xref: /dpdk/drivers/net/sfc/sfc_flow.c (revision 8b61dd99a186d60cfa38bc385bce490e11a4f01c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2020 Xilinx, Inc.
4  * Copyright(c) 2017-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_byteorder.h>
11 #include <rte_tailq.h>
12 #include <rte_common.h>
13 #include <rte_ethdev_driver.h>
14 #include <rte_ether.h>
15 #include <rte_flow.h>
16 #include <rte_flow_driver.h>
17 
18 #include "efx.h"
19 
20 #include "sfc.h"
21 #include "sfc_debug.h"
22 #include "sfc_rx.h"
23 #include "sfc_filter.h"
24 #include "sfc_flow.h"
25 #include "sfc_log.h"
26 #include "sfc_dp_rx.h"
27 
28 struct sfc_flow_ops_by_spec {
29 	sfc_flow_parse_cb_t	*parse;
30 	sfc_flow_verify_cb_t	*verify;
31 	sfc_flow_cleanup_cb_t	*cleanup;
32 	sfc_flow_insert_cb_t	*insert;
33 	sfc_flow_remove_cb_t	*remove;
34 };
35 
36 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_filter;
37 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_mae;
38 static sfc_flow_insert_cb_t sfc_flow_filter_insert;
39 static sfc_flow_remove_cb_t sfc_flow_filter_remove;
40 
41 static const struct sfc_flow_ops_by_spec sfc_flow_ops_filter = {
42 	.parse = sfc_flow_parse_rte_to_filter,
43 	.verify = NULL,
44 	.cleanup = NULL,
45 	.insert = sfc_flow_filter_insert,
46 	.remove = sfc_flow_filter_remove,
47 };
48 
49 static const struct sfc_flow_ops_by_spec sfc_flow_ops_mae = {
50 	.parse = sfc_flow_parse_rte_to_mae,
51 	.verify = sfc_mae_flow_verify,
52 	.cleanup = sfc_mae_flow_cleanup,
53 	.insert = NULL,
54 	.remove = NULL,
55 };
56 
57 static const struct sfc_flow_ops_by_spec *
58 sfc_flow_get_ops_by_spec(struct rte_flow *flow)
59 {
60 	struct sfc_flow_spec *spec = &flow->spec;
61 	const struct sfc_flow_ops_by_spec *ops = NULL;
62 
63 	switch (spec->type) {
64 	case SFC_FLOW_SPEC_FILTER:
65 		ops = &sfc_flow_ops_filter;
66 		break;
67 	case SFC_FLOW_SPEC_MAE:
68 		ops = &sfc_flow_ops_mae;
69 		break;
70 	default:
71 		SFC_ASSERT(false);
72 		break;
73 	}
74 
75 	return ops;
76 }
77 
78 /*
79  * Currently, filter-based (VNIC) flow API is implemented in such a manner
80  * that each flow rule is converted to one or more hardware filters.
81  * All elements of flow rule (attributes, pattern items, actions)
82  * correspond to one or more fields in the efx_filter_spec_s structure
83  * that is responsible for the hardware filter.
84  * If some required field is unset in the flow rule, then a handful
85  * of filter copies will be created to cover all possible values
86  * of such a field.
87  */
88 
89 static sfc_flow_item_parse sfc_flow_parse_void;
90 static sfc_flow_item_parse sfc_flow_parse_eth;
91 static sfc_flow_item_parse sfc_flow_parse_vlan;
92 static sfc_flow_item_parse sfc_flow_parse_ipv4;
93 static sfc_flow_item_parse sfc_flow_parse_ipv6;
94 static sfc_flow_item_parse sfc_flow_parse_tcp;
95 static sfc_flow_item_parse sfc_flow_parse_udp;
96 static sfc_flow_item_parse sfc_flow_parse_vxlan;
97 static sfc_flow_item_parse sfc_flow_parse_geneve;
98 static sfc_flow_item_parse sfc_flow_parse_nvgre;
99 
100 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec,
101 				     unsigned int filters_count_for_one_val,
102 				     struct rte_flow_error *error);
103 
104 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match,
105 					efx_filter_spec_t *spec,
106 					struct sfc_filter *filter);
107 
108 struct sfc_flow_copy_flag {
109 	/* EFX filter specification match flag */
110 	efx_filter_match_flags_t flag;
111 	/* Number of values of corresponding field */
112 	unsigned int vals_count;
113 	/* Function to set values in specifications */
114 	sfc_flow_spec_set_vals *set_vals;
115 	/*
116 	 * Function to check that the specification is suitable
117 	 * for adding this match flag
118 	 */
119 	sfc_flow_spec_check *spec_check;
120 };
121 
122 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags;
123 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags;
124 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes;
125 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags;
126 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags;
127 static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag;
128 static sfc_flow_spec_check sfc_flow_check_outer_vid_flag;
129 
130 static boolean_t
131 sfc_flow_is_zero(const uint8_t *buf, unsigned int size)
132 {
133 	uint8_t sum = 0;
134 	unsigned int i;
135 
136 	for (i = 0; i < size; i++)
137 		sum |= buf[i];
138 
139 	return (sum == 0) ? B_TRUE : B_FALSE;
140 }
141 
142 /*
143  * Validate item and prepare structures spec and mask for parsing
144  */
145 int
146 sfc_flow_parse_init(const struct rte_flow_item *item,
147 		    const void **spec_ptr,
148 		    const void **mask_ptr,
149 		    const void *supp_mask,
150 		    const void *def_mask,
151 		    unsigned int size,
152 		    struct rte_flow_error *error)
153 {
154 	const uint8_t *spec;
155 	const uint8_t *mask;
156 	const uint8_t *last;
157 	uint8_t supp;
158 	unsigned int i;
159 
160 	if (item == NULL) {
161 		rte_flow_error_set(error, EINVAL,
162 				   RTE_FLOW_ERROR_TYPE_ITEM, NULL,
163 				   "NULL item");
164 		return -rte_errno;
165 	}
166 
167 	if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) {
168 		rte_flow_error_set(error, EINVAL,
169 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
170 				   "Mask or last is set without spec");
171 		return -rte_errno;
172 	}
173 
174 	/*
175 	 * If "mask" is not set, default mask is used,
176 	 * but if default mask is NULL, "mask" should be set
177 	 */
178 	if (item->mask == NULL) {
179 		if (def_mask == NULL) {
180 			rte_flow_error_set(error, EINVAL,
181 				RTE_FLOW_ERROR_TYPE_ITEM, NULL,
182 				"Mask should be specified");
183 			return -rte_errno;
184 		}
185 
186 		mask = def_mask;
187 	} else {
188 		mask = item->mask;
189 	}
190 
191 	spec = item->spec;
192 	last = item->last;
193 
194 	if (spec == NULL)
195 		goto exit;
196 
197 	/*
198 	 * If field values in "last" are either 0 or equal to the corresponding
199 	 * values in "spec" then they are ignored
200 	 */
201 	if (last != NULL &&
202 	    !sfc_flow_is_zero(last, size) &&
203 	    memcmp(last, spec, size) != 0) {
204 		rte_flow_error_set(error, ENOTSUP,
205 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
206 				   "Ranging is not supported");
207 		return -rte_errno;
208 	}
209 
210 	if (supp_mask == NULL) {
211 		rte_flow_error_set(error, EINVAL,
212 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
213 			"Supported mask for item should be specified");
214 		return -rte_errno;
215 	}
216 
217 	/* Check that mask does not ask for more match than supp_mask */
218 	for (i = 0; i < size; i++) {
219 		supp = ((const uint8_t *)supp_mask)[i];
220 
221 		if (~supp & mask[i]) {
222 			rte_flow_error_set(error, ENOTSUP,
223 					   RTE_FLOW_ERROR_TYPE_ITEM, item,
224 					   "Item's field is not supported");
225 			return -rte_errno;
226 		}
227 	}
228 
229 exit:
230 	*spec_ptr = spec;
231 	*mask_ptr = mask;
232 	return 0;
233 }
234 
235 /*
236  * Protocol parsers.
237  * Masking is not supported, so masks in items should be either
238  * full or empty (zeroed) and set only for supported fields which
239  * are specified in the supp_mask.
240  */
241 
242 static int
243 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item,
244 		    __rte_unused struct sfc_flow_parse_ctx *parse_ctx,
245 		    __rte_unused struct rte_flow_error *error)
246 {
247 	return 0;
248 }
249 
250 /**
251  * Convert Ethernet item to EFX filter specification.
252  *
253  * @param item[in]
254  *   Item specification. Outer frame specification may only comprise
255  *   source/destination addresses and Ethertype field.
256  *   Inner frame specification may contain destination address only.
257  *   There is support for individual/group mask as well as for empty and full.
258  *   If the mask is NULL, default mask will be used. Ranging is not supported.
259  * @param efx_spec[in, out]
260  *   EFX filter specification to update.
261  * @param[out] error
262  *   Perform verbose error reporting if not NULL.
263  */
264 static int
265 sfc_flow_parse_eth(const struct rte_flow_item *item,
266 		   struct sfc_flow_parse_ctx *parse_ctx,
267 		   struct rte_flow_error *error)
268 {
269 	int rc;
270 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
271 	const struct rte_flow_item_eth *spec = NULL;
272 	const struct rte_flow_item_eth *mask = NULL;
273 	const struct rte_flow_item_eth supp_mask = {
274 		.dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
275 		.src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
276 		.type = 0xffff,
277 	};
278 	const struct rte_flow_item_eth ifrm_supp_mask = {
279 		.dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
280 	};
281 	const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = {
282 		0x01, 0x00, 0x00, 0x00, 0x00, 0x00
283 	};
284 	const struct rte_flow_item_eth *supp_mask_p;
285 	const struct rte_flow_item_eth *def_mask_p;
286 	uint8_t *loc_mac = NULL;
287 	boolean_t is_ifrm = (efx_spec->efs_encap_type !=
288 		EFX_TUNNEL_PROTOCOL_NONE);
289 
290 	if (is_ifrm) {
291 		supp_mask_p = &ifrm_supp_mask;
292 		def_mask_p = &ifrm_supp_mask;
293 		loc_mac = efx_spec->efs_ifrm_loc_mac;
294 	} else {
295 		supp_mask_p = &supp_mask;
296 		def_mask_p = &rte_flow_item_eth_mask;
297 		loc_mac = efx_spec->efs_loc_mac;
298 	}
299 
300 	rc = sfc_flow_parse_init(item,
301 				 (const void **)&spec,
302 				 (const void **)&mask,
303 				 supp_mask_p, def_mask_p,
304 				 sizeof(struct rte_flow_item_eth),
305 				 error);
306 	if (rc != 0)
307 		return rc;
308 
309 	/* If "spec" is not set, could be any Ethernet */
310 	if (spec == NULL)
311 		return 0;
312 
313 	if (rte_is_same_ether_addr(&mask->dst, &supp_mask.dst)) {
314 		efx_spec->efs_match_flags |= is_ifrm ?
315 			EFX_FILTER_MATCH_IFRM_LOC_MAC :
316 			EFX_FILTER_MATCH_LOC_MAC;
317 		rte_memcpy(loc_mac, spec->dst.addr_bytes,
318 			   EFX_MAC_ADDR_LEN);
319 	} else if (memcmp(mask->dst.addr_bytes, ig_mask,
320 			  EFX_MAC_ADDR_LEN) == 0) {
321 		if (rte_is_unicast_ether_addr(&spec->dst))
322 			efx_spec->efs_match_flags |= is_ifrm ?
323 				EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST :
324 				EFX_FILTER_MATCH_UNKNOWN_UCAST_DST;
325 		else
326 			efx_spec->efs_match_flags |= is_ifrm ?
