1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2021 Xilinx, Inc. 4 * Copyright(c) 2017-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_byteorder.h> 11 #include <rte_tailq.h> 12 #include <rte_common.h> 13 #include <ethdev_driver.h> 14 #include <rte_ether.h> 15 #include <rte_flow.h> 16 #include <rte_flow_driver.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_debug.h" 22 #include "sfc_rx.h" 23 #include "sfc_filter.h" 24 #include "sfc_flow.h" 25 #include "sfc_flow_rss.h" 26 #include "sfc_flow_tunnel.h" 27 #include "sfc_log.h" 28 #include "sfc_dp_rx.h" 29 #include "sfc_mae_counter.h" 30 #include "sfc_switch.h" 31 32 struct sfc_flow_ops_by_spec { 33 sfc_flow_parse_cb_t *parse; 34 sfc_flow_verify_cb_t *verify; 35 sfc_flow_cleanup_cb_t *cleanup; 36 sfc_flow_insert_cb_t *insert; 37 sfc_flow_remove_cb_t *remove; 38 sfc_flow_query_cb_t *query; 39 }; 40 41 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_filter; 42 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_mae; 43 static sfc_flow_insert_cb_t sfc_flow_filter_insert; 44 static sfc_flow_remove_cb_t sfc_flow_filter_remove; 45 static sfc_flow_cleanup_cb_t sfc_flow_cleanup; 46 47 static const struct sfc_flow_ops_by_spec sfc_flow_ops_filter = { 48 .parse = sfc_flow_parse_rte_to_filter, 49 .verify = NULL, 50 .cleanup = sfc_flow_cleanup, 51 .insert = sfc_flow_filter_insert, 52 .remove = sfc_flow_filter_remove, 53 .query = NULL, 54 }; 55 56 static const struct sfc_flow_ops_by_spec sfc_flow_ops_mae = { 57 .parse = sfc_flow_parse_rte_to_mae, 58 .verify = sfc_mae_flow_verify, 59 .cleanup = sfc_mae_flow_cleanup, 60 .insert = sfc_mae_flow_insert, 61 .remove = sfc_mae_flow_remove, 62 .query = sfc_mae_flow_query, 63 }; 64 65 static const struct sfc_flow_ops_by_spec * 66 sfc_flow_get_ops_by_spec(struct rte_flow *flow) 67 { 68 struct sfc_flow_spec *spec = &flow->spec; 69 const struct sfc_flow_ops_by_spec *ops = NULL; 70 71 switch (spec->type) { 72 case SFC_FLOW_SPEC_FILTER: 73 ops = &sfc_flow_ops_filter; 74 break; 75 case SFC_FLOW_SPEC_MAE: 76 ops = &sfc_flow_ops_mae; 77 break; 78 default: 79 SFC_ASSERT(false); 80 break; 81 } 82 83 return ops; 84 } 85 86 /* 87 * Currently, filter-based (VNIC) flow API is implemented in such a manner 88 * that each flow rule is converted to one or more hardware filters. 89 * All elements of flow rule (attributes, pattern items, actions) 90 * correspond to one or more fields in the efx_filter_spec_s structure 91 * that is responsible for the hardware filter. 92 * If some required field is unset in the flow rule, then a handful 93 * of filter copies will be created to cover all possible values 94 * of such a field. 95 */ 96 97 static sfc_flow_item_parse sfc_flow_parse_void; 98 static sfc_flow_item_parse sfc_flow_parse_eth; 99 static sfc_flow_item_parse sfc_flow_parse_vlan; 100 static sfc_flow_item_parse sfc_flow_parse_ipv4; 101 static sfc_flow_item_parse sfc_flow_parse_ipv6; 102 static sfc_flow_item_parse sfc_flow_parse_tcp; 103 static sfc_flow_item_parse sfc_flow_parse_udp; 104 static sfc_flow_item_parse sfc_flow_parse_vxlan; 105 static sfc_flow_item_parse sfc_flow_parse_geneve; 106 static sfc_flow_item_parse sfc_flow_parse_nvgre; 107 static sfc_flow_item_parse sfc_flow_parse_pppoex; 108 109 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec, 110 unsigned int filters_count_for_one_val, 111 struct rte_flow_error *error); 112 113 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match, 114 efx_filter_spec_t *spec, 115 struct sfc_filter *filter); 116 117 struct sfc_flow_copy_flag { 118 /* EFX filter specification match flag */ 119 efx_filter_match_flags_t flag; 120 /* Number of values of corresponding field */ 121 unsigned int vals_count; 122 /* Function to set values in specifications */ 123 sfc_flow_spec_set_vals *set_vals; 124 /* 125 * Function to check that the specification is suitable 126 * for adding this match flag 127 */ 128 sfc_flow_spec_check *spec_check; 129 }; 130 131 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags; 132 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags; 133 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes; 134 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags; 135 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags; 136 static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag; 