1666 struct sfc_flow_spec *spec = &flow->spec; 1667 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1668 const unsigned int dp_rx_features = sa->priv.dp_rx->features; 1669 uint32_t actions_set = 0; 1670 const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) | 1671 (1UL << RTE_FLOW_ACTION_TYPE_RSS) | 1672 (1UL << RTE_FLOW_ACTION_TYPE_DROP); 1673 const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) | 1674 (1UL << RTE_FLOW_ACTION_TYPE_FLAG); 1675 1676 if (actions == NULL) { 1677 rte_flow_error_set(error, EINVAL, 1678 RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, 1679 "NULL actions"); 1680 return -rte_errno; 1681 } 1682 1683 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 1684 switch (actions->type) { 1685 case RTE_FLOW_ACTION_TYPE_VOID: 1686 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID, 1687 actions_set); 1688 break; 1689 1690 case RTE_FLOW_ACTION_TYPE_QUEUE: 1691 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE, 1692 actions_set); 1693 if ((actions_set & fate_actions_mask) != 0) 1694 goto fail_fate_actions; 1695 1696 rc = sfc_flow_parse_queue(sa, actions->conf, flow); 1697 if (rc != 0) { 1698 rte_flow_error_set(error, EINVAL, 1699 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1700 "Bad QUEUE action"); 1701 return -rte_errno; 1702 } 1703 break; 1704 1705 case RTE_FLOW_ACTION_TYPE_RSS: 1706 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS, 1707 actions_set); 1708 if ((actions_set & fate_actions_mask) != 0) 1709 goto fail_fate_actions; 1710 1711 rc = sfc_flow_parse_rss(sa, actions->conf, flow); 1712 if (rc != 0) { 1713 rte_flow_error_set(error, -rc, 1714 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1715 "Bad RSS action"); 1716 return -rte_errno; 1717 } 1718 break; 1719 1720 case RTE_FLOW_ACTION_TYPE_DROP: 1721 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP, 1722 actions_set); 1723 if ((actions_set & fate_actions_mask) != 0) 1724 goto fail_fate_actions; 1725 1726 spec_filter->template.efs_dmaq_id = 1727 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP; 1728 break; 1729 1730 case RTE_FLOW_ACTION_TYPE_FLAG: 1731 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG, 1732 actions_set); 1733 if ((actions_set & mark_actions_mask) != 0) 1734 goto fail_actions_overlap; 1735 1736 if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) { 1737 rte_flow_error_set(error, ENOTSUP, 1738 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1739 "FLAG action is not supported on the current Rx datapath"); 1740 return -rte_errno; 1741 } 1742 1743 spec_filter->template.efs_flags |= 1744 EFX_FILTER_FLAG_ACTION_FLAG; 1745 break; 1746 1747 case RTE_FLOW_ACTION_TYPE_MARK: 1748 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK, 1749 actions_set); 1750 if ((actions_set & mark_actions_mask) != 0) 1751 goto fail_actions_overlap; 1752 1753 if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) { 1754 rte_flow_error_set(error, ENOTSUP, 1755 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1756 "MARK action is not supported on the current Rx datapath"); 1757 return -rte_errno; 1758 } 1759 1760 rc = sfc_flow_parse_mark(sa, actions->conf, flow); 1761 if (rc != 0) { 1762 rte_flow_error_set(error, rc, 1763 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1764 "Bad MARK action"); 1765 return -rte_errno; 1766 } 1767 break; 1768 1769 default: 1770 rte_flow_error_set(error, ENOTSUP, 1771 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1772 "Action is not supported"); 1773 return -rte_errno; 1774 } 1775 1776 actions_set |= (1UL << actions->type); 1777 } 1778 1779 /* When fate is unknown, drop traffic. */ 1780 if ((actions_set & fate_actions_mask) == 0) { 1781 spec_filter->template.efs_dmaq_id = 1782 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP; 1783 } 1784 1785 return 0; 1786 1787 fail_fate_actions: 1788 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions, 1789 "Cannot combine several fate-deciding actions, " 1790 "choose between QUEUE, RSS or DROP"); 1791 return -rte_errno; 1792 1793 fail_actions_overlap: 1794 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions, 1795 "Overlapping actions are not supported"); 1796 return -rte_errno; 1797 } 1798 1799 /** 1800 * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST 1801 * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same 1802 * specifications after copying. 