327 				EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST :
328 				EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
329 	} else if (!rte_is_zero_ether_addr(&mask->dst)) {
330 		goto fail_bad_mask;
331 	}
332 
333 	/*
334 	 * ifrm_supp_mask ensures that the source address and
335 	 * ethertype masks are equal to zero in inner frame,
336 	 * so these fields are filled in only for the outer frame
337 	 */
338 	if (rte_is_same_ether_addr(&mask->src, &supp_mask.src)) {
339 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC;
340 		rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes,
341 			   EFX_MAC_ADDR_LEN);
342 	} else if (!rte_is_zero_ether_addr(&mask->src)) {
343 		goto fail_bad_mask;
344 	}
345 
346 	/*
347 	 * Ether type is in big-endian byte order in item and
348 	 * in little-endian in efx_spec, so byte swap is used
349 	 */
350 	if (mask->type == supp_mask.type) {
351 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
352 		efx_spec->efs_ether_type = rte_bswap16(spec->type);
353 	} else if (mask->type != 0) {
354 		goto fail_bad_mask;
355 	}
356 
357 	return 0;
358 
359 fail_bad_mask:
360 	rte_flow_error_set(error, EINVAL,
361 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
362 			   "Bad mask in the ETH pattern item");
363 	return -rte_errno;
364 }
365 
366 /**
367  * Convert VLAN item to EFX filter specification.
368  *
369  * @param item[in]
370  *   Item specification. Only VID field is supported.
371  *   The mask can not be NULL. Ranging is not supported.
372  * @param efx_spec[in, out]
373  *   EFX filter specification to update.
374  * @param[out] error
375  *   Perform verbose error reporting if not NULL.
376  */
377 static int
378 sfc_flow_parse_vlan(const struct rte_flow_item *item,
379 		    struct sfc_flow_parse_ctx *parse_ctx,
380 		    struct rte_flow_error *error)
381 {
382 	int rc;
383 	uint16_t vid;
384 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
385 	const struct rte_flow_item_vlan *spec = NULL;
386 	const struct rte_flow_item_vlan *mask = NULL;
387 	const struct rte_flow_item_vlan supp_mask = {
388 		.tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX),
389 		.inner_type = RTE_BE16(0xffff),
390 	};
391 
392 	rc = sfc_flow_parse_init(item,
393 				 (const void **)&spec,
394 				 (const void **)&mask,
395 				 &supp_mask,
396 				 NULL,
397 				 sizeof(struct rte_flow_item_vlan),
398 				 error);
399 	if (rc != 0)
400 		return rc;
401 
402 	/*
403 	 * VID is in big-endian byte order in item and
404 	 * in little-endian in efx_spec, so byte swap is used.
405 	 * If two VLAN items are included, the first matches
406 	 * the outer tag and the next matches the inner tag.
407 	 */
408 	if (mask->tci == supp_mask.tci) {
409 		/* Apply mask to keep VID only */
410 		vid = rte_bswap16(spec->tci & mask->tci);
411 
412 		if (!(efx_spec->efs_match_flags &
413 		      EFX_FILTER_MATCH_OUTER_VID)) {
414 			efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID;
415 			efx_spec->efs_outer_vid = vid;
416 		} else if (!(efx_spec->efs_match_flags &
417 			     EFX_FILTER_MATCH_INNER_VID)) {
418 			efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID;
419 			efx_spec->efs_inner_vid = vid;
420 		} else {
421 			rte_flow_error_set(error, EINVAL,
422 					   RTE_FLOW_ERROR_TYPE_ITEM, item,
423 					   "More than two VLAN items");
424 			return -rte_errno;
425 		}
426 	} else {
427 		rte_flow_error_set(error, EINVAL,
428 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
429 				   "VLAN ID in TCI match is required");
430 		return -rte_errno;
431 	}
432 
433 	if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) {
434 		rte_flow_error_set(error, EINVAL,
435 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
436 				   "VLAN TPID matching is not supported");
437 		return -rte_errno;
438 	}
439 	if (mask->inner_type == supp_mask.inner_type) {
440 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
441 		efx_spec->efs_ether_type = rte_bswap16(spec->inner_type);
442 	} else if (mask->inner_type) {
443 		rte_flow_error_set(error, EINVAL,
444 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
445 				   "Bad mask for VLAN inner_type");
446 		return -rte_errno;
447 	}
448 
449 	return 0;
450 }
451 
452 /**
453  * Convert IPv4 item to EFX filter specification.
454  *
455  * @param item[in]
456  *   Item specification. Only source and destination addresses and
457  *   protocol fields are supported. If the mask is NULL, default
458  *   mask will be used. Ranging is not supported.
459  * @param efx_spec[in, out]
460  *   EFX filter specification to update.
461  * @param[out] error
462  *   Perform verbose error reporting if not NULL.
463  */
464 static int
465 sfc_flow_parse_ipv4(const struct rte_flow_item *item,
466 		    struct sfc_flow_parse_ctx *parse_ctx,
467 		    struct rte_flow_error *error)
468 {
469 	int rc;
470 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
471 	const struct rte_flow_item_ipv4 *spec = NULL;
472 	const struct rte_flow_item_ipv4 *mask = NULL;
473 	const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4);
474 	const struct rte_flow_item_ipv4 supp_mask = {
475 		.hdr = {
476 			.src_addr = 0xffffffff,
477 			.dst_addr = 0xffffffff,
478 			.next_proto_id = 0xff,
479 		}
480 	};
481 
482 	rc = sfc_flow_parse_init(item,
483 				 (const void **)&spec,
484 				 (const void **)&mask,
485 				 &supp_mask,
486 				 &rte_flow_item_ipv4_mask,
487 				 sizeof(struct rte_flow_item_ipv4),
488 				 error);
489 	if (rc != 0)
490 		return rc;
491 
492 	/*
493 	 * Filtering by IPv4 source and destination addresses requires
494 	 * the appropriate ETHER_TYPE in hardware filters
495 	 */
496 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
497 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
498 		efx_spec->efs_ether_type = ether_type_ipv4;
499 	} else if (efx_spec->efs_ether_type != ether_type_ipv4) {
500 		rte_flow_error_set(error, EINVAL,
501 			RTE_FLOW_ERROR_TYPE_ITEM, item,
502 			"Ethertype in pattern with IPV4 item should be appropriate");
503 		return -rte_errno;
504 	}
505 
506 	if (spec == NULL)
507 		return 0;
508 
509 	/*
510 	 * IPv4 addresses are in big-endian byte order in item and in
511 	 * efx_spec
512 	 */
513 	if (mask->hdr.src_addr == supp_mask.hdr.src_addr) {
514 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
515 		efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr;
516 	} else if (mask->hdr.src_addr != 0) {
517 		goto fail_bad_mask;
518 	}
519 
520 	if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) {
521 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
522 		efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr;
523 	} else if (mask->hdr.dst_addr != 0) {
524 		goto fail_bad_mask;
525 	}
526 
527 	if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) {
528 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
529 		efx_spec->efs_ip_proto = spec->hdr.next_proto_id;
530 	} else if (mask->hdr.next_proto_id != 0) {
531 		goto fail_bad_mask;
532 	}
533 
534 	return 0;
535 
536 fail_bad_mask:
537 	rte_flow_error_set(error, EINVAL,
538 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
539 			   "Bad mask in the IPV4 pattern item");
540 	return -rte_errno;
541 }
542 
543 /**
544  * Convert IPv6 item to EFX filter specification.
545  *
546  * @param item[in]
547  *   Item specification. Only source and destination addresses and
548  *   next header fields are supported. If the mask is NULL, default
549  *   mask will be used. Ranging is not supported.
550  * @param efx_spec[in, out]
551  *   EFX filter specification to update.
552  * @param[out] error
553  *   Perform verbose error reporting if not NULL.
554  */
555 static int
556 sfc_flow_parse_ipv6(const struct rte_flow_item *item,
557 		    struct sfc_flow_parse_ctx *parse_ctx,
558 		    struct rte_flow_error *error)
559 {
560 	int rc;
561 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
562 	const struct rte_flow_item_ipv6 *spec = NULL;
563 	const struct rte_flow_item_ipv6 *mask = NULL;
564 	const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6);
565 	const struct rte_flow_item_ipv6 supp_mask = {
566 		.hdr = {
567 			.src_addr = { 0xff, 0xff, 0xff, 0xff,
568 				      0xff, 0xff, 0xff, 0xff,
569 				      0xff, 0xff, 0xff, 0xff,
570 				      0xff, 0xff, 0xff, 0xff },
571 			.dst_addr = { 0xff, 0xff, 0xff, 0xff,
572 				      0xff, 0xff, 0xff, 0xff,
573 				      0xff, 0xff, 0xff, 0xff,
574 				      0xff, 0xff, 0xff, 0xff },
575 			.proto = 0xff,
576 		}
577 	};
578 
579 	rc = sfc_flow_parse_init(item,
580 				 (const void **)&spec,
581 				 (const void **)&mask,
582 				 &supp_mask,
583 				 &rte_flow_item_ipv6_mask,
584 				 sizeof(struct rte_flow_item_ipv6),
585 				 error);
586 	if (rc != 0)
587 		return rc;
588 
589 	/*
590 	 * Filtering by IPv6 source and destination addresses requires
591 	 * the appropriate ETHER_TYPE in hardware filters
592 	 */
593 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
594 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
595 		efx_spec->efs_ether_type = ether_type_ipv6;
596 	} else if (efx_spec->efs_ether_type != ether_type_ipv6) {
597 		rte_flow_error_set(error, EINVAL,
598 			RTE_FLOW_ERROR_TYPE_ITEM, item,
599 			"Ethertype in pattern with IPV6 item should be appropriate");
600 		return -rte_errno;
601 	}
602 
603 	if (spec == NULL)
604 		return 0;
605 
606 	/*
607 	 * IPv6 addresses are in big-endian byte order in item and in
608 	 * efx_spec
609 	 */
610 	if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr,
611 		   sizeof(mask->hdr.src_addr)) == 0) {
612 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
613 
614 		RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) !=
615 				 sizeof(spec->hdr.src_addr));
616 		rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr,
617 			   sizeof(efx_spec->efs_rem_host));
618 	} else if (!sfc_flow_is_zero(mask->hdr.src_addr,
619 				     sizeof(mask->hdr.src_addr))) {
620 		goto fail_bad_mask;
621 	}
622 
623 	if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr,
624 		   sizeof(mask->hdr.dst_addr)) == 0) {
625 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
626 
627 		RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) !=
628 				 sizeof(spec->hdr.dst_addr));
629 		rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr,
630 			   sizeof(efx_spec->efs_loc_host));
631 	} else if (!sfc_flow_is_zero(mask->hdr.dst_addr,
632 				     sizeof(mask->hdr.dst_addr))) {
633 		goto fail_bad_mask;
634 	}
635 
636 	if (mask->hdr.proto == supp_mask.hdr.proto) {
637 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
638 		efx_spec->efs_ip_proto = spec->hdr.proto;
639 	} else if (mask->hdr.proto != 0) {
640 		goto fail_bad_mask;
641 	}
642 
643 	return 0;
644 
645 fail_bad_mask:
646 	rte_flow_error_set(error, EINVAL,
647 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
648 			   "Bad mask in the IPV6 pattern item");
649 	return -rte_errno;
650 }
651 
652 /**
653  * Convert TCP item to EFX filter specification.
654  *
655  * @param item[in]
656  *   Item specification. Only source and destination ports fields
657  *   are supported. If the mask is NULL, default mask will be used.
658  *   Ranging is not supported.
659  * @param efx_spec[in, out]
660  *   EFX filter specification to update.
661  * @param[out] error
662  *   Perform verbose error reporting if not NULL.
