1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2020 Xilinx, Inc. 4 * Copyright(c) 2017-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_byteorder.h> 11 #include <rte_tailq.h> 12 #include <rte_common.h> 13 #include <rte_ethdev_driver.h> 14 #include <rte_ether.h> 15 #include <rte_flow.h> 16 #include <rte_flow_driver.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_debug.h" 22 #include "sfc_rx.h" 23 #include "sfc_filter.h" 24 #include "sfc_flow.h" 25 #include "sfc_log.h" 26 #include "sfc_dp_rx.h" 27 28 struct sfc_flow_ops_by_spec { 29 sfc_flow_parse_cb_t *parse; 30 sfc_flow_verify_cb_t *verify; 31 sfc_flow_cleanup_cb_t *cleanup; 32 sfc_flow_insert_cb_t *insert; 33 sfc_flow_remove_cb_t *remove; 34 }; 35 36 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_filter; 37 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_mae; 38 static sfc_flow_insert_cb_t sfc_flow_filter_insert; 39 static sfc_flow_remove_cb_t sfc_flow_filter_remove; 40 41 static const struct sfc_flow_ops_by_spec sfc_flow_ops_filter = { 42 .parse = sfc_flow_parse_rte_to_filter, 43 .verify = NULL, 44 .cleanup = NULL, 45 .insert = sfc_flow_filter_insert, 46 .remove = sfc_flow_filter_remove, 47 }; 48 49 static const struct sfc_flow_ops_by_spec sfc_flow_ops_mae = { 50 .parse = sfc_flow_parse_rte_to_mae, 51 .verify = sfc_mae_flow_verify, 52 .cleanup = sfc_mae_flow_cleanup, 53 .insert = NULL, 54 .remove = NULL, 55 }; 56 57 static const struct sfc_flow_ops_by_spec * 58 sfc_flow_get_ops_by_spec(struct rte_flow *flow) 59 { 60 struct sfc_flow_spec *spec = &flow->spec; 61 const struct sfc_flow_ops_by_spec *ops = NULL; 62 63 switch (spec->type) { 64 case SFC_FLOW_SPEC_FILTER: 65 ops = &sfc_flow_ops_filter; 66 break; 67 case SFC_FLOW_SPEC_MAE: 68 ops = &sfc_flow_ops_mae; 69 break; 70 default: 71 SFC_ASSERT(false); 72 break; 73 } 74 75 return ops; 76 } 77 78 /* 79 * Currently, filter-based (VNIC) flow API is implemented in such a manner 80 * that each flow rule is converted to one or more hardware filters. 81 * All elements of flow rule (attributes, pattern items, actions) 82 * correspond to one or more fields in the efx_filter_spec_s structure 83 * that is responsible for the hardware filter. 84 * If some required field is unset in the flow rule, then a handful 85 * of filter copies will be created to cover all possible values 86 * of such a field. 87 */ 88 89 static sfc_flow_item_parse sfc_flow_parse_void; 90 static sfc_flow_item_parse sfc_flow_parse_eth; 91 static sfc_flow_item_parse sfc_flow_parse_vlan; 92 static sfc_flow_item_parse sfc_flow_parse_ipv4; 93 static sfc_flow_item_parse sfc_flow_parse_ipv6; 94 static sfc_flow_item_parse sfc_flow_parse_tcp; 95 static sfc_flow_item_parse sfc_flow_parse_udp; 96 static sfc_flow_item_parse sfc_flow_parse_vxlan; 97 static sfc_flow_item_parse sfc_flow_parse_geneve; 98 static sfc_flow_item_parse sfc_flow_parse_nvgre; 99 100 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec, 101 unsigned int filters_count_for_one_val, 102 struct rte_flow_error *error); 103 104 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match, 105 efx_filter_spec_t *spec, 106 struct sfc_filter *filter); 107 108 struct sfc_flow_copy_flag { 109 /* EFX filter specification match flag */ 110 efx_filter_match_flags_t flag; 111 /* Number of values of corresponding field */ 112 unsigned int vals_count; 113 /* Function to set values in specifications */ 114 sfc_flow_spec_set_vals *set_vals; 115 /* 116 * Function to check that the specification is suitable 117 * for adding this match flag 118 */ 119 sfc_flow_spec_check *spec_check; 120 }; 121 122 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags; 123 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags; 124 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes; 125 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags; 126 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags; 127 static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag; 128 static sfc_flow_spec_check sfc_flow_check_outer_vid_flag; 129 130 static boolean_t 131 sfc_flow_is_zero(const uint8_t *buf, unsigned int size) 132 { 133 uint8_t sum = 0; 134 unsigned int i; 135 136 for (i = 0; i < size; i++) 137 sum |= buf[i]; 138 139 return (sum == 0) ? B_TRUE : B_FALSE; 140 } 141 142 /* 143 * Validate item and prepare structures spec and mask for parsing 144 */ 145 int 146 sfc_flow_parse_init(const struct rte_flow_item *item, 147 const void **spec_ptr, 148 const void **mask_ptr, 149 const void *supp_mask, 150 const void *def_mask, 151 unsigned int size, 152 struct rte_flow_error *error) 153 { 154 const uint8_t *spec; 155 const uint8_t *mask; 156 const uint8_t *last; 157 uint8_t supp; 158 unsigned int i; 159 160 if (item == NULL) { 161 rte_flow_error_set(error, EINVAL, 162 RTE_FLOW_ERROR_TYPE_ITEM, NULL, 163 "NULL item"); 164 return -rte_errno; 165 } 166 167 if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) { 168 rte_flow_error_set(error, EINVAL, 169 RTE_FLOW_ERROR_TYPE_ITEM, item, 170 "Mask or last is set without spec"); 171 return -rte_errno; 172 } 173 174 /* 175 * If "mask" is not set, default mask is used, 176 * but if default mask is NULL, "mask" should be set 177 */ 178 if (item->mask == NULL) { 179 if (def_mask == NULL) { 180 rte_flow_error_set(error, EINVAL, 181 RTE_FLOW_ERROR_TYPE_ITEM, NULL, 182 "Mask should be specified"); 183 return -rte_errno; 184 } 185 186 mask = def_mask; 187 } else { 188 mask = item->mask; 189 } 190 191 spec = item->spec; 192 last = item->last; 193 194 if (spec == NULL) 195 goto exit; 196 197 /* 198 * If field values in "last" are either 0 or equal to the corresponding 199 * values in "spec" then they are ignored 200 */ 201 if (last != NULL && 202 !sfc_flow_is_zero(last, size) && 203 memcmp(last, spec, size) != 0) { 204 rte_flow_error_set(error, ENOTSUP, 205 RTE_FLOW_ERROR_TYPE_ITEM, item, 206 "Ranging is not supported"); 207 return -rte_errno; 208 } 209 210 if (supp_mask == NULL) { 211 rte_flow_error_set(error, EINVAL, 212 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 213 "Supported mask for item should be specified"); 214 return -rte_errno; 215 } 216 217 /* Check that mask does not ask for more match than supp_mask */ 218 for (i = 0; i < size; i++) { 219 supp = ((const uint8_t *)supp_mask)[i]; 220 221 if (~supp & mask[i]) { 222 rte_flow_error_set(error, ENOTSUP, 223 RTE_FLOW_ERROR_TYPE_ITEM, item, 224 "Item's field is not supported"); 225 return -rte_errno; 226 } 227 } 228 229 exit: 230 *spec_ptr = spec; 231 *mask_ptr = mask; 232 return 0; 233 } 234 235 /* 236 * Protocol parsers. 237 * Masking is not supported, so masks in items should be either 238 * full or empty (zeroed) and set only for supported fields which 239 * are specified in the supp_mask. 240 */ 241 242 static int 243 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item, 244 __rte_unused struct sfc_flow_parse_ctx *parse_ctx, 245 __rte_unused struct rte_flow_error *error) 246 { 247 return 0; 248 } 249 250 /** 251 * Convert Ethernet item to EFX filter specification. 252 * 253 * @param item[in] 254 * Item specification. Outer frame specification may only comprise 255 * source/destination addresses and Ethertype field. 256 * Inner frame specification may contain destination address only. 257 * There is support for individual/group mask as well as for empty and full. 258 * If the mask is NULL, default mask will be used. Ranging is not supported. 259 * @param efx_spec[in, out] 260 * EFX filter specification to update. 261 * @param[out] error 262 * Perform verbose error reporting if not NULL. 263 */ 264 static int 265 sfc_flow_parse_eth(const struct rte_flow_item *item, 266 struct sfc_flow_parse_ctx *parse_ctx, 267 struct rte_flow_error *error) 268 { 269 int rc; 270 efx_filter_spec_t *efx_spec = parse_ctx->filter; 271 const struct rte_flow_item_eth *spec = NULL; 272 const struct rte_flow_item_eth *mask = NULL; 273 const struct rte_flow_item_eth supp_mask = { 274 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 275 .src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 276 .type = 0xffff, 277 }; 278 const struct rte_flow_item_eth ifrm_supp_mask = { 279 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 280 }; 281 const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = { 282 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 283 }; 284 const struct rte_flow_item_eth *supp_mask_p; 285 const struct rte_flow_item_eth *def_mask_p; 286 uint8_t *loc_mac = NULL; 287 boolean_t is_ifrm = (efx_spec->efs_encap_type != 288 EFX_TUNNEL_PROTOCOL_NONE); 289 290 if (is_ifrm) { 291 supp_mask_p = &ifrm_supp_mask; 292 def_mask_p = &ifrm_supp_mask; 293 loc_mac = efx_spec->efs_ifrm_loc_mac; 294 } else { 295 supp_mask_p = &supp_mask; 296 def_mask_p = &rte_flow_item_eth_mask; 297 loc_mac = efx_spec->efs_loc_mac; 298 } 299 300 rc = sfc_flow_parse_init(item, 301 (const void **)&spec, 302 (const void **)&mask, 303 supp_mask_p, def_mask_p, 304 sizeof(struct rte_flow_item_eth), 305 error); 306 if (rc != 0) 307 return rc; 308 309 /* If "spec" is not set, could be any Ethernet */ 310 if (spec == NULL) 311 return 0; 312 313 if (rte_is_same_ether_addr(&mask->dst, &supp_mask.dst)) { 314 efx_spec->efs_match_flags |= is_ifrm ? 315 EFX_FILTER_MATCH_IFRM_LOC_MAC : 316 EFX_FILTER_MATCH_LOC_MAC; 317 rte_memcpy(loc_mac, spec->dst.addr_bytes, 318 EFX_MAC_ADDR_LEN); 319 } else if (memcmp(mask->dst.addr_bytes, ig_mask, 320 EFX_MAC_ADDR_LEN) == 0) { 321 if (rte_is_unicast_ether_addr(&spec->dst)) 322 efx_spec->efs_match_flags |= is_ifrm ? 323 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST : 324 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST; 325 else 326 efx_spec->efs_match_flags |= is_ifrm ? 327 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST : 328 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST; 329 } else if (!rte_is_zero_ether_addr(&mask->dst)) { 330 goto fail_bad_mask; 331 } 332 333 /* 334 * ifrm_supp_mask ensures that the source address and 335 * ethertype masks are equal to zero in inner frame, 336 * so these fields are filled in only for the outer frame 337 */ 338 if (rte_is_same_ether_addr(&mask->src, &supp_mask.src)) { 339 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC; 340 rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes, 341 EFX_MAC_ADDR_LEN); 342 } else if (!rte_is_zero_ether_addr(&mask->src)) { 343 goto fail_bad_mask; 344 } 345 346 /* 347 * Ether type is in big-endian byte order in item and 348 * in little-endian in efx_spec, so byte swap is used 349 */ 350 if (mask->type == supp_mask.type) { 351 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 352 efx_spec->efs_ether_type = rte_bswap16(spec->type); 353 } else if (mask->type != 0) { 354 goto fail_bad_mask; 355 } 356 357 return 0; 358 359 fail_bad_mask: 360 rte_flow_error_set(error, EINVAL, 361 RTE_FLOW_ERROR_TYPE_ITEM, item, 362 "Bad mask in the ETH pattern item"); 363 return -rte_errno; 364 } 365 366 /** 367 * Convert VLAN item to EFX filter specification. 