xref: /dpdk/drivers/net/sfc/sfc_flow.c (revision 9b14dc746141bcd3ed2769ea745cc0cca85a9bb0)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2017-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_byteorder.h>
11 #include <rte_tailq.h>
12 #include <rte_common.h>
13 #include <ethdev_driver.h>
14 #include <rte_ether.h>
15 #include <rte_flow.h>
16 #include <rte_flow_driver.h>
17 
18 #include "efx.h"
19 
20 #include "sfc.h"
21 #include "sfc_debug.h"
22 #include "sfc_rx.h"
23 #include "sfc_filter.h"
24 #include "sfc_flow.h"
25 #include "sfc_log.h"
26 #include "sfc_dp_rx.h"
27 #include "sfc_mae_counter.h"
28 
29 struct sfc_flow_ops_by_spec {
30 	sfc_flow_parse_cb_t	*parse;
31 	sfc_flow_verify_cb_t	*verify;
32 	sfc_flow_cleanup_cb_t	*cleanup;
33 	sfc_flow_insert_cb_t	*insert;
34 	sfc_flow_remove_cb_t	*remove;
35 	sfc_flow_query_cb_t	*query;
36 };
37 
38 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_filter;
39 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_mae;
40 static sfc_flow_insert_cb_t sfc_flow_filter_insert;
41 static sfc_flow_remove_cb_t sfc_flow_filter_remove;
42 
43 static const struct sfc_flow_ops_by_spec sfc_flow_ops_filter = {
44 	.parse = sfc_flow_parse_rte_to_filter,
45 	.verify = NULL,
46 	.cleanup = NULL,
47 	.insert = sfc_flow_filter_insert,
48 	.remove = sfc_flow_filter_remove,
49 	.query = NULL,
50 };
51 
52 static const struct sfc_flow_ops_by_spec sfc_flow_ops_mae = {
53 	.parse = sfc_flow_parse_rte_to_mae,
54 	.verify = sfc_mae_flow_verify,
55 	.cleanup = sfc_mae_flow_cleanup,
56 	.insert = sfc_mae_flow_insert,
57 	.remove = sfc_mae_flow_remove,
58 	.query = sfc_mae_flow_query,
59 };
60 
61 static const struct sfc_flow_ops_by_spec *
62 sfc_flow_get_ops_by_spec(struct rte_flow *flow)
63 {
64 	struct sfc_flow_spec *spec = &flow->spec;
65 	const struct sfc_flow_ops_by_spec *ops = NULL;
66 
67 	switch (spec->type) {
68 	case SFC_FLOW_SPEC_FILTER:
69 		ops = &sfc_flow_ops_filter;
70 		break;
71 	case SFC_FLOW_SPEC_MAE:
72 		ops = &sfc_flow_ops_mae;
73 		break;
74 	default:
75 		SFC_ASSERT(false);
76 		break;
77 	}
78 
79 	return ops;
80 }
81 
82 /*
83  * Currently, filter-based (VNIC) flow API is implemented in such a manner
84  * that each flow rule is converted to one or more hardware filters.
85  * All elements of flow rule (attributes, pattern items, actions)
86  * correspond to one or more fields in the efx_filter_spec_s structure
87  * that is responsible for the hardware filter.
88  * If some required field is unset in the flow rule, then a handful
89  * of filter copies will be created to cover all possible values
90  * of such a field.
91  */
92 
93 static sfc_flow_item_parse sfc_flow_parse_void;
94 static sfc_flow_item_parse sfc_flow_parse_eth;
95 static sfc_flow_item_parse sfc_flow_parse_vlan;
96 static sfc_flow_item_parse sfc_flow_parse_ipv4;
97 static sfc_flow_item_parse sfc_flow_parse_ipv6;
98 static sfc_flow_item_parse sfc_flow_parse_tcp;
99 static sfc_flow_item_parse sfc_flow_parse_udp;
100 static sfc_flow_item_parse sfc_flow_parse_vxlan;
101 static sfc_flow_item_parse sfc_flow_parse_geneve;
102 static sfc_flow_item_parse sfc_flow_parse_nvgre;
103 static sfc_flow_item_parse sfc_flow_parse_pppoex;
104 
105 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec,
106 				     unsigned int filters_count_for_one_val,
107 				     struct rte_flow_error *error);
108 
109 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match,
110 					efx_filter_spec_t *spec,
111 					struct sfc_filter *filter);
112 
113 struct sfc_flow_copy_flag {
114 	/* EFX filter specification match flag */
115 	efx_filter_match_flags_t flag;
116 	/* Number of values of corresponding field */
117 	unsigned int vals_count;
118 	/* Function to set values in specifications */
119 	sfc_flow_spec_set_vals *set_vals;
120 	/*
121 	 * Function to check that the specification is suitable
122 	 * for adding this match flag
123 	 */
124 	sfc_flow_spec_check *spec_check;
125 };
126 
127 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags;
128 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags;
129 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes;
130 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags;
131 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags;
132 static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag;
133 static sfc_flow_spec_check sfc_flow_check_outer_vid_flag;
134 
135 static boolean_t
136 sfc_flow_is_zero(const uint8_t *buf, unsigned int size)
137 {
138 	uint8_t sum = 0;
139 	unsigned int i;
140 
141 	for (i = 0; i < size; i++)
142 		sum |= buf[i];
143 
144 	return (sum == 0) ? B_TRUE : B_FALSE;
145 }
146 
147 /*
148  * Validate item and prepare structures spec and mask for parsing
149  */
150 int
151 sfc_flow_parse_init(const struct rte_flow_item *item,
152 		    const void **spec_ptr,
153 		    const void **mask_ptr,
154 		    const void *supp_mask,
155 		    const void *def_mask,
156 		    unsigned int size,
157 		    struct rte_flow_error *error)
158 {
159 	const uint8_t *spec;
160 	const uint8_t *mask;
161 	const uint8_t *last;
162 	uint8_t supp;
163 	unsigned int i;
164 
165 	if (item == NULL) {
166 		rte_flow_error_set(error, EINVAL,
167 				   RTE_FLOW_ERROR_TYPE_ITEM, NULL,
168 				   "NULL item");
169 		return -rte_errno;
170 	}
171 
172 	if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) {
173 		rte_flow_error_set(error, EINVAL,
174 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
175 				   "Mask or last is set without spec");
176 		return -rte_errno;
177 	}
178 
179 	/*
180 	 * If "mask" is not set, default mask is used,
181 	 * but if default mask is NULL, "mask" should be set
182 	 */
183 	if (item->mask == NULL) {
184 		if (def_mask == NULL) {
185 			rte_flow_error_set(error, EINVAL,
186 				RTE_FLOW_ERROR_TYPE_ITEM, NULL,
187 				"Mask should be specified");
188 			return -rte_errno;
189 		}
190 
191 		mask = def_mask;
192 	} else {
193 		mask = item->mask;
194 	}
195 
196 	spec = item->spec;
197 	last = item->last;
198 
199 	if (spec == NULL)
200 		goto exit;
201 
202 	/*
203 	 * If field values in "last" are either 0 or equal to the corresponding
204 	 * values in "spec" then they are ignored
205 	 */
206 	if (last != NULL &&
207 	    !sfc_flow_is_zero(last, size) &&
208 	    memcmp(last, spec, size) != 0) {
209 		rte_flow_error_set(error, ENOTSUP,
210 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
211 				   "Ranging is not supported");
212 		return -rte_errno;
213 	}
214 
215 	if (supp_mask == NULL) {
216 		rte_flow_error_set(error, EINVAL,
217 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
218 			"Supported mask for item should be specified");
219 		return -rte_errno;
220 	}
221 
222 	/* Check that mask does not ask for more match than supp_mask */
223 	for (i = 0; i < size; i++) {
224 		supp = ((const uint8_t *)supp_mask)[i];
225 
226 		if (~supp & mask[i]) {
227 			rte_flow_error_set(error, ENOTSUP,
228 					   RTE_FLOW_ERROR_TYPE_ITEM, item,
229 					   "Item's field is not supported");
230 			return -rte_errno;
231 		}
232 	}
233 
234 exit:
235 	*spec_ptr = spec;
236 	*mask_ptr = mask;
237 	return 0;
238 }
239 
240 /*
241  * Protocol parsers.
242  * Masking is not supported, so masks in items should be either
243  * full or empty (zeroed) and set only for supported fields which
244  * are specified in the supp_mask.
245  */
246 
247 static int
248 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item,
249 		    __rte_unused struct sfc_flow_parse_ctx *parse_ctx,
250 		    __rte_unused struct rte_flow_error *error)
251 {
252 	return 0;
253 }
254 
255 /**
256  * Convert Ethernet item to EFX filter specification.
257  *
258  * @param item[in]
259  *   Item specification. Outer frame specification may only comprise
260  *   source/destination addresses and Ethertype field.
261  *   Inner frame specification may contain destination address only.
262  *   There is support for individual/group mask as well as for empty and full.
263  *   If the mask is NULL, default mask will be used. Ranging is not supported.
264  * @param efx_spec[in, out]
265  *   EFX filter specification to update.
266  * @param[out] error
267  *   Perform verbose error reporting if not NULL.
268  */
269 static int
270 sfc_flow_parse_eth(const struct rte_flow_item *item,
271 		   struct sfc_flow_parse_ctx *parse_ctx,
272 		   struct rte_flow_error *error)
273 {
274 	int rc;
275 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
276 	const struct rte_flow_item_eth *spec = NULL;
277 	const struct rte_flow_item_eth *mask = NULL;
278 	const struct rte_flow_item_eth supp_mask = {
279 		.dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
280 		.src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
281 		.type = 0xffff,
282 	};
283 	const struct rte_flow_item_eth ifrm_supp_mask = {
284 		.dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
285 	};
286 	const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = {
287 		0x01, 0x00, 0x00, 0x00, 0x00, 0x00
288 	};
289 	const struct rte_flow_item_eth *supp_mask_p;
290 	const struct rte_flow_item_eth *def_mask_p;
291 	uint8_t *loc_mac = NULL;
292 	boolean_t is_ifrm = (efx_spec->efs_encap_type !=
293 		EFX_TUNNEL_PROTOCOL_NONE);
294 
295 	if (is_ifrm) {
296 		supp_mask_p = &ifrm_supp_mask;
297 		def_mask_p = &ifrm_supp_mask;
298 		loc_mac = efx_spec->efs_ifrm_loc_mac;
299 	} else {
300 		supp_mask_p = &supp_mask;
301 		def_mask_p = &rte_flow_item_eth_mask;
302 		loc_mac = efx_spec->efs_loc_mac;
303 	}
304 
305 	rc = sfc_flow_parse_init(item,
306 				 (const void **)&spec,
307 				 (const void **)&mask,
308 				 supp_mask_p, def_mask_p,
309 				 sizeof(struct rte_flow_item_eth),
310 				 error);
311 	if (rc != 0)
312 		return rc;
313 
314 	/* If "spec" is not set, could be any Ethernet */
315 	if (spec == NULL)
316 		return 0;
317 
318 	if (rte_is_same_ether_addr(&mask->dst, &supp_mask.dst)) {
319 		efx_spec->efs_match_flags |= is_ifrm ?
320 			EFX_FILTER_MATCH_IFRM_LOC_MAC :
321 			EFX_FILTER_MATCH_LOC_MAC;
322 		rte_memcpy(loc_mac, spec->dst.addr_bytes,
323 			   EFX_MAC_ADDR_LEN);
324 	} else if (memcmp(mask->dst.addr_bytes, ig_mask,
325 			  EFX_MAC_ADDR_LEN) == 0) {
326 		if (rte_is_unicast_ether_addr(&spec->dst))
327 			efx_spec->efs_match_flags |= is_ifrm ?
328 				EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST :
329 				EFX_FILTER_MATCH_UNKNOWN_UCAST_DST;
330 		else
331 			efx_spec->efs_match_flags |= is_ifrm ?
332 				EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST :
333 				EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
334 	} else if (!rte_is_zero_ether_addr(&mask->dst)) {
335 		goto fail_bad_mask;
336 	}
337 
338 	/*
339 	 * ifrm_supp_mask ensures that the source address and
340 	 * ethertype masks are equal to zero in inner frame,
341 	 * so these fields are filled in only for the outer frame
342 	 */
343 	if (rte_is_same_ether_addr(&mask->src, &supp_mask.src)) {
344 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC;
345 		rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes,
346 			   EFX_MAC_ADDR_LEN);
347 	} else if (!rte_is_zero_ether_addr(&mask->src)) {
348 		goto fail_bad_mask;
349 	}
350 
351 	/*
352 	 * Ether type is in big-endian byte order in item and
353 	 * in little-endian in efx_spec, so byte swap is used
354 	 */
355 	if (mask->type == supp_mask.type) {
356 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
357 		efx_spec->efs_ether_type = rte_bswap16(spec->type);
358 	} else if (mask->type != 0) {
359 		goto fail_bad_mask;
360 	}
361 
362 	return 0;
363 
364 fail_bad_mask:
365 	rte_flow_error_set(error, EINVAL,
366 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
367 			   "Bad mask in the ETH pattern item");
368 	return -rte_errno;
369 }
370 
371 /**
372  * Convert VLAN item to EFX filter specification.