663  */
664 static int
665 sfc_flow_parse_tcp(const struct rte_flow_item *item,
666 		   struct sfc_flow_parse_ctx *parse_ctx,
667 		   struct rte_flow_error *error)
668 {
669 	int rc;
670 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
671 	const struct rte_flow_item_tcp *spec = NULL;
672 	const struct rte_flow_item_tcp *mask = NULL;
673 	const struct rte_flow_item_tcp supp_mask = {
674 		.hdr = {
675 			.src_port = 0xffff,
676 			.dst_port = 0xffff,
677 		}
678 	};
679 
680 	rc = sfc_flow_parse_init(item,
681 				 (const void **)&spec,
682 				 (const void **)&mask,
683 				 &supp_mask,
684 				 &rte_flow_item_tcp_mask,
685 				 sizeof(struct rte_flow_item_tcp),
686 				 error);
687 	if (rc != 0)
688 		return rc;
689 
690 	/*
691 	 * Filtering by TCP source and destination ports requires
692 	 * the appropriate IP_PROTO in hardware filters
693 	 */
694 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
695 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
696 		efx_spec->efs_ip_proto = EFX_IPPROTO_TCP;
697 	} else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) {
698 		rte_flow_error_set(error, EINVAL,
699 			RTE_FLOW_ERROR_TYPE_ITEM, item,
700 			"IP proto in pattern with TCP item should be appropriate");
701 		return -rte_errno;
702 	}
703 
704 	if (spec == NULL)
705 		return 0;
706 
707 	/*
708 	 * Source and destination ports are in big-endian byte order in item and
709 	 * in little-endian in efx_spec, so byte swap is used
710 	 */
711 	if (mask->hdr.src_port == supp_mask.hdr.src_port) {
712 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
713 		efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
714 	} else if (mask->hdr.src_port != 0) {
715 		goto fail_bad_mask;
716 	}
717 
718 	if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
719 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
720 		efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
721 	} else if (mask->hdr.dst_port != 0) {
722 		goto fail_bad_mask;
723 	}
724 
725 	return 0;
726 
727 fail_bad_mask:
728 	rte_flow_error_set(error, EINVAL,
729 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
730 			   "Bad mask in the TCP pattern item");
731 	return -rte_errno;
732 }
733 
734 /**
735  * Convert UDP item to EFX filter specification.
736  *
737  * @param item[in]
738  *   Item specification. Only source and destination ports fields
739  *   are supported. If the mask is NULL, default mask will be used.
740  *   Ranging is not supported.
741  * @param efx_spec[in, out]
742  *   EFX filter specification to update.
743  * @param[out] error
744  *   Perform verbose error reporting if not NULL.
745  */
746 static int
747 sfc_flow_parse_udp(const struct rte_flow_item *item,
748 		   struct sfc_flow_parse_ctx *parse_ctx,
749 		   struct rte_flow_error *error)
750 {
751 	int rc;
752 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
753 	const struct rte_flow_item_udp *spec = NULL;
754 	const struct rte_flow_item_udp *mask = NULL;
755 	const struct rte_flow_item_udp supp_mask = {
756 		.hdr = {
757 			.src_port = 0xffff,
758 			.dst_port = 0xffff,
759 		}
760 	};
761 
762 	rc = sfc_flow_parse_init(item,
763 				 (const void **)&spec,
764 				 (const void **)&mask,
765 				 &supp_mask,
766 				 &rte_flow_item_udp_mask,
767 				 sizeof(struct rte_flow_item_udp),
768 				 error);
769 	if (rc != 0)
770 		return rc;
771 
772 	/*
773 	 * Filtering by UDP source and destination ports requires
774 	 * the appropriate IP_PROTO in hardware filters
775 	 */
776 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
777 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
778 		efx_spec->efs_ip_proto = EFX_IPPROTO_UDP;
779 	} else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) {
780 		rte_flow_error_set(error, EINVAL,
781 			RTE_FLOW_ERROR_TYPE_ITEM, item,
782 			"IP proto in pattern with UDP item should be appropriate");
783 		return -rte_errno;
784 	}
785 
786 	if (spec == NULL)
787 		return 0;
788 
789 	/*
790 	 * Source and destination ports are in big-endian byte order in item and
791 	 * in little-endian in efx_spec, so byte swap is used
792 	 */
793 	if (mask->hdr.src_port == supp_mask.hdr.src_port) {
794 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
795 		efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
796 	} else if (mask->hdr.src_port != 0) {
797 		goto fail_bad_mask;
798 	}
799 
800 	if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
801 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
802 		efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
803 	} else if (mask->hdr.dst_port != 0) {
804 		goto fail_bad_mask;
805 	}
806 
807 	return 0;
808 
809 fail_bad_mask:
810 	rte_flow_error_set(error, EINVAL,
811 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
812 			   "Bad mask in the UDP pattern item");
813 	return -rte_errno;
814 }
815 
816 /*
817  * Filters for encapsulated packets match based on the EtherType and IP
818  * protocol in the outer frame.
819  */
820 static int
821 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item,
822 					efx_filter_spec_t *efx_spec,
823 					uint8_t ip_proto,
824 					struct rte_flow_error *error)
825 {
826 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
827 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
828 		efx_spec->efs_ip_proto = ip_proto;
829 	} else if (efx_spec->efs_ip_proto != ip_proto) {
830 		switch (ip_proto) {
831 		case EFX_IPPROTO_UDP:
832 			rte_flow_error_set(error, EINVAL,
833 				RTE_FLOW_ERROR_TYPE_ITEM, item,
834 				"Outer IP header protocol must be UDP "
835 				"in VxLAN/GENEVE pattern");
836 			return -rte_errno;
837 
838 		case EFX_IPPROTO_GRE:
839 			rte_flow_error_set(error, EINVAL,
840 				RTE_FLOW_ERROR_TYPE_ITEM, item,
841 				"Outer IP header protocol must be GRE "
842 				"in NVGRE pattern");
843 			return -rte_errno;
844 
845 		default:
846 			rte_flow_error_set(error, EINVAL,
847 				RTE_FLOW_ERROR_TYPE_ITEM, item,
848 				"Only VxLAN/GENEVE/NVGRE tunneling patterns "
849 				"are supported");
850 			return -rte_errno;
851 		}
852 	}
853 
854 	if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE &&
855 	    efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 &&
856 	    efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) {
857 		rte_flow_error_set(error, EINVAL,
858 			RTE_FLOW_ERROR_TYPE_ITEM, item,
859 			"Outer frame EtherType in pattern with tunneling "
860 			"must be IPv4 or IPv6");
861 		return -rte_errno;
862 	}
863 
864 	return 0;
865 }
866 
867 static int
868 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec,
869 				  const uint8_t *vni_or_vsid_val,
870 				  const uint8_t *vni_or_vsid_mask,
871 				  const struct rte_flow_item *item,
872 				  struct rte_flow_error *error)
873 {
874 	const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = {
875 		0xff, 0xff, 0xff
876 	};
877 
878 	if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask,
879 		   EFX_VNI_OR_VSID_LEN) == 0) {
880 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID;
881 		rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val,
882 			   EFX_VNI_OR_VSID_LEN);
883 	} else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) {
884 		rte_flow_error_set(error, EINVAL,
885 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
886 				   "Unsupported VNI/VSID mask");
887 		return -rte_errno;
888 	}
889 
890 	return 0;
891 }
892 
893 /**
894  * Convert VXLAN item to EFX filter specification.
895  *
896  * @param item[in]
897  *   Item specification. Only VXLAN network identifier field is supported.
898  *   If the mask is NULL, default mask will be used.
899  *   Ranging is not supported.
900  * @param efx_spec[in, out]
901  *   EFX filter specification to update.
902  * @param[out] error
903  *   Perform verbose error reporting if not NULL.
904  */
905 static int
906 sfc_flow_parse_vxlan(const struct rte_flow_item *item,
907 		     struct sfc_flow_parse_ctx *parse_ctx,
908 		     struct rte_flow_error *error)
909 {
910 	int rc;
911 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
912 	const struct rte_flow_item_vxlan *spec = NULL;
913 	const struct rte_flow_item_vxlan *mask = NULL;
914 	const struct rte_flow_item_vxlan supp_mask = {
915 		.vni = { 0xff, 0xff, 0xff }
916 	};
917 
918 	rc = sfc_flow_parse_init(item,
919 				 (const void **)&spec,
920 				 (const void **)&mask,
921 				 &supp_mask,
922 				 &rte_flow_item_vxlan_mask,
923 				 sizeof(struct rte_flow_item_vxlan),
924 				 error);
925 	if (rc != 0)
926 		return rc;
927 
928 	rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
929 						     EFX_IPPROTO_UDP, error);
930 	if (rc != 0)
931 		return rc;
932 
933 	efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
934 	efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
935 
936 	if (spec == NULL)
937 		return 0;
938 
939 	rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
940 					       mask->vni, item, error);
941 
942 	return rc;
943 }
944 
945 /**
946  * Convert GENEVE item to EFX filter specification.
947  *
948  * @param item[in]
949  *   Item specification. Only Virtual Network Identifier and protocol type
950  *   fields are supported. But protocol type can be only Ethernet (0x6558).
951  *   If the mask is NULL, default mask will be used.
952  *   Ranging is not supported.
953  * @param efx_spec[in, out]
954  *   EFX filter specification to update.
955  * @param[out] error
956  *   Perform verbose error reporting if not NULL.
957  */
958 static int
959 sfc_flow_parse_geneve(const struct rte_flow_item *item,
960 		      struct sfc_flow_parse_ctx *parse_ctx,
961 		      struct rte_flow_error *error)
962 {
963 	int rc;
964 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
965 	const struct rte_flow_item_geneve *spec = NULL;
966 	const struct rte_flow_item_geneve *mask = NULL;
967 	const struct rte_flow_item_geneve supp_mask = {
968 		.protocol = RTE_BE16(0xffff),
969 		.vni = { 0xff, 0xff, 0xff }
970 	};
971 
972 	rc = sfc_flow_parse_init(item,
973 				 (const void **)&spec,
974 				 (const void **)&mask,
975 				 &supp_mask,
976 				 &rte_flow_item_geneve_mask,
977 				 sizeof(struct rte_flow_item_geneve),
978 				 error);
979 	if (rc != 0)
980 		return rc;
981 
982 	rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
983 						     EFX_IPPROTO_UDP, error);
984 	if (rc != 0)
985 		return rc;
986 
987 	efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
988 	efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
989 
990 	if (spec == NULL)
991 		return 0;
992 
993 	if (mask->protocol == supp_mask.protocol) {
994 		if (spec->protocol != rte_cpu_to_be_16(RTE_ETHER_TYPE_TEB)) {
995 			rte_flow_error_set(error, EINVAL,
996 				RTE_FLOW_ERROR_TYPE_ITEM, item,
997 				"GENEVE encap. protocol must be Ethernet "
998 				"(0x6558) in the GENEVE pattern item");
999 			return -rte_errno;
1000 		}
1001 	} else if (mask->protocol != 0) {
1002 		rte_flow_error_set(error, EINVAL,
1003 			RTE_FLOW_ERROR_TYPE_ITEM, item,
1004 			"Unsupported mask for GENEVE encap. protocol");
1005 		return -rte_errno;
1006 	}
1007 
1008 	rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
1009 					       mask->vni, item, error);
1010 
1011 	return rc;
1012 }
1013 
1014 /**
1015  * Convert NVGRE item to EFX filter specification.
1016  *
1017  * @param item[in]
1018  *   Item specification. Only virtual subnet ID field is supported.
1019  *   If the mask is NULL, default mask will be used.
1020  *   Ranging is not supported.
1021  * @param efx_spec[in, out]
1022  *   EFX filter specification to update.
1023  * @param[out] error
1024  *   Perform verbose error reporting if not NULL.