137 static sfc_flow_spec_check sfc_flow_check_outer_vid_flag; 138 139 static boolean_t 140 sfc_flow_is_zero(const uint8_t *buf, unsigned int size) 141 { 142 uint8_t sum = 0; 143 unsigned int i; 144 145 for (i = 0; i < size; i++) 146 sum |= buf[i]; 147 148 return (sum == 0) ? B_TRUE : B_FALSE; 149 } 150 151 /* 152 * Validate item and prepare structures spec and mask for parsing 153 */ 154 int 155 sfc_flow_parse_init(const struct rte_flow_item *item, 156 const void **spec_ptr, 157 const void **mask_ptr, 158 const void *supp_mask, 159 const void *def_mask, 160 unsigned int size, 161 struct rte_flow_error *error) 162 { 163 const uint8_t *spec; 164 const uint8_t *mask; 165 const uint8_t *last; 166 uint8_t supp; 167 unsigned int i; 168 169 if (item == NULL) { 170 rte_flow_error_set(error, EINVAL, 171 RTE_FLOW_ERROR_TYPE_ITEM, NULL, 172 "NULL item"); 173 return -rte_errno; 174 } 175 176 if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) { 177 rte_flow_error_set(error, EINVAL, 178 RTE_FLOW_ERROR_TYPE_ITEM, item, 179 "Mask or last is set without spec"); 180 return -rte_errno; 181 } 182 183 /* 184 * If "mask" is not set, default mask is used, 185 * but if default mask is NULL, "mask" should be set 186 */ 187 if (item->mask == NULL) { 188 if (def_mask == NULL) { 189 rte_flow_error_set(error, EINVAL, 190 RTE_FLOW_ERROR_TYPE_ITEM, NULL, 191 "Mask should be specified"); 192 return -rte_errno; 193 } 194 195 mask = def_mask; 196 } else { 197 mask = item->mask; 198 } 199 200 spec = item->spec; 201 last = item->last; 202 203 if (spec == NULL) 204 goto exit; 205 206 /* 207 * If field values in "last" are either 0 or equal to the corresponding 208 * values in "spec" then they are ignored 209 */ 210 if (last != NULL && 211 !sfc_flow_is_zero(last, size) && 212 memcmp(last, spec, size) != 0) { 213 rte_flow_error_set(error, ENOTSUP, 214 RTE_FLOW_ERROR_TYPE_ITEM, item, 215 "Ranging is not supported"); 216 return -rte_errno; 217 } 218 219 if (supp_mask == NULL) { 220 rte_flow_error_set(error, EINVAL, 221 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 222 "Supported mask for item should be specified"); 223 return -rte_errno; 224 } 225 226 /* Check that mask does not ask for more match than supp_mask */ 227 for (i = 0; i < size; i++) { 228 supp = ((const uint8_t *)supp_mask)[i]; 229 230 if (~supp & mask[i]) { 231 rte_flow_error_set(error, ENOTSUP, 232 RTE_FLOW_ERROR_TYPE_ITEM, item, 233 "Item's field is not supported"); 234 return -rte_errno; 235 } 236 } 237 238 exit: 239 *spec_ptr = spec; 240 *mask_ptr = mask; 241 return 0; 242 } 243 244 /* 245 * Protocol parsers. 246 * Masking is not supported, so masks in items should be either 247 * full or empty (zeroed) and set only for supported fields which 248 * are specified in the supp_mask. 249 */ 250 251 static int 252 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item, 253 __rte_unused struct sfc_flow_parse_ctx *parse_ctx, 254 __rte_unused struct rte_flow_error *error) 255 { 256 return 0; 257 } 258 259 /** 260 * Convert Ethernet item to EFX filter specification. 261 * 262 * @param item[in] 263 * Item specification. Outer frame specification may only comprise 264 * source/destination addresses and Ethertype field. 265 * Inner frame specification may contain destination address only. 266 * There is support for individual/group mask as well as for empty and full. 267 * If the mask is NULL, default mask will be used. Ranging is not supported. 268 * @param efx_spec[in, out] 269 * EFX filter specification to update. 270 * @param[out] error 271 * Perform verbose error reporting if not NULL. 272 */ 273 static int 274 sfc_flow_parse_eth(const struct rte_flow_item *item, 275 struct sfc_flow_parse_ctx *parse_ctx, 276 struct rte_flow_error *error) 277 { 278 int rc; 279 efx_filter_spec_t *efx_spec = parse_ctx->filter; 280 const struct rte_flow_item_eth *spec = NULL; 281 const struct rte_flow_item_eth *mask = NULL; 282 const struct rte_flow_item_eth supp_mask = { 283 .hdr.dst_addr.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 284 .hdr.src_addr.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 285 .hdr.ether_type = 0xffff, 286 }; 287 const struct rte_flow_item_eth ifrm_supp_mask = { 288 .hdr.dst_addr.