373  *
374  * @param item[in]
375  *   Item specification. Only VID field is supported.
376  *   The mask can not be NULL. Ranging is not supported.
377  * @param efx_spec[in, out]
378  *   EFX filter specification to update.
379  * @param[out] error
380  *   Perform verbose error reporting if not NULL.
381  */
382 static int
383 sfc_flow_parse_vlan(const struct rte_flow_item *item,
384 		    struct sfc_flow_parse_ctx *parse_ctx,
385 		    struct rte_flow_error *error)
386 {
387 	int rc;
388 	uint16_t vid;
389 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
390 	const struct rte_flow_item_vlan *spec = NULL;
391 	const struct rte_flow_item_vlan *mask = NULL;
392 	const struct rte_flow_item_vlan supp_mask = {
393 		.tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX),
394 		.inner_type = RTE_BE16(0xffff),
395 	};
396 
397 	rc = sfc_flow_parse_init(item,
398 				 (const void **)&spec,
399 				 (const void **)&mask,
400 				 &supp_mask,
401 				 NULL,
402 				 sizeof(struct rte_flow_item_vlan),
403 				 error);
404 	if (rc != 0)
405 		return rc;
406 
407 	/*
408 	 * VID is in big-endian byte order in item and
409 	 * in little-endian in efx_spec, so byte swap is used.
410 	 * If two VLAN items are included, the first matches
411 	 * the outer tag and the next matches the inner tag.
412 	 */
413 	if (mask->tci == supp_mask.tci) {
414 		/* Apply mask to keep VID only */
415 		vid = rte_bswap16(spec->tci & mask->tci);
416 
417 		if (!(efx_spec->efs_match_flags &
418 		      EFX_FILTER_MATCH_OUTER_VID)) {
419 			efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID;
420 			efx_spec->efs_outer_vid = vid;
421 		} else if (!(efx_spec->efs_match_flags &
422 			     EFX_FILTER_MATCH_INNER_VID)) {
423 			efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID;
424 			efx_spec->efs_inner_vid = vid;
425 		} else {
426 			rte_flow_error_set(error, EINVAL,
427 					   RTE_FLOW_ERROR_TYPE_ITEM, item,
428 					   "More than two VLAN items");
429 			return -rte_errno;
430 		}
431 	} else {
432 		rte_flow_error_set(error, EINVAL,
433 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
434 				   "VLAN ID in TCI match is required");
435 		return -rte_errno;
436 	}
437 
438 	if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) {
439 		rte_flow_error_set(error, EINVAL,
440 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
441 				   "VLAN TPID matching is not supported");
442 		return -rte_errno;
443 	}
444 	if (mask->inner_type == supp_mask.inner_type) {
445 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
446 		efx_spec->efs_ether_type = rte_bswap16(spec->inner_type);
447 	} else if (mask->inner_type) {
448 		rte_flow_error_set(error, EINVAL,
449 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
450 				   "Bad mask for VLAN inner_type");
451 		return -rte_errno;
452 	}
453 
454 	return 0;
455 }
456 
457 /**
458  * Convert IPv4 item to EFX filter specification.
459  *
460  * @param item[in]
461  *   Item specification. Only source and destination addresses and
462  *   protocol fields are supported. If the mask is NULL, default
463  *   mask will be used. Ranging is not supported.
464  * @param efx_spec[in, out]
465  *   EFX filter specification to update.
466  * @param[out] error
467  *   Perform verbose error reporting if not NULL.
468  */
469 static int
470 sfc_flow_parse_ipv4(const struct rte_flow_item *item,
471 		    struct sfc_flow_parse_ctx *parse_ctx,
472 		    struct rte_flow_error *error)
473 {
474 	int rc;
475 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
476 	const struct rte_flow_item_ipv4 *spec = NULL;
477 	const struct rte_flow_item_ipv4 *mask = NULL;
478 	const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4);
479 	const struct rte_flow_item_ipv4 supp_mask = {
480 		.hdr = {
481 			.src_addr = 0xffffffff,
482 			.dst_addr = 0xffffffff,
483 			.next_proto_id = 0xff,
484 		}
485 	};
486 
487 	rc = sfc_flow_parse_init(item,
488 				 (const void **)&spec,
489 				 (const void **)&mask,
490 				 &supp_mask,
491 				 &rte_flow_item_ipv4_mask,
492 				 sizeof(struct rte_flow_item_ipv4),
493 				 error);
494 	if (rc != 0)
495 		return rc;
496 
497 	/*
498 	 * Filtering by IPv4 source and destination addresses requires
499 	 * the appropriate ETHER_TYPE in hardware filters
500 	 */
501 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
502 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
503 		efx_spec->efs_ether_type = ether_type_ipv4;
504 	} else if (efx_spec->efs_ether_type != ether_type_ipv4) {
505 		rte_flow_error_set(error, EINVAL,
506 			RTE_FLOW_ERROR_TYPE_ITEM, item,
507 			"Ethertype in pattern with IPV4 item should be appropriate");
508 		return -rte_errno;
509 	}
510 
511 	if (spec == NULL)
512 		return 0;
513 
514 	/*
515 	 * IPv4 addresses are in big-endian byte order in item and in
516 	 * efx_spec
517 	 */
518 	if (mask->hdr.src_addr == supp_mask.hdr.src_addr) {
519 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
520 		efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr;
521 	} else if (mask->hdr.src_addr != 0) {
522 		goto fail_bad_mask;
523 	}
524 
525 	if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) {
526 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
527 		efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr;
528 	} else if (mask->hdr.dst_addr != 0) {
529 		goto fail_bad_mask;
530 	}
531 
532 	if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) {
533 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
534 		efx_spec->efs_ip_proto = spec->hdr.next_proto_id;
535 	} else if (mask->hdr.next_proto_id != 0) {
536 		goto fail_bad_mask;
537 	}
538 
539 	return 0;
540 
541 fail_bad_mask:
542 	rte_flow_error_set(error, EINVAL,
543 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
544 			   "Bad mask in the IPV4 pattern item");
545 	return -rte_errno;
546 }
547 
548 /**
549  * Convert IPv6 item to EFX filter specification.
550  *
551  * @param item[in]
552  *   Item specification. Only source and destination addresses and
553  *   next header fields are supported. If the mask is NULL, default
554  *   mask will be used. Ranging is not supported.
555  * @param efx_spec[in, out]
556  *   EFX filter specification to update.
557  * @param[out] error
558  *   Perform verbose error reporting if not NULL.
559  */
560 static int
561 sfc_flow_parse_ipv6(const struct rte_flow_item *item,
562 		    struct sfc_flow_parse_ctx *parse_ctx,
563 		    struct rte_flow_error *error)
564 {
565 	int rc;
566 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
567 	const struct rte_flow_item_ipv6 *spec = NULL;
568 	const struct rte_flow_item_ipv6 *mask = NULL;
569 	const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6);
570 	const struct rte_flow_item_ipv6 supp_mask = {
571 		.hdr = {
572 			.src_addr = { 0xff, 0xff, 0xff, 0xff,
573 				      0xff, 0xff, 0xff, 0xff,
574 				      0xff, 0xff, 0xff, 0xff,
575 				      0xff, 0xff, 0xff, 0xff },
576 			.dst_addr = { 0xff, 0xff, 0xff, 0xff,
577 				      0xff, 0xff, 0xff, 0xff,
578 				      0xff, 0xff, 0xff, 0xff,
579 				      0xff, 0xff, 0xff, 0xff },
580 			.proto = 0xff,
581 		}
582 	};
583 
584 	rc = sfc_flow_parse_init(item,
585 				 (const void **)&spec,
586 				 (const void **)&mask,
587 				 &supp_mask,
588 				 &rte_flow_item_ipv6_mask,
589 				 sizeof(struct rte_flow_item_ipv6),
590 				 error);
591 	if (rc != 0)
592 		return rc;
593 
594 	/*
595 	 * Filtering by IPv6 source and destination addresses requires
596 	 * the appropriate ETHER_TYPE in hardware filters
597 	 */
598 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
599 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
600 		efx_spec->efs_ether_type = ether_type_ipv6;
601 	} else if (efx_spec->efs_ether_type != ether_type_ipv6) {
602 		rte_flow_error_set(error, EINVAL,
603 			RTE_FLOW_ERROR_TYPE_ITEM, item,
604 			"Ethertype in pattern with IPV6 item should be appropriate");
605 		return -rte_errno;
606 	}
607 
608 	if (spec == NULL)
609 		return 0;
610 
611 	/*
612 	 * IPv6 addresses are in big-endian byte order in item and in
613 	 * efx_spec
614 	 */
615 	if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr,
616 		   sizeof(mask->hdr.src_addr)) == 0) {
617 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
618 
619 		RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) !=
620 				 sizeof(spec->hdr.src_addr));
621 		rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr,
622 			   sizeof(efx_spec->efs_rem_host));
623 	} else if (!sfc_flow_is_zero(mask->hdr.src_addr,
624 				     sizeof(mask->hdr.src_addr))) {
625 		goto fail_bad_mask;
626 	}
627 
628 	if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr,
629 		   sizeof(mask->hdr.dst_addr)) == 0) {
630 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
631 
632 		RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) !=
633 				 sizeof(spec->hdr.dst_addr));
634 		rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr,
635 			   sizeof(efx_spec->efs_loc_host));
636 	} else if (!sfc_flow_is_zero(mask->hdr.dst_addr,
637 				     sizeof(mask->hdr.dst_addr))) {
638 		goto fail_bad_mask;
639 	}
640 
641 	if (mask->hdr.proto == supp_mask.hdr.proto) {
642 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
643 		efx_spec->efs_ip_proto = spec->hdr.proto;
644 	} else if (mask->hdr.proto != 0) {
645 		goto fail_bad_mask;
646 	}
647 
648 	return 0;
649 
650 fail_bad_mask:
651 	rte_flow_error_set(error, EINVAL,
652 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
653 			   "Bad mask in the IPV6 pattern item");
654 	return -rte_errno;
655 }
656 
657 /**
658  * Convert TCP item to EFX filter specification.
659  *
660  * @param item[in]
661  *   Item specification. Only source and destination ports fields
662  *   are supported. If the mask is NULL, default mask will be used.
663  *   Ranging is not supported.
664  * @param efx_spec[in, out]
665  *   EFX filter specification to update.
666  * @param[out] error
667  *   Perform verbose error reporting if not NULL.
668  */
669 static int
670 sfc_flow_parse_tcp(const struct rte_flow_item *item,
671 		   struct sfc_flow_parse_ctx *parse_ctx,
672 		   struct rte_flow_error *error)
673 {
674 	int rc;
675 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
676 	const struct rte_flow_item_tcp *spec = NULL;
677 	const struct rte_flow_item_tcp *mask = NULL;
678 	const struct rte_flow_item_tcp supp_mask = {
679 		.hdr = {
680 			.src_port = 0xffff,
681 			.dst_port = 0xffff,
682 		}
683 	};
684 
685 	rc = sfc_flow_parse_init(item,
686 				 (const void **)&spec,
687 				 (const void **)&mask,
688 				 &supp_mask,
689 				 &rte_flow_item_tcp_mask,
690 				 sizeof(struct rte_flow_item_tcp),
691 				 error);
692 	if (rc != 0)
693 		return rc;
694 
695 	/*
696 	 * Filtering by TCP source and destination ports requires
697 	 * the appropriate IP_PROTO in hardware filters
698 	 */
699 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
700 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
701 		efx_spec->efs_ip_proto = EFX_IPPROTO_TCP;
702 	} else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) {
703 		rte_flow_error_set(error, EINVAL,
704 			RTE_FLOW_ERROR_TYPE_ITEM, item,
705 			"IP proto in pattern with TCP item should be appropriate");
706 		return -rte_errno;
707 	}
708 
709 	if (spec == NULL)
710 		return 0;
711 
712 	/*
713 	 * Source and destination ports are in big-endian byte order in item and
714 	 * in little-endian in efx_spec, so byte swap is used
715 	 */
716 	if (mask->hdr.src_port == supp_mask.hdr.src_port) {
717 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
718 		efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
719 	} else if (mask->hdr.src_port != 0) {
720 		goto fail_bad_mask;
721 	}
722 
723 	if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
724 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
725 		efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
726 	} else if (mask->hdr.dst_port != 0) {
727 		goto fail_bad_mask;
728 	}
729 
730 	return 0;
731 
732 fail_bad_mask:
733 	rte_flow_error_set(error, EINVAL,
734 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
735 			   "Bad mask in the TCP pattern item");
736 	return -rte_errno;
737 }
738 
739 /**
740  * Convert UDP item to EFX filter specification.