1803 * 1804 * @param spec[in, out] 1805 * SFC flow specification to update. 1806 * @param filters_count_for_one_val[in] 1807 * How many specifications should have the same match flag, what is the 1808 * number of specifications before copying. 1809 * @param error[out] 1810 * Perform verbose error reporting if not NULL. 1811 */ 1812 static int 1813 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec, 1814 unsigned int filters_count_for_one_val, 1815 struct rte_flow_error *error) 1816 { 1817 unsigned int i; 1818 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1819 static const efx_filter_match_flags_t vals[] = { 1820 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, 1821 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST 1822 }; 1823 1824 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 1825 rte_flow_error_set(error, EINVAL, 1826 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1827 "Number of specifications is incorrect while copying " 1828 "by unknown destination flags"); 1829 return -rte_errno; 1830 } 1831 1832 for (i = 0; i < spec_filter->count; i++) { 1833 /* The check above ensures that divisor can't be zero here */ 1834 spec_filter->filters[i].efs_match_flags |= 1835 vals[i / filters_count_for_one_val]; 1836 } 1837 1838 return 0; 1839 } 1840 1841 /** 1842 * Check that the following conditions are met: 1843 * - the list of supported filters has a filter 1844 * with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of 1845 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also 1846 * be inserted. 1847 * 1848 * @param match[in] 1849 * The match flags of filter. 1850 * @param spec[in] 1851 * Specification to be supplemented. 1852 * @param filter[in] 1853 * SFC filter with list of supported filters. 1854 */ 1855 static boolean_t 1856 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match, 1857 __rte_unused efx_filter_spec_t *spec, 1858 struct sfc_filter *filter) 1859 { 1860 unsigned int i; 1861 efx_filter_match_flags_t match_mcast_dst; 1862 1863 match_mcast_dst = 1864 (match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) | 1865 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST; 1866 for (i = 0; i < filter->supported_match_num; i++) { 1867 if (match_mcast_dst == filter->supported_match[i]) 1868 return B_TRUE; 1869 } 1870 1871 return B_FALSE; 1872 } 1873 1874 /** 1875 * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and 1876 * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same 1877 * specifications after copying. 1878 * 1879 * @param spec[in, out] 1880 * SFC flow specification to update. 1881 * @param filters_count_for_one_val[in] 1882 * How many specifications should have the same EtherType value, what is the 1883 * number of specifications before copying. 1884 * @param error[out] 1885 * Perform verbose error reporting if not NULL. 1886 */ 1887 static int 1888 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec, 1889 unsigned int filters_count_for_one_val, 1890 struct rte_flow_error *error) 1891 { 1892 unsigned int i; 1893 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1894 static const uint16_t vals[] = { 1895 EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6 1896 }; 1897 1898 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 1899 rte_flow_error_set(error, EINVAL, 1900 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1901 "Number of specifications is incorrect " 1902 "while copying by Ethertype"); 1903 return -rte_errno; 1904 } 1905 1906 for (i = 0; i < spec_filter->count; i++) { 1907 spec_filter->filters[i].efs_match_flags |= 1908 EFX_FILTER_MATCH_ETHER_TYPE; 1909 1910 /* 1911 * The check above ensures that 1912 * filters_count_for_one_val is not 0 1913 */ 1914 spec_filter->filters[i].efs_ether_type = 1915 vals[i / filters_count_for_one_val]; 1916 } 1917 1918 return 0; 1919 } 1920 1921 /** 1922 * Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0 1923 * in the same specifications after copying. 1924 * 1925 * @param spec[in, out] 1926 * SFC flow specification to update. 1927 * @param filters_count_for_one_val[in] 1928 * How many specifications should have the same match flag, what is the 1929 * number of specifications before copying. 