368 * 369 * @param item[in] 370 * Item specification. Only VID field is supported. 371 * The mask can not be NULL. Ranging is not supported. 372 * @param efx_spec[in, out] 373 * EFX filter specification to update. 374 * @param[out] error 375 * Perform verbose error reporting if not NULL. 376 */ 377 static int 378 sfc_flow_parse_vlan(const struct rte_flow_item *item, 379 struct sfc_flow_parse_ctx *parse_ctx, 380 struct rte_flow_error *error) 381 { 382 int rc; 383 uint16_t vid; 384 efx_filter_spec_t *efx_spec = parse_ctx->filter; 385 const struct rte_flow_item_vlan *spec = NULL; 386 const struct rte_flow_item_vlan *mask = NULL; 387 const struct rte_flow_item_vlan supp_mask = { 388 .tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX), 389 .inner_type = RTE_BE16(0xffff), 390 }; 391 392 rc = sfc_flow_parse_init(item, 393 (const void **)&spec, 394 (const void **)&mask, 395 &supp_mask, 396 NULL, 397 sizeof(struct rte_flow_item_vlan), 398 error); 399 if (rc != 0) 400 return rc; 401 402 /* 403 * VID is in big-endian byte order in item and 404 * in little-endian in efx_spec, so byte swap is used. 405 * If two VLAN items are included, the first matches 406 * the outer tag and the next matches the inner tag. 407 */ 408 if (mask->tci == supp_mask.tci) { 409 /* Apply mask to keep VID only */ 410 vid = rte_bswap16(spec->tci & mask->tci); 411 412 if (!(efx_spec->efs_match_flags & 413 EFX_FILTER_MATCH_OUTER_VID)) { 414 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID; 415 efx_spec->efs_outer_vid = vid; 416 } else if (!(efx_spec->efs_match_flags & 417 EFX_FILTER_MATCH_INNER_VID)) { 418 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID; 419 efx_spec->efs_inner_vid = vid; 420 } else { 421 rte_flow_error_set(error, EINVAL, 422 RTE_FLOW_ERROR_TYPE_ITEM, item, 423 "More than two VLAN items"); 424 return -rte_errno; 425 } 426 } else { 427 rte_flow_error_set(error, EINVAL, 428 RTE_FLOW_ERROR_TYPE_ITEM, item, 429 "VLAN ID in TCI match is required"); 430 return -rte_errno; 431 } 432 433 if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) { 434 rte_flow_error_set(error, EINVAL, 435 RTE_FLOW_ERROR_TYPE_ITEM, item, 436 "VLAN TPID matching is not supported"); 437 return -rte_errno; 438 } 439 if (mask->inner_type == supp_mask.inner_type) { 440 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 441 efx_spec->efs_ether_type = rte_bswap16(spec->inner_type); 442 } else if (mask->inner_type) { 443 rte_flow_error_set(error, EINVAL, 444 RTE_FLOW_ERROR_TYPE_ITEM, item, 445 "Bad mask for VLAN inner_type"); 446 return -rte_errno; 447 } 448 449 return 0; 450 } 451 452 /** 453 * Convert IPv4 item to EFX filter specification. 454 * 455 * @param item[in] 456 * Item specification. Only source and destination addresses and 457 * protocol fields are supported. If the mask is NULL, default 458 * mask will be used. Ranging is not supported. 459 * @param efx_spec[in, out] 460 * EFX filter specification to update. 461 * @param[out] error 462 * Perform verbose error reporting if not NULL. 463 */ 464 static int 465 sfc_flow_parse_ipv4(const struct rte_flow_item *item, 466 struct sfc_flow_parse_ctx *parse_ctx, 467 struct rte_flow_error *error) 468 { 469 int rc; 470 efx_filter_spec_t *efx_spec = parse_ctx->filter; 471 const struct rte_flow_item_ipv4 *spec = NULL; 472 const struct rte_flow_item_ipv4 *mask = NULL; 473 const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4); 474 const struct rte_flow_item_ipv4 supp_mask = { 475 .hdr = { 476 .src_addr = 0xffffffff, 477 .dst_addr = 0xffffffff, 478 .next_proto_id = 0xff, 479 } 480 }; 481 482 rc = sfc_flow_parse_init(item, 483 (const void **)&spec, 484 (const void **)&mask, 485 &supp_mask, 486 &rte_flow_item_ipv4_mask, 487 sizeof(struct rte_flow_item_ipv4), 488 error); 489 if (rc != 0) 490 return rc; 491 492 /* 493 * Filtering by IPv4 source and destination addresses requires 494 * the appropriate ETHER_TYPE in hardware filters 495 */ 496 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) { 497 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 498 efx_spec->efs_ether_type = ether_type_ipv4; 499 } else if (efx_spec->efs_ether_type != ether_type_ipv4) { 500 rte_flow_error_set(error, EINVAL, 501 RTE_FLOW_ERROR_TYPE_ITEM, item, 502 "Ethertype in pattern with IPV4 item should be appropriate"); 503 return -rte_errno; 504 } 505 506 if (spec == NULL) 507 return 0; 508 509 /* 510 * IPv4 addresses are in big-endian byte order in item and in 511 * efx_spec 512 */ 513 if (mask->hdr.src_addr == supp_mask.hdr.src_addr) { 514 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST; 515 efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr; 516 } else if (mask->hdr.src_addr != 0) { 517 goto fail_bad_mask; 518 } 519 520 if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) { 521 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST; 522 efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr; 523 } else if (mask->hdr.dst_addr != 0) { 524 goto fail_bad_mask; 525 } 526 527 if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) { 528 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 529 efx_spec->efs_ip_proto = spec->hdr.next_proto_id; 530 } else if (mask->hdr.next_proto_id != 0) { 531 goto fail_bad_mask; 532 } 533 534 return 0; 535 536 fail_bad_mask: 537 rte_flow_error_set(error, EINVAL, 538 RTE_FLOW_ERROR_TYPE_ITEM, item, 539 "Bad mask in the IPV4 pattern item"); 540 return -rte_errno; 541 } 542 543 /** 544 * Convert IPv6 item to EFX filter specification. 545 * 546 * @param item[in] 547 * Item specification. Only source and destination addresses and 548 * next header fields are supported. If the mask is NULL, default 549 * mask will be used. Ranging is not supported. 550 * @param efx_spec[in, out] 551 * EFX filter specification to update. 552 * @param[out] error 553 * Perform verbose error reporting if not NULL. 554 */ 555 static int 556 sfc_flow_parse_ipv6(const struct rte_flow_item *item, 557 struct sfc_flow_parse_ctx *parse_ctx, 558 struct rte_flow_error *error) 559 { 560 int rc; 561 efx_filter_spec_t *efx_spec = parse_ctx->filter; 562 const struct rte_flow_item_ipv6 *spec = NULL; 563 const struct rte_flow_item_ipv6 *mask = NULL; 564 const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6); 565 const struct rte_flow_item_ipv6 supp_mask = { 566 .hdr = { 567 .src_addr = { 0xff, 0xff, 0xff, 0xff, 568 0xff, 0xff, 0xff, 0xff, 569 0xff, 0xff, 0xff, 0xff, 570 0xff, 0xff, 0xff, 0xff }, 571 .dst_addr = { 0xff, 0xff, 0xff, 0xff, 572 0xff, 0xff, 0xff, 0xff, 573 0xff, 0xff, 0xff, 0xff, 574 0xff, 0xff, 0xff, 0xff }, 575 .proto = 0xff, 576 } 577 }; 578 579 rc = sfc_flow_parse_init(item, 580 (const void **)&spec, 581 (const void **)&mask, 582 &supp_mask, 583 &rte_flow_item_ipv6_mask, 584 sizeof(struct rte_flow_item_ipv6), 585 error); 586 if (rc != 0) 587 return rc; 588 589 /* 590 * Filtering by IPv6 source and destination addresses requires 591 * the appropriate ETHER_TYPE in hardware filters 592 */ 593 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) { 594 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 595 efx_spec->efs_ether_type = ether_type_ipv6; 596 } else if (efx_spec->efs_ether_type != ether_type_ipv6) { 597 rte_flow_error_set(error, EINVAL, 598 RTE_FLOW_ERROR_TYPE_ITEM, item, 599 "Ethertype in pattern with IPV6 item should be appropriate"); 600 return -rte_errno; 601 } 602 603 if (spec == NULL) 604 return 0; 605 606 /* 607 * IPv6 addresses are in big-endian byte order in item and in 608 * efx_spec 609 */ 610 if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr, 611 sizeof(mask->hdr.src_addr)) == 0) { 612 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST; 613 614 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) != 615 sizeof(spec->hdr.src_addr)); 616 rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr, 617 sizeof(efx_spec->efs_rem_host)); 618 } else if (!sfc_flow_is_zero(mask->hdr.src_addr, 619 sizeof(mask->hdr.src_addr))) { 620 goto fail_bad_mask; 621 } 622 623 if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr, 624 sizeof(mask->hdr.dst_addr)) == 0) { 625 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST; 626 627 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) != 628 sizeof(spec->hdr.dst_addr)); 629 rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr, 630 sizeof(efx_spec->efs_loc_host)); 631 } else if (!sfc_flow_is_zero(mask->hdr.dst_addr, 632 sizeof(mask->hdr.dst_addr))) { 633 goto fail_bad_mask; 634 } 635 636 if (mask->hdr.proto == supp_mask.hdr.proto) { 637 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 638 efx_spec->efs_ip_proto = spec->hdr.proto; 639 } else if (mask->hdr.proto != 0) { 640 goto fail_bad_mask; 641 } 642 643 return 0; 644 645 fail_bad_mask: 646 rte_flow_error_set(error, EINVAL, 647 RTE_FLOW_ERROR_TYPE_ITEM, item, 648 "Bad mask in the IPV6 pattern item"); 649 return -rte_errno; 650 } 651 652 /** 653 * Convert TCP item to EFX filter specification. 654 * 655 * @param item[in] 656 * Item specification. Only source and destination ports fields 657 * are supported. If the mask is NULL, default mask will be used. 658 * Ranging is not supported. 659 * @param efx_spec[in, out] 660 * EFX filter specification to update. 