741  *
742  * @param item[in]
743  *   Item specification. Only source and destination ports fields
744  *   are supported. If the mask is NULL, default mask will be used.
745  *   Ranging is not supported.
746  * @param efx_spec[in, out]
747  *   EFX filter specification to update.
748  * @param[out] error
749  *   Perform verbose error reporting if not NULL.
750  */
751 static int
752 sfc_flow_parse_udp(const struct rte_flow_item *item,
753 		   struct sfc_flow_parse_ctx *parse_ctx,
754 		   struct rte_flow_error *error)
755 {
756 	int rc;
757 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
758 	const struct rte_flow_item_udp *spec = NULL;
759 	const struct rte_flow_item_udp *mask = NULL;
760 	const struct rte_flow_item_udp supp_mask = {
761 		.hdr = {
762 			.src_port = 0xffff,
763 			.dst_port = 0xffff,
764 		}
765 	};
766 
767 	rc = sfc_flow_parse_init(item,
768 				 (const void **)&spec,
769 				 (const void **)&mask,
770 				 &supp_mask,
771 				 &rte_flow_item_udp_mask,
772 				 sizeof(struct rte_flow_item_udp),
773 				 error);
774 	if (rc != 0)
775 		return rc;
776 
777 	/*
778 	 * Filtering by UDP source and destination ports requires
779 	 * the appropriate IP_PROTO in hardware filters
780 	 */
781 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
782 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
783 		efx_spec->efs_ip_proto = EFX_IPPROTO_UDP;
784 	} else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) {
785 		rte_flow_error_set(error, EINVAL,
786 			RTE_FLOW_ERROR_TYPE_ITEM, item,
787 			"IP proto in pattern with UDP item should be appropriate");
788 		return -rte_errno;
789 	}
790 
791 	if (spec == NULL)
792 		return 0;
793 
794 	/*
795 	 * Source and destination ports are in big-endian byte order in item and
796 	 * in little-endian in efx_spec, so byte swap is used
797 	 */
798 	if (mask->hdr.src_port == supp_mask.hdr.src_port) {
799 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
800 		efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
801 	} else if (mask->hdr.src_port != 0) {
802 		goto fail_bad_mask;
803 	}
804 
805 	if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
806 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
807 		efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
808 	} else if (mask->hdr.dst_port != 0) {
809 		goto fail_bad_mask;
810 	}
811 
812 	return 0;
813 
814 fail_bad_mask:
815 	rte_flow_error_set(error, EINVAL,
816 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
817 			   "Bad mask in the UDP pattern item");
818 	return -rte_errno;
819 }
820 
821 /*
822  * Filters for encapsulated packets match based on the EtherType and IP
823  * protocol in the outer frame.
824  */
825 static int
826 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item,
827 					efx_filter_spec_t *efx_spec,
828 					uint8_t ip_proto,
829 					struct rte_flow_error *error)
830 {
831 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
832 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
833 		efx_spec->efs_ip_proto = ip_proto;
834 	} else if (efx_spec->efs_ip_proto != ip_proto) {
835 		switch (ip_proto) {
836 		case EFX_IPPROTO_UDP:
837 			rte_flow_error_set(error, EINVAL,
838 				RTE_FLOW_ERROR_TYPE_ITEM, item,
839 				"Outer IP header protocol must be UDP "
840 				"in VxLAN/GENEVE pattern");
841 			return -rte_errno;
842 
843 		case EFX_IPPROTO_GRE:
844 			rte_flow_error_set(error, EINVAL,
845 				RTE_FLOW_ERROR_TYPE_ITEM, item,
846 				"Outer IP header protocol must be GRE "
847 				"in NVGRE pattern");
848 			return -rte_errno;
849 
850 		default:
851 			rte_flow_error_set(error, EINVAL,
852 				RTE_FLOW_ERROR_TYPE_ITEM, item,
853 				"Only VxLAN/GENEVE/NVGRE tunneling patterns "
854 				"are supported");
855 			return -rte_errno;
856 		}
857 	}
858 
859 	if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE &&
860 	    efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 &&
861 	    efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) {
862 		rte_flow_error_set(error, EINVAL,
863 			RTE_FLOW_ERROR_TYPE_ITEM, item,
864 			"Outer frame EtherType in pattern with tunneling "
865 			"must be IPv4 or IPv6");
866 		return -rte_errno;
867 	}
868 
869 	return 0;
870 }
871 
872 static int
873 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec,
874 				  const uint8_t *vni_or_vsid_val,
875 				  const uint8_t *vni_or_vsid_mask,
876 				  const struct rte_flow_item *item,
877 				  struct rte_flow_error *error)
878 {
879 	const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = {
880 		0xff, 0xff, 0xff
881 	};
882 
883 	if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask,
884 		   EFX_VNI_OR_VSID_LEN) == 0) {
885 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID;
886 		rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val,
887 			   EFX_VNI_OR_VSID_LEN);
888 	} else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) {
889 		rte_flow_error_set(error, EINVAL,
890 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
891 				   "Unsupported VNI/VSID mask");
892 		return -rte_errno;
893 	}
894 
895 	return 0;
896 }
897 
898 /**
899  * Convert VXLAN item to EFX filter specification.
900  *
901  * @param item[in]
902  *   Item specification. Only VXLAN network identifier field is supported.
903  *   If the mask is NULL, default mask will be used.
904  *   Ranging is not supported.
905  * @param efx_spec[in, out]
906  *   EFX filter specification to update.
907  * @param[out] error
908  *   Perform verbose error reporting if not NULL.
909  */
910 static int
911 sfc_flow_parse_vxlan(const struct rte_flow_item *item,
912 		     struct sfc_flow_parse_ctx *parse_ctx,
913 		     struct rte_flow_error *error)
914 {
915 	int rc;
916 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
917 	const struct rte_flow_item_vxlan *spec = NULL;
918 	const struct rte_flow_item_vxlan *mask = NULL;
919 	const struct rte_flow_item_vxlan supp_mask = {
920 		.vni = { 0xff, 0xff, 0xff }
921 	};
922 
923 	rc = sfc_flow_parse_init(item,
924 				 (const void **)&spec,
925 				 (const void **)&mask,
926 				 &supp_mask,
927 				 &rte_flow_item_vxlan_mask,
928 				 sizeof(struct rte_flow_item_vxlan),
929 				 error);
930 	if (rc != 0)
931 		return rc;
932 
933 	rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
934 						     EFX_IPPROTO_UDP, error);
935 	if (rc != 0)
936 		return rc;
937 
938 	efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
939 	efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
940 
941 	if (spec == NULL)
942 		return 0;
943 
944 	rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
945 					       mask->vni, item, error);
946 
947 	return rc;
948 }
949 
950 /**
951  * Convert GENEVE item to EFX filter specification.
952  *
953  * @param item[in]
954  *   Item specification. Only Virtual Network Identifier and protocol type
955  *   fields are supported. But protocol type can be only Ethernet (0x6558).
956  *   If the mask is NULL, default mask will be used.
957  *   Ranging is not supported.
958  * @param efx_spec[in, out]
959  *   EFX filter specification to update.
960  * @param[out] error
961  *   Perform verbose error reporting if not NULL.
962  */
963 static int
964 sfc_flow_parse_geneve(const struct rte_flow_item *item,
965 		      struct sfc_flow_parse_ctx *parse_ctx,
966 		      struct rte_flow_error *error)
967 {
968 	int rc;
969 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
970 	const struct rte_flow_item_geneve *spec = NULL;
971 	const struct rte_flow_item_geneve *mask = NULL;
972 	const struct rte_flow_item_geneve supp_mask = {
973 		.protocol = RTE_BE16(0xffff),
974 		.vni = { 0xff, 0xff, 0xff }
975 	};
976 
977 	rc = sfc_flow_parse_init(item,
978 				 (const void **)&spec,
979 				 (const void **)&mask,
980 				 &supp_mask,
981 				 &rte_flow_item_geneve_mask,
982 				 sizeof(struct rte_flow_item_geneve),
983 				 error);
984 	if (rc != 0)
985 		return rc;
986 
987 	rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
988 						     EFX_IPPROTO_UDP, error);
989 	if (rc != 0)
990 		return rc;
991 
992 	efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
993 	efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
994 
995 	if (spec == NULL)
996 		return 0;
997 
998 	if (mask->protocol == supp_mask.protocol) {
999 		if (spec->protocol != rte_cpu_to_be_16(RTE_ETHER_TYPE_TEB)) {
1000 			rte_flow_error_set(error, EINVAL,
1001 				RTE_FLOW_ERROR_TYPE_ITEM, item,
1002 				"GENEVE encap. protocol must be Ethernet "
1003 				"(0x6558) in the GENEVE pattern item");
1004 			return -rte_errno;
1005 		}
1006 	} else if (mask->protocol != 0) {
1007 		rte_flow_error_set(error, EINVAL,
1008 			RTE_FLOW_ERROR_TYPE_ITEM, item,
1009 			"Unsupported mask for GENEVE encap. protocol");
1010 		return -rte_errno;
1011 	}
1012 
1013 	rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
1014 					       mask->vni, item, error);
1015 
1016 	return rc;
1017 }
1018 
1019 /**
1020  * Convert NVGRE item to EFX filter specification.
1021  *
1022  * @param item[in]
1023  *   Item specification. Only virtual subnet ID field is supported.
1024  *   If the mask is NULL, default mask will be used.
1025  *   Ranging is not supported.
1026  * @param efx_spec[in, out]
1027  *   EFX filter specification to update.
1028  * @param[out] error
1029  *   Perform verbose error reporting if not NULL.
1030  */
1031 static int
1032 sfc_flow_parse_nvgre(const struct rte_flow_item *item,
1033 		     struct sfc_flow_parse_ctx *parse_ctx,
1034 		     struct rte_flow_error *error)
1035 {
1036 	int rc;
1037 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
1038 	const struct rte_flow_item_nvgre *spec = NULL;
1039 	const struct rte_flow_item_nvgre *mask = NULL;
1040 	const struct rte_flow_item_nvgre supp_mask = {
1041 		.tni = { 0xff, 0xff, 0xff }
1042 	};
1043 
1044 	rc = sfc_flow_parse_init(item,
1045 				 (const void **)&spec,
1046 				 (const void **)&mask,
1047 				 &supp_mask,
1048 				 &rte_flow_item_nvgre_mask,
1049 				 sizeof(struct rte_flow_item_nvgre),
1050 				 error);
1051 	if (rc != 0)
1052 		return rc;
1053 
1054 	rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
1055 						     EFX_IPPROTO_GRE, error);
1056 	if (rc != 0)
1057 		return rc;
1058 
1059 	efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
1060 	efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
1061 
1062 	if (spec == NULL)
1063 		return 0;
1064 
1065 	rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni,
1066 					       mask->tni, item, error);
1067 
1068 	return rc;
1069 }
1070 
1071 /**
1072  * Convert PPPoEx item to EFX filter specification.
1073  *
1074  * @param item[in]
1075  *   Item specification.
1076  *   Matching on PPPoEx fields is not supported.
1077  *   This item can only be used to set or validate the EtherType filter.
1078  *   Only zero masks are allowed.
1079  *   Ranging is not supported.
1080  * @param efx_spec[in, out]
1081  *   EFX filter specification to update.
1082  * @param[out] error
1083  *   Perform verbose error reporting if not NULL.