1930 * @param error[out] 1931 * Perform verbose error reporting if not NULL. 1932 */ 1933 static int 1934 sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec, 1935 unsigned int filters_count_for_one_val, 1936 struct rte_flow_error *error) 1937 { 1938 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1939 unsigned int i; 1940 1941 if (filters_count_for_one_val != spec_filter->count) { 1942 rte_flow_error_set(error, EINVAL, 1943 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1944 "Number of specifications is incorrect " 1945 "while copying by outer VLAN ID"); 1946 return -rte_errno; 1947 } 1948 1949 for (i = 0; i < spec_filter->count; i++) { 1950 spec_filter->filters[i].efs_match_flags |= 1951 EFX_FILTER_MATCH_OUTER_VID; 1952 1953 spec_filter->filters[i].efs_outer_vid = 0; 1954 } 1955 1956 return 0; 1957 } 1958 1959 /** 1960 * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and 1961 * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same 1962 * specifications after copying. 1963 * 1964 * @param spec[in, out] 1965 * SFC flow specification to update. 1966 * @param filters_count_for_one_val[in] 1967 * How many specifications should have the same match flag, what is the 1968 * number of specifications before copying. 1969 * @param error[out] 1970 * Perform verbose error reporting if not NULL. 1971 */ 1972 static int 1973 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec, 1974 unsigned int filters_count_for_one_val, 1975 struct rte_flow_error *error) 1976 { 1977 unsigned int i; 1978 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1979 static const efx_filter_match_flags_t vals[] = { 1980 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, 1981 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST 1982 }; 1983 1984 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 1985 rte_flow_error_set(error, EINVAL, 1986 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1987 "Number of specifications is incorrect while copying " 1988 "by inner frame unknown destination flags"); 1989 return -rte_errno; 1990 } 1991 1992 for (i = 0; i < spec_filter->count; i++) { 1993 /* The check above ensures that divisor can't be zero here */ 1994 spec_filter->filters[i].efs_match_flags |= 1995 vals[i / filters_count_for_one_val]; 1996 } 1997 1998 return 0; 1999 } 2000 2001 /** 2002 * Check that the following conditions are met: 2003 * - the specification corresponds to a filter for encapsulated traffic 2004 * - the list of supported filters has a filter 2005 * with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of 2006 * EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also 2007 * be inserted. 2008 * 2009 * @param match[in] 2010 * The match flags of filter. 2011 * @param spec[in] 2012 * Specification to be supplemented. 2013 * @param filter[in] 2014 * SFC filter with list of supported filters. 2015 */ 2016 static boolean_t 2017 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match, 2018 efx_filter_spec_t *spec, 2019 struct sfc_filter *filter) 2020 { 2021 unsigned int i; 2022 efx_tunnel_protocol_t encap_type = spec->efs_encap_type; 2023 efx_filter_match_flags_t match_mcast_dst; 2024 2025 if (encap_type == EFX_TUNNEL_PROTOCOL_NONE) 2026 return B_FALSE; 2027 2028 match_mcast_dst = 2029 (match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) | 2030 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST; 2031 for (i = 0; i < filter->supported_match_num; i++) { 2032 if (match_mcast_dst == filter->supported_match[i]) 2033 return B_TRUE; 2034 } 2035 2036 return B_FALSE; 2037 } 2038 2039 /** 2040 * Check that the list of supported filters has a filter that differs 2041 * from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID 2042 * in this case that filter will be used and the flag 2043 * EFX_FILTER_MATCH_OUTER_VID is not needed. 2044 * 2045 * @param match[in] 2046 * The match flags of filter. 2047 * @param spec[in] 2048 * Specification to be supplemented. 2049 * @param filter[in] 2050 * SFC filter with list of supported filters. 