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 289 }; 290 const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = { 291 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 292 }; 293 const struct rte_flow_item_eth *supp_mask_p; 294 const struct rte_flow_item_eth *def_mask_p; 295 uint8_t *loc_mac = NULL; 296 boolean_t is_ifrm = (efx_spec->efs_encap_type != 297 EFX_TUNNEL_PROTOCOL_NONE); 298 299 if (is_ifrm) { 300 supp_mask_p = &ifrm_supp_mask; 301 def_mask_p = &ifrm_supp_mask; 302 loc_mac = efx_spec->efs_ifrm_loc_mac; 303 } else { 304 supp_mask_p = &supp_mask; 305 def_mask_p = &rte_flow_item_eth_mask; 306 loc_mac = efx_spec->efs_loc_mac; 307 } 308 309 rc = sfc_flow_parse_init(item, 310 (const void **)&spec, 311 (const void **)&mask, 312 supp_mask_p, def_mask_p, 313 sizeof(struct rte_flow_item_eth), 314 error); 315 if (rc != 0) 316 return rc; 317 318 /* If "spec" is not set, could be any Ethernet */ 319 if (spec == NULL) 320 return 0; 321 322 if (rte_is_same_ether_addr(&mask->hdr.dst_addr, &supp_mask.hdr.dst_addr)) { 323 efx_spec->efs_match_flags |= is_ifrm ? 324 EFX_FILTER_MATCH_IFRM_LOC_MAC : 325 EFX_FILTER_MATCH_LOC_MAC; 326 rte_memcpy(loc_mac, spec->hdr.dst_addr.addr_bytes, 327 EFX_MAC_ADDR_LEN); 328 } else if (memcmp(mask->hdr.dst_addr.addr_bytes, ig_mask, 329 EFX_MAC_ADDR_LEN) == 0) { 330 if (rte_is_unicast_ether_addr(&spec->hdr.dst_addr)) 331 efx_spec->efs_match_flags |= is_ifrm ? 332 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST : 333 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST; 334 else 335 efx_spec->efs_match_flags |= is_ifrm ? 336 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST : 337 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST; 338 } else if (!rte_is_zero_ether_addr(&mask->hdr.dst_addr)) { 339 goto fail_bad_mask; 340 } 341 342 /* 343 * ifrm_supp_mask ensures that the source address and 344 * ethertype masks are equal to zero in inner frame, 345 * so these fields are filled in only for the outer frame 346 */ 347 if (rte_is_same_ether_addr(&mask->hdr.src_addr, &supp_mask.hdr.src_addr)) { 348 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC; 349 rte_memcpy(efx_spec->efs_rem_mac, spec->hdr.src_addr.addr_bytes, 350 EFX_MAC_ADDR_LEN); 351 } else if (!rte_is_zero_ether_addr(&mask->hdr.src_addr)) { 352 goto fail_bad_mask; 353 } 354 355 /* 356 * Ether type is in big-endian byte order in item and 357 * in little-endian in efx_spec, so byte swap is used 358 */ 359 if (mask->hdr.ether_type == supp_mask.hdr.ether_type) { 360 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 361 efx_spec->efs_ether_type = rte_bswap16(spec->hdr.ether_type); 362 } else if (mask->hdr.ether_type != 0) { 363 goto fail_bad_mask; 364 } 365 366 return 0; 367 368 fail_bad_mask: 369 rte_flow_error_set(error, EINVAL, 370 RTE_FLOW_ERROR_TYPE_ITEM, item, 371 "Bad mask in the ETH pattern item"); 372 return -rte_errno; 373 } 374 375 /** 376 * Convert VLAN item to EFX filter specification. 377 * 378 * @param item[in] 379 * Item specification. Only VID field is supported. 380 * The mask can not be NULL. Ranging is not supported. 381 * @param efx_spec[in, out] 382 * EFX filter specification to update. 383 * @param[out] error 384 * Perform verbose error reporting if not NULL. 385 */ 386 static int 387 sfc_flow_parse_vlan(const struct rte_flow_item *item, 388 struct sfc_flow_parse_ctx *parse_ctx, 389 struct rte_flow_error *error) 390 { 391 int rc; 392 uint16_t vid; 393 efx_filter_spec_t *efx_spec = parse_ctx->filter; 394 const struct rte_flow_item_vlan *spec = NULL; 395 const struct rte_flow_item_vlan *mask = NULL; 396 const struct rte_flow_item_vlan supp_mask = { 397 .hdr.vlan_tci = rte_cpu_to_be_16(RTE_ETH_VLAN_ID_MAX), 398 .hdr.eth_proto = RTE_BE16(0xffff), 399 }; 400 401 rc = sfc_flow_parse_init(item, 402 (const void **)&spec, 403 (const void **)&mask, 404 &supp_mask, 405 NULL, 406 sizeof(struct rte_flow_item_vlan), 407 error); 408 if (rc != 0) 409 return rc; 410 411 /* 412 * VID is in big-endian byte order in item and 413 * in little-endian in efx_spec, so byte swap is used. 414 * If two VLAN items are included, the first matches 415 * the outer tag and the next matches the inner tag. 416 */ 417 if (mask->hdr.vlan_tci == supp_mask.hdr.vlan_tci) { 418 /* Apply mask to keep VID only */ 419 vid = rte_bswap16(spec->hdr.vlan_tci & mask->hdr.vlan_tci); 420 421 if (!