1084  */
1085 static int
1086 sfc_flow_parse_pppoex(const struct rte_flow_item *item,
1087 		      struct sfc_flow_parse_ctx *parse_ctx,
1088 		      struct rte_flow_error *error)
1089 {
1090 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
1091 	const struct rte_flow_item_pppoe *spec = NULL;
1092 	const struct rte_flow_item_pppoe *mask = NULL;
1093 	const struct rte_flow_item_pppoe supp_mask = {};
1094 	const struct rte_flow_item_pppoe def_mask = {};
1095 	uint16_t ether_type;
1096 	int rc;
1097 
1098 	rc = sfc_flow_parse_init(item,
1099 				 (const void **)&spec,
1100 				 (const void **)&mask,
1101 				 &supp_mask,
1102 				 &def_mask,
1103 				 sizeof(struct rte_flow_item_pppoe),
1104 				 error);
1105 	if (rc != 0)
1106 		return rc;
1107 
1108 	if (item->type == RTE_FLOW_ITEM_TYPE_PPPOED)
1109 		ether_type = RTE_ETHER_TYPE_PPPOE_DISCOVERY;
1110 	else
1111 		ether_type = RTE_ETHER_TYPE_PPPOE_SESSION;
1112 
1113 	if ((efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) != 0) {
1114 		if (efx_spec->efs_ether_type != ether_type) {
1115 			rte_flow_error_set(error, EINVAL,
1116 					   RTE_FLOW_ERROR_TYPE_ITEM, item,
1117 					   "Invalid EtherType for a PPPoE flow item");
1118 			return -rte_errno;
1119 		}
1120 	} else {
1121 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
1122 		efx_spec->efs_ether_type = ether_type;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 static const struct sfc_flow_item sfc_flow_items[] = {
1129 	{
1130 		.type = RTE_FLOW_ITEM_TYPE_VOID,
1131 		.name = "VOID",
1132 		.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
1133 		.layer = SFC_FLOW_ITEM_ANY_LAYER,
1134 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1135 		.parse = sfc_flow_parse_void,
1136 	},
1137 	{
1138 		.type = RTE_FLOW_ITEM_TYPE_ETH,
1139 		.name = "ETH",
1140 		.prev_layer = SFC_FLOW_ITEM_START_LAYER,
1141 		.layer = SFC_FLOW_ITEM_L2,
1142 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1143 		.parse = sfc_flow_parse_eth,
1144 	},
1145 	{
1146 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
1147 		.name = "VLAN",
1148 		.prev_layer = SFC_FLOW_ITEM_L2,
1149 		.layer = SFC_FLOW_ITEM_L2,
1150 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1151 		.parse = sfc_flow_parse_vlan,
1152 	},
1153 	{
1154 		.type = RTE_FLOW_ITEM_TYPE_PPPOED,
1155 		.name = "PPPOED",
1156 		.prev_layer = SFC_FLOW_ITEM_L2,
1157 		.layer = SFC_FLOW_ITEM_L2,
1158 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1159 		.parse = sfc_flow_parse_pppoex,
1160 	},
1161 	{
1162 		.type = RTE_FLOW_ITEM_TYPE_PPPOES,
1163 		.name = "PPPOES",
1164 		.prev_layer = SFC_FLOW_ITEM_L2,
1165 		.layer = SFC_FLOW_ITEM_L2,
1166 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1167 		.parse = sfc_flow_parse_pppoex,
1168 	},
1169 	{
1170 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
1171 		.name = "IPV4",
1172 		.prev_layer = SFC_FLOW_ITEM_L2,
1173 		.layer = SFC_FLOW_ITEM_L3,
1174 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1175 		.parse = sfc_flow_parse_ipv4,
1176 	},
1177 	{
1178 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
1179 		.name = "IPV6",
1180 		.prev_layer = SFC_FLOW_ITEM_L2,
1181 		.layer = SFC_FLOW_ITEM_L3,
1182 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1183 		.parse = sfc_flow_parse_ipv6,
1184 	},
1185 	{
1186 		.type = RTE_FLOW_ITEM_TYPE_TCP,
1187 		.name = "TCP",
1188 		.prev_layer = SFC_FLOW_ITEM_L3,
1189 		.layer = SFC_FLOW_ITEM_L4,
1190 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1191 		.parse = sfc_flow_parse_tcp,
1192 	},
1193 	{
1194 		.type = RTE_FLOW_ITEM_TYPE_UDP,
1195 		.name = "UDP",
1196 		.prev_layer = SFC_FLOW_ITEM_L3,
1197 		.layer = SFC_FLOW_ITEM_L4,
1198 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1199 		.parse = sfc_flow_parse_udp,
1200 	},
1201 	{
1202 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
1203 		.name = "VXLAN",
1204 		.prev_layer = SFC_FLOW_ITEM_L4,
1205 		.layer = SFC_FLOW_ITEM_START_LAYER,
1206 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1207 		.parse = sfc_flow_parse_vxlan,
1208 	},
1209 	{
1210 		.type = RTE_FLOW_ITEM_TYPE_GENEVE,
1211 		.name = "GENEVE",
1212 		.prev_layer = SFC_FLOW_ITEM_L4,
1213 		.layer = SFC_FLOW_ITEM_START_LAYER,
1214 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1215 		.parse = sfc_flow_parse_geneve,
1216 	},
1217 	{
1218 		.type = RTE_FLOW_ITEM_TYPE_NVGRE,
1219 		.name = "NVGRE",
1220 		.prev_layer = SFC_FLOW_ITEM_L3,
1221 		.layer = SFC_FLOW_ITEM_START_LAYER,
1222 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1223 		.parse = sfc_flow_parse_nvgre,
1224 	},
1225 };
1226 
1227 /*
1228  * Protocol-independent flow API support
1229  */
1230 static int
1231 sfc_flow_parse_attr(struct sfc_adapter *sa,
1232 		    const struct rte_flow_attr *attr,
1233 		    struct rte_flow *flow,
1234 		    struct rte_flow_error *error)
1235 {
1236 	struct sfc_flow_spec *spec = &flow->spec;
1237 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1238 	struct sfc_flow_spec_mae *spec_mae = &spec->mae;
1239 	struct sfc_mae *mae = &sa->mae;
1240 
1241 	if (attr == NULL) {
1242 		rte_flow_error_set(error, EINVAL,
1243 				   RTE_FLOW_ERROR_TYPE_ATTR, NULL,
1244 				   "NULL attribute");
1245 		return -rte_errno;
1246 	}
1247 	if (attr->group != 0) {
1248 		rte_flow_error_set(error, ENOTSUP,
1249 				   RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
1250 				   "Groups are not supported");
1251 		return -rte_errno;
1252 	}
1253 	if (attr->egress != 0) {
1254 		rte_flow_error_set(error, ENOTSUP,
1255 				   RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr,
1256 				   "Egress is not supported");
1257 		return -rte_errno;
1258 	}
1259 	if (attr->ingress == 0) {
1260 		rte_flow_error_set(error, ENOTSUP,
1261 				   RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr,
1262 				   "Ingress is compulsory");
1263 		return -rte_errno;
1264 	}
1265 	if (attr->transfer == 0) {
1266 		if (attr->priority != 0) {
1267 			rte_flow_error_set(error, ENOTSUP,
1268 					   RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1269 					   attr, "Priorities are unsupported");
1270 			return -rte_errno;
1271 		}
1272 		spec->type = SFC_FLOW_SPEC_FILTER;
1273 		spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX;
1274 		spec_filter->template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1275 		spec_filter->template.efs_priority = EFX_FILTER_PRI_MANUAL;
1276 	} else {
1277 		if (mae->status != SFC_MAE_STATUS_SUPPORTED) {
1278 			rte_flow_error_set(error, ENOTSUP,
1279 					   RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1280 					   attr, "Transfer is not supported");
1281 			return -rte_errno;
1282 		}
1283 		if (attr->priority > mae->nb_action_rule_prios_max) {
1284 			rte_flow_error_set(error, ENOTSUP,
1285 					   RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1286 					   attr, "Unsupported priority level");
1287 			return -rte_errno;
1288 		}
1289 		spec->type = SFC_FLOW_SPEC_MAE;
1290 		spec_mae->priority = attr->priority;
1291 		spec_mae->match_spec = NULL;
1292 		spec_mae->action_set = NULL;
1293 		spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
1294 	}
1295 
1296 	return 0;
1297 }
1298 
1299 /* Get item from array sfc_flow_items */
1300 static const struct sfc_flow_item *
1301 sfc_flow_get_item(const struct sfc_flow_item *items,
1302 		  unsigned int nb_items,
1303 		  enum rte_flow_item_type type)
1304 {
1305 	unsigned int i;
1306 
1307 	for (i = 0; i < nb_items; i++)
1308 		if (items[i].type == type)
1309 			return &items[i];
1310 
1311 	return NULL;
1312 }
1313 
1314 int
1315 sfc_flow_parse_pattern(struct sfc_adapter *sa,
1316 		       const struct sfc_flow_item *flow_items,
1317 		       unsigned int nb_flow_items,
1318 		       const struct rte_flow_item pattern[],
1319 		       struct sfc_flow_parse_ctx *parse_ctx,
1320 		       struct rte_flow_error *error)
1321 {
1322 	int rc;
1323 	unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER;
1324 	boolean_t is_ifrm = B_FALSE;
1325 	const struct sfc_flow_item *item;
1326 
1327 	if (pattern == NULL) {
1328 		rte_flow_error_set(error, EINVAL,
1329 				   RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
1330 				   "NULL pattern");
1331 		return -rte_errno;
1332 	}
1333 
1334 	for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
1335 		item = sfc_flow_get_item(flow_items, nb_flow_items,
1336 					 pattern->type);
1337 		if (item == NULL) {
1338 			rte_flow_error_set(error, ENOTSUP,
1339 					   RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1340 					   "Unsupported pattern item");
1341 			return -rte_errno;
1342 		}
1343 
1344 		/*
1345 		 * Omitting one or several protocol layers at the beginning
1346 		 * of pattern is supported
1347 		 */
1348 		if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1349 		    prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1350 		    item->prev_layer != prev_layer) {
1351 			rte_flow_error_set(error, ENOTSUP,
1352 					   RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1353 					   "Unexpected sequence of pattern items");
1354 			return -rte_errno;
1355 		}
1356 
1357 		/*
1358 		 * Allow only VOID and ETH pattern items in the inner frame.
1359 		 * Also check that there is only one tunneling protocol.
1360 		 */
1361 		switch (item->type) {
1362 		case RTE_FLOW_ITEM_TYPE_VOID:
1363 		case RTE_FLOW_ITEM_TYPE_ETH:
1364 			break;
1365 
1366 		case RTE_FLOW_ITEM_TYPE_VXLAN:
1367 		case RTE_FLOW_ITEM_TYPE_GENEVE:
1368 		case RTE_FLOW_ITEM_TYPE_NVGRE:
1369 			if (is_ifrm) {
1370 				rte_flow_error_set(error, EINVAL,
1371 					RTE_FLOW_ERROR_TYPE_ITEM,
1372 					pattern,
1373 					"More than one tunneling protocol");
1374 				return -rte_errno;
1375 			}
1376 			is_ifrm = B_TRUE;
1377 			break;
1378 
1379 		default:
1380 			if (parse_ctx->type == SFC_FLOW_PARSE_CTX_FILTER &&
1381 			    is_ifrm) {
1382 				rte_flow_error_set(error, EINVAL,
1383 					RTE_FLOW_ERROR_TYPE_ITEM,
1384 					pattern,
1385 					"There is an unsupported pattern item "
1386 					"in the inner frame");
1387 				return -rte_errno;
1388 			}
1389 			break;
1390 		}
1391 
1392 		if (parse_ctx->type != item->ctx_type) {
1393 			rte_flow_error_set(error, EINVAL,
1394 					RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1395 					"Parse context type mismatch");
1396 			return -rte_errno;
1397 		}
1398 
1399 		rc = item->parse(pattern, parse_ctx, error);
1400 		if (rc != 0) {
1401 			sfc_err(sa, "failed to parse item %s: %s",
1402 				item->name, strerror(-rc));
1403 			return rc;
1404 		}
1405 
1406 		if (item->layer != SFC_FLOW_ITEM_ANY_LAYER)
1407 			prev_layer = item->layer;
1408 	}
1409 
1410 	return 0;
1411 }
1412 
1413 static int
1414 sfc_flow_parse_queue(struct sfc_adapter *sa,
1415 		     const struct rte_flow_action_queue *queue,
1416 		     struct rte_flow *flow)
1417 {
1418 	struct sfc_flow_spec *spec = &flow->spec;
1419 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1420 	struct sfc_rxq *rxq;
1421 	struct sfc_rxq_info *rxq_info;
1422 
1423 	if (queue->index >= sfc_sa2shared(sa)->ethdev_rxq_count)
1424 		return -EINVAL;
1425 
1426 	rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, queue->index);
1427 	spec_filter->template.efs_dmaq_id = (uint16_t)rxq->hw_index;
1428 
1429 	rxq_info = &sfc_sa2shared(sa)->rxq_info[queue->index];
1430 	spec_filter->rss_hash_required = !!(rxq_info->rxq_flags &
1431 					    SFC_RXQ_FLAG_RSS_HASH);
1432 
1433 	return 0;
1434 }
1435 
1436 static int
1437 sfc_flow_parse_rss(struct sfc_adapter *sa,
1438 		   const struct rte_flow_action_rss *action_rss,
1439 		   struct rte_flow *flow)
1440 {
1441 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1442 	struct sfc_rss *rss = &sas->rss;
1443 	sfc_ethdev_qid_t ethdev_qid;
1444 	struct sfc_rxq *rxq;
1445 	unsigned int rxq_hw_index_min;
1446 	unsigned int rxq_hw_index_max;
1447 	efx_rx_hash_type_t efx_hash_types;
1448 	const uint8_t *rss_key;
1449 	struct sfc_flow_spec *spec = &flow->spec;
1450 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1451 	struct sfc_flow_rss *sfc_rss_conf = &spec_filter->rss_conf;
1452 	unsigned int i;
1453 
1454 	if (action_rss->queue_num == 0)
1455 		return -EINVAL;
1456 
1457 	ethdev_qid = sfc_sa2shared(sa)->ethdev_rxq_count - 1;
1458 	rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1459 	rxq_hw_index_min = rxq->hw_index;
1460 	rxq_hw_index_max = 0;
1461 
1462 	for (i = 0; i < action_rss->queue_num; ++i) {
1463 		ethdev_qid = action_rss->queue[i];
1464 
1465 		if ((unsigned int)ethdev_qid >=
1466 		    sfc_sa2shared(sa)->ethdev_rxq_count)
1467 			return -EINVAL;
1468 
1469 		rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1470 
1471 		if (rxq->hw_index < rxq_hw_index_min)
1472 			rxq_hw_index_min = rxq->hw_index;
1473 
1474 		if (rxq->hw_index > rxq_hw_index_max)
1475 			rxq_hw_index_max = rxq->hw_index;
1476 	}
1477 
1478 	switch (action_rss->func) {
1479 	case RTE_ETH_HASH_FUNCTION_DEFAULT:
1480 	case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1481 		break;
1482 	default:
1483 		return -EINVAL;
1484 	}
1485 
1486 	if (action_rss->level)
1487 		return -EINVAL;
1488 
1489 	/*
1490 	 * Dummy RSS action with only one queue and no specific settings
1491 	 * for hash types and key does not require dedicated RSS context
1492 	 * and may be simplified to single queue action.