2051 */ 2052 static boolean_t 2053 sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match, 2054 __rte_unused efx_filter_spec_t *spec, 2055 struct sfc_filter *filter) 2056 { 2057 unsigned int i; 2058 efx_filter_match_flags_t match_without_vid = 2059 match & ~EFX_FILTER_MATCH_OUTER_VID; 2060 2061 for (i = 0; i < filter->supported_match_num; i++) { 2062 if (match_without_vid == filter->supported_match[i]) 2063 return B_FALSE; 2064 } 2065 2066 return B_TRUE; 2067 } 2068 2069 /* 2070 * Match flags that can be automatically added to filters. 2071 * Selecting the last minimum when searching for the copy flag ensures that the 2072 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than 2073 * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter 2074 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported 2075 * filters. 2076 */ 2077 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = { 2078 { 2079 .flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, 2080 .vals_count = 2, 2081 .set_vals = sfc_flow_set_unknown_dst_flags, 2082 .spec_check = sfc_flow_check_unknown_dst_flags, 2083 }, 2084 { 2085 .flag = EFX_FILTER_MATCH_ETHER_TYPE, 2086 .vals_count = 2, 2087 .set_vals = sfc_flow_set_ethertypes, 2088 .spec_check = NULL, 2089 }, 2090 { 2091 .flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, 2092 .vals_count = 2, 2093 .set_vals = sfc_flow_set_ifrm_unknown_dst_flags, 2094 .spec_check = sfc_flow_check_ifrm_unknown_dst_flags, 2095 }, 2096 { 2097 .flag = EFX_FILTER_MATCH_OUTER_VID, 2098 .vals_count = 1, 2099 .set_vals = sfc_flow_set_outer_vid_flag, 2100 .spec_check = sfc_flow_check_outer_vid_flag, 2101 }, 2102 }; 2103 2104 /* Get item from array sfc_flow_copy_flags */ 2105 static const struct sfc_flow_copy_flag * 2106 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag) 2107 { 2108 unsigned int i; 2109 2110 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2111 if (sfc_flow_copy_flags[i].flag == flag) 2112 return &sfc_flow_copy_flags[i]; 2113 } 2114 2115 return NULL; 2116 } 2117 2118 /** 2119 * Make copies of the specifications, set match flag and values 2120 * of the field that corresponds to it. 2121 * 2122 * @param spec[in, out] 2123 * SFC flow specification to update. 2124 * @param flag[in] 2125 * The match flag to add. 2126 * @param error[out] 2127 * Perform verbose error reporting if not NULL. 2128 */ 2129 static int 2130 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec, 2131 efx_filter_match_flags_t flag, 2132 struct rte_flow_error *error) 2133 { 2134 unsigned int i; 2135 unsigned int new_filters_count; 2136 unsigned int filters_count_for_one_val; 2137 const struct sfc_flow_copy_flag *copy_flag; 2138 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2139 int rc; 2140 2141 copy_flag = sfc_flow_get_copy_flag(flag); 2142 if (copy_flag == NULL) { 2143 rte_flow_error_set(error, ENOTSUP, 2144 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2145 "Unsupported spec field for copying"); 2146 return -rte_errno; 2147 } 2148 2149 new_filters_count = spec_filter->count * copy_flag->vals_count; 2150 if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) { 2151 rte_flow_error_set(error, EINVAL, 2152 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2153 "Too much EFX specifications in the flow rule"); 2154 return -rte_errno; 2155 } 2156 2157 /* Copy filters specifications */ 2158 for (i = spec_filter->count; i < new_filters_count; i++) { 2159 spec_filter->filters[i] = 2160 spec_filter->filters[i - spec_filter->count]; 2161 } 2162 2163 filters_count_for_one_val = spec_filter->count; 2164 spec_filter->count = new_filters_count; 2165 2166 rc = copy_flag->set_vals(spec, filters_count_for_one_val, error); 2167 if (rc != 0) 2168 return rc; 2169 2170 return 0; 2171 } 2172 2173 /** 2174 * Check that the given set of match flags missing in the original filter spec 2175 * could be covered by adding spec copies which specify the corresponding 2176 * flags and packet field values to match. 2177 * 2178 * @param miss_flags[in] 2179 * Flags that are missing until the supported filter. 2180 * @param spec[in] 2181 * Specification to be supplemented. 2182 * @param filter[in] 2183 * SFC filter. 2184 * 2185 * @return 2186 * Number of specifications after copy or 0, if the flags can not be added. 