661 * @param[out] error 662 * Perform verbose error reporting if not NULL. 663 */ 664 static int 665 sfc_flow_parse_tcp(const struct rte_flow_item *item, 666 struct sfc_flow_parse_ctx *parse_ctx, 667 struct rte_flow_error *error) 668 { 669 int rc; 670 efx_filter_spec_t *efx_spec = parse_ctx->filter; 671 const struct rte_flow_item_tcp *spec = NULL; 672 const struct rte_flow_item_tcp *mask = NULL; 673 const struct rte_flow_item_tcp supp_mask = { 674 .hdr = { 675 .src_port = 0xffff, 676 .dst_port = 0xffff, 677 } 678 }; 679 680 rc = sfc_flow_parse_init(item, 681 (const void **)&spec, 682 (const void **)&mask, 683 &supp_mask, 684 &rte_flow_item_tcp_mask, 685 sizeof(struct rte_flow_item_tcp), 686 error); 687 if (rc != 0) 688 return rc; 689 690 /* 691 * Filtering by TCP source and destination ports requires 692 * the appropriate IP_PROTO in hardware filters 693 */ 694 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 695 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 696 efx_spec->efs_ip_proto = EFX_IPPROTO_TCP; 697 } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) { 698 rte_flow_error_set(error, EINVAL, 699 RTE_FLOW_ERROR_TYPE_ITEM, item, 700 "IP proto in pattern with TCP item should be appropriate"); 701 return -rte_errno; 702 } 703 704 if (spec == NULL) 705 return 0; 706 707 /* 708 * Source and destination ports are in big-endian byte order in item and 709 * in little-endian in efx_spec, so byte swap is used 710 */ 711 if (mask->hdr.src_port == supp_mask.hdr.src_port) { 712 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT; 713 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port); 714 } else if (mask->hdr.src_port != 0) { 715 goto fail_bad_mask; 716 } 717 718 if (mask->hdr.dst_port == supp_mask.hdr.dst_port) { 719 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT; 720 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port); 721 } else if (mask->hdr.dst_port != 0) { 722 goto fail_bad_mask; 723 } 724 725 return 0; 726 727 fail_bad_mask: 728 rte_flow_error_set(error, EINVAL, 729 RTE_FLOW_ERROR_TYPE_ITEM, item, 730 "Bad mask in the TCP pattern item"); 731 return -rte_errno; 732 } 733 734 /** 735 * Convert UDP item to EFX filter specification. 736 * 737 * @param item[in] 738 * Item specification. Only source and destination ports fields 739 * are supported. If the mask is NULL, default mask will be used. 740 * Ranging is not supported. 741 * @param efx_spec[in, out] 742 * EFX filter specification to update. 743 * @param[out] error 744 * Perform verbose error reporting if not NULL. 745 */ 746 static int 747 sfc_flow_parse_udp(const struct rte_flow_item *item, 748 struct sfc_flow_parse_ctx *parse_ctx, 749 struct rte_flow_error *error) 750 { 751 int rc; 752 efx_filter_spec_t *efx_spec = parse_ctx->filter; 753 const struct rte_flow_item_udp *spec = NULL; 754 const struct rte_flow_item_udp *mask = NULL; 755 const struct rte_flow_item_udp supp_mask = { 756 .hdr = { 757 .src_port = 0xffff, 758 .dst_port = 0xffff, 759 } 760 }; 761 762 rc = sfc_flow_parse_init(item, 763 (const void **)&spec, 764 (const void **)&mask, 765 &supp_mask, 766 &rte_flow_item_udp_mask, 767 sizeof(struct rte_flow_item_udp), 768 error); 769 if (rc != 0) 770 return rc; 771 772 /* 773 * Filtering by UDP source and destination ports requires 774 * the appropriate IP_PROTO in hardware filters 775 */ 776 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 777 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 778 efx_spec->efs_ip_proto = EFX_IPPROTO_UDP; 779 } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) { 780 rte_flow_error_set(error, EINVAL, 781 RTE_FLOW_ERROR_TYPE_ITEM, item, 782 "IP proto in pattern with UDP item should be appropriate"); 783 return -rte_errno; 784 } 785 786 if (spec == NULL) 787 return 0; 788 789 /* 790 * Source and destination ports are in big-endian byte order in item and 791 * in little-endian in efx_spec, so byte swap is used 792 */ 793 if (mask->hdr.src_port == supp_mask.hdr.src_port) { 794 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT; 795 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port); 796 } else if (mask->hdr.src_port != 0) { 797 goto fail_bad_mask; 798 } 799 800 if (mask->hdr.dst_port == supp_mask.hdr.dst_port) { 801 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT; 802 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port); 803 } else if (mask->hdr.dst_port != 0) { 804 goto fail_bad_mask; 805 } 806 807 return 0; 808 809 fail_bad_mask: 810 rte_flow_error_set(error, EINVAL, 811 RTE_FLOW_ERROR_TYPE_ITEM, item, 812 "Bad mask in the UDP pattern item"); 813 return -rte_errno; 814 } 815 816 /* 817 * Filters for encapsulated packets match based on the EtherType and IP 818 * protocol in the outer frame. 819 */ 820 static int 821 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item, 822 efx_filter_spec_t *efx_spec, 823 uint8_t ip_proto, 824 struct rte_flow_error *error) 825 { 826 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 827 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 828 efx_spec->efs_ip_proto = ip_proto; 829 } else if (efx_spec->efs_ip_proto != ip_proto) { 830 switch (ip_proto) { 831 case EFX_IPPROTO_UDP: 832 rte_flow_error_set(error, EINVAL, 833 RTE_FLOW_ERROR_TYPE_ITEM, item, 834 "Outer IP header protocol must be UDP " 835 "in VxLAN/GENEVE pattern"); 836 return -rte_errno; 837 838 case EFX_IPPROTO_GRE: 839 rte_flow_error_set(error, EINVAL, 840 RTE_FLOW_ERROR_TYPE_ITEM, item, 841 "Outer IP header protocol must be GRE " 842 "in NVGRE pattern"); 843 return -rte_errno; 844 845 default: 846 rte_flow_error_set(error, EINVAL, 847 RTE_FLOW_ERROR_TYPE_ITEM, item, 848 "Only VxLAN/GENEVE/NVGRE tunneling patterns " 849 "are supported"); 850 return -rte_errno; 851 } 852 } 853 854 if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE && 855 efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 && 856 efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) { 857 rte_flow_error_set(error, EINVAL, 858 RTE_FLOW_ERROR_TYPE_ITEM, item, 859 "Outer frame EtherType in pattern with tunneling " 860 "must be IPv4 or IPv6"); 861 return -rte_errno; 862 } 863 864 return 0; 865 } 866 867 static int 868 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec, 869 const uint8_t *vni_or_vsid_val, 870 const uint8_t *vni_or_vsid_mask, 871 const struct rte_flow_item *item, 872 struct rte_flow_error *error) 873 { 874 const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = { 875 0xff, 0xff, 0xff 876 }; 877 878 if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask, 879 EFX_VNI_OR_VSID_LEN) == 0) { 880 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID; 881 rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val, 882 EFX_VNI_OR_VSID_LEN); 883 } else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) { 884 rte_flow_error_set(error, EINVAL, 885 RTE_FLOW_ERROR_TYPE_ITEM, item, 886 "Unsupported VNI/VSID mask"); 887 return -rte_errno; 888 } 889 890 return 0; 891 } 892 893 /** 894 * Convert VXLAN item to EFX filter specification. 895 * 896 * @param item[in] 897 * Item specification. Only VXLAN network identifier field is supported. 898 * If the mask is NULL, default mask will be used. 899 * Ranging is not supported. 900 * @param efx_spec[in, out] 901 * EFX filter specification to update. 902 * @param[out] error 903 * Perform verbose error reporting if not NULL. 904 */ 905 static int 906 sfc_flow_parse_vxlan(const struct rte_flow_item *item, 907 struct sfc_flow_parse_ctx *parse_ctx, 908 struct rte_flow_error *error) 909 { 910 int rc; 911 efx_filter_spec_t *efx_spec = parse_ctx->filter; 912 const struct rte_flow_item_vxlan *spec = NULL; 913 const struct rte_flow_item_vxlan *mask = NULL; 914 const struct rte_flow_item_vxlan supp_mask = { 915 .vni = { 0xff, 0xff, 0xff } 916 }; 917 918 rc = sfc_flow_parse_init(item, 919 (const void **)&spec, 920 (const void **)&mask, 921 &supp_mask, 922 &rte_flow_item_vxlan_mask, 923 sizeof(struct rte_flow_item_vxlan), 924 error); 925 if (rc != 0) 926 return rc; 927 928 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 929 EFX_IPPROTO_UDP, error); 930 if (rc != 0) 931 return rc; 932 933 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN; 934 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 935 936 if (spec == NULL) 937 return 0; 938 939 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni, 940 mask->vni, item, error); 941 942 return rc; 943 } 944 945 /** 946 * Convert GENEVE item to EFX filter specification. 947 * 948 * @param item[in] 949 * Item specification. Only Virtual Network Identifier and protocol type 950 * fields are supported. But protocol type can be only Ethernet (0x6558). 951 * If the mask is NULL, default mask will be used. 952 * Ranging is not supported. 953 * @param efx_spec[in, out] 954 * EFX filter specification to update. 955 * @param[out] error 956 * Perform verbose error reporting if not NULL. 957 */ 958 static int 959 sfc_flow_parse_geneve(const struct rte_flow_item *item, 960 struct sfc_flow_parse_ctx *parse_ctx, 961 struct rte_flow_error *error) 962 { 963 int rc; 964 efx_filter_spec_t *efx_spec = parse_ctx->filter; 965 const struct rte_flow_item_geneve *spec = NULL; 966 const struct rte_flow_item_geneve *mask = NULL; 967 const struct rte_flow_item_geneve supp_mask = { 968 .protocol = RTE_BE16(0xffff), 969 .vni = { 0xff, 0xff, 0xff } 970 }; 971 972 rc = sfc_flow_parse_init(item, 973 (const void **)&spec, 974 (const void **)&mask, 975 &supp_mask, 976 &rte_flow_item_geneve_mask, 977 sizeof(struct rte_flow_item_geneve), 978 error); 979 if (rc != 0) 980 return rc; 981 982 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 983 EFX_IPPROTO_UDP, error); 984 if (rc != 0) 985 return rc; 986 987 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE; 988 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 989 990 if (spec == NULL) 991 return 0; 992 993 if (mask->protocol == supp_mask.protocol) { 994 if (spec->protocol != rte_cpu_to_be_16(RTE_ETHER_TYPE_TEB)) { 995 rte_flow_error_set(error, EINVAL, 996 RTE_FLOW_ERROR_TYPE_ITEM, item, 997 "GENEVE encap. protocol must be Ethernet " 998 "(0x6558) in the GENEVE pattern item"); 999 return -rte_errno; 1000 } 1001 } else if (mask->protocol != 0) { 1002 rte_flow_error_set(error, EINVAL, 1003 RTE_FLOW_ERROR_TYPE_ITEM, item, 1004 "Unsupported mask for GENEVE encap. protocol"); 1005 return -rte_errno; 1006 } 1007 1008 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni, 1009 mask->vni, item, error); 1010 1011 return rc; 1012 } 1013 1014 /** 1015 * Convert NVGRE item to EFX filter specification. 1016 * 1017 * @param item[in] 1018 * Item specification. Only virtual subnet ID field is supported. 1019 * If the mask is NULL, default mask will be used. 1020 * Ranging is not supported. 1021 * @param efx_spec[in, out] 1022 * EFX filter specification to update. 