1493 	 */
1494 	if (action_rss->queue_num == 1 && action_rss->types == 0 &&
1495 	    action_rss->key_len == 0) {
1496 		spec_filter->template.efs_dmaq_id = rxq_hw_index_min;
1497 		return 0;
1498 	}
1499 
1500 	if (action_rss->types) {
1501 		int rc;
1502 
1503 		rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types,
1504 					  &efx_hash_types);
1505 		if (rc != 0)
1506 			return -rc;
1507 	} else {
1508 		unsigned int i;
1509 
1510 		efx_hash_types = 0;
1511 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
1512 			efx_hash_types |= rss->hf_map[i].efx;
1513 	}
1514 
1515 	if (action_rss->key_len) {
1516 		if (action_rss->key_len != sizeof(rss->key))
1517 			return -EINVAL;
1518 
1519 		rss_key = action_rss->key;
1520 	} else {
1521 		rss_key = rss->key;
1522 	}
1523 
1524 	spec_filter->rss = B_TRUE;
1525 
1526 	sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min;
1527 	sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max;
1528 	sfc_rss_conf->rss_hash_types = efx_hash_types;
1529 	rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key));
1530 
1531 	for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) {
1532 		unsigned int nb_queues = action_rss->queue_num;
1533 		struct sfc_rxq *rxq;
1534 
1535 		ethdev_qid = action_rss->queue[i % nb_queues];
1536 		rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, ethdev_qid);
1537 		sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min;
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 static int
1544 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec,
1545 		    unsigned int filters_count)
1546 {
1547 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1548 	unsigned int i;
1549 	int ret = 0;
1550 
1551 	for (i = 0; i < filters_count; i++) {
1552 		int rc;
1553 
1554 		rc = efx_filter_remove(sa->nic, &spec_filter->filters[i]);
1555 		if (ret == 0 && rc != 0) {
1556 			sfc_err(sa, "failed to remove filter specification "
1557 				"(rc = %d)", rc);
1558 			ret = rc;
1559 		}
1560 	}
1561 
1562 	return ret;
1563 }
1564 
1565 static int
1566 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1567 {
1568 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1569 	unsigned int i;
1570 	int rc = 0;
1571 
1572 	for (i = 0; i < spec_filter->count; i++) {
1573 		rc = efx_filter_insert(sa->nic, &spec_filter->filters[i]);
1574 		if (rc != 0) {
1575 			sfc_flow_spec_flush(sa, spec, i);
1576 			break;
1577 		}
1578 	}
1579 
1580 	return rc;
1581 }
1582 
1583 static int
1584 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1585 {
1586 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1587 
1588 	return sfc_flow_spec_flush(sa, spec, spec_filter->count);
1589 }
1590 
1591 static int
1592 sfc_flow_filter_insert(struct sfc_adapter *sa,
1593 		       struct rte_flow *flow)
1594 {
1595 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1596 	struct sfc_rss *rss = &sas->rss;
1597 	struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1598 	struct sfc_flow_rss *flow_rss = &spec_filter->rss_conf;
1599 	uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1600 	boolean_t create_context;
1601 	unsigned int i;
1602 	int rc = 0;
1603 
1604 	create_context = spec_filter->rss || (spec_filter->rss_hash_required &&
1605 			rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT);
1606 
1607 	if (create_context) {
1608 		unsigned int rss_spread;
1609 		unsigned int rss_hash_types;
1610 		uint8_t *rss_key;
1611 
1612 		if (spec_filter->rss) {
1613 			rss_spread = MIN(flow_rss->rxq_hw_index_max -
1614 					flow_rss->rxq_hw_index_min + 1,
1615 					EFX_MAXRSS);
1616 			rss_hash_types = flow_rss->rss_hash_types;
1617 			rss_key = flow_rss->rss_key;
1618 		} else {
1619 			/*
1620 			 * Initialize dummy RSS context parameters to have
1621 			 * valid RSS hash. Use default RSS hash function and
1622 			 * key.
1623 			 */
1624 			rss_spread = 1;
1625 			rss_hash_types = rss->hash_types;
1626 			rss_key = rss->key;
1627 		}
1628 
1629 		rc = efx_rx_scale_context_alloc(sa->nic,
1630 						EFX_RX_SCALE_EXCLUSIVE,
1631 						rss_spread,
1632 						&efs_rss_context);
1633 		if (rc != 0)
1634 			goto fail_scale_context_alloc;
1635 
1636 		rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context,
1637 					   rss->hash_alg,
1638 					   rss_hash_types, B_TRUE);
1639 		if (rc != 0)
1640 			goto fail_scale_mode_set;
1641 
1642 		rc = efx_rx_scale_key_set(sa->nic, efs_rss_context,
1643 					  rss_key, sizeof(rss->key));
1644 		if (rc != 0)
1645 			goto fail_scale_key_set;
1646 	} else {
1647 		efs_rss_context = rss->dummy_rss_context;
1648 	}
1649 
1650 	if (spec_filter->rss || spec_filter->rss_hash_required) {
1651 		/*
1652 		 * At this point, fully elaborated filter specifications
1653 		 * have been produced from the template. To make sure that
1654 		 * RSS behaviour is consistent between them, set the same
1655 		 * RSS context value everywhere.
1656 		 */
1657 		for (i = 0; i < spec_filter->count; i++) {
1658 			efx_filter_spec_t *spec = &spec_filter->filters[i];
1659 
1660 			spec->efs_rss_context = efs_rss_context;
1661 			spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS;
1662 			if (spec_filter->rss)
1663 				spec->efs_dmaq_id = flow_rss->rxq_hw_index_min;
1664 		}
1665 	}
1666 
1667 	rc = sfc_flow_spec_insert(sa, &flow->spec);
1668 	if (rc != 0)
1669 		goto fail_filter_insert;
1670 
1671 	if (create_context) {
1672 		unsigned int dummy_tbl[RTE_DIM(flow_rss->rss_tbl)] = {0};
1673 		unsigned int *tbl;
1674 
1675 		tbl = spec_filter->rss ? flow_rss->rss_tbl : dummy_tbl;
1676 
1677 		/*
1678 		 * Scale table is set after filter insertion because
1679 		 * the table entries are relative to the base RxQ ID
1680 		 * and the latter is submitted to the HW by means of
1681 		 * inserting a filter, so by the time of the request
1682 		 * the HW knows all the information needed to verify
1683 		 * the table entries, and the operation will succeed
1684 		 */
1685 		rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context,
1686 					  tbl, RTE_DIM(flow_rss->rss_tbl));
1687 		if (rc != 0)
1688 			goto fail_scale_tbl_set;
1689 
1690 		/* Remember created dummy RSS context */
1691 		if (!spec_filter->rss)
1692 			rss->dummy_rss_context = efs_rss_context;
1693 	}
1694 
1695 	return 0;
1696 
1697 fail_scale_tbl_set:
1698 	sfc_flow_spec_remove(sa, &flow->spec);
1699 
1700 fail_filter_insert:
1701 fail_scale_key_set:
1702 fail_scale_mode_set:
1703 	if (create_context)
1704 		efx_rx_scale_context_free(sa->nic, efs_rss_context);
1705 
1706 fail_scale_context_alloc:
1707 	return rc;
1708 }
1709 
1710 static int
1711 sfc_flow_filter_remove(struct sfc_adapter *sa,
1712 		       struct rte_flow *flow)
1713 {
1714 	struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1715 	int rc = 0;
1716 
1717 	rc = sfc_flow_spec_remove(sa, &flow->spec);
1718 	if (rc != 0)
1719 		return rc;
1720 
1721 	if (spec_filter->rss) {
1722 		/*
1723 		 * All specifications for a given flow rule have the same RSS
1724 		 * context, so that RSS context value is taken from the first
1725 		 * filter specification
1726 		 */
1727 		efx_filter_spec_t *spec = &spec_filter->filters[0];
1728 
1729 		rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context);
1730 	}
1731 
1732 	return rc;
1733 }
1734 
1735 static int
1736 sfc_flow_parse_mark(struct sfc_adapter *sa,
1737 		    const struct rte_flow_action_mark *mark,
1738 		    struct rte_flow *flow)
1739 {
1740 	struct sfc_flow_spec *spec = &flow->spec;
1741 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1742 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1743 
1744 	if (mark == NULL || mark->id > encp->enc_filter_action_mark_max)
1745 		return EINVAL;
1746 
1747 	spec_filter->template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK;
1748 	spec_filter->template.efs_mark = mark->id;
1749 
1750 	return 0;
1751 }
1752 
1753 static int
1754 sfc_flow_parse_actions(struct sfc_adapter *sa,
1755 		       const struct rte_flow_action actions[],
1756 		       struct rte_flow *flow,
1757 		       struct rte_flow_error *error)
1758 {
1759 	int rc;
1760 	struct sfc_flow_spec *spec = &flow->spec;
1761 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1762 	const unsigned int dp_rx_features = sa->priv.dp_rx->features;
1763 	const uint64_t rx_metadata = sa->negotiated_rx_metadata;
1764 	uint32_t actions_set = 0;
1765 	const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) |
1766 					   (1UL << RTE_FLOW_ACTION_TYPE_RSS) |
1767 					   (1UL << RTE_FLOW_ACTION_TYPE_DROP);
1768 	const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) |
1769 					   (1UL << RTE_FLOW_ACTION_TYPE_FLAG);
1770 
1771 	if (actions == NULL) {
1772 		rte_flow_error_set(error, EINVAL,
1773 				   RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
1774 				   "NULL actions");
1775 		return -rte_errno;
1776 	}
1777 
1778 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1779 		switch (actions->type) {
1780 		case RTE_FLOW_ACTION_TYPE_VOID:
1781 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID,
1782 					       actions_set);
1783 			break;
1784 
1785 		case RTE_FLOW_ACTION_TYPE_QUEUE:
1786 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE,
1787 					       actions_set);
1788 			if ((actions_set & fate_actions_mask) != 0)
1789 				goto fail_fate_actions;
1790 
1791 			rc = sfc_flow_parse_queue(sa, actions->conf, flow);
1792 			if (rc != 0) {
1793 				rte_flow_error_set(error, EINVAL,
1794 					RTE_FLOW_ERROR_TYPE_ACTION, actions,
1795 					"Bad QUEUE action");
1796 				return -rte_errno;
1797 			}
1798 			break;
1799 
1800 		case RTE_FLOW_ACTION_TYPE_RSS:
1801 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS,
1802 					       actions_set);
1803 			if ((actions_set & fate_actions_mask) != 0)
1804 				goto fail_fate_actions;
1805 
1806 			rc = sfc_flow_parse_rss(sa, actions->conf, flow);
1807 			if (rc != 0) {
1808 				rte_flow_error_set(error, -rc,
1809 					RTE_FLOW_ERROR_TYPE_ACTION, actions,
1810 					"Bad RSS action");
1811 				return -rte_errno;
1812 			}
1813 			break;
1814 
1815 		case RTE_FLOW_ACTION_TYPE_DROP:
1816 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
1817 					       actions_set);
1818 			if ((actions_set & fate_actions_mask) != 0)
1819 				goto fail_fate_actions;
1820 
1821 			spec_filter->template.efs_dmaq_id =
1822 				EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1823 			break;
1824 
1825 		case RTE_FLOW_ACTION_TYPE_FLAG:
1826 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
1827 					       actions_set);
1828 			if ((actions_set & mark_actions_mask) != 0)
1829 				goto fail_actions_overlap;
1830 
1831 			if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) {
1832 				rte_flow_error_set(error, ENOTSUP,
1833 					RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1834 					"FLAG action is not supported on the current Rx datapath");
1835 				return -rte_errno;
1836 			} else if ((rx_metadata &
1837 				    RTE_ETH_RX_METADATA_USER_FLAG) == 0) {
1838 				rte_flow_error_set(error, ENOTSUP,
1839 					RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1840 					"flag delivery has not been negotiated");
1841 				return -rte_errno;
1842 			}
1843 
1844 			spec_filter->template.efs_flags |=
1845 				EFX_FILTER_FLAG_ACTION_FLAG;
1846 			break;
1847 
1848 		case RTE_FLOW_ACTION_TYPE_MARK:
1849 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
1850 					       actions_set);
1851 			if ((actions_set & mark_actions_mask) != 0)
1852 				goto fail_actions_overlap;
1853 
1854 			if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) {
1855 				rte_flow_error_set(error, ENOTSUP,
1856 					RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1857 					"MARK action is not supported on the current Rx datapath");
1858 				return -rte_errno;
1859 			} else if ((rx_metadata &
1860 				    RTE_ETH_RX_METADATA_USER_MARK) == 0) {
1861 				rte_flow_error_set(error, ENOTSUP,
1862 					RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1863 					"mark delivery has not been negotiated");
1864 				return -rte_errno;
1865 			}
1866 
1867 			rc = sfc_flow_parse_mark(sa, actions->conf, flow);
1868 			if (rc != 0) {
1869 				rte_flow_error_set(error, rc,
1870 					RTE_FLOW_ERROR_TYPE_ACTION, actions,
1871 					"Bad MARK action");
1872 				return -rte_errno;
1873 			}
1874 			break;
1875 
1876 		default:
1877 			rte_flow_error_set(error, ENOTSUP,
1878 					   RTE_FLOW_ERROR_TYPE_ACTION, actions,
1879 					   "Action is not supported");
1880 			return -rte_errno;
1881 		}
1882 
1883 		actions_set |= (1UL << actions->type);
1884 	}
1885 
1886 	/* When fate is unknown, drop traffic. */
1887 	if ((actions_set & fate_actions_mask) == 0) {
1888 		spec_filter->template.efs_dmaq_id =
1889 			EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1890 	}
1891 
1892 	return 0;
1893 
1894 fail_fate_actions:
1895 	rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1896 			   "Cannot combine several fate-deciding actions, "
1897 			   "choose between QUEUE, RSS or DROP");
1898 	return -rte_errno;
1899 
1900 fail_actions_overlap:
1901 	rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1902 			   "Overlapping actions are not supported");
1903 	return -rte_errno;
1904 }
1905 
1906 /**
1907  * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST
1908  * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same
1909  * specifications after copying.