2187 */ 2188 static unsigned int 2189 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags, 2190 efx_filter_spec_t *spec, 2191 struct sfc_filter *filter) 2192 { 2193 unsigned int i; 2194 efx_filter_match_flags_t copy_flags = 0; 2195 efx_filter_match_flags_t flag; 2196 efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags; 2197 sfc_flow_spec_check *check; 2198 unsigned int multiplier = 1; 2199 2200 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2201 flag = sfc_flow_copy_flags[i].flag; 2202 check = sfc_flow_copy_flags[i].spec_check; 2203 if ((flag & miss_flags) == flag) { 2204 if (check != NULL && (!check(match, spec, filter))) 2205 continue; 2206 2207 copy_flags |= flag; 2208 multiplier *= sfc_flow_copy_flags[i].vals_count; 2209 } 2210 } 2211 2212 if (copy_flags == miss_flags) 2213 return multiplier; 2214 2215 return 0; 2216 } 2217 2218 /** 2219 * Attempt to supplement the specification template to the minimally 2220 * supported set of match flags. To do this, it is necessary to copy 2221 * the specifications, filling them with the values of fields that 2222 * correspond to the missing flags. 2223 * The necessary and sufficient filter is built from the fewest number 2224 * of copies which could be made to cover the minimally required set 2225 * of flags. 2226 * 2227 * @param sa[in] 2228 * SFC adapter. 2229 * @param spec[in, out] 2230 * SFC flow specification to update. 2231 * @param error[out] 2232 * Perform verbose error reporting if not NULL. 2233 */ 2234 static int 2235 sfc_flow_spec_filters_complete(struct sfc_adapter *sa, 2236 struct sfc_flow_spec *spec, 2237 struct rte_flow_error *error) 2238 { 2239 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2240 struct sfc_filter *filter = &sa->filter; 2241 efx_filter_match_flags_t miss_flags; 2242 efx_filter_match_flags_t min_miss_flags = 0; 2243 efx_filter_match_flags_t match; 2244 unsigned int min_multiplier = UINT_MAX; 2245 unsigned int multiplier; 2246 unsigned int i; 2247 int rc; 2248 2249 match = spec_filter->template.efs_match_flags; 2250 for (i = 0; i < filter->supported_match_num; i++) { 2251 if ((match & filter->supported_match[i]) == match) { 2252 miss_flags = filter->supported_match[i] & (~match); 2253 multiplier = sfc_flow_check_missing_flags(miss_flags, 2254 &spec_filter->template, filter); 2255 if (multiplier > 0) { 2256 if (multiplier <= min_multiplier) { 2257 min_multiplier = multiplier; 2258 min_miss_flags = miss_flags; 2259 } 2260 } 2261 } 2262 } 2263 2264 if (min_multiplier == UINT_MAX) { 2265 rte_flow_error_set(error, ENOTSUP, 2266 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2267 "The flow rule pattern is unsupported"); 2268 return -rte_errno; 2269 } 2270 2271 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2272 efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag; 2273 2274 if ((flag & min_miss_flags) == flag) { 2275 rc = sfc_flow_spec_add_match_flag(spec, flag, error); 2276 if (rc != 0) 2277 return rc; 2278 } 2279 } 2280 2281 return 0; 2282 } 2283 2284 /** 2285 * Check that set of match flags is referred to by a filter. Filter is 2286 * described by match flags with the ability to add OUTER_VID and INNER_VID 2287 * flags. 2288 * 2289 * @param match_flags[in] 2290 * Set of match flags. 2291 * @param flags_pattern[in] 2292 * Pattern of filter match flags. 2293 */ 2294 static boolean_t 2295 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags, 2296 efx_filter_match_flags_t flags_pattern) 2297 { 2298 if ((match_flags & flags_pattern) != flags_pattern) 2299 return B_FALSE; 2300 2301 switch (match_flags & ~flags_pattern) { 2302 case 0: 2303 case EFX_FILTER_MATCH_OUTER_VID: 2304 case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID: 2305 return B_TRUE; 2306 default: 2307 return B_FALSE; 2308 } 2309 } 2310 2311 /** 2312 * Check whether the spec maps to a hardware filter which is known to be 2313 * ineffective despite being valid. 2314 * 2315 * @param filter[in] 2316 * SFC filter with list of supported filters. 2317 * @param spec[in] 2318 * SFC flow specification. 