1023 * @param[out] error 1024 * Perform verbose error reporting if not NULL. 1025 */ 1026 static int 1027 sfc_flow_parse_nvgre(const struct rte_flow_item *item, 1028 struct sfc_flow_parse_ctx *parse_ctx, 1029 struct rte_flow_error *error) 1030 { 1031 int rc; 1032 efx_filter_spec_t *efx_spec = parse_ctx->filter; 1033 const struct rte_flow_item_nvgre *spec = NULL; 1034 const struct rte_flow_item_nvgre *mask = NULL; 1035 const struct rte_flow_item_nvgre supp_mask = { 1036 .tni = { 0xff, 0xff, 0xff } 1037 }; 1038 1039 rc = sfc_flow_parse_init(item, 1040 (const void **)&spec, 1041 (const void **)&mask, 1042 &supp_mask, 1043 &rte_flow_item_nvgre_mask, 1044 sizeof(struct rte_flow_item_nvgre), 1045 error); 1046 if (rc != 0) 1047 return rc; 1048 1049 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 1050 EFX_IPPROTO_GRE, error); 1051 if (rc != 0) 1052 return rc; 1053 1054 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE; 1055 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 1056 1057 if (spec == NULL) 1058 return 0; 1059 1060 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni, 1061 mask->tni, item, error); 1062 1063 return rc; 1064 } 1065 1066 static const struct sfc_flow_item sfc_flow_items[] = { 1067 { 1068 .type = RTE_FLOW_ITEM_TYPE_VOID, 1069 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER, 1070 .layer = SFC_FLOW_ITEM_ANY_LAYER, 1071 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1072 .parse = sfc_flow_parse_void, 1073 }, 1074 { 1075 .type = RTE_FLOW_ITEM_TYPE_ETH, 1076 .prev_layer = SFC_FLOW_ITEM_START_LAYER, 1077 .layer = SFC_FLOW_ITEM_L2, 1078 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1079 .parse = sfc_flow_parse_eth, 1080 }, 1081 { 1082 .type = RTE_FLOW_ITEM_TYPE_VLAN, 1083 .prev_layer = SFC_FLOW_ITEM_L2, 1084 .layer = SFC_FLOW_ITEM_L2, 1085 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1086 .parse = sfc_flow_parse_vlan, 1087 }, 1088 { 1089 .type = RTE_FLOW_ITEM_TYPE_IPV4, 1090 .prev_layer = SFC_FLOW_ITEM_L2, 1091 .layer = SFC_FLOW_ITEM_L3, 1092 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1093 .parse = sfc_flow_parse_ipv4, 1094 }, 1095 { 1096 .type = RTE_FLOW_ITEM_TYPE_IPV6, 1097 .prev_layer = SFC_FLOW_ITEM_L2, 1098 .layer = SFC_FLOW_ITEM_L3, 1099 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1100 .parse = sfc_flow_parse_ipv6, 1101 }, 1102 { 1103 .type = RTE_FLOW_ITEM_TYPE_TCP, 1104 .prev_layer = SFC_FLOW_ITEM_L3, 1105 .layer = SFC_FLOW_ITEM_L4, 1106 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1107 .parse = sfc_flow_parse_tcp, 1108 }, 1109 { 1110 .type = RTE_FLOW_ITEM_TYPE_UDP, 1111 .prev_layer = SFC_FLOW_ITEM_L3, 1112 .layer = SFC_FLOW_ITEM_L4, 1113 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1114 .parse = sfc_flow_parse_udp, 1115 }, 1116 { 1117 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 1118 .prev_layer = SFC_FLOW_ITEM_L4, 1119 .layer = SFC_FLOW_ITEM_START_LAYER, 1120 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1121 .parse = sfc_flow_parse_vxlan, 1122 }, 1123 { 1124 .type = RTE_FLOW_ITEM_TYPE_GENEVE, 1125 .prev_layer = SFC_FLOW_ITEM_L4, 1126 .layer = SFC_FLOW_ITEM_START_LAYER, 1127 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1128 .parse = sfc_flow_parse_geneve, 1129 }, 1130 { 1131 .type = RTE_FLOW_ITEM_TYPE_NVGRE, 1132 .prev_layer = SFC_FLOW_ITEM_L3, 1133 .layer = SFC_FLOW_ITEM_START_LAYER, 1134 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1135 .parse = sfc_flow_parse_nvgre, 1136 }, 1137 }; 1138 1139 /* 1140 * Protocol-independent flow API support 1141 */ 1142 static int 1143 sfc_flow_parse_attr(struct sfc_adapter *sa, 1144 const struct rte_flow_attr *attr, 1145 struct rte_flow *flow, 1146 struct rte_flow_error *error) 1147 { 1148 struct sfc_flow_spec *spec = &flow->spec; 1149 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1150 struct sfc_flow_spec_mae *spec_mae = &spec->mae; 1151 struct sfc_mae *mae = &sa->mae; 1152 1153 if (attr == NULL) { 1154 rte_flow_error_set(error, EINVAL, 1155 RTE_FLOW_ERROR_TYPE_ATTR, NULL, 1156 "NULL attribute"); 1157 return -rte_errno; 1158 } 1159 if (attr->group != 0) { 1160 rte_flow_error_set(error, ENOTSUP, 1161 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr, 1162 "Groups are not supported"); 1163 return -rte_errno; 1164 } 1165 if (attr->egress != 0) { 1166 rte_flow_error_set(error, ENOTSUP, 1167 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, 1168 "Egress is not supported"); 1169 return -rte_errno; 1170 } 1171 if (attr->ingress == 0) { 1172 rte_flow_error_set(error, ENOTSUP, 1173 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, 1174 "Ingress is compulsory"); 1175 return -rte_errno; 1176 } 1177 if (attr->transfer == 0) { 1178 if (attr->priority != 0) { 1179 rte_flow_error_set(error, ENOTSUP, 1180 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1181 attr, "Priorities are unsupported"); 1182 return -rte_errno; 1183 } 1184 spec->type = SFC_FLOW_SPEC_FILTER; 1185 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX; 1186 spec_filter->template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT; 1187 spec_filter->template.efs_priority = EFX_FILTER_PRI_MANUAL; 1188 } else { 1189 if (mae->status != SFC_MAE_STATUS_SUPPORTED) { 1190 rte_flow_error_set(error, ENOTSUP, 1191 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1192 attr, "Transfer is not supported"); 1193 return -rte_errno; 1194 } 1195 if (attr->priority > mae->nb_action_rule_prios_max) { 1196 rte_flow_error_set(error, ENOTSUP, 1197 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1198 attr, "Unsupported priority level"); 1199 return -rte_errno; 1200 } 1201 spec->type = SFC_FLOW_SPEC_MAE; 1202 spec_mae->priority = attr->priority; 1203 spec_mae->match_spec = NULL; 1204 } 1205 1206 return 0; 1207 } 1208 1209 /* Get item from array sfc_flow_items */ 1210 static const struct sfc_flow_item * 1211 sfc_flow_get_item(const struct sfc_flow_item *items, 1212 unsigned int nb_items, 1213 enum rte_flow_item_type type) 1214 { 1215 unsigned int i; 1216 1217 for (i = 0; i < nb_items; i++) 1218 if (items[i].type == type) 1219 return &items[i]; 1220 1221 return NULL; 1222 } 1223 1224 int 1225 sfc_flow_parse_pattern(const struct sfc_flow_item *flow_items, 1226 unsigned int nb_flow_items, 1227 const struct rte_flow_item pattern[], 1228 struct sfc_flow_parse_ctx *parse_ctx, 1229 struct rte_flow_error *error) 1230 { 1231 int rc; 1232 unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER; 1233 boolean_t is_ifrm = B_FALSE; 1234 const struct sfc_flow_item *item; 1235 1236 if (pattern == NULL) { 1237 rte_flow_error_set(error, EINVAL, 1238 RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, 1239 "NULL pattern"); 1240 return -rte_errno; 1241 } 1242 1243 for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) { 1244 item = sfc_flow_get_item(flow_items, nb_flow_items, 1245 pattern->type); 1246 if (item == NULL) { 1247 rte_flow_error_set(error, ENOTSUP, 1248 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1249 "Unsupported pattern item"); 1250 return -rte_errno; 1251 } 1252 1253 /* 1254 * Omitting one or several protocol layers at the beginning 1255 * of pattern is supported 1256 */ 1257 if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER && 1258 prev_layer != SFC_FLOW_ITEM_ANY_LAYER && 1259 item->prev_layer != prev_layer) { 1260 rte_flow_error_set(error, ENOTSUP, 1261 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1262 "Unexpected sequence of pattern items"); 1263 return -rte_errno; 1264 } 1265 1266 /* 1267 * Allow only VOID and ETH pattern items in the inner frame. 1268 * Also check that there is only one tunneling protocol. 1269 */ 1270 switch (item->type) { 1271 case RTE_FLOW_ITEM_TYPE_VOID: 1272 case RTE_FLOW_ITEM_TYPE_ETH: 1273 break; 1274 1275 case RTE_FLOW_ITEM_TYPE_VXLAN: 1276 case RTE_FLOW_ITEM_TYPE_GENEVE: 1277 case RTE_FLOW_ITEM_TYPE_NVGRE: 1278 if (is_ifrm) { 1279 rte_flow_error_set(error, EINVAL, 1280 RTE_FLOW_ERROR_TYPE_ITEM, 1281 pattern, 1282 "More than one tunneling protocol"); 1283 return -rte_errno; 1284 } 1285 is_ifrm = B_TRUE; 1286 break; 1287 1288 default: 1289 if (is_ifrm) { 1290 rte_flow_error_set(error, EINVAL, 1291 RTE_FLOW_ERROR_TYPE_ITEM, 1292 pattern, 1293 "There is an unsupported pattern item " 1294 "in the inner frame"); 1295 return -rte_errno; 1296 } 1297 break; 1298 } 1299 1300 if (parse_ctx->type != item->ctx_type) { 1301 rte_flow_error_set(error, EINVAL, 1302 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1303 "Parse context type mismatch"); 1304 return -rte_errno; 1305 } 1306 1307 rc = item->parse(pattern, parse_ctx, error); 1308 if (rc != 0) 1309 return rc; 1310 1311 if (item->layer != SFC_FLOW_ITEM_ANY_LAYER) 1312 prev_layer = item->layer; 1313 } 1314 1315 return 0; 1316 } 1317 1318 static int 1319 sfc_flow_parse_queue(struct sfc_adapter *sa, 1320 const struct rte_flow_action_queue *queue, 1321 struct rte_flow *flow) 1322 { 1323 struct sfc_flow_spec *spec = &flow->spec; 1324 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1325 struct sfc_rxq *rxq; 1326 struct sfc_rxq_info *rxq_info; 1327 1328 if (queue->index >= sfc_sa2shared(sa)->rxq_count) 1329 return -EINVAL; 1330 1331 rxq = &sa->rxq_ctrl[queue->index]; 1332 spec_filter->template.efs_dmaq_id = (uint16_t)rxq->hw_index; 1333 1334 rxq_info = &sfc_sa2shared(sa)->rxq_info[queue->index]; 1335 spec_filter->rss_hash_required = !!(rxq_info->rxq_flags & 1336 SFC_RXQ_FLAG_RSS_HASH); 1337 1338 return 0; 1339 } 1340 1341 static int 1342 sfc_flow_parse_rss(struct sfc_adapter *sa, 1343 const struct rte_flow_action_rss *action_rss, 1344 struct rte_flow *flow) 1345 { 1346 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1347 struct sfc_rss *rss = &sas->rss; 1348 unsigned int rxq_sw_index; 1349 struct sfc_rxq *rxq; 1350 unsigned int rxq_hw_index_min; 1351 unsigned int rxq_hw_index_max; 1352 efx_rx_hash_type_t efx_hash_types; 1353 const uint8_t *rss_key; 1354 struct sfc_flow_spec *spec = &flow->spec; 1355 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1356 struct sfc_flow_rss *sfc_rss_conf = &spec_filter->rss_conf; 1357 unsigned int i; 1358 1359 if (action_rss->queue_num == 0) 1360 return -EINVAL; 1361 1362 rxq_sw_index = sfc_sa2shared(sa)->rxq_count - 1; 1363 rxq = &sa->rxq_ctrl[rxq_sw_index]; 1364 rxq_hw_index_min = rxq->hw_index; 1365 rxq_hw_index_max = 0; 1366 1367 for (i = 0; i < action_rss->queue_num; ++i) { 1368 rxq_sw_index = action_rss->queue[i]; 1369 1370 if (rxq_sw_index >= sfc_sa2shared(sa)->rxq_count) 1371 return -EINVAL; 1372 1373 rxq = &sa->rxq_ctrl[rxq_sw_index]; 1374 1375 if (rxq->hw_index < rxq_hw_index_min) 1376 rxq_hw_index_min = rxq->hw_index; 1377 1378 if (rxq->hw_index > rxq_hw_index_max) 1379 rxq_hw_index_max = rxq->hw_index; 1380 } 1381 1382 switch (action_rss->func) { 1383 case RTE_ETH_HASH_FUNCTION_DEFAULT: 1384 case RTE_ETH_HASH_FUNCTION_TOEPLITZ: 1385 break; 1386 default: 1387 return -EINVAL; 1388 } 1389 1390 if (action_rss->level) 1391 return -EINVAL; 1392 1393 /* 1394 * Dummy RSS action with only one queue and no specific settings 1395 * for hash types and key does not require dedicated RSS context 1396 * and may be simplified to single queue action. 