1910  *
1911  * @param spec[in, out]
1912  *   SFC flow specification to update.
1913  * @param filters_count_for_one_val[in]
1914  *   How many specifications should have the same match flag, what is the
1915  *   number of specifications before copying.
1916  * @param error[out]
1917  *   Perform verbose error reporting if not NULL.
1918  */
1919 static int
1920 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec,
1921 			       unsigned int filters_count_for_one_val,
1922 			       struct rte_flow_error *error)
1923 {
1924 	unsigned int i;
1925 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1926 	static const efx_filter_match_flags_t vals[] = {
1927 		EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
1928 		EFX_FILTER_MATCH_UNKNOWN_MCAST_DST
1929 	};
1930 
1931 	if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1932 		rte_flow_error_set(error, EINVAL,
1933 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1934 			"Number of specifications is incorrect while copying "
1935 			"by unknown destination flags");
1936 		return -rte_errno;
1937 	}
1938 
1939 	for (i = 0; i < spec_filter->count; i++) {
1940 		/* The check above ensures that divisor can't be zero here */
1941 		spec_filter->filters[i].efs_match_flags |=
1942 			vals[i / filters_count_for_one_val];
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 /**
1949  * Check that the following conditions are met:
1950  * - the list of supported filters has a filter
1951  *   with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of
1952  *   EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also
1953  *   be inserted.
1954  *
1955  * @param match[in]
1956  *   The match flags of filter.
1957  * @param spec[in]
1958  *   Specification to be supplemented.
1959  * @param filter[in]
1960  *   SFC filter with list of supported filters.
1961  */
1962 static boolean_t
1963 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match,
1964 				 __rte_unused efx_filter_spec_t *spec,
1965 				 struct sfc_filter *filter)
1966 {
1967 	unsigned int i;
1968 	efx_filter_match_flags_t match_mcast_dst;
1969 
1970 	match_mcast_dst =
1971 		(match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) |
1972 		EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
1973 	for (i = 0; i < filter->supported_match_num; i++) {
1974 		if (match_mcast_dst == filter->supported_match[i])
1975 			return B_TRUE;
1976 	}
1977 
1978 	return B_FALSE;
1979 }
1980 
1981 /**
1982  * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and
1983  * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same
1984  * specifications after copying.
1985  *
1986  * @param spec[in, out]
1987  *   SFC flow specification to update.
1988  * @param filters_count_for_one_val[in]
1989  *   How many specifications should have the same EtherType value, what is the
1990  *   number of specifications before copying.
1991  * @param error[out]
1992  *   Perform verbose error reporting if not NULL.
1993  */
1994 static int
1995 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec,
1996 			unsigned int filters_count_for_one_val,
1997 			struct rte_flow_error *error)
1998 {
1999 	unsigned int i;
2000 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2001 	static const uint16_t vals[] = {
2002 		EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6
2003 	};
2004 
2005 	if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
2006 		rte_flow_error_set(error, EINVAL,
2007 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2008 			"Number of specifications is incorrect "
2009 			"while copying by Ethertype");
2010 		return -rte_errno;
2011 	}
2012 
2013 	for (i = 0; i < spec_filter->count; i++) {
2014 		spec_filter->filters[i].efs_match_flags |=
2015 			EFX_FILTER_MATCH_ETHER_TYPE;
2016 
2017 		/*
2018 		 * The check above ensures that
2019 		 * filters_count_for_one_val is not 0
2020 		 */
2021 		spec_filter->filters[i].efs_ether_type =
2022 			vals[i / filters_count_for_one_val];
2023 	}
2024 
2025 	return 0;
2026 }
2027 
2028 /**
2029  * Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0
2030  * in the same specifications after copying.
2031  *
2032  * @param spec[in, out]
2033  *   SFC flow specification to update.
2034  * @param filters_count_for_one_val[in]
2035  *   How many specifications should have the same match flag, what is the
2036  *   number of specifications before copying.
2037  * @param error[out]
2038  *   Perform verbose error reporting if not NULL.
2039  */
2040 static int
2041 sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec,
2042 			    unsigned int filters_count_for_one_val,
2043 			    struct rte_flow_error *error)
2044 {
2045 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2046 	unsigned int i;
2047 
2048 	if (filters_count_for_one_val != spec_filter->count) {
2049 		rte_flow_error_set(error, EINVAL,
2050 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2051 			"Number of specifications is incorrect "
2052 			"while copying by outer VLAN ID");
2053 		return -rte_errno;
2054 	}
2055 
2056 	for (i = 0; i < spec_filter->count; i++) {
2057 		spec_filter->filters[i].efs_match_flags |=
2058 			EFX_FILTER_MATCH_OUTER_VID;
2059 
2060 		spec_filter->filters[i].efs_outer_vid = 0;
2061 	}
2062 
2063 	return 0;
2064 }
2065 
2066 /**
2067  * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and
2068  * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same
2069  * specifications after copying.
2070  *
2071  * @param spec[in, out]
2072  *   SFC flow specification to update.
2073  * @param filters_count_for_one_val[in]
2074  *   How many specifications should have the same match flag, what is the
2075  *   number of specifications before copying.
2076  * @param error[out]
2077  *   Perform verbose error reporting if not NULL.
2078  */
2079 static int
2080 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec,
2081 				    unsigned int filters_count_for_one_val,
2082 				    struct rte_flow_error *error)
2083 {
2084 	unsigned int i;
2085 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2086 	static const efx_filter_match_flags_t vals[] = {
2087 		EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
2088 		EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST
2089 	};
2090 
2091 	if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
2092 		rte_flow_error_set(error, EINVAL,
2093 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2094 			"Number of specifications is incorrect while copying "
2095 			"by inner frame unknown destination flags");
2096 		return -rte_errno;
2097 	}
2098 
2099 	for (i = 0; i < spec_filter->count; i++) {
2100 		/* The check above ensures that divisor can't be zero here */
2101 		spec_filter->filters[i].efs_match_flags |=
2102 			vals[i / filters_count_for_one_val];
2103 	}
2104 
2105 	return 0;
2106 }
2107 
2108 /**
2109  * Check that the following conditions are met:
2110  * - the specification corresponds to a filter for encapsulated traffic
2111  * - the list of supported filters has a filter
2112  *   with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of
2113  *   EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also
2114  *   be inserted.
2115  *
2116  * @param match[in]
2117  *   The match flags of filter.
2118  * @param spec[in]
2119  *   Specification to be supplemented.
2120  * @param filter[in]
2121  *   SFC filter with list of supported filters.
2122  */
2123 static boolean_t
2124 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match,
2125 				      efx_filter_spec_t *spec,
2126 				      struct sfc_filter *filter)
2127 {
2128 	unsigned int i;
2129 	efx_tunnel_protocol_t encap_type = spec->efs_encap_type;
2130 	efx_filter_match_flags_t match_mcast_dst;
2131 
2132 	if (encap_type == EFX_TUNNEL_PROTOCOL_NONE)
2133 		return B_FALSE;
2134 
2135 	match_mcast_dst =
2136 		(match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) |
2137 		EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST;
2138 	for (i = 0; i < filter->supported_match_num; i++) {
2139 		if (match_mcast_dst == filter->supported_match[i])
2140 			return B_TRUE;
2141 	}
2142 
2143 	return B_FALSE;
2144 }
2145 
2146 /**
2147  * Check that the list of supported filters has a filter that differs
2148  * from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID
2149  * in this case that filter will be used and the flag
2150  * EFX_FILTER_MATCH_OUTER_VID is not needed.
2151  *
2152  * @param match[in]
2153  *   The match flags of filter.
2154  * @param spec[in]
2155  *   Specification to be supplemented.
2156  * @param filter[in]
2157  *   SFC filter with list of supported filters.
2158  */
2159 static boolean_t
2160 sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match,
2161 			      __rte_unused efx_filter_spec_t *spec,
2162 			      struct sfc_filter *filter)
2163 {
2164 	unsigned int i;
2165 	efx_filter_match_flags_t match_without_vid =
2166 		match & ~EFX_FILTER_MATCH_OUTER_VID;
2167 
2168 	for (i = 0; i < filter->supported_match_num; i++) {
2169 		if (match_without_vid == filter->supported_match[i])
2170 			return B_FALSE;
2171 	}
2172 
2173 	return B_TRUE;
2174 }
2175 
2176 /*
2177  * Match flags that can be automatically added to filters.
2178  * Selecting the last minimum when searching for the copy flag ensures that the
2179  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than
2180  * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter
2181  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported
2182  * filters.
2183  */
2184 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = {
2185 	{
2186 		.flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
2187 		.vals_count = 2,
2188 		.set_vals = sfc_flow_set_unknown_dst_flags,
2189 		.spec_check = sfc_flow_check_unknown_dst_flags,
2190 	},
2191 	{
2192 		.flag = EFX_FILTER_MATCH_ETHER_TYPE,
2193 		.vals_count = 2,
2194 		.set_vals = sfc_flow_set_ethertypes,
2195 		.spec_check = NULL,
2196 	},
2197 	{
2198 		.flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
2199 		.vals_count = 2,
2200 		.set_vals = sfc_flow_set_ifrm_unknown_dst_flags,
2201 		.spec_check = sfc_flow_check_ifrm_unknown_dst_flags,
2202 	},
2203 	{
2204 		.flag = EFX_FILTER_MATCH_OUTER_VID,
2205 		.vals_count = 1,
2206 		.set_vals = sfc_flow_set_outer_vid_flag,
2207 		.spec_check = sfc_flow_check_outer_vid_flag,
2208 	},
2209 };
2210 
2211 /* Get item from array sfc_flow_copy_flags */
2212 static const struct sfc_flow_copy_flag *
2213 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag)
2214 {
2215 	unsigned int i;
2216 
2217 	for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2218 		if (sfc_flow_copy_flags[i].flag == flag)
2219 			return &sfc_flow_copy_flags[i];
2220 	}
2221 
2222 	return NULL;
2223 }
2224 
2225 /**
2226  * Make copies of the specifications, set match flag and values
2227  * of the field that corresponds to it.