2319 */ 2320 static boolean_t 2321 sfc_flow_is_match_flags_exception(struct sfc_filter *filter, 2322 struct sfc_flow_spec *spec) 2323 { 2324 unsigned int i; 2325 uint16_t ether_type; 2326 uint8_t ip_proto; 2327 efx_filter_match_flags_t match_flags; 2328 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2329 2330 for (i = 0; i < spec_filter->count; i++) { 2331 match_flags = spec_filter->filters[i].efs_match_flags; 2332 2333 if (sfc_flow_is_match_with_vids(match_flags, 2334 EFX_FILTER_MATCH_ETHER_TYPE) || 2335 sfc_flow_is_match_with_vids(match_flags, 2336 EFX_FILTER_MATCH_ETHER_TYPE | 2337 EFX_FILTER_MATCH_LOC_MAC)) { 2338 ether_type = spec_filter->filters[i].efs_ether_type; 2339 if (filter->supports_ip_proto_or_addr_filter && 2340 (ether_type == EFX_ETHER_TYPE_IPV4 || 2341 ether_type == EFX_ETHER_TYPE_IPV6)) 2342 return B_TRUE; 2343 } else if (sfc_flow_is_match_with_vids(match_flags, 2344 EFX_FILTER_MATCH_ETHER_TYPE | 2345 EFX_FILTER_MATCH_IP_PROTO) || 2346 sfc_flow_is_match_with_vids(match_flags, 2347 EFX_FILTER_MATCH_ETHER_TYPE | 2348 EFX_FILTER_MATCH_IP_PROTO | 2349 EFX_FILTER_MATCH_LOC_MAC)) { 2350 ip_proto = spec_filter->filters[i].efs_ip_proto; 2351 if (filter->supports_rem_or_local_port_filter && 2352 (ip_proto == EFX_IPPROTO_TCP || 2353 ip_proto == EFX_IPPROTO_UDP)) 2354 return B_TRUE; 2355 } 2356 } 2357 2358 return B_FALSE; 2359 } 2360 2361 static int 2362 sfc_flow_validate_match_flags(struct sfc_adapter *sa, 2363 struct rte_flow *flow, 2364 struct rte_flow_error *error) 2365 { 2366 struct sfc_flow_spec *spec = &flow->spec; 2367 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2368 efx_filter_spec_t *spec_tmpl = &spec_filter->template; 2369 efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags; 2370 int rc; 2371 2372 /* Initialize the first filter spec with template */ 2373 spec_filter->filters[0] = *spec_tmpl; 2374 spec_filter->count = 1; 2375 2376 if (!sfc_filter_is_match_supported(sa, match_flags)) { 2377 rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error); 2378 if (rc != 0) 2379 return rc; 2380 } 2381 2382 if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) { 2383 rte_flow_error_set(error, ENOTSUP, 2384 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2385 "The flow rule pattern is unsupported"); 2386 return -rte_errno; 2387 } 2388 2389 return 0; 2390 } 2391 2392 static int 2393 sfc_flow_parse_rte_to_filter(struct rte_eth_dev *dev, 2394 const struct rte_flow_item pattern[], 2395 const struct rte_flow_action actions[], 2396 struct rte_flow *flow, 2397 struct rte_flow_error *error) 2398 { 2399 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2400 struct sfc_flow_spec *spec = &flow->spec; 2401 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2402 struct sfc_flow_parse_ctx ctx; 2403 int rc; 2404 2405 ctx.type = SFC_FLOW_PARSE_CTX_FILTER; 2406 ctx.filter = &spec_filter->template; 2407 2408 rc = sfc_flow_parse_pattern(sfc_flow_items, RTE_DIM(sfc_flow_items), 2409 pattern, &ctx, error); 2410 if (rc != 0) 2411 goto fail_bad_value; 2412 2413 rc = sfc_flow_parse_actions(sa, actions, flow, error); 2414 if (rc != 0) 2415 goto fail_bad_value; 2416 2417 rc = sfc_flow_validate_match_flags(sa, flow, error); 2418 if (rc != 0) 2419 goto fail_bad_value; 2420 2421 return 0; 2422 2423 fail_bad_value: 2424 return rc; 2425 } 2426 2427 static int 2428 sfc_flow_parse_rte_to_mae(struct rte_eth_dev *dev, 2429 const struct rte_flow_item pattern[], 2430 const struct rte_flow_action actions[], 2431 struct rte_flow *flow, 2432 struct rte_flow_error *error) 2433 { 2434 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2435 struct sfc_flow_spec *spec = &flow->spec; 2436 struct sfc_flow_spec_mae *spec_mae = &spec->mae; 2437 int rc; 2438 2439 rc = sfc_mae_rule_parse_pattern(sa, pattern, spec_mae, error); 2440 if (rc != 0) 2441 return rc; 2442 2443 rc = sfc_mae_rule_parse_actions(sa, actions, &spec_mae->action_set, 2444 error); 2445 if (rc != 0) 2446 return rc; 2447 2448 return 0; 2449 } 2450 2451 static int 2452 sfc_flow_parse(struct rte_eth_dev *dev, 2453 const struct rte_flow_attr *attr, 2454 const struct rte_flow_item pattern[], 2455 const struct rte_flow_action actions[], 2456 struct rte_flow *flow, 2457 struct rte_flow_error *error) 2458 { 2459 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2460 const struct sfc_flow_ops_by_spec *ops; 2461 int rc; 2462 2463 rc = sfc_flow_parse_attr(sa, attr, flow, error); 2464 if (rc != 0) 2465 return rc; 2466 2467 ops = sfc_flow_get_ops_by_spec(flow); 2468 if (ops == NULL || ops->parse == NULL) { 2469 rte_flow_error_set(error, ENOTSUP, 2470 