1025  */
1026 static int
1027 sfc_flow_parse_nvgre(const struct rte_flow_item *item,
1028 		     struct sfc_flow_parse_ctx *parse_ctx,
1029 		     struct rte_flow_error *error)
1030 {
1031 	int rc;
1032 	efx_filter_spec_t *efx_spec = parse_ctx->filter;
1033 	const struct rte_flow_item_nvgre *spec = NULL;
1034 	const struct rte_flow_item_nvgre *mask = NULL;
1035 	const struct rte_flow_item_nvgre supp_mask = {
1036 		.tni = { 0xff, 0xff, 0xff }
1037 	};
1038 
1039 	rc = sfc_flow_parse_init(item,
1040 				 (const void **)&spec,
1041 				 (const void **)&mask,
1042 				 &supp_mask,
1043 				 &rte_flow_item_nvgre_mask,
1044 				 sizeof(struct rte_flow_item_nvgre),
1045 				 error);
1046 	if (rc != 0)
1047 		return rc;
1048 
1049 	rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
1050 						     EFX_IPPROTO_GRE, error);
1051 	if (rc != 0)
1052 		return rc;
1053 
1054 	efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
1055 	efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
1056 
1057 	if (spec == NULL)
1058 		return 0;
1059 
1060 	rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni,
1061 					       mask->tni, item, error);
1062 
1063 	return rc;
1064 }
1065 
1066 static const struct sfc_flow_item sfc_flow_items[] = {
1067 	{
1068 		.type = RTE_FLOW_ITEM_TYPE_VOID,
1069 		.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
1070 		.layer = SFC_FLOW_ITEM_ANY_LAYER,
1071 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1072 		.parse = sfc_flow_parse_void,
1073 	},
1074 	{
1075 		.type = RTE_FLOW_ITEM_TYPE_ETH,
1076 		.prev_layer = SFC_FLOW_ITEM_START_LAYER,
1077 		.layer = SFC_FLOW_ITEM_L2,
1078 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1079 		.parse = sfc_flow_parse_eth,
1080 	},
1081 	{
1082 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
1083 		.prev_layer = SFC_FLOW_ITEM_L2,
1084 		.layer = SFC_FLOW_ITEM_L2,
1085 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1086 		.parse = sfc_flow_parse_vlan,
1087 	},
1088 	{
1089 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
1090 		.prev_layer = SFC_FLOW_ITEM_L2,
1091 		.layer = SFC_FLOW_ITEM_L3,
1092 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1093 		.parse = sfc_flow_parse_ipv4,
1094 	},
1095 	{
1096 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
1097 		.prev_layer = SFC_FLOW_ITEM_L2,
1098 		.layer = SFC_FLOW_ITEM_L3,
1099 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1100 		.parse = sfc_flow_parse_ipv6,
1101 	},
1102 	{
1103 		.type = RTE_FLOW_ITEM_TYPE_TCP,
1104 		.prev_layer = SFC_FLOW_ITEM_L3,
1105 		.layer = SFC_FLOW_ITEM_L4,
1106 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1107 		.parse = sfc_flow_parse_tcp,
1108 	},
1109 	{
1110 		.type = RTE_FLOW_ITEM_TYPE_UDP,
1111 		.prev_layer = SFC_FLOW_ITEM_L3,
1112 		.layer = SFC_FLOW_ITEM_L4,
1113 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1114 		.parse = sfc_flow_parse_udp,
1115 	},
1116 	{
1117 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
1118 		.prev_layer = SFC_FLOW_ITEM_L4,
1119 		.layer = SFC_FLOW_ITEM_START_LAYER,
1120 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1121 		.parse = sfc_flow_parse_vxlan,
1122 	},
1123 	{
1124 		.type = RTE_FLOW_ITEM_TYPE_GENEVE,
1125 		.prev_layer = SFC_FLOW_ITEM_L4,
1126 		.layer = SFC_FLOW_ITEM_START_LAYER,
1127 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1128 		.parse = sfc_flow_parse_geneve,
1129 	},
1130 	{
1131 		.type = RTE_FLOW_ITEM_TYPE_NVGRE,
1132 		.prev_layer = SFC_FLOW_ITEM_L3,
1133 		.layer = SFC_FLOW_ITEM_START_LAYER,
1134 		.ctx_type = SFC_FLOW_PARSE_CTX_FILTER,
1135 		.parse = sfc_flow_parse_nvgre,
1136 	},
1137 };
1138 
1139 /*
1140  * Protocol-independent flow API support
1141  */
1142 static int
1143 sfc_flow_parse_attr(struct sfc_adapter *sa,
1144 		    const struct rte_flow_attr *attr,
1145 		    struct rte_flow *flow,
1146 		    struct rte_flow_error *error)
1147 {
1148 	struct sfc_flow_spec *spec = &flow->spec;
1149 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1150 	struct sfc_flow_spec_mae *spec_mae = &spec->mae;
1151 	struct sfc_mae *mae = &sa->mae;
1152 
1153 	if (attr == NULL) {
1154 		rte_flow_error_set(error, EINVAL,
1155 				   RTE_FLOW_ERROR_TYPE_ATTR, NULL,
1156 				   "NULL attribute");
1157 		return -rte_errno;
1158 	}
1159 	if (attr->group != 0) {
1160 		rte_flow_error_set(error, ENOTSUP,
1161 				   RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
1162 				   "Groups are not supported");
1163 		return -rte_errno;
1164 	}
1165 	if (attr->egress != 0) {
1166 		rte_flow_error_set(error, ENOTSUP,
1167 				   RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr,
1168 				   "Egress is not supported");
1169 		return -rte_errno;
1170 	}
1171 	if (attr->ingress == 0) {
1172 		rte_flow_error_set(error, ENOTSUP,
1173 				   RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr,
1174 				   "Ingress is compulsory");
1175 		return -rte_errno;
1176 	}
1177 	if (attr->transfer == 0) {
1178 		if (attr->priority != 0) {
1179 			rte_flow_error_set(error, ENOTSUP,
1180 					   RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1181 					   attr, "Priorities are unsupported");
1182 			return -rte_errno;
1183 		}
1184 		spec->type = SFC_FLOW_SPEC_FILTER;
1185 		spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX;
1186 		spec_filter->template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1187 		spec_filter->template.efs_priority = EFX_FILTER_PRI_MANUAL;
1188 	} else {
1189 		if (mae->status != SFC_MAE_STATUS_SUPPORTED) {
1190 			rte_flow_error_set(error, ENOTSUP,
1191 					   RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1192 					   attr, "Transfer is not supported");
1193 			return -rte_errno;
1194 		}
1195 		if (attr->priority > mae->nb_action_rule_prios_max) {
1196 			rte_flow_error_set(error, ENOTSUP,
1197 					   RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1198 					   attr, "Unsupported priority level");
1199 			return -rte_errno;
1200 		}
1201 		spec->type = SFC_FLOW_SPEC_MAE;
1202 		spec_mae->priority = attr->priority;
1203 		spec_mae->match_spec = NULL;
1204 	}
1205 
1206 	return 0;
1207 }
1208 
1209 /* Get item from array sfc_flow_items */
1210 static const struct sfc_flow_item *
1211 sfc_flow_get_item(const struct sfc_flow_item *items,
1212 		  unsigned int nb_items,
1213 		  enum rte_flow_item_type type)
1214 {
1215 	unsigned int i;
1216 
1217 	for (i = 0; i < nb_items; i++)
1218 		if (items[i].type == type)
1219 			return &items[i];
1220 
1221 	return NULL;
1222 }
1223 
1224 int
1225 sfc_flow_parse_pattern(const struct sfc_flow_item *flow_items,
1226 		       unsigned int nb_flow_items,
1227 		       const struct rte_flow_item pattern[],
1228 		       struct sfc_flow_parse_ctx *parse_ctx,
1229 		       struct rte_flow_error *error)
1230 {
1231 	int rc;
1232 	unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER;
1233 	boolean_t is_ifrm = B_FALSE;
1234 	const struct sfc_flow_item *item;
1235 
1236 	if (pattern == NULL) {
1237 		rte_flow_error_set(error, EINVAL,
1238 				   RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
1239 				   "NULL pattern");
1240 		return -rte_errno;
1241 	}
1242 
1243 	for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
1244 		item = sfc_flow_get_item(flow_items, nb_flow_items,
1245 					 pattern->type);
1246 		if (item == NULL) {
1247 			rte_flow_error_set(error, ENOTSUP,
1248 					   RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1249 					   "Unsupported pattern item");
1250 			return -rte_errno;
1251 		}
1252 
1253 		/*
1254 		 * Omitting one or several protocol layers at the beginning
1255 		 * of pattern is supported
1256 		 */
1257 		if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1258 		    prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1259 		    item->prev_layer != prev_layer) {
1260 			rte_flow_error_set(error, ENOTSUP,
1261 					   RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1262 					   "Unexpected sequence of pattern items");
1263 			return -rte_errno;
1264 		}
1265 
1266 		/*
1267 		 * Allow only VOID and ETH pattern items in the inner frame.
1268 		 * Also check that there is only one tunneling protocol.
1269 		 */
1270 		switch (item->type) {
1271 		case RTE_FLOW_ITEM_TYPE_VOID:
1272 		case RTE_FLOW_ITEM_TYPE_ETH:
1273 			break;
1274 
1275 		case RTE_FLOW_ITEM_TYPE_VXLAN:
1276 		case RTE_FLOW_ITEM_TYPE_GENEVE:
1277 		case RTE_FLOW_ITEM_TYPE_NVGRE:
1278 			if (is_ifrm) {
1279 				rte_flow_error_set(error, EINVAL,
1280 					RTE_FLOW_ERROR_TYPE_ITEM,
1281 					pattern,
1282 					"More than one tunneling protocol");
1283 				return -rte_errno;
1284 			}
1285 			is_ifrm = B_TRUE;
1286 			break;
1287 
1288 		default:
1289 			if (is_ifrm) {
1290 				rte_flow_error_set(error, EINVAL,
1291 					RTE_FLOW_ERROR_TYPE_ITEM,
1292 					pattern,
1293 					"There is an unsupported pattern item "
1294 					"in the inner frame");
1295 				return -rte_errno;
1296 			}
1297 			break;
1298 		}
1299 
1300 		if (parse_ctx->type != item->ctx_type) {
1301 			rte_flow_error_set(error, EINVAL,
1302 					RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1303 					"Parse context type mismatch");
1304 			return -rte_errno;
1305 		}
1306 
1307 		rc = item->parse(pattern, parse_ctx, error);
1308 		if (rc != 0)
1309 			return rc;
1310 
1311 		if (item->layer != SFC_FLOW_ITEM_ANY_LAYER)
1312 			prev_layer = item->layer;
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 static int
1319 sfc_flow_parse_queue(struct sfc_adapter *sa,
1320 		     const struct rte_flow_action_queue *queue,
1321 		     struct rte_flow *flow)
1322 {
1323 	struct sfc_flow_spec *spec = &flow->spec;
1324 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1325 	struct sfc_rxq *rxq;
1326 	struct sfc_rxq_info *rxq_info;
1327 
1328 	if (queue->index >= sfc_sa2shared(sa)->rxq_count)
1329 		return -EINVAL;
1330 
1331 	rxq = &sa->rxq_ctrl[queue->index];
1332 	spec_filter->template.efs_dmaq_id = (uint16_t)rxq->hw_index;
1333 
1334 	rxq_info = &sfc_sa2shared(sa)->rxq_info[queue->index];
1335 	spec_filter->rss_hash_required = !!(rxq_info->rxq_flags &
1336 					    SFC_RXQ_FLAG_RSS_HASH);
1337 
1338 	return 0;
1339 }
1340 
1341 static int
1342 sfc_flow_parse_rss(struct sfc_adapter *sa,
1343 		   const struct rte_flow_action_rss *action_rss,
1344 		   struct rte_flow *flow)
1345 {
1346 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1347 	struct sfc_rss *rss = &sas->rss;
1348 	unsigned int rxq_sw_index;
1349 	struct sfc_rxq *rxq;
1350 	unsigned int rxq_hw_index_min;
1351 	unsigned int rxq_hw_index_max;
1352 	efx_rx_hash_type_t efx_hash_types;
1353 	const uint8_t *rss_key;
1354 	struct sfc_flow_spec *spec = &flow->spec;
1355 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1356 	struct sfc_flow_rss *sfc_rss_conf = &spec_filter->rss_conf;
1357 	unsigned int i;
1358 
1359 	if (action_rss->queue_num == 0)
1360 		return -EINVAL;
1361 
1362 	rxq_sw_index = sfc_sa2shared(sa)->rxq_count - 1;
1363 	rxq = &sa->rxq_ctrl[rxq_sw_index];
1364 	rxq_hw_index_min = rxq->hw_index;
1365 	rxq_hw_index_max = 0;
1366 
1367 	for (i = 0; i < action_rss->queue_num; ++i) {
1368 		rxq_sw_index = action_rss->queue[i];
1369 
1370 		if (rxq_sw_index >= sfc_sa2shared(sa)->rxq_count)
1371 			return -EINVAL;
1372 
1373 		rxq = &sa->rxq_ctrl[rxq_sw_index];
1374 
1375 		if (rxq->hw_index < rxq_hw_index_min)
1376 			rxq_hw_index_min = rxq->hw_index;
1377 
1378 		if (rxq->hw_index > rxq_hw_index_max)
1379 			rxq_hw_index_max = rxq->hw_index;
1380 	}
1381 
1382 	switch (action_rss->func) {
1383 	case RTE_ETH_HASH_FUNCTION_DEFAULT:
1384 	case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1385 		break;
1386 	default:
1387 		return -EINVAL;
1388 	}
1389 
1390 	if (action_rss->level)
1391 		return -EINVAL;
1392 
1393 	/*
1394 	 * Dummy RSS action with only one queue and no specific settings
1395 	 * for hash types and key does not require dedicated RSS context
1396 	 * and may be simplified to single queue action.