(efx_spec->efs_match_flags & 422 EFX_FILTER_MATCH_OUTER_VID)) { 423 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID; 424 efx_spec->efs_outer_vid = vid; 425 } else if (!(efx_spec->efs_match_flags & 426 EFX_FILTER_MATCH_INNER_VID)) { 427 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID; 428 efx_spec->efs_inner_vid = vid; 429 } else { 430 rte_flow_error_set(error, EINVAL, 431 RTE_FLOW_ERROR_TYPE_ITEM, item, 432 "More than two VLAN items"); 433 return -rte_errno; 434 } 435 } else { 436 rte_flow_error_set(error, EINVAL, 437 RTE_FLOW_ERROR_TYPE_ITEM, item, 438 "VLAN ID in TCI match is required"); 439 return -rte_errno; 440 } 441 442 if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) { 443 rte_flow_error_set(error, EINVAL, 444 RTE_FLOW_ERROR_TYPE_ITEM, item, 445 "VLAN TPID matching is not supported"); 446 return -rte_errno; 447 } 448 if (mask->hdr.eth_proto == supp_mask.hdr.eth_proto) { 449 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 450 efx_spec->efs_ether_type = rte_bswap16(spec->hdr.eth_proto); 451 } else if (mask->hdr.eth_proto) { 452 rte_flow_error_set(error, EINVAL, 453 RTE_FLOW_ERROR_TYPE_ITEM, item, 454 "Bad mask for VLAN inner type"); 455 return -rte_errno; 456 } 457 458 return 0; 459 } 460 461 /** 462 * Convert IPv4 item to EFX filter specification. 463 * 464 * @param item[in] 465 * Item specification. Only source and destination addresses and 466 * protocol fields are supported. If the mask is NULL, default 467 * mask will be used. Ranging is not supported. 468 * @param efx_spec[in, out] 469 * EFX filter specification to update. 470 * @param[out] error 471 * Perform verbose error reporting if not NULL. 472 */ 473 static int 474 sfc_flow_parse_ipv4(const struct rte_flow_item *item, 475 struct sfc_flow_parse_ctx *parse_ctx, 476 struct rte_flow_error *error) 477 { 478 int rc; 479 efx_filter_spec_t *efx_spec = parse_ctx->filter; 480 const struct rte_flow_item_ipv4 *spec = NULL; 481 const struct rte_flow_item_ipv4 *mask = NULL; 482 const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4); 483 const struct rte_flow_item_ipv4 supp_mask = { 484 .hdr = { 485 .src_addr = 0xffffffff, 486 .dst_addr = 0xffffffff, 487 .next_proto_id = 0xff, 488 } 489 }; 490 491 rc = sfc_flow_parse_init(item, 492 (const void **)&spec, 493 (const void **)&mask, 494 &supp_mask, 495 &rte_flow_item_ipv4_mask, 496 sizeof(struct rte_flow_item_ipv4), 497 error); 498 if (rc != 0) 499 return rc; 500 501 /* 502 * Filtering by IPv4 source and destination addresses requires 503 * the appropriate ETHER_TYPE in hardware filters 504 */ 505 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) { 506 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 507 efx_spec->efs_ether_type = ether_type_ipv4; 508 } else if (efx_spec->efs_ether_type != ether_type_ipv4) { 509 rte_flow_error_set(error, EINVAL, 510 RTE_FLOW_ERROR_TYPE_ITEM, item, 511 "Ethertype in pattern with IPV4 item should be appropriate"); 512 return -rte_errno; 513 } 514 515 if (spec == NULL) 516 return 0; 517 518 /* 519 * IPv4 addresses are in big-endian byte order in item and in 520 * efx_spec 521 */ 522 if (mask->hdr.src_addr == supp_mask.hdr.src_addr) { 523 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST; 524 efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr; 525 } else if (mask->hdr.src_addr != 0) { 526 goto fail_bad_mask; 527 } 528 529 if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) { 530 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST; 531 efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr; 532 } else if (mask->hdr.dst_addr != 0) { 533 goto fail_bad_mask; 534 } 535 536 if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) { 537 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 538 efx_spec->efs_ip_proto = spec->hdr.next_proto_id; 539 } else if (mask->hdr.next_proto_id != 0) { 540 goto fail_bad_mask; 541 } 542 543 return 0; 544 545 fail_bad_mask: 546 rte_flow_error_set(error, EINVAL, 547 RTE_FLOW_ERROR_TYPE_ITEM, item, 548 "Bad mask in the IPV4 pattern item"); 549 return -rte_errno; 550 } 551 552 /** 553 * Convert IPv6 item to EFX filter specification. 554 * 555 * @param item[in] 556 * Item specification. Only source and destination addresses and 557 * next header fields are supported. If the mask is NULL, default 558 * mask will be used. Ranging is not supported. 