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2471 "No backend to handle this flow"); 2472 return -rte_errno; 2473 } 2474 2475 return ops->parse(dev, pattern, actions, flow, error); 2476 } 2477 2478 static struct rte_flow * 2479 sfc_flow_zmalloc(struct rte_flow_error *error) 2480 { 2481 struct rte_flow *flow; 2482 2483 flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0); 2484 if (flow == NULL) { 2485 rte_flow_error_set(error, ENOMEM, 2486 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2487 "Failed to allocate memory"); 2488 } 2489 2490 return flow; 2491 } 2492 2493 static void 2494 sfc_flow_free(struct sfc_adapter *sa, struct rte_flow *flow) 2495 { 2496 const struct sfc_flow_ops_by_spec *ops; 2497 2498 ops = sfc_flow_get_ops_by_spec(flow); 2499 if (ops != NULL && ops->cleanup != NULL) 2500 ops->cleanup(sa, flow); 2501 2502 rte_free(flow); 2503 } 2504 2505 static int 2506 sfc_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow, 2507 struct rte_flow_error *error) 2508 { 2509 const struct sfc_flow_ops_by_spec *ops; 2510 int rc; 2511 2512 ops = sfc_flow_get_ops_by_spec(flow); 2513 if (ops == NULL || ops->insert == NULL) { 2514 rte_flow_error_set(error, ENOTSUP, 2515 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2516 "No backend to handle this flow"); 2517 return rte_errno; 2518 } 2519 2520 rc = ops->insert(sa, flow); 2521 if (rc != 0) { 2522 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2523 NULL, "Failed to insert the flow rule"); 2524 } 2525 2526 return rc; 2527 } 2528 2529 static int 2530 sfc_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow, 2531 struct rte_flow_error *error) 2532 { 2533 const struct sfc_flow_ops_by_spec *ops; 2534 int rc; 2535 2536 ops = sfc_flow_get_ops_by_spec(flow); 2537 if (ops == NULL || ops->remove == NULL) { 2538 rte_flow_error_set(error, ENOTSUP, 2539 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2540 "No backend to handle this flow"); 2541 return rte_errno; 2542 } 2543 2544 rc = ops->remove(sa, flow); 2545 if (rc != 0) { 2546 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2547 NULL, "Failed to remove the flow rule"); 2548 } 2549 2550 return rc; 2551 } 2552 2553 static int 2554 sfc_flow_verify(struct sfc_adapter *sa, struct rte_flow *flow, 2555 struct rte_flow_error *error) 2556 { 2557 const struct sfc_flow_ops_by_spec *ops; 2558 int rc = 0; 2559 2560 ops = sfc_flow_get_ops_by_spec(flow); 2561 if (ops == NULL) { 2562 rte_flow_error_set(error, ENOTSUP, 2563 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2564 "No backend to handle this flow"); 2565 return -rte_errno; 2566 } 2567 2568 if (ops->verify != NULL) { 2569 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2570 rc = ops->verify(sa, flow); 2571 } 2572 2573 if (rc != 0) { 2574 rte_flow_error_set(error, rc, 2575 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2576 "Failed to verify flow validity with FW"); 2577 return -rte_errno; 2578 } 2579 2580 return 0; 2581 } 2582 2583 static int 2584 sfc_flow_validate(struct rte_eth_dev *dev, 2585 const struct rte_flow_attr *attr, 2586 const struct rte_flow_item pattern[], 2587 const struct rte_flow_action actions[], 2588 struct rte_flow_error *error) 2589 { 2590 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2591 struct rte_flow *flow; 2592 int rc; 2593 2594 flow = sfc_flow_zmalloc(error); 2595 if (flow == NULL) 2596 return -rte_errno; 2597 2598 sfc_adapter_lock(sa); 2599 2600 rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error); 2601 if (rc == 0) 2602 rc = sfc_flow_verify(sa, flow, error); 2603 2604 sfc_flow_free(sa, flow); 2605 2606 sfc_adapter_unlock(sa); 2607 2608 return rc; 2609 } 2610 2611 static struct rte_flow * 2612 sfc_flow_create(struct rte_eth_dev *dev, 2613 const struct rte_flow_attr *attr, 2614 const struct rte_flow_item pattern[], 2615 const struct rte_flow_action actions[], 2616 struct rte_flow_error *error) 2617 { 2618 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2619 struct rte_flow *flow = NULL; 2620 int rc; 2621 2622 flow = sfc_flow_zmalloc(error); 2623 if (flow == NULL) 2624 goto fail_no_mem; 2625 2626 sfc_adapter_lock(sa); 2627 2628 rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error); 2629 if (rc != 0) 2630 goto fail_bad_value; 2631 2632 