1397 	 */
1398 	if (action_rss->queue_num == 1 && action_rss->types == 0 &&
1399 	    action_rss->key_len == 0) {
1400 		spec_filter->template.efs_dmaq_id = rxq_hw_index_min;
1401 		return 0;
1402 	}
1403 
1404 	if (action_rss->types) {
1405 		int rc;
1406 
1407 		rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types,
1408 					  &efx_hash_types);
1409 		if (rc != 0)
1410 			return -rc;
1411 	} else {
1412 		unsigned int i;
1413 
1414 		efx_hash_types = 0;
1415 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
1416 			efx_hash_types |= rss->hf_map[i].efx;
1417 	}
1418 
1419 	if (action_rss->key_len) {
1420 		if (action_rss->key_len != sizeof(rss->key))
1421 			return -EINVAL;
1422 
1423 		rss_key = action_rss->key;
1424 	} else {
1425 		rss_key = rss->key;
1426 	}
1427 
1428 	spec_filter->rss = B_TRUE;
1429 
1430 	sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min;
1431 	sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max;
1432 	sfc_rss_conf->rss_hash_types = efx_hash_types;
1433 	rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key));
1434 
1435 	for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) {
1436 		unsigned int nb_queues = action_rss->queue_num;
1437 		unsigned int rxq_sw_index = action_rss->queue[i % nb_queues];
1438 		struct sfc_rxq *rxq = &sa->rxq_ctrl[rxq_sw_index];
1439 
1440 		sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min;
1441 	}
1442 
1443 	return 0;
1444 }
1445 
1446 static int
1447 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec,
1448 		    unsigned int filters_count)
1449 {
1450 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1451 	unsigned int i;
1452 	int ret = 0;
1453 
1454 	for (i = 0; i < filters_count; i++) {
1455 		int rc;
1456 
1457 		rc = efx_filter_remove(sa->nic, &spec_filter->filters[i]);
1458 		if (ret == 0 && rc != 0) {
1459 			sfc_err(sa, "failed to remove filter specification "
1460 				"(rc = %d)", rc);
1461 			ret = rc;
1462 		}
1463 	}
1464 
1465 	return ret;
1466 }
1467 
1468 static int
1469 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1470 {
1471 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1472 	unsigned int i;
1473 	int rc = 0;
1474 
1475 	for (i = 0; i < spec_filter->count; i++) {
1476 		rc = efx_filter_insert(sa->nic, &spec_filter->filters[i]);
1477 		if (rc != 0) {
1478 			sfc_flow_spec_flush(sa, spec, i);
1479 			break;
1480 		}
1481 	}
1482 
1483 	return rc;
1484 }
1485 
1486 static int
1487 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1488 {
1489 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1490 
1491 	return sfc_flow_spec_flush(sa, spec, spec_filter->count);
1492 }
1493 
1494 static int
1495 sfc_flow_filter_insert(struct sfc_adapter *sa,
1496 		       struct rte_flow *flow)
1497 {
1498 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1499 	struct sfc_rss *rss = &sas->rss;
1500 	struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1501 	struct sfc_flow_rss *flow_rss = &spec_filter->rss_conf;
1502 	uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1503 	boolean_t create_context;
1504 	unsigned int i;
1505 	int rc = 0;
1506 
1507 	create_context = spec_filter->rss || (spec_filter->rss_hash_required &&
1508 			rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT);
1509 
1510 	if (create_context) {
1511 		unsigned int rss_spread;
1512 		unsigned int rss_hash_types;
1513 		uint8_t *rss_key;
1514 
1515 		if (spec_filter->rss) {
1516 			rss_spread = MIN(flow_rss->rxq_hw_index_max -
1517 					flow_rss->rxq_hw_index_min + 1,
1518 					EFX_MAXRSS);
1519 			rss_hash_types = flow_rss->rss_hash_types;
1520 			rss_key = flow_rss->rss_key;
1521 		} else {
1522 			/*
1523 			 * Initialize dummy RSS context parameters to have
1524 			 * valid RSS hash. Use default RSS hash function and
1525 			 * key.
1526 			 */
1527 			rss_spread = 1;
1528 			rss_hash_types = rss->hash_types;
1529 			rss_key = rss->key;
1530 		}
1531 
1532 		rc = efx_rx_scale_context_alloc(sa->nic,
1533 						EFX_RX_SCALE_EXCLUSIVE,
1534 						rss_spread,
1535 						&efs_rss_context);
1536 		if (rc != 0)
1537 			goto fail_scale_context_alloc;
1538 
1539 		rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context,
1540 					   rss->hash_alg,
1541 					   rss_hash_types, B_TRUE);
1542 		if (rc != 0)
1543 			goto fail_scale_mode_set;
1544 
1545 		rc = efx_rx_scale_key_set(sa->nic, efs_rss_context,
1546 					  rss_key, sizeof(rss->key));
1547 		if (rc != 0)
1548 			goto fail_scale_key_set;
1549 	} else {
1550 		efs_rss_context = rss->dummy_rss_context;
1551 	}
1552 
1553 	if (spec_filter->rss || spec_filter->rss_hash_required) {
1554 		/*
1555 		 * At this point, fully elaborated filter specifications
1556 		 * have been produced from the template. To make sure that
1557 		 * RSS behaviour is consistent between them, set the same
1558 		 * RSS context value everywhere.
1559 		 */
1560 		for (i = 0; i < spec_filter->count; i++) {
1561 			efx_filter_spec_t *spec = &spec_filter->filters[i];
1562 
1563 			spec->efs_rss_context = efs_rss_context;
1564 			spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS;
1565 			if (spec_filter->rss)
1566 				spec->efs_dmaq_id = flow_rss->rxq_hw_index_min;
1567 		}
1568 	}
1569 
1570 	rc = sfc_flow_spec_insert(sa, &flow->spec);
1571 	if (rc != 0)
1572 		goto fail_filter_insert;
1573 
1574 	if (create_context) {
1575 		unsigned int dummy_tbl[RTE_DIM(flow_rss->rss_tbl)] = {0};
1576 		unsigned int *tbl;
1577 
1578 		tbl = spec_filter->rss ? flow_rss->rss_tbl : dummy_tbl;
1579 
1580 		/*
1581 		 * Scale table is set after filter insertion because
1582 		 * the table entries are relative to the base RxQ ID
1583 		 * and the latter is submitted to the HW by means of
1584 		 * inserting a filter, so by the time of the request
1585 		 * the HW knows all the information needed to verify
1586 		 * the table entries, and the operation will succeed
1587 		 */
1588 		rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context,
1589 					  tbl, RTE_DIM(flow_rss->rss_tbl));
1590 		if (rc != 0)
1591 			goto fail_scale_tbl_set;
1592 
1593 		/* Remember created dummy RSS context */
1594 		if (!spec_filter->rss)
1595 			rss->dummy_rss_context = efs_rss_context;
1596 	}
1597 
1598 	return 0;
1599 
1600 fail_scale_tbl_set:
1601 	sfc_flow_spec_remove(sa, &flow->spec);
1602 
1603 fail_filter_insert:
1604 fail_scale_key_set:
1605 fail_scale_mode_set:
1606 	if (create_context)
1607 		efx_rx_scale_context_free(sa->nic, efs_rss_context);
1608 
1609 fail_scale_context_alloc:
1610 	return rc;
1611 }
1612 
1613 static int
1614 sfc_flow_filter_remove(struct sfc_adapter *sa,
1615 		       struct rte_flow *flow)
1616 {
1617 	struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter;
1618 	int rc = 0;
1619 
1620 	rc = sfc_flow_spec_remove(sa, &flow->spec);
1621 	if (rc != 0)
1622 		return rc;
1623 
1624 	if (spec_filter->rss) {
1625 		/*
1626 		 * All specifications for a given flow rule have the same RSS
1627 		 * context, so that RSS context value is taken from the first
1628 		 * filter specification
1629 		 */
1630 		efx_filter_spec_t *spec = &spec_filter->filters[0];
1631 
1632 		rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context);
1633 	}
1634 
1635 	return rc;
1636 }
1637 
1638 static int
1639 sfc_flow_parse_mark(struct sfc_adapter *sa,
1640 		    const struct rte_flow_action_mark *mark,
1641 		    struct rte_flow *flow)
1642 {
1643 	struct sfc_flow_spec *spec = &flow->spec;
1644 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1645 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1646 
1647 	if (mark == NULL || mark->id > encp->enc_filter_action_mark_max)
1648 		return EINVAL;
1649 
1650 	spec_filter->template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK;
1651 	spec_filter->template.efs_mark = mark->id;
1652 
1653 	return 0;
1654 }
1655 
1656 static int
1657 sfc_flow_parse_actions(struct sfc_adapter *sa,
1658 		       const struct rte_flow_action actions[],
1659 		       struct rte_flow *flow,
1660 		       struct rte_flow_error *error)
1661 {
1662 	int rc;
1663 	struct sfc_flow_spec *spec = &flow->spec;
1664 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1665 	const unsigned int dp_rx_features = sa->priv.dp_rx->features;
1666 	uint32_t actions_set = 0;
1667 	const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) |
1668 					   (1UL << RTE_FLOW_ACTION_TYPE_RSS) |
1669 					   (1UL << RTE_FLOW_ACTION_TYPE_DROP);
1670 	const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) |
1671 					   (1UL << RTE_FLOW_ACTION_TYPE_FLAG);
1672 
1673 	if (actions == NULL) {
1674 		rte_flow_error_set(error, EINVAL,
1675 				   RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
1676 				   "NULL actions");
1677 		return -rte_errno;
1678 	}
1679 
1680 #define SFC_BUILD_SET_OVERFLOW(_action, _set) \
1681 	RTE_BUILD_BUG_ON(_action >= sizeof(_set) * CHAR_BIT)
1682 
1683 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1684 		switch (actions->type) {
1685 		case RTE_FLOW_ACTION_TYPE_VOID:
1686 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID,
1687 					       actions_set);
1688 			break;
1689 
1690 		case RTE_FLOW_ACTION_TYPE_QUEUE:
1691 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE,
1692 					       actions_set);
1693 			if ((actions_set & fate_actions_mask) != 0)
1694 				goto fail_fate_actions;
1695 
1696 			rc = sfc_flow_parse_queue(sa, actions->conf, flow);
1697 			if (rc != 0) {
1698 				rte_flow_error_set(error, EINVAL,
1699 					RTE_FLOW_ERROR_TYPE_ACTION, actions,
1700 					"Bad QUEUE action");
1701 				return -rte_errno;
1702 			}
1703 			break;
1704 
1705 		case RTE_FLOW_ACTION_TYPE_RSS:
1706 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS,
1707 					       actions_set);
1708 			if ((actions_set & fate_actions_mask) != 0)
1709 				goto fail_fate_actions;
1710 
1711 			rc = sfc_flow_parse_rss(sa, actions->conf, flow);
1712 			if (rc != 0) {
1713 				rte_flow_error_set(error, -rc,
1714 					RTE_FLOW_ERROR_TYPE_ACTION, actions,
1715 					"Bad RSS action");
1716 				return -rte_errno;
1717 			}
1718 			break;
1719 
1720 		case RTE_FLOW_ACTION_TYPE_DROP:
1721 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
1722 					       actions_set);
1723 			if ((actions_set & fate_actions_mask) != 0)
1724 				goto fail_fate_actions;
1725 
1726 			spec_filter->template.efs_dmaq_id =
1727 				EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1728 			break;
1729 
1730 		case RTE_FLOW_ACTION_TYPE_FLAG:
1731 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
1732 					       actions_set);
1733 			if ((actions_set & mark_actions_mask) != 0)
1734 				goto fail_actions_overlap;
1735 
1736 			if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) {
1737 				rte_flow_error_set(error, ENOTSUP,
1738 					RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1739 					"FLAG action is not supported on the current Rx datapath");
1740 				return -rte_errno;
1741 			}
1742 
1743 			spec_filter->template.efs_flags |=
1744 				EFX_FILTER_FLAG_ACTION_FLAG;
1745 			break;
1746 
1747 		case RTE_FLOW_ACTION_TYPE_MARK:
1748 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
1749 					       actions_set);
1750 			if ((actions_set & mark_actions_mask) != 0)
1751 				goto fail_actions_overlap;
1752 
1753 			if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) {
1754 				rte_flow_error_set(error, ENOTSUP,
1755 					RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1756 					"MARK action is not supported on the current Rx datapath");
1757 				return -rte_errno;
1758 			}
1759 
1760 			rc = sfc_flow_parse_mark(sa, actions->conf, flow);
1761 			if (rc != 0) {
1762 				rte_flow_error_set(error, rc,
1763 					RTE_FLOW_ERROR_TYPE_ACTION, actions,
1764 					"Bad MARK action");
1765 				return -rte_errno;
1766 			}
1767 			break;
1768 
1769 		default:
1770 			rte_flow_error_set(error, ENOTSUP,
1771 					   RTE_FLOW_ERROR_TYPE_ACTION, actions,
1772 					   "Action is not supported");
1773 			return -rte_errno;
1774 		}
1775 
1776 		actions_set |= (1UL << actions->type);
1777 	}
1778 #undef SFC_BUILD_SET_OVERFLOW
1779 
1780 	/* When fate is unknown, drop traffic. */
1781 	if ((actions_set & fate_actions_mask) == 0) {
1782 		spec_filter->template.efs_dmaq_id =
1783 			EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1784 	}
1785 
1786 	return 0;
1787 
1788 fail_fate_actions:
1789 	rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1790 			   "Cannot combine several fate-deciding actions, "
1791 			   "choose between QUEUE, RSS or DROP");
1792 	return -rte_errno;
1793 
1794 fail_actions_overlap:
1795 	rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1796 			   "Overlapping actions are not supported");
1797 	return -rte_errno;
1798 }
1799 
1800 /**
1801  * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST
1802  * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same
1803  * specifications after copying.