1397 */ 1398 if (action_rss->queue_num == 1 && action_rss->types == 0 && 1399 action_rss->key_len == 0) { 1400 spec_filter->template.efs_dmaq_id = rxq_hw_index_min; 1401 return 0; 1402 } 1403 1404 if (action_rss->types) { 1405 int rc; 1406 1407 rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types, 1408 &efx_hash_types); 1409 if (rc != 0) 1410 return -rc; 1411 } else { 1412 unsigned int i; 1413 1414 efx_hash_types = 0; 1415 for (i = 0; i < rss->hf_map_nb_entries; ++i) 1416 efx_hash_types |= rss->hf_map[i].efx; 1417 } 1418 1419 if (action_rss->key_len) { 1420 if (action_rss->key_len != sizeof(rss->key)) 1421 return -EINVAL; 1422 1423 rss_key = action_rss->key; 1424 } else { 1425 rss_key = rss->key; 1426 } 1427 1428 spec_filter->rss = B_TRUE; 1429 1430 sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min; 1431 sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max; 1432 sfc_rss_conf->rss_hash_types = efx_hash_types; 1433 rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key)); 1434 1435 for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) { 1436 unsigned int nb_queues = action_rss->queue_num; 1437 unsigned int rxq_sw_index = action_rss->queue[i % nb_queues]; 1438 struct sfc_rxq *rxq = &sa->rxq_ctrl[rxq_sw_index]; 1439 1440 sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min; 1441 } 1442 1443 return 0; 1444 } 1445 1446 static int 1447 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec, 1448 unsigned int filters_count) 1449 { 1450 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1451 unsigned int i; 1452 int ret = 0; 1453 1454 for (i = 0; i < filters_count; i++) { 1455 int rc; 1456 1457 rc = efx_filter_remove(sa->nic, &spec_filter->filters[i]); 1458 if (ret == 0 && rc != 0) { 1459 sfc_err(sa, "failed to remove filter specification " 1460 "(rc = %d)", rc); 1461 ret = rc; 1462 } 1463 } 1464 1465 return ret; 1466 } 1467 1468 static int 1469 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec) 1470 { 1471 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1472 unsigned int i; 1473 int rc = 0; 1474 1475 for (i = 0; i < spec_filter->count; i++) { 1476 rc = efx_filter_insert(sa->nic, &spec_filter->filters[i]); 1477 if (rc != 0) { 1478 sfc_flow_spec_flush(sa, spec, i); 1479 break; 1480 } 1481 } 1482 1483 return rc; 1484 } 1485 1486 static int 1487 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec) 1488 { 1489 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1490 1491 return sfc_flow_spec_flush(sa, spec, spec_filter->count); 1492 } 1493 1494 static int 1495 sfc_flow_filter_insert(struct sfc_adapter *sa, 1496 struct rte_flow *flow) 1497 { 1498 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1499 struct sfc_rss *rss = &sas->rss; 1500 struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter; 1501 struct sfc_flow_rss *flow_rss = &spec_filter->rss_conf; 1502 uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT; 1503 boolean_t create_context; 1504 unsigned int i; 1505 int rc = 0; 1506 1507 create_context = spec_filter->rss || (spec_filter->rss_hash_required && 1508 rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT); 1509 1510 if (create_context) { 1511 unsigned int rss_spread; 1512 unsigned int rss_hash_types; 1513 uint8_t *rss_key; 1514 1515 if (spec_filter->rss) { 1516 rss_spread = MIN(flow_rss->rxq_hw_index_max - 1517 flow_rss->rxq_hw_index_min + 1, 1518 EFX_MAXRSS); 1519 rss_hash_types = flow_rss->rss_hash_types; 1520 rss_key = flow_rss->rss_key; 1521 } else { 1522 /* 1523 * Initialize dummy RSS context parameters to have 1524 * valid RSS hash. Use default RSS hash function and 1525 * key. 1526 */ 1527 rss_spread = 1; 1528 rss_hash_types = rss->hash_types; 1529 rss_key = rss->key; 1530 } 1531 1532 rc = efx_rx_scale_context_alloc(sa->nic, 1533 EFX_RX_SCALE_EXCLUSIVE, 1534 rss_spread, 1535 &efs_rss_context); 1536 if (rc != 0) 1537 goto fail_scale_context_alloc; 1538 1539 rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context, 1540 rss->hash_alg, 1541 rss_hash_types, B_TRUE); 1542 if (rc != 0) 1543 goto fail_scale_mode_set; 1544 1545 rc = efx_rx_scale_key_set(sa->nic, efs_rss_context, 1546 rss_key, sizeof(rss->key)); 1547 if (rc != 0) 1548 goto fail_scale_key_set; 1549 } else { 1550 efs_rss_context = rss->dummy_rss_context; 1551 } 1552 1553 if (spec_filter->rss || spec_filter->rss_hash_required) { 1554 /* 1555 * At this point, fully elaborated filter specifications 1556 * have been produced from the template. To make sure that 1557 * RSS behaviour is consistent between them, set the same 1558 * RSS context value everywhere. 1559 */ 1560 for (i = 0; i < spec_filter->count; i++) { 1561 efx_filter_spec_t *spec = &spec_filter->filters[i]; 1562 1563 spec->efs_rss_context = efs_rss_context; 1564 spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS; 1565 if (spec_filter->rss) 1566 spec->efs_dmaq_id = flow_rss->rxq_hw_index_min; 1567 } 1568 } 1569 1570 rc = sfc_flow_spec_insert(sa, &flow->spec); 1571 if (rc != 0) 1572 goto fail_filter_insert; 1573 1574 if (create_context) { 1575 unsigned int dummy_tbl[RTE_DIM(flow_rss->rss_tbl)] = {0}; 1576 unsigned int *tbl; 1577 1578 tbl = spec_filter->rss ? flow_rss->rss_tbl : dummy_tbl; 1579 1580 /* 1581 * Scale table is set after filter insertion because 1582 * the table entries are relative to the base RxQ ID 1583 * and the latter is submitted to the HW by means of 1584 * inserting a filter, so by the time of the request 1585 * the HW knows all the information needed to verify 1586 * the table entries, and the operation will succeed 1587 */ 1588 rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context, 1589 tbl, RTE_DIM(flow_rss->rss_tbl)); 1590 if (rc != 0) 1591 goto fail_scale_tbl_set; 1592 1593 /* Remember created dummy RSS context */ 1594 if (!spec_filter->rss) 1595 rss->dummy_rss_context = efs_rss_context; 1596 } 1597 1598 return 0; 1599 1600 fail_scale_tbl_set: 1601 sfc_flow_spec_remove(sa, &flow->spec); 1602 1603 fail_filter_insert: 1604 fail_scale_key_set: 1605 fail_scale_mode_set: 1606 if (create_context) 1607 efx_rx_scale_context_free(sa->nic, efs_rss_context); 1608 1609 fail_scale_context_alloc: 1610 return rc; 1611 } 1612 1613 static int 1614 sfc_flow_filter_remove(struct sfc_adapter *sa, 1615 struct rte_flow *flow) 1616 { 1617 struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter; 1618 int rc = 0; 1619 1620 rc = sfc_flow_spec_remove(sa, &flow->spec); 1621 if (rc != 0) 1622 return rc; 1623 1624 if (spec_filter->rss) { 1625 /* 1626 * All specifications for a given flow rule have the same RSS 1627 * context, so that RSS context value is taken from the first 1628 * filter specification 1629 */ 1630 efx_filter_spec_t *spec = &spec_filter->filters[0]; 1631 1632 rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context); 1633 } 1634 1635 return rc; 1636 } 1637 1638 static int 1639 sfc_flow_parse_mark(struct sfc_adapter *sa, 1640 const struct rte_flow_action_mark *mark, 1641 struct rte_flow *flow) 1642 { 1643 struct sfc_flow_spec *spec = &flow->spec; 1644 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1645 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1646 1647 if (mark == NULL || mark->id > encp->enc_filter_action_mark_max) 1648 return EINVAL; 1649 1650 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK; 1651 spec_filter->template.efs_mark = mark->id; 1652 1653 return 0; 1654 } 1655 1656 static int 1657 sfc_flow_parse_actions(struct sfc_adapter *sa, 1658 const struct rte_flow_action actions[], 1659 struct rte_flow *flow, 1660 struct rte_flow_error *error) 1661 { 1662 int rc; 1663 struct sfc_flow_spec *spec = &flow->spec; 1664 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1665 const unsigned int dp_rx_features = sa->priv.dp_rx->features; 1666 uint32_t actions_set = 0; 1667 const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) | 1668 (1UL << RTE_FLOW_ACTION_TYPE_RSS) | 1669 (1UL << RTE_FLOW_ACTION_TYPE_DROP); 1670 const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) | 1671 (1UL << RTE_FLOW_ACTION_TYPE_FLAG); 1672 1673 if (actions == NULL) { 1674 rte_flow_error_set(error, EINVAL, 1675 RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, 1676 "NULL actions"); 1677 return -rte_errno; 1678 } 1679 1680 #define SFC_BUILD_SET_OVERFLOW(_action, _set) \ 1681 RTE_BUILD_BUG_ON(_action >= sizeof(_set) * CHAR_BIT) 1682 1683 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 1684 switch (actions->type) { 1685 case RTE_FLOW_ACTION_TYPE_VOID: 1686 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID, 1687 actions_set); 1688 break; 1689 1690 case RTE_FLOW_ACTION_TYPE_QUEUE: 1691 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE, 1692 actions_set); 1693 if ((actions_set & fate_actions_mask) != 0) 1694 goto fail_fate_actions; 1695 1696 rc = sfc_flow_parse_queue(sa, actions->conf, flow); 1697 if (rc != 0) { 1698 rte_flow_error_set(error, EINVAL, 1699 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1700 "Bad QUEUE action"); 1701 return -rte_errno; 1702 } 1703 break; 1704 1705 case RTE_FLOW_ACTION_TYPE_RSS: 1706 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS, 1707 actions_set); 1708 if ((actions_set & fate_actions_mask) != 0) 1709 goto fail_fate_actions; 1710 1711 rc = sfc_flow_parse_rss(sa, actions->conf, flow); 1712 if (rc != 0) { 1713 rte_flow_error_set(error, -rc, 1714 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1715 "Bad RSS action"); 1716 return -rte_errno; 1717 } 1718 break; 1719 1720 case RTE_FLOW_ACTION_TYPE_DROP: 1721 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP, 1722 actions_set); 1723 if ((actions_set & fate_actions_mask) != 0) 1724 goto fail_fate_actions; 1725 1726 spec_filter->template.efs_dmaq_id = 1727 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP; 1728 break; 1729 1730 case RTE_FLOW_ACTION_TYPE_FLAG: 1731 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG, 1732 actions_set); 1733 if ((actions_set & mark_actions_mask) != 0) 1734 goto fail_actions_overlap; 1735 1736 if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) { 1737 rte_flow_error_set(error, ENOTSUP, 1738 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1739 "FLAG action is not supported on the current Rx datapath"); 1740 return -rte_errno; 1741 } 1742 1743 spec_filter->template.efs_flags |= 1744 