559 * @param efx_spec[in, out] 560 * EFX filter specification to update. 561 * @param[out] error 562 * Perform verbose error reporting if not NULL. 563 */ 564 static int 565 sfc_flow_parse_ipv6(const struct rte_flow_item *item, 566 struct sfc_flow_parse_ctx *parse_ctx, 567 struct rte_flow_error *error) 568 { 569 int rc; 570 efx_filter_spec_t *efx_spec = parse_ctx->filter; 571 const struct rte_flow_item_ipv6 *spec = NULL; 572 const struct rte_flow_item_ipv6 *mask = NULL; 573 const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6); 574 const struct rte_flow_item_ipv6 supp_mask = { 575 .hdr = { 576 .src_addr = { 0xff, 0xff, 0xff, 0xff, 577 0xff, 0xff, 0xff, 0xff, 578 0xff, 0xff, 0xff, 0xff, 579 0xff, 0xff, 0xff, 0xff }, 580 .dst_addr = { 0xff, 0xff, 0xff, 0xff, 581 0xff, 0xff, 0xff, 0xff, 582 0xff, 0xff, 0xff, 0xff, 583 0xff, 0xff, 0xff, 0xff }, 584 .proto = 0xff, 585 } 586 }; 587 588 rc = sfc_flow_parse_init(item, 589 (const void **)&spec, 590 (const void **)&mask, 591 &supp_mask, 592 &rte_flow_item_ipv6_mask, 593 sizeof(struct rte_flow_item_ipv6), 594 error); 595 if (rc != 0) 596 return rc; 597 598 /* 599 * Filtering by IPv6 source and destination addresses requires 600 * the appropriate ETHER_TYPE in hardware filters 601 */ 602 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) { 603 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 604 efx_spec->efs_ether_type = ether_type_ipv6; 605 } else if (efx_spec->efs_ether_type != ether_type_ipv6) { 606 rte_flow_error_set(error, EINVAL, 607 RTE_FLOW_ERROR_TYPE_ITEM, item, 608 "Ethertype in pattern with IPV6 item should be appropriate"); 609 return -rte_errno; 610 } 611 612 if (spec == NULL) 613 return 0; 614 615 /* 616 * IPv6 addresses are in big-endian byte order in item and in 617 * efx_spec 618 */ 619 if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr, 620 sizeof(mask->hdr.src_addr)) == 0) { 621 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST; 622 623 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) != 624 sizeof(spec->hdr.src_addr)); 625 rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr, 626 sizeof(efx_spec->efs_rem_host)); 627 } else if (!sfc_flow_is_zero(mask->hdr.src_addr, 628 sizeof(mask->hdr.src_addr))) { 629 goto fail_bad_mask; 630 } 631 632 if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr, 633 sizeof(mask->hdr.dst_addr)) == 0) { 634 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST; 635 636 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) != 637 sizeof(spec->hdr.dst_addr)); 638 rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr, 639 sizeof(efx_spec->efs_loc_host)); 640 } else if (!sfc_flow_is_zero(mask->hdr.dst_addr, 641 sizeof(mask->hdr.dst_addr))) { 642 goto fail_bad_mask; 643 } 644 645 if (mask->hdr.proto == supp_mask.hdr.proto) { 646 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 647 efx_spec->efs_ip_proto = spec->hdr.proto; 648 } else if (mask->hdr.proto != 0) { 649 goto fail_bad_mask; 650 } 651 652 return 0; 653 654 fail_bad_mask: 655 rte_flow_error_set(error, EINVAL, 656 RTE_FLOW_ERROR_TYPE_ITEM, item, 657 "Bad mask in the IPV6 pattern item"); 658 return -rte_errno; 659 } 660 661 /** 662 * Convert TCP item to EFX filter specification. 663 * 664 * @param item[in] 665 * Item specification. Only source and destination ports fields 666 * are supported. If the mask is NULL, default mask will be used. 667 * Ranging is not supported. 668 * @param efx_spec[in, out] 669 * EFX filter specification to update. 670 * @param[out] error 671 * Perform verbose error reporting if not NULL. 672 */ 673 static int 674 sfc_flow_parse_tcp(const struct rte_flow_item *item, 675 struct sfc_flow_parse_ctx *parse_ctx, 676 struct rte_flow_error *error) 677 { 678 int rc; 679 efx_filter_spec_t *efx_spec = parse_ctx->filter; 680 const struct rte_flow_item_tcp *spec = NULL; 681 const struct rte_flow_item_tcp *mask = NULL; 682 const struct rte_flow_item_tcp supp_mask = { 683 .hdr = { 684 .src_port = 0xffff, 685 .dst_port = 0xffff, 686 } 687 }; 688 689 rc = sfc_flow_parse_init(item, 690 (const void **)&spec, 691 (const void **)&mask, 692 &supp_mask, 693 &rte_flow_item_tcp_mask, 694 sizeof(struct rte_flow_item_tcp), 695 error); 696 if (rc != 0) 697 return rc; 698 699 /* 700 * Filtering by TCP source and destination ports requires 701 * the