1804  *
1805  * @param spec[in, out]
1806  *   SFC flow specification to update.
1807  * @param filters_count_for_one_val[in]
1808  *   How many specifications should have the same match flag, what is the
1809  *   number of specifications before copying.
1810  * @param error[out]
1811  *   Perform verbose error reporting if not NULL.
1812  */
1813 static int
1814 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec,
1815 			       unsigned int filters_count_for_one_val,
1816 			       struct rte_flow_error *error)
1817 {
1818 	unsigned int i;
1819 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1820 	static const efx_filter_match_flags_t vals[] = {
1821 		EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
1822 		EFX_FILTER_MATCH_UNKNOWN_MCAST_DST
1823 	};
1824 
1825 	if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1826 		rte_flow_error_set(error, EINVAL,
1827 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1828 			"Number of specifications is incorrect while copying "
1829 			"by unknown destination flags");
1830 		return -rte_errno;
1831 	}
1832 
1833 	for (i = 0; i < spec_filter->count; i++) {
1834 		/* The check above ensures that divisor can't be zero here */
1835 		spec_filter->filters[i].efs_match_flags |=
1836 			vals[i / filters_count_for_one_val];
1837 	}
1838 
1839 	return 0;
1840 }
1841 
1842 /**
1843  * Check that the following conditions are met:
1844  * - the list of supported filters has a filter
1845  *   with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of
1846  *   EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also
1847  *   be inserted.
1848  *
1849  * @param match[in]
1850  *   The match flags of filter.
1851  * @param spec[in]
1852  *   Specification to be supplemented.
1853  * @param filter[in]
1854  *   SFC filter with list of supported filters.
1855  */
1856 static boolean_t
1857 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match,
1858 				 __rte_unused efx_filter_spec_t *spec,
1859 				 struct sfc_filter *filter)
1860 {
1861 	unsigned int i;
1862 	efx_filter_match_flags_t match_mcast_dst;
1863 
1864 	match_mcast_dst =
1865 		(match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) |
1866 		EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
1867 	for (i = 0; i < filter->supported_match_num; i++) {
1868 		if (match_mcast_dst == filter->supported_match[i])
1869 			return B_TRUE;
1870 	}
1871 
1872 	return B_FALSE;
1873 }
1874 
1875 /**
1876  * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and
1877  * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same
1878  * specifications after copying.
1879  *
1880  * @param spec[in, out]
1881  *   SFC flow specification to update.
1882  * @param filters_count_for_one_val[in]
1883  *   How many specifications should have the same EtherType value, what is the
1884  *   number of specifications before copying.
1885  * @param error[out]
1886  *   Perform verbose error reporting if not NULL.
1887  */
1888 static int
1889 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec,
1890 			unsigned int filters_count_for_one_val,
1891 			struct rte_flow_error *error)
1892 {
1893 	unsigned int i;
1894 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1895 	static const uint16_t vals[] = {
1896 		EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6
1897 	};
1898 
1899 	if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1900 		rte_flow_error_set(error, EINVAL,
1901 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1902 			"Number of specifications is incorrect "
1903 			"while copying by Ethertype");
1904 		return -rte_errno;
1905 	}
1906 
1907 	for (i = 0; i < spec_filter->count; i++) {
1908 		spec_filter->filters[i].efs_match_flags |=
1909 			EFX_FILTER_MATCH_ETHER_TYPE;
1910 
1911 		/*
1912 		 * The check above ensures that
1913 		 * filters_count_for_one_val is not 0
1914 		 */
1915 		spec_filter->filters[i].efs_ether_type =
1916 			vals[i / filters_count_for_one_val];
1917 	}
1918 
1919 	return 0;
1920 }
1921 
1922 /**
1923  * Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0
1924  * in the same specifications after copying.
1925  *
1926  * @param spec[in, out]
1927  *   SFC flow specification to update.
1928  * @param filters_count_for_one_val[in]
1929  *   How many specifications should have the same match flag, what is the
1930  *   number of specifications before copying.
1931  * @param error[out]
1932  *   Perform verbose error reporting if not NULL.
1933  */
1934 static int
1935 sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec,
1936 			    unsigned int filters_count_for_one_val,
1937 			    struct rte_flow_error *error)
1938 {
1939 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1940 	unsigned int i;
1941 
1942 	if (filters_count_for_one_val != spec_filter->count) {
1943 		rte_flow_error_set(error, EINVAL,
1944 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1945 			"Number of specifications is incorrect "
1946 			"while copying by outer VLAN ID");
1947 		return -rte_errno;
1948 	}
1949 
1950 	for (i = 0; i < spec_filter->count; i++) {
1951 		spec_filter->filters[i].efs_match_flags |=
1952 			EFX_FILTER_MATCH_OUTER_VID;
1953 
1954 		spec_filter->filters[i].efs_outer_vid = 0;
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 /**
1961  * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and
1962  * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same
1963  * specifications after copying.
1964  *
1965  * @param spec[in, out]
1966  *   SFC flow specification to update.
1967  * @param filters_count_for_one_val[in]
1968  *   How many specifications should have the same match flag, what is the
1969  *   number of specifications before copying.
1970  * @param error[out]
1971  *   Perform verbose error reporting if not NULL.
1972  */
1973 static int
1974 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec,
1975 				    unsigned int filters_count_for_one_val,
1976 				    struct rte_flow_error *error)
1977 {
1978 	unsigned int i;
1979 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
1980 	static const efx_filter_match_flags_t vals[] = {
1981 		EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
1982 		EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST
1983 	};
1984 
1985 	if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) {
1986 		rte_flow_error_set(error, EINVAL,
1987 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1988 			"Number of specifications is incorrect while copying "
1989 			"by inner frame unknown destination flags");
1990 		return -rte_errno;
1991 	}
1992 
1993 	for (i = 0; i < spec_filter->count; i++) {
1994 		/* The check above ensures that divisor can't be zero here */
1995 		spec_filter->filters[i].efs_match_flags |=
1996 			vals[i / filters_count_for_one_val];
1997 	}
1998 
1999 	return 0;
2000 }
2001 
2002 /**
2003  * Check that the following conditions are met:
2004  * - the specification corresponds to a filter for encapsulated traffic
2005  * - the list of supported filters has a filter
2006  *   with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of
2007  *   EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also
2008  *   be inserted.
2009  *
2010  * @param match[in]
2011  *   The match flags of filter.
2012  * @param spec[in]
2013  *   Specification to be supplemented.
2014  * @param filter[in]
2015  *   SFC filter with list of supported filters.
2016  */
2017 static boolean_t
2018 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match,
2019 				      efx_filter_spec_t *spec,
2020 				      struct sfc_filter *filter)
2021 {
2022 	unsigned int i;
2023 	efx_tunnel_protocol_t encap_type = spec->efs_encap_type;
2024 	efx_filter_match_flags_t match_mcast_dst;
2025 
2026 	if (encap_type == EFX_TUNNEL_PROTOCOL_NONE)
2027 		return B_FALSE;
2028 
2029 	match_mcast_dst =
2030 		(match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) |
2031 		EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST;
2032 	for (i = 0; i < filter->supported_match_num; i++) {
2033 		if (match_mcast_dst == filter->supported_match[i])
2034 			return B_TRUE;
2035 	}
2036 
2037 	return B_FALSE;
2038 }
2039 
2040 /**
2041  * Check that the list of supported filters has a filter that differs
2042  * from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID
2043  * in this case that filter will be used and the flag
2044  * EFX_FILTER_MATCH_OUTER_VID is not needed.
2045  *
2046  * @param match[in]
2047  *   The match flags of filter.
2048  * @param spec[in]
2049  *   Specification to be supplemented.
2050  * @param filter[in]
2051  *   SFC filter with list of supported filters.
2052  */
2053 static boolean_t
2054 sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match,
2055 			      __rte_unused efx_filter_spec_t *spec,
2056 			      struct sfc_filter *filter)
2057 {
2058 	unsigned int i;
2059 	efx_filter_match_flags_t match_without_vid =
2060 		match & ~EFX_FILTER_MATCH_OUTER_VID;
2061 
2062 	for (i = 0; i < filter->supported_match_num; i++) {
2063 		if (match_without_vid == filter->supported_match[i])
2064 			return B_FALSE;
2065 	}
2066 
2067 	return B_TRUE;
2068 }
2069 
2070 /*
2071  * Match flags that can be automatically added to filters.
2072  * Selecting the last minimum when searching for the copy flag ensures that the
2073  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than
2074  * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter
2075  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported
2076  * filters.