2228  *
2229  * @param spec[in, out]
2230  *   SFC flow specification to update.
2231  * @param flag[in]
2232  *   The match flag to add.
2233  * @param error[out]
2234  *   Perform verbose error reporting if not NULL.
2235  */
2236 static int
2237 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec,
2238 			     efx_filter_match_flags_t flag,
2239 			     struct rte_flow_error *error)
2240 {
2241 	unsigned int i;
2242 	unsigned int new_filters_count;
2243 	unsigned int filters_count_for_one_val;
2244 	const struct sfc_flow_copy_flag *copy_flag;
2245 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2246 	int rc;
2247 
2248 	copy_flag = sfc_flow_get_copy_flag(flag);
2249 	if (copy_flag == NULL) {
2250 		rte_flow_error_set(error, ENOTSUP,
2251 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2252 				   "Unsupported spec field for copying");
2253 		return -rte_errno;
2254 	}
2255 
2256 	new_filters_count = spec_filter->count * copy_flag->vals_count;
2257 	if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) {
2258 		rte_flow_error_set(error, EINVAL,
2259 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2260 			"Too much EFX specifications in the flow rule");
2261 		return -rte_errno;
2262 	}
2263 
2264 	/* Copy filters specifications */
2265 	for (i = spec_filter->count; i < new_filters_count; i++) {
2266 		spec_filter->filters[i] =
2267 			spec_filter->filters[i - spec_filter->count];
2268 	}
2269 
2270 	filters_count_for_one_val = spec_filter->count;
2271 	spec_filter->count = new_filters_count;
2272 
2273 	rc = copy_flag->set_vals(spec, filters_count_for_one_val, error);
2274 	if (rc != 0)
2275 		return rc;
2276 
2277 	return 0;
2278 }
2279 
2280 /**
2281  * Check that the given set of match flags missing in the original filter spec
2282  * could be covered by adding spec copies which specify the corresponding
2283  * flags and packet field values to match.
2284  *
2285  * @param miss_flags[in]
2286  *   Flags that are missing until the supported filter.
2287  * @param spec[in]
2288  *   Specification to be supplemented.
2289  * @param filter[in]
2290  *   SFC filter.
2291  *
2292  * @return
2293  *   Number of specifications after copy or 0, if the flags can not be added.
2294  */
2295 static unsigned int
2296 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags,
2297 			     efx_filter_spec_t *spec,
2298 			     struct sfc_filter *filter)
2299 {
2300 	unsigned int i;
2301 	efx_filter_match_flags_t copy_flags = 0;
2302 	efx_filter_match_flags_t flag;
2303 	efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags;
2304 	sfc_flow_spec_check *check;
2305 	unsigned int multiplier = 1;
2306 
2307 	for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2308 		flag = sfc_flow_copy_flags[i].flag;
2309 		check = sfc_flow_copy_flags[i].spec_check;
2310 		if ((flag & miss_flags) == flag) {
2311 			if (check != NULL && (!check(match, spec, filter)))
2312 				continue;
2313 
2314 			copy_flags |= flag;
2315 			multiplier *= sfc_flow_copy_flags[i].vals_count;
2316 		}
2317 	}
2318 
2319 	if (copy_flags == miss_flags)
2320 		return multiplier;
2321 
2322 	return 0;
2323 }
2324 
2325 /**
2326  * Attempt to supplement the specification template to the minimally
2327  * supported set of match flags. To do this, it is necessary to copy
2328  * the specifications, filling them with the values of fields that
2329  * correspond to the missing flags.
2330  * The necessary and sufficient filter is built from the fewest number
2331  * of copies which could be made to cover the minimally required set
2332  * of flags.
2333  *
2334  * @param sa[in]
2335  *   SFC adapter.
2336  * @param spec[in, out]
2337  *   SFC flow specification to update.
2338  * @param error[out]
2339  *   Perform verbose error reporting if not NULL.
2340  */
2341 static int
2342 sfc_flow_spec_filters_complete(struct sfc_adapter *sa,
2343 			       struct sfc_flow_spec *spec,
2344 			       struct rte_flow_error *error)
2345 {
2346 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2347 	struct sfc_filter *filter = &sa->filter;
2348 	efx_filter_match_flags_t miss_flags;
2349 	efx_filter_match_flags_t min_miss_flags = 0;
2350 	efx_filter_match_flags_t match;
2351 	unsigned int min_multiplier = UINT_MAX;
2352 	unsigned int multiplier;
2353 	unsigned int i;
2354 	int rc;
2355 
2356 	match = spec_filter->template.efs_match_flags;
2357 	for (i = 0; i < filter->supported_match_num; i++) {
2358 		if ((match & filter->supported_match[i]) == match) {
2359 			miss_flags = filter->supported_match[i] & (~match);
2360 			multiplier = sfc_flow_check_missing_flags(miss_flags,
2361 				&spec_filter->template, filter);
2362 			if (multiplier > 0) {
2363 				if (multiplier <= min_multiplier) {
2364 					min_multiplier = multiplier;
2365 					min_miss_flags = miss_flags;
2366 				}
2367 			}
2368 		}
2369 	}
2370 
2371 	if (min_multiplier == UINT_MAX) {
2372 		rte_flow_error_set(error, ENOTSUP,
2373 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2374 				   "The flow rule pattern is unsupported");
2375 		return -rte_errno;
2376 	}
2377 
2378 	for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2379 		efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag;
2380 
2381 		if ((flag & min_miss_flags) == flag) {
2382 			rc = sfc_flow_spec_add_match_flag(spec, flag, error);
2383 			if (rc != 0)
2384 				return rc;
2385 		}
2386 	}
2387 
2388 	return 0;
2389 }
2390 
2391 /**
2392  * Check that set of match flags is referred to by a filter. Filter is
2393  * described by match flags with the ability to add OUTER_VID and INNER_VID
2394  * flags.
2395  *
2396  * @param match_flags[in]
2397  *   Set of match flags.
2398  * @param flags_pattern[in]
2399  *   Pattern of filter match flags.
2400  */
2401 static boolean_t
2402 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags,
2403 			    efx_filter_match_flags_t flags_pattern)
2404 {
2405 	if ((match_flags & flags_pattern) != flags_pattern)
2406 		return B_FALSE;
2407 
2408 	switch (match_flags & ~flags_pattern) {
2409 	case 0:
2410 	case EFX_FILTER_MATCH_OUTER_VID:
2411 	case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID:
2412 		return B_TRUE;
2413 	default:
2414 		return B_FALSE;
2415 	}
2416 }
2417 
2418 /**
2419  * Check whether the spec maps to a hardware filter which is known to be
2420  * ineffective despite being valid.
2421  *
2422  * @param filter[in]
2423  *   SFC filter with list of supported filters.
2424  * @param spec[in]
2425  *   SFC flow specification.
2426  */
2427 static boolean_t
2428 sfc_flow_is_match_flags_exception(struct sfc_filter *filter,
2429 				  struct sfc_flow_spec *spec)
2430 {
2431 	unsigned int i;
2432 	uint16_t ether_type;
2433 	uint8_t ip_proto;
2434 	efx_filter_match_flags_t match_flags;
2435 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2436 
2437 	for (i = 0; i < spec_filter->count; i++) {
2438 		match_flags = spec_filter->filters[i].efs_match_flags;
2439 
2440 		if (sfc_flow_is_match_with_vids(match_flags,
2441 						EFX_FILTER_MATCH_ETHER_TYPE) ||
2442 		    sfc_flow_is_match_with_vids(match_flags,
2443 						EFX_FILTER_MATCH_ETHER_TYPE |
2444 						EFX_FILTER_MATCH_LOC_MAC)) {
2445 			ether_type = spec_filter->filters[i].efs_ether_type;
2446 			if (filter->supports_ip_proto_or_addr_filter &&
2447 			    (ether_type == EFX_ETHER_TYPE_IPV4 ||
2448 			     ether_type == EFX_ETHER_TYPE_IPV6))
2449 				return B_TRUE;
2450 		} else if (sfc_flow_is_match_with_vids(match_flags,
2451 				EFX_FILTER_MATCH_ETHER_TYPE |
2452 				EFX_FILTER_MATCH_IP_PROTO) ||
2453 			   sfc_flow_is_match_with_vids(match_flags,
2454 				EFX_FILTER_MATCH_ETHER_TYPE |
2455 				EFX_FILTER_MATCH_IP_PROTO |
2456 				EFX_FILTER_MATCH_LOC_MAC)) {
2457 			ip_proto = spec_filter->filters[i].efs_ip_proto;
2458 			if (filter->supports_rem_or_local_port_filter &&
2459 			    (ip_proto == EFX_IPPROTO_TCP ||
2460 			     ip_proto == EFX_IPPROTO_UDP))
2461 				return B_TRUE;
2462 		}
2463 	}
2464 
2465 	return B_FALSE;
2466 }
2467 
2468 static int
2469 sfc_flow_validate_match_flags(struct sfc_adapter *sa,
2470 			      struct rte_flow *flow,
2471 			      struct rte_flow_error *error)
2472 {
2473 	struct sfc_flow_spec *spec = &flow->spec;
2474 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2475 	efx_filter_spec_t *spec_tmpl = &spec_filter->template;
2476 	efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags;
2477 	int rc;
2478 
2479 	/* Initialize the first filter spec with template */
2480 	spec_filter->filters[0] = *spec_tmpl;
2481 	spec_filter->count = 1;
2482 
2483 	if (!sfc_filter_is_match_supported(sa, match_flags)) {
2484 		rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error);
2485 		if (rc != 0)
2486 			return rc;
2487 	}
2488 
2489 	if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) {
2490 		rte_flow_error_set(error, ENOTSUP,
2491 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2492 			"The flow rule pattern is unsupported");
2493 		return -rte_errno;
2494 	}
2495 
2496 	return 0;
2497 }
2498 
2499 static int
2500 sfc_flow_parse_rte_to_filter(struct rte_eth_dev *dev,
2501 			     const struct rte_flow_item pattern[],
2502 			     const struct rte_flow_action actions[],
2503 			     struct rte_flow *flow,
2504 			     struct rte_flow_error *error)
2505 {
2506 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2507 	struct sfc_flow_spec *spec = &flow->spec;
2508 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2509 	struct sfc_flow_parse_ctx ctx;
2510 	int rc;
2511 
2512 	ctx.type = SFC_FLOW_PARSE_CTX_FILTER;
2513 	ctx.filter = &spec_filter->template;
2514 
2515 	rc = sfc_flow_parse_pattern(sa, sfc_flow_items, RTE_DIM(sfc_flow_items),
2516 				    pattern, &ctx, error);
2517 	if (rc != 0)
2518 		goto fail_bad_value;
2519 
2520 	rc = sfc_flow_parse_actions(sa, actions, flow, error);
2521 	if (rc != 0)
2522 		goto fail_bad_value;
2523 
2524 	rc = sfc_flow_validate_match_flags(sa, flow, error);
2525 	if (rc != 0)
2526 		goto fail_bad_value;
2527 
2528 	return 0;
2529 
2530 fail_bad_value:
2531 	return rc;
2532 }
2533 
2534 static int
2535 sfc_flow_parse_rte_to_mae(struct rte_eth_dev *dev,
2536 			  const struct rte_flow_item pattern[],
2537 			  const struct rte_flow_action actions[],
2538 			  struct rte_flow *flow,
2539 			  struct rte_flow_error *error)
2540 {
2541 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2542 	struct sfc_flow_spec *spec = &flow->spec;
2543 	struct sfc_flow_spec_mae *spec_mae = &spec->mae;
2544 	int rc;
2545 
2546 	rc = sfc_mae_rule_parse_pattern(sa, pattern, spec_mae, error);
2547 	if (rc != 0)
2548 		return rc;
2549 
2550 	rc = sfc_mae_rule_parse_actions(sa, actions, spec_mae, error);
2551 	if (rc != 0)
2552 		return rc;
2553 
2554 	return 0;
2555 }
2556 
2557 static int
2558 sfc_flow_parse(struct rte_eth_dev *dev,