appropriate IP_PROTO in hardware filters 702 */ 703 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 704 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 705 efx_spec->efs_ip_proto = EFX_IPPROTO_TCP; 706 } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) { 707 rte_flow_error_set(error, EINVAL, 708 RTE_FLOW_ERROR_TYPE_ITEM, item, 709 "IP proto in pattern with TCP item should be appropriate"); 710 return -rte_errno; 711 } 712 713 if (spec == NULL) 714 return 0; 715 716 /* 717 * Source and destination ports are in big-endian byte order in item and 718 * in little-endian in efx_spec, so byte swap is used 719 */ 720 if (mask->hdr.src_port == supp_mask.hdr.src_port) { 721 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT; 722 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port); 723 } else if (mask->hdr.src_port != 0) { 724 goto fail_bad_mask; 725 } 726 727 if (mask->hdr.dst_port == supp_mask.hdr.dst_port) { 728 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT; 729 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port); 730 } else if (mask->hdr.dst_port != 0) { 731 goto fail_bad_mask; 732 } 733 734 return 0; 735 736 fail_bad_mask: 737 rte_flow_error_set(error, EINVAL, 738 RTE_FLOW_ERROR_TYPE_ITEM, item, 739 "Bad mask in the TCP pattern item"); 740 return -rte_errno; 741 } 742 743 /** 744 * Convert UDP item to EFX filter specification. 745 * 746 * @param item[in] 747 * Item specification. Only source and destination ports fields 748 * are supported. If the mask is NULL, default mask will be used. 749 * Ranging is not supported. 750 * @param efx_spec[in, out] 751 * EFX filter specification to update. 752 * @param[out] error 753 * Perform verbose error reporting if not NULL. 754 */ 755 static int 756 sfc_flow_parse_udp(const struct rte_flow_item *item, 757 struct sfc_flow_parse_ctx *parse_ctx, 758 struct rte_flow_error *error) 759 { 760 int rc; 761 efx_filter_spec_t *efx_spec = parse_ctx->filter; 762 const struct rte_flow_item_udp *spec = NULL; 763 const struct rte_flow_item_udp *mask = NULL; 764 const struct rte_flow_item_udp supp_mask = { 765 .hdr = { 766 .src_port = 0xffff, 767 .dst_port = 0xffff, 768 } 769 }; 770 771 rc = sfc_flow_parse_init(item, 772 (const void **)&spec, 773 (const void **)&mask, 774 &supp_mask, 775 &rte_flow_item_udp_mask, 776 sizeof(struct rte_flow_item_udp), 777 error); 778 if (rc != 0) 779 return rc; 780 781 /* 782 * Filtering by UDP source and destination ports requires 783 * the appropriate IP_PROTO in hardware filters 784 */ 785 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 786 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 787 efx_spec->efs_ip_proto = EFX_IPPROTO_UDP; 788 } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) { 789 rte_flow_error_set(error, EINVAL, 790 RTE_FLOW_ERROR_TYPE_ITEM, item, 791 "IP proto in pattern with UDP item should be appropriate"); 792 return -rte_errno; 793 } 794 795 if (spec == NULL) 796 return 0; 797 798 /* 799 * Source and destination ports are in big-endian byte order in item and 800 * in little-endian in efx_spec, so byte swap is used 801 */ 802 if (mask->hdr.src_port == supp_mask.hdr.src_port) { 803 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT; 804 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port); 805 } else if (mask->hdr.src_port != 0) { 806 goto fail_bad_mask; 807 } 808 809 if (mask->hdr.dst_port == supp_mask.hdr.dst_port) { 810 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT; 811 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port); 812 } else if (mask->hdr.dst_port != 0) { 813 goto fail_bad_mask; 814 } 815 816 return 0; 817 818 fail_bad_mask: 819 rte_flow_error_set(error, EINVAL, 820 RTE_FLOW_ERROR_TYPE_ITEM, item, 821 "Bad mask in the UDP pattern item"); 822 return -rte_errno; 823 } 824 825 /* 826 * Filters for encapsulated packets match based on the EtherType and IP 827 * protocol in the outer frame. 