EFX_FILTER_FLAG_ACTION_FLAG; 1745 break; 1746 1747 case RTE_FLOW_ACTION_TYPE_MARK: 1748 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK, 1749 actions_set); 1750 if ((actions_set & mark_actions_mask) != 0) 1751 goto fail_actions_overlap; 1752 1753 if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) { 1754 rte_flow_error_set(error, ENOTSUP, 1755 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1756 "MARK action is not supported on the current Rx datapath"); 1757 return -rte_errno; 1758 } 1759 1760 rc = sfc_flow_parse_mark(sa, actions->conf, flow); 1761 if (rc != 0) { 1762 rte_flow_error_set(error, rc, 1763 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1764 "Bad MARK action"); 1765 return -rte_errno; 1766 } 1767 break; 1768 1769 default: 1770 rte_flow_error_set(error, ENOTSUP, 1771 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1772 "Action is not supported"); 1773 return -rte_errno; 1774 } 1775 1776 actions_set |= (1UL << actions->type); 1777 } 1778 #undef SFC_BUILD_SET_OVERFLOW 1779 1780 /* When fate is unknown, drop traffic. */ 1781 if ((actions_set & fate_actions_mask) == 0) { 1782 spec_filter->template.efs_dmaq_id = 1783 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP; 1784 } 1785 1786 return 0; 1787 1788 fail_fate_actions: 1789 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions, 1790 "Cannot combine several fate-deciding actions, " 1791 "choose between QUEUE, RSS or DROP"); 1792 return -rte_errno; 1793 1794 fail_actions_overlap: 1795 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions, 1796 "Overlapping actions are not supported"); 1797 return -rte_errno; 1798 } 1799 1800 /** 1801 * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST 1802 * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same 1803 * specifications after copying. 1804 * 1805 * @param spec[in, out] 1806 * SFC flow specification to update. 1807 * @param filters_count_for_one_val[in] 1808 * How many specifications should have the same match flag, what is the 1809 * number of specifications before copying. 1810 * @param error[out] 1811 * Perform verbose error reporting if not NULL. 1812 */ 1813 static int 1814 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec, 1815 unsigned int filters_count_for_one_val, 1816 struct rte_flow_error *error) 1817 { 1818 unsigned int i; 1819 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1820 static const efx_filter_match_flags_t vals[] = { 1821 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, 1822 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST 1823 }; 1824 1825 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 1826 rte_flow_error_set(error, EINVAL, 1827 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1828 "Number of specifications is incorrect while copying " 1829 "by unknown destination flags"); 1830 return -rte_errno; 1831 } 1832 1833 for (i = 0; i < spec_filter->count; i++) { 1834 /* The check above ensures that divisor can't be zero here */ 1835 spec_filter->filters[i].efs_match_flags |= 1836 vals[i / filters_count_for_one_val]; 1837 } 1838 1839 return 0; 1840 } 1841 1842 /** 1843 * Check that the following conditions are met: 1844 * - the list of supported filters has a filter 1845 * with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of 1846 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also 1847 * be inserted. 1848 * 1849 * @param match[in] 1850 * The match flags of filter. 1851 * @param spec[in] 1852 * Specification to be supplemented. 1853 * @param filter[in] 1854 * SFC filter with list of supported filters. 1855 */ 1856 static boolean_t 1857 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match, 1858 __rte_unused efx_filter_spec_t *spec, 1859 struct sfc_filter *filter) 1860 { 1861 unsigned int i; 1862 efx_filter_match_flags_t match_mcast_dst; 1863 1864 match_mcast_dst = 1865 (match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) | 1866 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST; 1867 for (i = 0; i < filter->supported_match_num; i++) { 1868 if (match_mcast_dst == filter->supported_match[i]) 1869 return B_TRUE; 1870 } 1871 1872 return B_FALSE; 1873 } 1874 1875 /** 1876 * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and 1877 * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same 1878 * specifications after copying. 1879 * 1880 * @param spec[in, out] 1881 * SFC flow specification to update. 1882 * @param filters_count_for_one_val[in] 1883 * How many specifications should have the same EtherType value, what is the 1884 * number of specifications before copying. 1885 * @param error[out] 1886 * Perform verbose error reporting if not NULL. 1887 */ 1888 static int 1889 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec, 1890 unsigned int filters_count_for_one_val, 1891 struct rte_flow_error *error) 1892 { 1893 unsigned int i; 1894 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1895 static const uint16_t vals[] = { 1896 EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6 1897 }; 1898 1899 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 1900 rte_flow_error_set(error, EINVAL, 1901 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1902 "Number of specifications is incorrect " 1903 "while copying by Ethertype"); 1904 return -rte_errno; 1905 } 1906 1907 for (i = 0; i < spec_filter->count; i++) { 1908 spec_filter->filters[i].efs_match_flags |= 1909 EFX_FILTER_MATCH_ETHER_TYPE; 1910 1911 /* 1912 * The check above ensures that 1913 * filters_count_for_one_val is not 0 1914 */ 1915 spec_filter->filters[i].efs_ether_type = 1916 vals[i / filters_count_for_one_val]; 1917 } 1918 1919 return 0; 1920 } 1921 1922 /** 1923 * Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0 1924 * in the same specifications after copying. 1925 * 1926 * @param spec[in, out] 1927 * SFC flow specification to update. 1928 * @param filters_count_for_one_val[in] 1929 * How many specifications should have the same match flag, what is the 1930 * number of specifications before copying. 1931 * @param error[out] 1932 * Perform verbose error reporting if not NULL. 1933 */ 1934 static int 1935 sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec, 1936 unsigned int filters_count_for_one_val, 1937 struct rte_flow_error *error) 1938 { 1939 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1940 unsigned int i; 1941 1942 if (filters_count_for_one_val != spec_filter->count) { 1943 rte_flow_error_set(error, EINVAL, 1944 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1945 "Number of specifications is incorrect " 1946 "while copying by outer VLAN ID"); 1947 return -rte_errno; 1948 } 1949 1950 for (i = 0; i < spec_filter->count; i++) { 1951 spec_filter->filters[i].efs_match_flags |= 1952 EFX_FILTER_MATCH_OUTER_VID; 1953 1954 spec_filter->filters[i].efs_outer_vid = 0; 1955 } 1956 1957 return 0; 1958 } 1959 1960 /** 1961 * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and 1962 * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same 1963 * specifications after copying. 1964 * 1965 * @param spec[in, out] 1966 * SFC flow specification to update. 1967 * @param filters_count_for_one_val[in] 1968 * How many specifications should have the same match flag, what is the 1969 * number of specifications before copying. 1970 * @param error[out] 1971 * Perform verbose error reporting if not NULL. 1972 */ 1973 static int 1974 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec, 1975 unsigned int filters_count_for_one_val, 1976 struct rte_flow_error *error) 1977 { 1978 unsigned int i; 1979 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1980 static const efx_filter_match_flags_t vals[] = { 1981 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, 1982 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST 1983 }; 1984 1985 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 1986 rte_flow_error_set(error, EINVAL, 1987 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1988 "Number of specifications is incorrect while copying " 1989 "by inner frame unknown destination flags"); 1990 return -rte_errno; 1991 } 1992 1993 for (i = 0; i < spec_filter->count; i++) { 1994 /* The check above ensures that divisor can't be zero here */ 1995 spec_filter->filters[i].efs_match_flags |= 1996 vals[i / filters_count_for_one_val]; 1997 } 1998 1999 return 0; 2000 } 2001 2002 /** 2003 * Check that the following conditions are met: 2004 * - the specification corresponds to a filter for encapsulated traffic 2005 * - the list of supported filters has a filter 2006 * with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of 2007 * EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also 2008 * be inserted. 2009 * 2010 * @param match[in] 2011 * The match flags of filter. 2012 * @param spec[in] 2013 * Specification to be supplemented. 2014 * @param filter[in] 2015 * SFC filter with list of supported filters. 2016 */ 2017 static boolean_t 2018 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match, 2019 efx_filter_spec_t *spec, 2020 struct sfc_filter *filter) 2021 { 2022 unsigned int i; 2023 efx_tunnel_protocol_t encap_type = spec->efs_encap_type; 2024 efx_filter_match_flags_t match_mcast_dst; 2025 2026 if (encap_type == EFX_TUNNEL_PROTOCOL_NONE) 2027 return B_FALSE; 2028 2029 match_mcast_dst = 2030 (match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) | 2031 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST; 2032 for (i = 0; i < filter->supported_match_num; i++) { 2033 if (match_mcast_dst == filter->supported_match[i]) 2034 return B_TRUE; 2035 } 2036 2037 return B_FALSE; 2038 } 2039 2040 /** 2041 * Check that the list of supported filters has a filter that differs 2042 * from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID 2043 * in this case that filter will be used and the flag 2044 * EFX_FILTER_MATCH_OUTER_VID is not needed. 2045 * 2046 * @param match[in] 2047 * The match flags of filter. 2048 * @param spec[in] 2049 * Specification to be supplemented. 2050 * @param filter[in] 2051 * SFC filter with list of supported filters. 2052 */ 2053 static boolean_t 2054 sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match, 2055 __rte_unused efx_filter_spec_t *spec, 2056 struct sfc_filter *filter) 2057 { 2058 unsigned int i; 2059 efx_filter_match_flags_t match_without_vid = 2060 match & ~EFX_FILTER_MATCH_OUTER_VID; 2061 2062 for (i = 0; i < filter->supported_match_num; i++) { 2063 if (match_without_vid == filter->supported_match[i]) 2064 return B_FALSE; 2065 } 2066 2067 return B_TRUE; 2068 } 2069 2070 /* 2071 * Match flags that can be automatically added to filters. 