2559 	       const struct rte_flow_attr *attr,
2560 	       const struct rte_flow_item pattern[],
2561 	       const struct rte_flow_action actions[],
2562 	       struct rte_flow *flow,
2563 	       struct rte_flow_error *error)
2564 {
2565 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2566 	const struct sfc_flow_ops_by_spec *ops;
2567 	int rc;
2568 
2569 	rc = sfc_flow_parse_attr(sa, attr, flow, error);
2570 	if (rc != 0)
2571 		return rc;
2572 
2573 	ops = sfc_flow_get_ops_by_spec(flow);
2574 	if (ops == NULL || ops->parse == NULL) {
2575 		rte_flow_error_set(error, ENOTSUP,
2576 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2577 				   "No backend to handle this flow");
2578 		return -rte_errno;
2579 	}
2580 
2581 	return ops->parse(dev, pattern, actions, flow, error);
2582 }
2583 
2584 static struct rte_flow *
2585 sfc_flow_zmalloc(struct rte_flow_error *error)
2586 {
2587 	struct rte_flow *flow;
2588 
2589 	flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0);
2590 	if (flow == NULL) {
2591 		rte_flow_error_set(error, ENOMEM,
2592 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2593 				   "Failed to allocate memory");
2594 	}
2595 
2596 	return flow;
2597 }
2598 
2599 static void
2600 sfc_flow_free(struct sfc_adapter *sa, struct rte_flow *flow)
2601 {
2602 	const struct sfc_flow_ops_by_spec *ops;
2603 
2604 	ops = sfc_flow_get_ops_by_spec(flow);
2605 	if (ops != NULL && ops->cleanup != NULL)
2606 		ops->cleanup(sa, flow);
2607 
2608 	rte_free(flow);
2609 }
2610 
2611 static int
2612 sfc_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow,
2613 		struct rte_flow_error *error)
2614 {
2615 	const struct sfc_flow_ops_by_spec *ops;
2616 	int rc;
2617 
2618 	ops = sfc_flow_get_ops_by_spec(flow);
2619 	if (ops == NULL || ops->insert == NULL) {
2620 		rte_flow_error_set(error, ENOTSUP,
2621 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2622 				   "No backend to handle this flow");
2623 		return rte_errno;
2624 	}
2625 
2626 	rc = ops->insert(sa, flow);
2627 	if (rc != 0) {
2628 		rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2629 				   NULL, "Failed to insert the flow rule");
2630 	}
2631 
2632 	return rc;
2633 }
2634 
2635 static int
2636 sfc_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow,
2637 		struct rte_flow_error *error)
2638 {
2639 	const struct sfc_flow_ops_by_spec *ops;
2640 	int rc;
2641 
2642 	ops = sfc_flow_get_ops_by_spec(flow);
2643 	if (ops == NULL || ops->remove == NULL) {
2644 		rte_flow_error_set(error, ENOTSUP,
2645 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2646 				   "No backend to handle this flow");
2647 		return rte_errno;
2648 	}
2649 
2650 	rc = ops->remove(sa, flow);
2651 	if (rc != 0) {
2652 		rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2653 				   NULL, "Failed to remove the flow rule");
2654 	}
2655 
2656 	return rc;
2657 }
2658 
2659 static int
2660 sfc_flow_verify(struct sfc_adapter *sa, struct rte_flow *flow,
2661 		struct rte_flow_error *error)
2662 {
2663 	const struct sfc_flow_ops_by_spec *ops;
2664 	int rc = 0;
2665 
2666 	ops = sfc_flow_get_ops_by_spec(flow);
2667 	if (ops == NULL) {
2668 		rte_flow_error_set(error, ENOTSUP,
2669 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2670 				   "No backend to handle this flow");
2671 		return -rte_errno;
2672 	}
2673 
2674 	if (ops->verify != NULL) {
2675 		SFC_ASSERT(sfc_adapter_is_locked(sa));
2676 		rc = ops->verify(sa, flow);
2677 	}
2678 
2679 	if (rc != 0) {
2680 		rte_flow_error_set(error, rc,
2681 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2682 			"Failed to verify flow validity with FW");
2683 		return -rte_errno;
2684 	}
2685 
2686 	return 0;
2687 }
2688 
2689 static int
2690 sfc_flow_validate(struct rte_eth_dev *dev,
2691 		  const struct rte_flow_attr *attr,
2692 		  const struct rte_flow_item pattern[],
2693 		  const struct rte_flow_action actions[],
2694 		  struct rte_flow_error *error)
2695 {
2696 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2697 	struct rte_flow *flow;
2698 	int rc;
2699 
2700 	flow = sfc_flow_zmalloc(error);
2701 	if (flow == NULL)
2702 		return -rte_errno;
2703 
2704 	sfc_adapter_lock(sa);
2705 
2706 	rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2707 	if (rc == 0)
2708 		rc = sfc_flow_verify(sa, flow, error);
2709 
2710 	sfc_flow_free(sa, flow);
2711 
2712 	sfc_adapter_unlock(sa);
2713 
2714 	return rc;
2715 }
2716 
2717 static struct rte_flow *
2718 sfc_flow_create(struct rte_eth_dev *dev,
2719 		const struct rte_flow_attr *attr,
2720 		const struct rte_flow_item pattern[],
2721 		const struct rte_flow_action actions[],
2722 		struct rte_flow_error *error)
2723 {
2724 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2725 	struct rte_flow *flow = NULL;
2726 	int rc;
2727 
2728 	flow = sfc_flow_zmalloc(error);
2729 	if (flow == NULL)
2730 		goto fail_no_mem;
2731 
2732 	sfc_adapter_lock(sa);
2733 
2734 	rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2735 	if (rc != 0)
2736 		goto fail_bad_value;
2737 
2738 	TAILQ_INSERT_TAIL(&sa->flow_list, flow, entries);
2739 
2740 	if (sa->state == SFC_ETHDEV_STARTED) {
2741 		rc = sfc_flow_insert(sa, flow, error);
2742 		if (rc != 0)
2743 			goto fail_flow_insert;
2744 	}
2745 
2746 	sfc_adapter_unlock(sa);
2747 
2748 	return flow;
2749 
2750 fail_flow_insert:
2751 	TAILQ_REMOVE(&sa->flow_list, flow, entries);
2752 
2753 fail_bad_value:
2754 	sfc_flow_free(sa, flow);
2755 	sfc_adapter_unlock(sa);
2756 
2757 fail_no_mem:
2758 	return NULL;
2759 }
2760 
2761 static int
2762 sfc_flow_destroy(struct rte_eth_dev *dev,
2763 		 struct rte_flow *flow,
2764 		 struct rte_flow_error *error)
2765 {
2766 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2767 	struct rte_flow *flow_ptr;
2768 	int rc = EINVAL;
2769 
2770 	sfc_adapter_lock(sa);
2771 
2772 	TAILQ_FOREACH(flow_ptr, &sa->flow_list, entries) {
2773 		if (flow_ptr == flow)
2774 			rc = 0;
2775 	}
2776 	if (rc != 0) {
2777 		rte_flow_error_set(error, rc,
2778 				   RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
2779 				   "Failed to find flow rule to destroy");
2780 		goto fail_bad_value;
2781 	}
2782 
2783 	if (sa->state == SFC_ETHDEV_STARTED)
2784 		rc = sfc_flow_remove(sa, flow, error);
2785 
2786 	TAILQ_REMOVE(&sa->flow_list, flow, entries);
2787 	sfc_flow_free(sa, flow);
2788 
2789 fail_bad_value:
2790 	sfc_adapter_unlock(sa);
2791 
2792 	return -rc;
2793 }
2794 
2795 static int
2796 sfc_flow_flush(struct rte_eth_dev *dev,
2797 	       struct rte_flow_error *error)
2798 {
2799 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2800 	struct rte_flow *flow;
2801 	int ret = 0;
2802 
2803 	sfc_adapter_lock(sa);
2804 
2805 	while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2806 		if (sa->state == SFC_ETHDEV_STARTED) {
2807 			int rc;
2808 
2809 			rc = sfc_flow_remove(sa, flow, error);
2810 			if (rc != 0)
2811 				ret = rc;
2812 		}
2813 
2814 		TAILQ_REMOVE(&sa->flow_list, flow, entries);
2815 		sfc_flow_free(sa, flow);
2816 	}
2817 
2818 	sfc_adapter_unlock(sa);
2819 
2820 	return -ret;
2821 }
2822 
2823 static int
2824 sfc_flow_query(struct rte_eth_dev *dev,
2825 	       struct rte_flow *flow,
2826 	       const struct rte_flow_action *action,
2827 	       void *data,
2828 	       struct rte_flow_error *error)
2829 {
2830 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2831 	const struct sfc_flow_ops_by_spec *ops;
2832 	int ret;
2833 
2834 	sfc_adapter_lock(sa);
2835 
2836 	ops = sfc_flow_get_ops_by_spec(flow);
2837 	if (ops == NULL || ops->query == NULL) {
2838 		ret = rte_flow_error_set(error, ENOTSUP,
2839 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2840 			"No backend to handle this flow");
2841 		goto fail_no_backend;
2842 	}
2843 
2844 	if (sa->state != SFC_ETHDEV_STARTED) {
2845 		ret = rte_flow_error_set(error, EINVAL,
2846 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2847 			"Can't query the flow: the adapter is not started");
2848 		goto fail_not_started;
2849 	}
2850 
2851 	ret = ops->query(dev, flow, action, data, error);
2852 	if (ret != 0)
2853 		goto fail_query;
2854 
2855 	sfc_adapter_unlock(sa);
2856 
2857 	return 0;
2858 
2859 fail_query:
2860 fail_not_started:
2861 fail_no_backend:
2862 	sfc_adapter_unlock(sa);
2863 	return ret;
2864 }
2865 
2866 static int
2867 sfc_flow_isolate(struct rte_eth_dev *dev, int enable,
2868 		 struct rte_flow_error *error)
2869 {
2870 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2871 	int ret = 0;
2872 
2873 	sfc_adapter_lock(sa);
2874 	if (sa->state != SFC_ETHDEV_INITIALIZED) {
2875 		rte_flow_error_set(error, EBUSY,
2876 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2877 				   NULL, "please close the port first");
2878 		ret = -rte_errno;
2879 	} else {
2880 		sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE;
2881 	}
2882 	sfc_adapter_unlock(sa);
2883 
2884 	return ret;
2885 }
2886 
2887 const struct rte_flow_ops sfc_flow_ops = {
2888 	.validate = sfc_flow_validate,
2889 	.create = sfc_flow_create,
2890 	.destroy = sfc_flow_destroy,
2891 	.flush = sfc_flow_flush,
2892 	.query = sfc_flow_query,
2893 	.isolate = sfc_flow_isolate,
2894 };
2895 
2896 void
2897 sfc_flow_init(struct sfc_adapter *sa)
2898 {
2899 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2900 
2901 	TAILQ_INIT(&sa->flow_list);
2902 }
2903 
2904 void
2905 sfc_flow_fini(struct sfc_adapter *sa)
2906 {
2907 	struct rte_flow *flow;
2908 
2909 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2910 
2911 	while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2912 		TAILQ_REMOVE(&sa->flow_list, flow, entries);
2913 		sfc_flow_free(sa, flow);
2914 	}
2915 }
2916 
2917 void
2918 sfc_flow_stop(struct sfc_adapter *sa)
2919 {
2920 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
2921 	struct sfc_rss *rss = &sas->rss;
2922 	struct rte_flow *flow;
2923 
2924 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2925 
2926 	TAILQ_FOREACH(flow, &sa->flow_list, entries)
2927 		sfc_flow_remove(sa, flow, NULL);
2928 
2929 	if (rss->dummy_rss_context != EFX_RSS_CONTEXT_DEFAULT) {
2930 		efx_rx_scale_context_free(sa->nic, rss->dummy_rss_context);
2931 		rss->dummy_rss_context = EFX_RSS_CONTEXT_DEFAULT;
2932 	}
2933 
2934 	/*
2935 	 * MAE counter service is not stopped on flow rule remove to avoid
2936 	 * extra work. Make sure that it is stopped here.
2937 	 */
2938 	sfc_mae_counter_stop(sa);
2939 }
2940 
2941 int
2942 sfc_flow_start(struct sfc_adapter *sa)
2943 {
2944 	struct rte_flow *flow;
2945 	int rc = 0;
2946 
2947 	sfc_log_init(sa, "entry");
2948 
2949 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2950 
2951 	TAILQ_FOREACH(flow, &sa->flow_list, entries) {
2952 		rc = sfc_flow_insert(sa, flow, NULL);
2953 		if (rc != 0)
2954 			goto fail_bad_flow;
2955 	}
2956 
2957 	sfc_log_init(sa, "done");
2958 
2959 fail_bad_flow:
2960 	return rc;
2961 }
2962