828 */ 829 static int 830 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item, 831 efx_filter_spec_t *efx_spec, 832 uint8_t ip_proto, 833 struct rte_flow_error *error) 834 { 835 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 836 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 837 efx_spec->efs_ip_proto = ip_proto; 838 } else if (efx_spec->efs_ip_proto != ip_proto) { 839 switch (ip_proto) { 840 case EFX_IPPROTO_UDP: 841 rte_flow_error_set(error, EINVAL, 842 RTE_FLOW_ERROR_TYPE_ITEM, item, 843 "Outer IP header protocol must be UDP " 844 "in VxLAN/GENEVE pattern"); 845 return -rte_errno; 846 847 case EFX_IPPROTO_GRE: 848 rte_flow_error_set(error, EINVAL, 849 RTE_FLOW_ERROR_TYPE_ITEM, item, 850 "Outer IP header protocol must be GRE " 851 "in NVGRE pattern"); 852 return -rte_errno; 853 854 default: 855 rte_flow_error_set(error, EINVAL, 856 RTE_FLOW_ERROR_TYPE_ITEM, item, 857 "Only VxLAN/GENEVE/NVGRE tunneling patterns " 858 "are supported"); 859 return -rte_errno; 860 } 861 } 862 863 if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE && 864 efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 && 865 efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) { 866 rte_flow_error_set(error, EINVAL, 867 RTE_FLOW_ERROR_TYPE_ITEM, item, 868 "Outer frame EtherType in pattern with tunneling " 869 "must be IPv4 or IPv6"); 870 return -rte_errno; 871 } 872 873 return 0; 874 } 875 876 static int 877 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec, 878 const uint8_t *vni_or_vsid_val, 879 const uint8_t *vni_or_vsid_mask, 880 const struct rte_flow_item *item, 881 struct rte_flow_error *error) 882 { 883 const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = { 884 0xff, 0xff, 0xff 885 }; 886 887 if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask, 888 EFX_VNI_OR_VSID_LEN) == 0) { 889 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID; 890 rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val, 891 EFX_VNI_OR_VSID_LEN); 892 } else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) { 893 rte_flow_error_set(error, EINVAL, 894 RTE_FLOW_ERROR_TYPE_ITEM, item, 895 "Unsupported VNI/VSID mask"); 896 return -rte_errno; 897 } 898 899 return 0; 900 } 901 902 /** 903 * Convert VXLAN item to EFX filter specification. 904 * 905 * @param item[in] 906 * Item specification. Only VXLAN network identifier field is supported. 907 * If the mask is NULL, default mask will be used. 908 * Ranging is not supported. 909 * @param efx_spec[in, out] 910 * EFX filter specification to update. 911 * @param[out] error 912 * Perform verbose error reporting if not NULL. 913 */ 914 static int 915 sfc_flow_parse_vxlan(const struct rte_flow_item *item, 916 struct sfc_flow_parse_ctx *parse_ctx, 917 struct rte_flow_error *error) 918 { 919 int rc; 920 efx_filter_spec_t *efx_spec = parse_ctx->filter; 921 const struct rte_flow_item_vxlan *spec = NULL; 922 const struct rte_flow_item_vxlan *mask = NULL; 923 const struct rte_flow_item_vxlan supp_mask = { 924 .hdr.vni = { 0xff, 0xff, 0xff } 925 }; 926 927 rc = sfc_flow_parse_init(item, 928 (const void **)&spec, 929 (const void **)&mask, 930 &supp_mask, 931 &rte_flow_item_vxlan_mask, 932 sizeof(struct rte_flow_item_vxlan), 933 error); 934 if (rc != 0) 935 return rc; 936 937 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 938 EFX_IPPROTO_UDP, error); 939 if (rc != 0) 940 return rc; 941 942 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN; 943 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 944 945 if (spec == NULL) 946 return 0; 947 948 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->hdr.vni, 949 mask->hdr.vni, item, error); 950 951 return rc; 952 } 953 954 /** 955 * Convert GENEVE item to EFX filter specification. 956 * 957 * @param item[in] 958 * Item specification. Only Virtual Network Identifier and protocol type 959 * fields are supported. But protocol type can be only Ethernet (0x6558). 960 * If the mask is NULL, default mask will be used. 961 * Ranging is not supported. 962 * @param efx_spec[in, out] 963 * EFX filter specification to update. 