2072 * Selecting the last minimum when searching for the copy flag ensures that the 2073 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than 2074 * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter 2075 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported 2076 * filters. 2077 */ 2078 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = { 2079 { 2080 .flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, 2081 .vals_count = 2, 2082 .set_vals = sfc_flow_set_unknown_dst_flags, 2083 .spec_check = sfc_flow_check_unknown_dst_flags, 2084 }, 2085 { 2086 .flag = EFX_FILTER_MATCH_ETHER_TYPE, 2087 .vals_count = 2, 2088 .set_vals = sfc_flow_set_ethertypes, 2089 .spec_check = NULL, 2090 }, 2091 { 2092 .flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, 2093 .vals_count = 2, 2094 .set_vals = sfc_flow_set_ifrm_unknown_dst_flags, 2095 .spec_check = sfc_flow_check_ifrm_unknown_dst_flags, 2096 }, 2097 { 2098 .flag = EFX_FILTER_MATCH_OUTER_VID, 2099 .vals_count = 1, 2100 .set_vals = sfc_flow_set_outer_vid_flag, 2101 .spec_check = sfc_flow_check_outer_vid_flag, 2102 }, 2103 }; 2104 2105 /* Get item from array sfc_flow_copy_flags */ 2106 static const struct sfc_flow_copy_flag * 2107 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag) 2108 { 2109 unsigned int i; 2110 2111 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2112 if (sfc_flow_copy_flags[i].flag == flag) 2113 return &sfc_flow_copy_flags[i]; 2114 } 2115 2116 return NULL; 2117 } 2118 2119 /** 2120 * Make copies of the specifications, set match flag and values 2121 * of the field that corresponds to it. 2122 * 2123 * @param spec[in, out] 2124 * SFC flow specification to update. 2125 * @param flag[in] 2126 * The match flag to add. 2127 * @param error[out] 2128 * Perform verbose error reporting if not NULL. 2129 */ 2130 static int 2131 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec, 2132 efx_filter_match_flags_t flag, 2133 struct rte_flow_error *error) 2134 { 2135 unsigned int i; 2136 unsigned int new_filters_count; 2137 unsigned int filters_count_for_one_val; 2138 const struct sfc_flow_copy_flag *copy_flag; 2139 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2140 int rc; 2141 2142 copy_flag = sfc_flow_get_copy_flag(flag); 2143 if (copy_flag == NULL) { 2144 rte_flow_error_set(error, ENOTSUP, 2145 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2146 "Unsupported spec field for copying"); 2147 return -rte_errno; 2148 } 2149 2150 new_filters_count = spec_filter->count * copy_flag->vals_count; 2151 if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) { 2152 rte_flow_error_set(error, EINVAL, 2153 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2154 "Too much EFX specifications in the flow rule"); 2155 return -rte_errno; 2156 } 2157 2158 /* Copy filters specifications */ 2159 for (i = spec_filter->count; i < new_filters_count; i++) { 2160 spec_filter->filters[i] = 2161 spec_filter->filters[i - spec_filter->count]; 2162 } 2163 2164 filters_count_for_one_val = spec_filter->count; 2165 spec_filter->count = new_filters_count; 2166 2167 rc = copy_flag->set_vals(spec, filters_count_for_one_val, error); 2168 if (rc != 0) 2169 return rc; 2170 2171 return 0; 2172 } 2173 2174 /** 2175 * Check that the given set of match flags missing in the original filter spec 2176 * could be covered by adding spec copies which specify the corresponding 2177 * flags and packet field values to match. 2178 * 2179 * @param miss_flags[in] 2180 * Flags that are missing until the supported filter. 2181 * @param spec[in] 2182 * Specification to be supplemented. 2183 * @param filter[in] 2184 * SFC filter. 2185 * 2186 * @return 2187 * Number of specifications after copy or 0, if the flags can not be added. 2188 */ 2189 static unsigned int 2190 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags, 2191 efx_filter_spec_t *spec, 2192 struct sfc_filter *filter) 2193 { 2194 unsigned int i; 2195 efx_filter_match_flags_t copy_flags = 0; 2196 efx_filter_match_flags_t flag; 2197 efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags; 2198 sfc_flow_spec_check *check; 2199 unsigned int multiplier = 1; 2200 2201 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2202 flag = sfc_flow_copy_flags[i].flag; 2203 check = sfc_flow_copy_flags[i].spec_check; 2204 if ((flag & miss_flags) == flag) { 2205 if (check != NULL && (!check(match, spec, filter))) 2206 continue; 2207 2208 copy_flags |= flag; 2209 multiplier *= sfc_flow_copy_flags[i].vals_count; 2210 } 2211 } 2212 2213 if (copy_flags == miss_flags) 2214 return multiplier; 2215 2216 return 0; 2217 } 2218 2219 /** 2220 * Attempt to supplement the specification template to the minimally 2221 * supported set of match flags. To do this, it is necessary to copy 2222 * the specifications, filling them with the values of fields that 2223 * correspond to the missing flags. 2224 * The necessary and sufficient filter is built from the fewest number 2225 * of copies which could be made to cover the minimally required set 2226 * of flags. 2227 * 2228 * @param sa[in] 2229 * SFC adapter. 2230 * @param spec[in, out] 2231 * SFC flow specification to update. 2232 * @param error[out] 2233 * Perform verbose error reporting if not NULL. 2234 */ 2235 static int 2236 sfc_flow_spec_filters_complete(struct sfc_adapter *sa, 2237 struct sfc_flow_spec *spec, 2238 struct rte_flow_error *error) 2239 { 2240 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2241 struct sfc_filter *filter = &sa->filter; 2242 efx_filter_match_flags_t miss_flags; 2243 efx_filter_match_flags_t min_miss_flags = 0; 2244 efx_filter_match_flags_t match; 2245 unsigned int min_multiplier = UINT_MAX; 2246 unsigned int multiplier; 2247 unsigned int i; 2248 int rc; 2249 2250 match = spec_filter->template.efs_match_flags; 2251 for (i = 0; i < filter->supported_match_num; i++) { 2252 if ((match & filter->supported_match[i]) == match) { 2253 miss_flags = filter->supported_match[i] & (~match); 2254 multiplier = sfc_flow_check_missing_flags(miss_flags, 2255 &spec_filter->template, filter); 2256 if (multiplier > 0) { 2257 if (multiplier <= min_multiplier) { 2258 min_multiplier = multiplier; 2259 min_miss_flags = miss_flags; 2260 } 2261 } 2262 } 2263 } 2264 2265 if (min_multiplier == UINT_MAX) { 2266 rte_flow_error_set(error, ENOTSUP, 2267 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2268 "The flow rule pattern is unsupported"); 2269 return -rte_errno; 2270 } 2271 2272 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2273 efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag; 2274 2275 if ((flag & min_miss_flags) == flag) { 2276 rc = sfc_flow_spec_add_match_flag(spec, flag, error); 2277 if (rc != 0) 2278 return rc; 2279 } 2280 } 2281 2282 return 0; 2283 } 2284 2285 /** 2286 * Check that set of match flags is referred to by a filter. Filter is 2287 * described by match flags with the ability to add OUTER_VID and INNER_VID 2288 * flags. 2289 * 2290 * @param match_flags[in] 2291 * Set of match flags. 2292 * @param flags_pattern[in] 2293 * Pattern of filter match flags. 2294 */ 2295 static boolean_t 2296 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags, 2297 efx_filter_match_flags_t flags_pattern) 2298 { 2299 if ((match_flags & flags_pattern) != flags_pattern) 2300 return B_FALSE; 2301 2302 switch (match_flags & ~flags_pattern) { 2303 case 0: 2304 case EFX_FILTER_MATCH_OUTER_VID: 2305 case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID: 2306 return B_TRUE; 2307 default: 2308 return B_FALSE; 2309 } 2310 } 2311 2312 /** 2313 * Check whether the spec maps to a hardware filter which is known to be 2314 * ineffective despite being valid. 2315 * 2316 * @param filter[in] 2317 * SFC filter with list of supported filters. 2318 * @param spec[in] 2319 * SFC flow specification. 2320 */ 2321 static boolean_t 2322 sfc_flow_is_match_flags_exception(struct sfc_filter *filter, 2323 struct sfc_flow_spec *spec) 2324 { 2325 unsigned int i; 2326 uint16_t ether_type; 2327 uint8_t ip_proto; 2328 efx_filter_match_flags_t match_flags; 2329 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2330 2331 for (i = 0; i < spec_filter->count; i++) { 2332 match_flags = spec_filter->filters[i].efs_match_flags; 2333 2334 if (sfc_flow_is_match_with_vids(match_flags, 2335 EFX_FILTER_MATCH_ETHER_TYPE) || 2336 sfc_flow_is_match_with_vids(match_flags, 2337 EFX_FILTER_MATCH_ETHER_TYPE | 2338 EFX_FILTER_MATCH_LOC_MAC)) { 2339 ether_type = spec_filter->filters[i].efs_ether_type; 2340 if (filter->supports_ip_proto_or_addr_filter && 2341 (ether_type == EFX_ETHER_TYPE_IPV4 || 2342 ether_type == EFX_ETHER_TYPE_IPV6)) 2343 return B_TRUE; 2344 } else if (sfc_flow_is_match_with_vids(match_flags, 2345 EFX_FILTER_MATCH_ETHER_TYPE | 2346 EFX_FILTER_MATCH_IP_PROTO) || 2347 sfc_flow_is_match_with_vids(match_flags, 2348 EFX_FILTER_MATCH_ETHER_TYPE | 2349 EFX_FILTER_MATCH_IP_PROTO | 2350 EFX_FILTER_MATCH_LOC_MAC)) { 2351 ip_proto = spec_filter->filters[i].efs_ip_proto; 2352 if (filter->supports_rem_or_local_port_filter && 2353 (ip_proto == EFX_IPPROTO_TCP || 2354 ip_proto == EFX_IPPROTO_UDP)) 2355 return B_TRUE; 2356 } 2357 } 2358 2359 return B_FALSE; 2360 } 2361 2362 static int 2363 sfc_flow_validate_match_flags(struct sfc_adapter *sa, 2364 struct rte_flow *flow, 2365 struct rte_flow_error *error) 2366 { 2367 struct sfc_flow_spec *spec = &flow->spec; 2368 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2369 efx_filter_spec_t *spec_tmpl = &spec_filter->template; 2370 efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags; 2371 int rc; 2372 2373 /* Initialize the first filter spec with template */ 2374 spec_filter->filters[0] = *spec_tmpl; 2375 spec_filter->count = 1; 2376 2377 if (!sfc_filter_is_match_supported(sa, match_flags)) { 2378 rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error); 2379 if (rc != 0) 2380 return rc; 2381 } 2382 2383 if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) { 2384 rte_flow_error_set(error, ENOTSUP, 2385 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2386 "The flow rule pattern is unsupported"); 2387 return -rte_errno; 2388 } 2389 2390 return 0; 2391 } 2392 2393 static int 2394 sfc_flow_parse_rte_to_filter(struct rte_eth_dev *dev, 2395 const struct rte_flow_item pattern[], 2396 const struct rte_flow_action actions[], 2397 struct rte_flow *flow, 2398 struct rte_flow_error *error) 2399 { 2400 