TAILQ_INSERT_TAIL(&sa->flow_list, flow, entries); 2633 2634 if (sa->state == SFC_ADAPTER_STARTED) { 2635 rc = sfc_flow_insert(sa, flow, error); 2636 if (rc != 0) 2637 goto fail_flow_insert; 2638 } 2639 2640 sfc_adapter_unlock(sa); 2641 2642 return flow; 2643 2644 fail_flow_insert: 2645 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2646 2647 fail_bad_value: 2648 sfc_flow_free(sa, flow); 2649 sfc_adapter_unlock(sa); 2650 2651 fail_no_mem: 2652 return NULL; 2653 } 2654 2655 static int 2656 sfc_flow_destroy(struct rte_eth_dev *dev, 2657 struct rte_flow *flow, 2658 struct rte_flow_error *error) 2659 { 2660 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2661 struct rte_flow *flow_ptr; 2662 int rc = EINVAL; 2663 2664 sfc_adapter_lock(sa); 2665 2666 TAILQ_FOREACH(flow_ptr, &sa->flow_list, entries) { 2667 if (flow_ptr == flow) 2668 rc = 0; 2669 } 2670 if (rc != 0) { 2671 rte_flow_error_set(error, rc, 2672 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 2673 "Failed to find flow rule to destroy"); 2674 goto fail_bad_value; 2675 } 2676 2677 if (sa->state == SFC_ADAPTER_STARTED) 2678 rc = sfc_flow_remove(sa, flow, error); 2679 2680 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2681 sfc_flow_free(sa, flow); 2682 2683 fail_bad_value: 2684 sfc_adapter_unlock(sa); 2685 2686 return -rc; 2687 } 2688 2689 static int 2690 sfc_flow_flush(struct rte_eth_dev *dev, 2691 struct rte_flow_error *error) 2692 { 2693 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2694 struct rte_flow *flow; 2695 int ret = 0; 2696 2697 sfc_adapter_lock(sa); 2698 2699 while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) { 2700 if (sa->state == SFC_ADAPTER_STARTED) { 2701 int rc; 2702 2703 rc = sfc_flow_remove(sa, flow, error); 2704 if (rc != 0) 2705 ret = rc; 2706 } 2707 2708 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2709 sfc_flow_free(sa, flow); 2710 } 2711 2712 sfc_adapter_unlock(sa); 2713 2714 return -ret; 2715 } 2716 2717 static int 2718 sfc_flow_isolate(struct rte_eth_dev *dev, int enable, 2719 struct rte_flow_error *error) 2720 { 2721 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2722 int ret = 0; 2723 2724 sfc_adapter_lock(sa); 2725 if (sa->state != SFC_ADAPTER_INITIALIZED) { 2726 rte_flow_error_set(error, EBUSY, 2727 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2728 NULL, "please close the port first"); 2729 ret = -rte_errno; 2730 } else { 2731 sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE; 2732 } 2733 sfc_adapter_unlock(sa); 2734 2735 return ret; 2736 } 2737 2738 const struct rte_flow_ops sfc_flow_ops = { 2739 .validate = sfc_flow_validate, 2740 .create = sfc_flow_create, 2741 .destroy = sfc_flow_destroy, 2742 .flush = sfc_flow_flush, 2743 .query = NULL, 2744 .isolate = sfc_flow_isolate, 2745 }; 2746 2747 void 2748 sfc_flow_init(struct sfc_adapter *sa) 2749 { 2750 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2751 2752 TAILQ_INIT(&sa->flow_list); 2753 } 2754 2755 void 2756 sfc_flow_fini(struct sfc_adapter *sa) 2757 { 2758 struct rte_flow *flow; 2759 2760 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2761 2762 while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) { 2763 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2764 sfc_flow_free(sa, flow); 2765 } 2766 } 2767 2768 void 2769 sfc_flow_stop(struct sfc_adapter *sa) 2770 { 2771 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 2772 struct sfc_rss *rss = &sas->rss; 2773 struct rte_flow *flow; 2774 2775 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2776 2777 TAILQ_FOREACH(flow, &sa->flow_list, entries) 2778 sfc_flow_remove(sa, flow, NULL); 2779 2780 if (rss->dummy_rss_context != EFX_RSS_CONTEXT_DEFAULT) { 2781 efx_rx_scale_context_free(sa->nic, rss->dummy_rss_context); 2782 rss->dummy_rss_context = EFX_RSS_CONTEXT_DEFAULT; 2783 } 2784 } 2785 2786 int 2787 sfc_flow_start(struct sfc_adapter *sa) 2788 { 2789 struct rte_flow *flow; 2790 int rc = 0; 2791 2792 sfc_log_init(sa, "entry"); 2793 2794 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2795 2796 TAILQ_FOREACH(flow, &sa->flow_list, entries) { 2797 rc = sfc_flow_insert(sa, flow, NULL); 2798 if (rc != 0) 2799 goto fail_bad_flow; 2800 } 2801 2802 sfc_log_init(sa, "done"); 2803 2804 fail_bad_flow: 2805 return rc; 2806 } 2807