2077  */
2078 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = {
2079 	{
2080 		.flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
2081 		.vals_count = 2,
2082 		.set_vals = sfc_flow_set_unknown_dst_flags,
2083 		.spec_check = sfc_flow_check_unknown_dst_flags,
2084 	},
2085 	{
2086 		.flag = EFX_FILTER_MATCH_ETHER_TYPE,
2087 		.vals_count = 2,
2088 		.set_vals = sfc_flow_set_ethertypes,
2089 		.spec_check = NULL,
2090 	},
2091 	{
2092 		.flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
2093 		.vals_count = 2,
2094 		.set_vals = sfc_flow_set_ifrm_unknown_dst_flags,
2095 		.spec_check = sfc_flow_check_ifrm_unknown_dst_flags,
2096 	},
2097 	{
2098 		.flag = EFX_FILTER_MATCH_OUTER_VID,
2099 		.vals_count = 1,
2100 		.set_vals = sfc_flow_set_outer_vid_flag,
2101 		.spec_check = sfc_flow_check_outer_vid_flag,
2102 	},
2103 };
2104 
2105 /* Get item from array sfc_flow_copy_flags */
2106 static const struct sfc_flow_copy_flag *
2107 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag)
2108 {
2109 	unsigned int i;
2110 
2111 	for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2112 		if (sfc_flow_copy_flags[i].flag == flag)
2113 			return &sfc_flow_copy_flags[i];
2114 	}
2115 
2116 	return NULL;
2117 }
2118 
2119 /**
2120  * Make copies of the specifications, set match flag and values
2121  * of the field that corresponds to it.
2122  *
2123  * @param spec[in, out]
2124  *   SFC flow specification to update.
2125  * @param flag[in]
2126  *   The match flag to add.
2127  * @param error[out]
2128  *   Perform verbose error reporting if not NULL.
2129  */
2130 static int
2131 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec,
2132 			     efx_filter_match_flags_t flag,
2133 			     struct rte_flow_error *error)
2134 {
2135 	unsigned int i;
2136 	unsigned int new_filters_count;
2137 	unsigned int filters_count_for_one_val;
2138 	const struct sfc_flow_copy_flag *copy_flag;
2139 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2140 	int rc;
2141 
2142 	copy_flag = sfc_flow_get_copy_flag(flag);
2143 	if (copy_flag == NULL) {
2144 		rte_flow_error_set(error, ENOTSUP,
2145 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2146 				   "Unsupported spec field for copying");
2147 		return -rte_errno;
2148 	}
2149 
2150 	new_filters_count = spec_filter->count * copy_flag->vals_count;
2151 	if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) {
2152 		rte_flow_error_set(error, EINVAL,
2153 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2154 			"Too much EFX specifications in the flow rule");
2155 		return -rte_errno;
2156 	}
2157 
2158 	/* Copy filters specifications */
2159 	for (i = spec_filter->count; i < new_filters_count; i++) {
2160 		spec_filter->filters[i] =
2161 			spec_filter->filters[i - spec_filter->count];
2162 	}
2163 
2164 	filters_count_for_one_val = spec_filter->count;
2165 	spec_filter->count = new_filters_count;
2166 
2167 	rc = copy_flag->set_vals(spec, filters_count_for_one_val, error);
2168 	if (rc != 0)
2169 		return rc;
2170 
2171 	return 0;
2172 }
2173 
2174 /**
2175  * Check that the given set of match flags missing in the original filter spec
2176  * could be covered by adding spec copies which specify the corresponding
2177  * flags and packet field values to match.
2178  *
2179  * @param miss_flags[in]
2180  *   Flags that are missing until the supported filter.
2181  * @param spec[in]
2182  *   Specification to be supplemented.
2183  * @param filter[in]
2184  *   SFC filter.
2185  *
2186  * @return
2187  *   Number of specifications after copy or 0, if the flags can not be added.
2188  */
2189 static unsigned int
2190 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags,
2191 			     efx_filter_spec_t *spec,
2192 			     struct sfc_filter *filter)
2193 {
2194 	unsigned int i;
2195 	efx_filter_match_flags_t copy_flags = 0;
2196 	efx_filter_match_flags_t flag;
2197 	efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags;
2198 	sfc_flow_spec_check *check;
2199 	unsigned int multiplier = 1;
2200 
2201 	for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2202 		flag = sfc_flow_copy_flags[i].flag;
2203 		check = sfc_flow_copy_flags[i].spec_check;
2204 		if ((flag & miss_flags) == flag) {
2205 			if (check != NULL && (!check(match, spec, filter)))
2206 				continue;
2207 
2208 			copy_flags |= flag;
2209 			multiplier *= sfc_flow_copy_flags[i].vals_count;
2210 		}
2211 	}
2212 
2213 	if (copy_flags == miss_flags)
2214 		return multiplier;
2215 
2216 	return 0;
2217 }
2218 
2219 /**
2220  * Attempt to supplement the specification template to the minimally
2221  * supported set of match flags. To do this, it is necessary to copy
2222  * the specifications, filling them with the values of fields that
2223  * correspond to the missing flags.
2224  * The necessary and sufficient filter is built from the fewest number
2225  * of copies which could be made to cover the minimally required set
2226  * of flags.
2227  *
2228  * @param sa[in]
2229  *   SFC adapter.
2230  * @param spec[in, out]
2231  *   SFC flow specification to update.
2232  * @param error[out]
2233  *   Perform verbose error reporting if not NULL.
2234  */
2235 static int
2236 sfc_flow_spec_filters_complete(struct sfc_adapter *sa,
2237 			       struct sfc_flow_spec *spec,
2238 			       struct rte_flow_error *error)
2239 {
2240 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2241 	struct sfc_filter *filter = &sa->filter;
2242 	efx_filter_match_flags_t miss_flags;
2243 	efx_filter_match_flags_t min_miss_flags = 0;
2244 	efx_filter_match_flags_t match;
2245 	unsigned int min_multiplier = UINT_MAX;
2246 	unsigned int multiplier;
2247 	unsigned int i;
2248 	int rc;
2249 
2250 	match = spec_filter->template.efs_match_flags;
2251 	for (i = 0; i < filter->supported_match_num; i++) {
2252 		if ((match & filter->supported_match[i]) == match) {
2253 			miss_flags = filter->supported_match[i] & (~match);
2254 			multiplier = sfc_flow_check_missing_flags(miss_flags,
2255 				&spec_filter->template, filter);
2256 			if (multiplier > 0) {
2257 				if (multiplier <= min_multiplier) {
2258 					min_multiplier = multiplier;
2259 					min_miss_flags = miss_flags;
2260 				}
2261 			}
2262 		}
2263 	}
2264 
2265 	if (min_multiplier == UINT_MAX) {
2266 		rte_flow_error_set(error, ENOTSUP,
2267 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2268 				   "The flow rule pattern is unsupported");
2269 		return -rte_errno;
2270 	}
2271 
2272 	for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2273 		efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag;
2274 
2275 		if ((flag & min_miss_flags) == flag) {
2276 			rc = sfc_flow_spec_add_match_flag(spec, flag, error);
2277 			if (rc != 0)
2278 				return rc;
2279 		}
2280 	}
2281 
2282 	return 0;
2283 }
2284 
2285 /**
2286  * Check that set of match flags is referred to by a filter. Filter is
2287  * described by match flags with the ability to add OUTER_VID and INNER_VID
2288  * flags.
2289  *
2290  * @param match_flags[in]
2291  *   Set of match flags.
2292  * @param flags_pattern[in]
2293  *   Pattern of filter match flags.
2294  */
2295 static boolean_t
2296 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags,
2297 			    efx_filter_match_flags_t flags_pattern)
2298 {
2299 	if ((match_flags & flags_pattern) != flags_pattern)
2300 		return B_FALSE;
2301 
2302 	switch (match_flags & ~flags_pattern) {
2303 	case 0:
2304 	case EFX_FILTER_MATCH_OUTER_VID:
2305 	case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID:
2306 		return B_TRUE;
2307 	default:
2308 		return B_FALSE;
2309 	}
2310 }
2311 
2312 /**
2313  * Check whether the spec maps to a hardware filter which is known to be
2314  * ineffective despite being valid.
2315  *
2316  * @param filter[in]
2317  *   SFC filter with list of supported filters.
2318  * @param spec[in]
2319  *   SFC flow specification.
2320  */
2321 static boolean_t
2322 sfc_flow_is_match_flags_exception(struct sfc_filter *filter,
2323 				  struct sfc_flow_spec *spec)
2324 {
2325 	unsigned int i;
2326 	uint16_t ether_type;
2327 	uint8_t ip_proto;
2328 	efx_filter_match_flags_t match_flags;
2329 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2330 
2331 	for (i = 0; i < spec_filter->count; i++) {
2332 		match_flags = spec_filter->filters[i].efs_match_flags;
2333 
2334 		if (sfc_flow_is_match_with_vids(match_flags,
2335 						EFX_FILTER_MATCH_ETHER_TYPE) ||
2336 		    sfc_flow_is_match_with_vids(match_flags,
2337 						EFX_FILTER_MATCH_ETHER_TYPE |
2338 						EFX_FILTER_MATCH_LOC_MAC)) {
2339 			ether_type = spec_filter->filters[i].efs_ether_type;
2340 			if (filter->supports_ip_proto_or_addr_filter &&
2341 			    (ether_type == EFX_ETHER_TYPE_IPV4 ||
2342 			     ether_type == EFX_ETHER_TYPE_IPV6))
2343 				return B_TRUE;
2344 		} else if (sfc_flow_is_match_with_vids(match_flags,
2345 				EFX_FILTER_MATCH_ETHER_TYPE |
2346 				EFX_FILTER_MATCH_IP_PROTO) ||
2347 			   sfc_flow_is_match_with_vids(match_flags,
2348 				EFX_FILTER_MATCH_ETHER_TYPE |
2349 				EFX_FILTER_MATCH_IP_PROTO |
2350 				EFX_FILTER_MATCH_LOC_MAC)) {
2351 			ip_proto = spec_filter->filters[i].efs_ip_proto;
2352 			if (filter->supports_rem_or_local_port_filter &&
2353 			    (ip_proto == EFX_IPPROTO_TCP ||
2354 			     ip_proto == EFX_IPPROTO_UDP))
2355 				return B_TRUE;
2356 		}
2357 	}
2358 
2359 	return B_FALSE;
2360 }
2361 
2362 static int
2363 sfc_flow_validate_match_flags(struct sfc_adapter *sa,
2364 			      struct rte_flow *flow,
2365 			      struct rte_flow_error *error)
2366 {
2367 	struct sfc_flow_spec *spec = &flow->spec;
2368 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2369 	efx_filter_spec_t *spec_tmpl = &spec_filter->template;
2370 	efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags;
2371 	int rc;
2372 
2373 	/* Initialize the first filter spec with template */
2374 	spec_filter->filters[0] = *spec_tmpl;
2375 	spec_filter->count = 1;
2376 
2377 	if (!sfc_filter_is_match_supported(sa, match_flags)) {
2378 		rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error);
2379 		if (rc != 0)
2380 			return rc;
2381 	}
2382 
2383 	if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) {
2384 		rte_flow_error_set(error, ENOTSUP,
2385 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2386 			"The flow rule pattern is unsupported");
2387 		return -rte_errno;
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 static int
2394 sfc_flow_parse_rte_to_filter(struct rte_eth_dev *dev,
2395 			     const struct rte_flow_item pattern[],
2396 			     const struct rte_flow_action actions[],
2397 			     struct rte_flow *flow,
2398 			     struct rte_flow_error *error)
2399 {
2400 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2401 	struct sfc_flow_spec *spec = &flow->spec;
2402 	struct sfc_flow_spec_filter *spec_filter = &spec->filter;