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2401 struct sfc_flow_spec *spec = &flow->spec; 2402 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2403 struct sfc_flow_parse_ctx ctx; 2404 int rc; 2405 2406 ctx.type = SFC_FLOW_PARSE_CTX_FILTER; 2407 ctx.filter = &spec_filter->template; 2408 2409 rc = sfc_flow_parse_pattern(sfc_flow_items, RTE_DIM(sfc_flow_items), 2410 pattern, &ctx, error); 2411 if (rc != 0) 2412 goto fail_bad_value; 2413 2414 rc = sfc_flow_parse_actions(sa, actions, flow, error); 2415 if (rc != 0) 2416 goto fail_bad_value; 2417 2418 rc = sfc_flow_validate_match_flags(sa, flow, error); 2419 if (rc != 0) 2420 goto fail_bad_value; 2421 2422 return 0; 2423 2424 fail_bad_value: 2425 return rc; 2426 } 2427 2428 static int 2429 sfc_flow_parse_rte_to_mae(struct rte_eth_dev *dev, 2430 const struct rte_flow_item pattern[], 2431 __rte_unused const struct rte_flow_action actions[], 2432 struct rte_flow *flow, 2433 struct rte_flow_error *error) 2434 { 2435 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2436 struct sfc_flow_spec *spec = &flow->spec; 2437 struct sfc_flow_spec_mae *spec_mae = &spec->mae; 2438 int rc; 2439 2440 rc = sfc_mae_rule_parse_pattern(sa, pattern, spec_mae, error); 2441 if (rc != 0) 2442 return rc; 2443 2444 return 0; 2445 } 2446 2447 static int 2448 sfc_flow_parse(struct rte_eth_dev *dev, 2449 const struct rte_flow_attr *attr, 2450 const struct rte_flow_item pattern[], 2451 const struct rte_flow_action actions[], 2452 struct rte_flow *flow, 2453 struct rte_flow_error *error) 2454 { 2455 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2456 const struct sfc_flow_ops_by_spec *ops; 2457 int rc; 2458 2459 rc = sfc_flow_parse_attr(sa, attr, flow, error); 2460 if (rc != 0) 2461 return rc; 2462 2463 ops = sfc_flow_get_ops_by_spec(flow); 2464 if (ops == NULL || ops->parse == NULL) { 2465 rte_flow_error_set(error, ENOTSUP, 2466 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2467 "No backend to handle this flow"); 2468 return -rte_errno; 2469 } 2470 2471 return ops->parse(dev, pattern, actions, flow, error); 2472 } 2473 2474 static struct rte_flow * 2475 sfc_flow_zmalloc(struct rte_flow_error *error) 2476 { 2477 struct rte_flow *flow; 2478 2479 flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0); 2480 if (flow == NULL) { 2481 rte_flow_error_set(error, ENOMEM, 2482 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2483 "Failed to allocate memory"); 2484 } 2485 2486 return flow; 2487 } 2488 2489 static void 2490 sfc_flow_free(struct sfc_adapter *sa, struct rte_flow *flow) 2491 { 2492 const struct sfc_flow_ops_by_spec *ops; 2493 2494 ops = sfc_flow_get_ops_by_spec(flow); 2495 if (ops != NULL && ops->cleanup != NULL) 2496 ops->cleanup(sa, flow); 2497 2498 rte_free(flow); 2499 } 2500 2501 static int 2502 sfc_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow, 2503 struct rte_flow_error *error) 2504 { 2505 const struct sfc_flow_ops_by_spec *ops; 2506 int rc; 2507 2508 ops = sfc_flow_get_ops_by_spec(flow); 2509 if (ops == NULL || ops->insert == NULL) { 2510 rte_flow_error_set(error, ENOTSUP, 2511 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2512 "No backend to handle this flow"); 2513 return rte_errno; 2514 } 2515 2516 rc = ops->insert(sa, flow); 2517 if (rc != 0) { 2518 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2519 NULL, "Failed to insert the flow rule"); 2520 } 2521 2522 return rc; 2523 } 2524 2525 static int 2526 sfc_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow, 2527 struct rte_flow_error *error) 2528 { 2529 const struct sfc_flow_ops_by_spec *ops; 2530 int rc; 2531 2532 ops = sfc_flow_get_ops_by_spec(flow); 2533 if (ops == NULL || ops->remove == NULL) { 2534 rte_flow_error_set(error, ENOTSUP, 2535 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2536 "No backend to handle this flow"); 2537 return rte_errno; 2538 } 2539 2540 rc = ops->remove(sa, flow); 2541 if (rc != 0) { 2542 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2543 NULL, "Failed to remove the flow rule"); 2544 } 2545 2546 return rc; 2547 } 2548 2549 static int 2550 sfc_flow_verify(struct sfc_adapter *sa, struct rte_flow *flow, 2551 struct rte_flow_error *error) 2552 { 2553 const struct sfc_flow_ops_by_spec *ops; 2554 int rc = 0; 2555 2556 ops = sfc_flow_get_ops_by_spec(flow); 2557 if (ops == NULL) { 2558 rte_flow_error_set(error, ENOTSUP, 2559 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2560 "No backend to handle this flow"); 2561 return -rte_errno; 2562 } 2563 2564 if (ops->verify != NULL) { 2565 /* 2566 * Use locking since verify method may need to 2567 * access the list of already created rules. 2568 */ 2569 sfc_adapter_lock(sa); 2570 rc = ops->verify(sa, flow); 2571 sfc_adapter_unlock(sa); 2572 } 2573 2574 if (rc != 0) { 2575 rte_flow_error_set(error, rc, 2576 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2577 "Failed to verify flow validity with FW"); 2578 return -rte_errno; 2579 } 2580 2581 return 0; 2582 } 2583 2584 static int 2585 sfc_flow_validate(struct rte_eth_dev *dev, 2586 const struct rte_flow_attr *attr, 2587 const struct rte_flow_item pattern[], 2588 const struct rte_flow_action actions[], 2589 struct rte_flow_error *error) 2590 { 2591 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2592 struct rte_flow *flow; 2593 int rc; 2594 2595 flow = sfc_flow_zmalloc(error); 2596 if (flow == NULL) 2597 return -rte_errno; 2598 2599 rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error); 2600 if (rc == 0) 2601 rc = sfc_flow_verify(sa, flow, error); 2602 2603 sfc_flow_free(sa, flow); 2604 2605 return rc; 2606 } 2607 2608 static struct rte_flow * 2609 sfc_flow_create(struct rte_eth_dev *dev, 2610 const struct rte_flow_attr *attr, 2611 const struct rte_flow_item pattern[], 2612 const struct rte_flow_action actions[], 2613 struct rte_flow_error *error) 2614 { 2615 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2616 struct rte_flow *flow = NULL; 2617 int rc; 2618 2619 flow = sfc_flow_zmalloc(error); 2620 if (flow == NULL) 2621 goto fail_no_mem; 2622 2623 rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error); 2624 if (rc != 0) 2625 goto fail_bad_value; 2626 2627 sfc_adapter_lock(sa); 2628 2629 TAILQ_INSERT_TAIL(&sa->flow_list, flow, entries); 2630 2631 if (sa->state == SFC_ADAPTER_STARTED) { 2632 rc = sfc_flow_insert(sa, flow, error); 2633 if (rc != 0) 2634 goto fail_flow_insert; 2635 } 2636 2637 sfc_adapter_unlock(sa); 2638 2639 return flow; 2640 2641 fail_flow_insert: 2642 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2643 2644 fail_bad_value: 2645 sfc_flow_free(sa, flow); 2646 sfc_adapter_unlock(sa); 2647 2648 fail_no_mem: 2649 return NULL; 2650 } 2651 2652 static int 2653 sfc_flow_destroy(struct rte_eth_dev *dev, 2654 struct rte_flow *flow, 2655 struct rte_flow_error *error) 2656 { 2657 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2658 struct rte_flow *flow_ptr; 2659 int rc = EINVAL; 2660 2661 sfc_adapter_lock(sa); 2662 2663 TAILQ_FOREACH(flow_ptr, &sa->flow_list, entries) { 2664 if (flow_ptr == flow) 2665 rc = 0; 2666 } 2667 if (rc != 0) { 2668 rte_flow_error_set(error, rc, 2669 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 2670 "Failed to find flow rule to destroy"); 2671 goto fail_bad_value; 2672 } 2673 2674 if (sa->state == SFC_ADAPTER_STARTED) 2675 rc = sfc_flow_remove(sa, flow, error); 2676 2677 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2678 sfc_flow_free(sa, flow); 2679 2680 fail_bad_value: 2681 sfc_adapter_unlock(sa); 2682 2683 return -rc; 2684 } 2685 2686 static int 2687 sfc_flow_flush(struct rte_eth_dev *dev, 2688 struct rte_flow_error *error) 2689 { 2690 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2691 struct rte_flow *flow; 2692 int ret = 0; 2693 2694 sfc_adapter_lock(sa); 2695 2696 while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) { 2697 if (sa->state == SFC_ADAPTER_STARTED) { 2698 int rc; 2699 2700 rc = sfc_flow_remove(sa, flow, error); 2701 if (rc != 0) 2702 ret = rc; 2703 } 2704 2705 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2706 sfc_flow_free(sa, flow); 2707 } 2708 2709 sfc_adapter_unlock(sa); 2710 2711 return -ret; 2712 } 2713 2714 static int 2715 sfc_flow_isolate(struct rte_eth_dev *dev, int enable, 2716 struct rte_flow_error *error) 2717 { 2718 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2719 int ret = 0; 2720 2721 sfc_adapter_lock(sa); 2722 if (sa->state != SFC_ADAPTER_INITIALIZED) { 2723 rte_flow_error_set(error, EBUSY, 2724 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2725 NULL, "please close the port first"); 2726 ret = -rte_errno; 2727 } else { 2728 sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE; 2729 } 2730 sfc_adapter_unlock(sa); 2731 2732 return ret; 2733 } 2734 2735 const struct rte_flow_ops sfc_flow_ops = { 2736 .validate = sfc_flow_validate, 2737 .create = sfc_flow_create, 2738 .destroy = sfc_flow_destroy, 2739 .flush = sfc_flow_flush, 2740 .query = NULL, 2741 .isolate = sfc_flow_isolate, 2742 }; 2743 2744 void 2745 sfc_flow_init(struct sfc_adapter *sa) 2746 { 2747 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2748 2749 TAILQ_INIT(&sa->flow_list); 2750 } 2751 2752 void 2753 sfc_flow_fini(struct sfc_adapter *sa) 2754 { 2755 struct rte_flow *flow; 2756 2757 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2758 2759 while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) { 2760 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2761 sfc_flow_free(sa, flow); 2762 } 2763 } 2764 2765 void 2766 sfc_flow_stop(struct sfc_adapter *sa) 2767 { 2768 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 2769 struct sfc_rss *rss = &sas->rss; 2770 struct rte_flow *flow; 2771 2772 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2773 2774 TAILQ_FOREACH(flow, &sa->flow_list, entries) 2775 sfc_flow_remove(sa, flow, NULL); 2776 2777 if (rss->dummy_rss_context != EFX_RSS_CONTEXT_DEFAULT) { 2778 efx_rx_scale_context_free(sa->nic, rss->dummy_rss_context); 2779 rss->dummy_rss_context = EFX_RSS_CONTEXT_DEFAULT; 2780 } 2781 } 2782 2783 int 2784 sfc_flow_start(struct sfc_adapter *sa) 2785 { 2786 struct rte_flow *flow; 2787 int rc = 0; 2788 2789 sfc_log_init(sa, "entry"); 2790 2791 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2792 2793 TAILQ_FOREACH(flow, &sa->flow_list, entries) { 2794 rc = sfc_flow_insert(sa, flow, NULL); 2795 if (rc != 0) 2796 goto fail_bad_flow; 2797 } 2798 2799 sfc_log_init(sa, "done"); 2800 2801 fail_bad_flow: 2802 return rc; 2803 } 2804