2403 	struct sfc_flow_parse_ctx ctx;
2404 	int rc;
2405 
2406 	ctx.type = SFC_FLOW_PARSE_CTX_FILTER;
2407 	ctx.filter = &spec_filter->template;
2408 
2409 	rc = sfc_flow_parse_pattern(sfc_flow_items, RTE_DIM(sfc_flow_items),
2410 				    pattern, &ctx, error);
2411 	if (rc != 0)
2412 		goto fail_bad_value;
2413 
2414 	rc = sfc_flow_parse_actions(sa, actions, flow, error);
2415 	if (rc != 0)
2416 		goto fail_bad_value;
2417 
2418 	rc = sfc_flow_validate_match_flags(sa, flow, error);
2419 	if (rc != 0)
2420 		goto fail_bad_value;
2421 
2422 	return 0;
2423 
2424 fail_bad_value:
2425 	return rc;
2426 }
2427 
2428 static int
2429 sfc_flow_parse_rte_to_mae(struct rte_eth_dev *dev,
2430 			  const struct rte_flow_item pattern[],
2431 			  __rte_unused const struct rte_flow_action actions[],
2432 			  struct rte_flow *flow,
2433 			  struct rte_flow_error *error)
2434 {
2435 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2436 	struct sfc_flow_spec *spec = &flow->spec;
2437 	struct sfc_flow_spec_mae *spec_mae = &spec->mae;
2438 	int rc;
2439 
2440 	rc = sfc_mae_rule_parse_pattern(sa, pattern, spec_mae, error);
2441 	if (rc != 0)
2442 		return rc;
2443 
2444 	return 0;
2445 }
2446 
2447 static int
2448 sfc_flow_parse(struct rte_eth_dev *dev,
2449 	       const struct rte_flow_attr *attr,
2450 	       const struct rte_flow_item pattern[],
2451 	       const struct rte_flow_action actions[],
2452 	       struct rte_flow *flow,
2453 	       struct rte_flow_error *error)
2454 {
2455 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2456 	const struct sfc_flow_ops_by_spec *ops;
2457 	int rc;
2458 
2459 	rc = sfc_flow_parse_attr(sa, attr, flow, error);
2460 	if (rc != 0)
2461 		return rc;
2462 
2463 	ops = sfc_flow_get_ops_by_spec(flow);
2464 	if (ops == NULL || ops->parse == NULL) {
2465 		rte_flow_error_set(error, ENOTSUP,
2466 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2467 				   "No backend to handle this flow");
2468 		return -rte_errno;
2469 	}
2470 
2471 	return ops->parse(dev, pattern, actions, flow, error);
2472 }
2473 
2474 static struct rte_flow *
2475 sfc_flow_zmalloc(struct rte_flow_error *error)
2476 {
2477 	struct rte_flow *flow;
2478 
2479 	flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0);
2480 	if (flow == NULL) {
2481 		rte_flow_error_set(error, ENOMEM,
2482 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2483 				   "Failed to allocate memory");
2484 	}
2485 
2486 	return flow;
2487 }
2488 
2489 static void
2490 sfc_flow_free(struct sfc_adapter *sa, struct rte_flow *flow)
2491 {
2492 	const struct sfc_flow_ops_by_spec *ops;
2493 
2494 	ops = sfc_flow_get_ops_by_spec(flow);
2495 	if (ops != NULL && ops->cleanup != NULL)
2496 		ops->cleanup(sa, flow);
2497 
2498 	rte_free(flow);
2499 }
2500 
2501 static int
2502 sfc_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow,
2503 		struct rte_flow_error *error)
2504 {
2505 	const struct sfc_flow_ops_by_spec *ops;
2506 	int rc;
2507 
2508 	ops = sfc_flow_get_ops_by_spec(flow);
2509 	if (ops == NULL || ops->insert == NULL) {
2510 		rte_flow_error_set(error, ENOTSUP,
2511 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2512 				   "No backend to handle this flow");
2513 		return rte_errno;
2514 	}
2515 
2516 	rc = ops->insert(sa, flow);
2517 	if (rc != 0) {
2518 		rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2519 				   NULL, "Failed to insert the flow rule");
2520 	}
2521 
2522 	return rc;
2523 }
2524 
2525 static int
2526 sfc_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow,
2527 		struct rte_flow_error *error)
2528 {
2529 	const struct sfc_flow_ops_by_spec *ops;
2530 	int rc;
2531 
2532 	ops = sfc_flow_get_ops_by_spec(flow);
2533 	if (ops == NULL || ops->remove == NULL) {
2534 		rte_flow_error_set(error, ENOTSUP,
2535 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2536 				   "No backend to handle this flow");
2537 		return rte_errno;
2538 	}
2539 
2540 	rc = ops->remove(sa, flow);
2541 	if (rc != 0) {
2542 		rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2543 				   NULL, "Failed to remove the flow rule");
2544 	}
2545 
2546 	return rc;
2547 }
2548 
2549 static int
2550 sfc_flow_verify(struct sfc_adapter *sa, struct rte_flow *flow,
2551 		struct rte_flow_error *error)
2552 {
2553 	const struct sfc_flow_ops_by_spec *ops;
2554 	int rc = 0;
2555 
2556 	ops = sfc_flow_get_ops_by_spec(flow);
2557 	if (ops == NULL) {
2558 		rte_flow_error_set(error, ENOTSUP,
2559 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2560 				   "No backend to handle this flow");
2561 		return -rte_errno;
2562 	}
2563 
2564 	if (ops->verify != NULL) {
2565 		/*
2566 		 * Use locking since verify method may need to
2567 		 * access the list of already created rules.
2568 		 */
2569 		sfc_adapter_lock(sa);
2570 		rc = ops->verify(sa, flow);
2571 		sfc_adapter_unlock(sa);
2572 	}
2573 
2574 	if (rc != 0) {
2575 		rte_flow_error_set(error, rc,
2576 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2577 			"Failed to verify flow validity with FW");
2578 		return -rte_errno;
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 static int
2585 sfc_flow_validate(struct rte_eth_dev *dev,
2586 		  const struct rte_flow_attr *attr,
2587 		  const struct rte_flow_item pattern[],
2588 		  const struct rte_flow_action actions[],
2589 		  struct rte_flow_error *error)
2590 {
2591 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2592 	struct rte_flow *flow;
2593 	int rc;
2594 
2595 	flow = sfc_flow_zmalloc(error);
2596 	if (flow == NULL)
2597 		return -rte_errno;
2598 
2599 	rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2600 	if (rc == 0)
2601 		rc = sfc_flow_verify(sa, flow, error);
2602 
2603 	sfc_flow_free(sa, flow);
2604 
2605 	return rc;
2606 }
2607 
2608 static struct rte_flow *
2609 sfc_flow_create(struct rte_eth_dev *dev,
2610 		const struct rte_flow_attr *attr,
2611 		const struct rte_flow_item pattern[],
2612 		const struct rte_flow_action actions[],
2613 		struct rte_flow_error *error)
2614 {
2615 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2616 	struct rte_flow *flow = NULL;
2617 	int rc;
2618 
2619 	flow = sfc_flow_zmalloc(error);
2620 	if (flow == NULL)
2621 		goto fail_no_mem;
2622 
2623 	rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2624 	if (rc != 0)
2625 		goto fail_bad_value;
2626 
2627 	sfc_adapter_lock(sa);
2628 
2629 	TAILQ_INSERT_TAIL(&sa->flow_list, flow, entries);
2630 
2631 	if (sa->state == SFC_ADAPTER_STARTED) {
2632 		rc = sfc_flow_insert(sa, flow, error);
2633 		if (rc != 0)
2634 			goto fail_flow_insert;
2635 	}
2636 
2637 	sfc_adapter_unlock(sa);
2638 
2639 	return flow;
2640 
2641 fail_flow_insert:
2642 	TAILQ_REMOVE(&sa->flow_list, flow, entries);
2643 
2644 fail_bad_value:
2645 	sfc_flow_free(sa, flow);
2646 	sfc_adapter_unlock(sa);
2647 
2648 fail_no_mem:
2649 	return NULL;
2650 }
2651 
2652 static int
2653 sfc_flow_destroy(struct rte_eth_dev *dev,
2654 		 struct rte_flow *flow,
2655 		 struct rte_flow_error *error)
2656 {
2657 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2658 	struct rte_flow *flow_ptr;
2659 	int rc = EINVAL;
2660 
2661 	sfc_adapter_lock(sa);
2662 
2663 	TAILQ_FOREACH(flow_ptr, &sa->flow_list, entries) {
2664 		if (flow_ptr == flow)
2665 			rc = 0;
2666 	}
2667 	if (rc != 0) {
2668 		rte_flow_error_set(error, rc,
2669 				   RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
2670 				   "Failed to find flow rule to destroy");
2671 		goto fail_bad_value;
2672 	}
2673 
2674 	if (sa->state == SFC_ADAPTER_STARTED)
2675 		rc = sfc_flow_remove(sa, flow, error);
2676 
2677 	TAILQ_REMOVE(&sa->flow_list, flow, entries);
2678 	sfc_flow_free(sa, flow);
2679 
2680 fail_bad_value:
2681 	sfc_adapter_unlock(sa);
2682 
2683 	return -rc;
2684 }
2685 
2686 static int
2687 sfc_flow_flush(struct rte_eth_dev *dev,
2688 	       struct rte_flow_error *error)
2689 {
2690 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2691 	struct rte_flow *flow;
2692 	int ret = 0;
2693 
2694 	sfc_adapter_lock(sa);
2695 
2696 	while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2697 		if (sa->state == SFC_ADAPTER_STARTED) {
2698 			int rc;
2699 
2700 			rc = sfc_flow_remove(sa, flow, error);
2701 			if (rc != 0)
2702 				ret = rc;
2703 		}
2704 
2705 		TAILQ_REMOVE(&sa->flow_list, flow, entries);
2706 		sfc_flow_free(sa, flow);
2707 	}
2708 
2709 	sfc_adapter_unlock(sa);
2710 
2711 	return -ret;
2712 }
2713 
2714 static int
2715 sfc_flow_isolate(struct rte_eth_dev *dev, int enable,
2716 		 struct rte_flow_error *error)
2717 {
2718 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2719 	int ret = 0;
2720 
2721 	sfc_adapter_lock(sa);
2722 	if (sa->state != SFC_ADAPTER_INITIALIZED) {
2723 		rte_flow_error_set(error, EBUSY,
2724 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2725 				   NULL, "please close the port first");
2726 		ret = -rte_errno;
2727 	} else {
2728 		sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE;
2729 	}
2730 	sfc_adapter_unlock(sa);
2731 
2732 	return ret;
2733 }
2734 
2735 const struct rte_flow_ops sfc_flow_ops = {
2736 	.validate = sfc_flow_validate,
2737 	.create = sfc_flow_create,
2738 	.destroy = sfc_flow_destroy,
2739 	.flush = sfc_flow_flush,
2740 	.query = NULL,
2741 	.isolate = sfc_flow_isolate,
2742 };
2743 
2744 void
2745 sfc_flow_init(struct sfc_adapter *sa)
2746 {
2747 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2748 
2749 	TAILQ_INIT(&sa->flow_list);
2750 }
2751 
2752 void
2753 sfc_flow_fini(struct sfc_adapter *sa)
2754 {
2755 	struct rte_flow *flow;
2756 
2757 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2758 
2759 	while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) {
2760 		TAILQ_REMOVE(&sa->flow_list, flow, entries);
2761 		sfc_flow_free(sa, flow);
2762 	}
2763 }
2764 
2765 void
2766 sfc_flow_stop(struct sfc_adapter *sa)
2767 {
2768 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
2769 	struct sfc_rss *rss = &sas->rss;
2770 	struct rte_flow *flow;
2771 
2772 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2773 
2774 	TAILQ_FOREACH(flow, &sa->flow_list, entries)
2775 		sfc_flow_remove(sa, flow, NULL);
2776 
2777 	if (rss->dummy_rss_context != EFX_RSS_CONTEXT_DEFAULT) {
2778 		efx_rx_scale_context_free(sa->nic, rss->dummy_rss_context);
2779 		rss->dummy_rss_context = EFX_RSS_CONTEXT_DEFAULT;
2780 	}
2781 }
2782 
2783 int
2784 sfc_flow_start(struct sfc_adapter *sa)
2785 {
2786 	struct rte_flow *flow;
2787 	int rc = 0;
2788 
2789 	sfc_log_init(sa, "entry");
2790 
2791 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2792 
2793 	TAILQ_FOREACH(flow, &sa->flow_list, entries) {
2794 		rc = sfc_flow_insert(sa, flow, NULL);
2795 		if (rc != 0)
2796 			goto fail_bad_flow;
2797 	}
2798 
2799 	sfc_log_init(sa, "done");
2800 
2801 fail_bad_flow:
2802 	return rc;
2803 }
2804