964 * @param[out] error 965 * Perform verbose error reporting if not NULL. 966 */ 967 static int 968 sfc_flow_parse_geneve(const struct rte_flow_item *item, 969 struct sfc_flow_parse_ctx *parse_ctx, 970 struct rte_flow_error *error) 971 { 972 int rc; 973 efx_filter_spec_t *efx_spec = parse_ctx->filter; 974 const struct rte_flow_item_geneve *spec = NULL; 975 const struct rte_flow_item_geneve *mask = NULL; 976 const struct rte_flow_item_geneve supp_mask = { 977 .protocol = RTE_BE16(0xffff), 978 .vni = { 0xff, 0xff, 0xff } 979 }; 980 981 rc = sfc_flow_parse_init(item, 982 (const void **)&spec, 983 (const void **)&mask, 984 &supp_mask, 985 &rte_flow_item_geneve_mask, 986 sizeof(struct rte_flow_item_geneve), 987 error); 988 if (rc != 0) 989 return rc; 990 991 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 992 EFX_IPPROTO_UDP, error); 993 if (rc != 0) 994 return rc; 995 996 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE; 997 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 998 999 if (spec == NULL) 1000 return 0; 1001 1002 if (mask->protocol == supp_mask.protocol) { 1003 if (spec->protocol != rte_cpu_to_be_16(RTE_ETHER_TYPE_TEB)) { 1004 rte_flow_error_set(error, EINVAL, 1005 RTE_FLOW_ERROR_TYPE_ITEM, item, 1006 "GENEVE encap. protocol must be Ethernet " 1007 "(0x6558) in the GENEVE pattern item"); 1008 return -rte_errno; 1009 } 1010 } else if (mask->protocol != 0) { 1011 rte_flow_error_set(error, EINVAL, 1012 RTE_FLOW_ERROR_TYPE_ITEM, item, 1013 "Unsupported mask for GENEVE encap. protocol"); 1014 return -rte_errno; 1015 } 1016 1017 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni, 1018 mask->vni, item, error); 1019 1020 return rc; 1021 } 1022 1023 /** 1024 * Convert NVGRE item to EFX filter specification. 1025 * 1026 * @param item[in] 1027 * Item specification. Only virtual subnet ID field is supported. 1028 * If the mask is NULL, default mask will be used. 1029 * Ranging is not supported. 1030 * @param efx_spec[in, out] 1031 * EFX filter specification to update. 1032 * @param[out] error 1033 * Perform verbose error reporting if not NULL. 1034 */ 1035 static int 1036 sfc_flow_parse_nvgre(const struct rte_flow_item *item, 1037 struct sfc_flow_parse_ctx *parse_ctx, 1038 struct rte_flow_error *error) 1039 { 1040 int rc; 1041 efx_filter_spec_t *efx_spec = parse_ctx->filter; 1042 const struct rte_flow_item_nvgre *spec = NULL; 1043 const struct rte_flow_item_nvgre *mask = NULL; 1044 const struct rte_flow_item_nvgre supp_mask = { 1045 .tni = { 0xff, 0xff, 0xff } 1046 }; 1047 1048 rc = sfc_flow_parse_init(item, 1049 (const void **)&spec, 1050 (const void **)&mask, 1051 &supp_mask, 1052 &rte_flow_item_nvgre_mask, 1053 sizeof(struct rte_flow_item_nvgre), 1054 error); 1055 if (rc != 0) 1056 return rc; 1057 1058 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 1059 EFX_IPPROTO_GRE, error); 1060 if (rc != 0) 1061 return rc; 1062 1063 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE; 1064 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 1065 1066 if (spec == NULL) 1067 return 0; 1068 1069 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni, 1070 mask->tni, item, error); 1071 1072 return rc; 1073 } 1074 1075 /** 1076 * Convert PPPoEx item to EFX filter specification. 1077 * 1078 * @param item[in] 1079 * Item specification. 1080 * Matching on PPPoEx fields is not supported. 1081 * This item can only be used to set or validate the EtherType filter. 1082 * Only zero masks are allowed. 1083 * Ranging is not supported. 1084 * @param efx_spec[in, out] 1085 * EFX filter specification to update. 1086 * @param[out] error 1087 * Perform verbose error reporting if not NULL. 1088 */ 1089 static int 1090 sfc_flow_parse_pppoex(const struct rte_flow_item *item, 1091 struct sfc_flow_parse_ctx *parse_ctx, 1092 struct rte_flow_error *error) 1093 { 1094 efx_filter_spec_t *efx_spec = parse_ctx->filter; 1095 const struct rte_flow_item_pppoe *spec = NULL; 1096 const struct rte_flow_item_pppoe *mask = NULL; 1097 const struct rte_flow_item_pppoe supp_mask = {}; 1098 const struct rte_flow_item_pppoe def_mask = {}; 1099 uint16_t ether_type; 1100 int rc; 1101 1102 rc = sfc_flow_parse_init(item, 1103 (const void **)&spec, 1104 (const void **)&mask, 1105 &supp_mask, 1106 &def_mask, 1107 sizeof(struct rte_flow_item_pppoe), 1108 error); 1109 if (rc != 0) 1110 return rc; 1111 1112 if (item->type == RTE_FLOW_ITEM_TYPE_PPPOED) 1113 ether_type = RTE_ETHER_TYPE_PPPOE_DISCOVERY; 1114 else 1115 ether_type = RTE_ETHER_TYPE_PPPOE_SESSION; 1116 1117 if ((efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) != 0) { 1118 if (efx_spec->efs_ether_type != ether_type) { 1119 rte_flow_error_set(error, EINVAL, 1120 RTE_FLOW_ERROR_TYPE_ITEM, item, 1121 "Invalid EtherType for a PPPoE flow item"); 1122 return -rte_errno; 1123 } 1124 } else { 1125 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 1126 efx_spec->efs_ether_type = ether_type; 1127 } 1128 1129 return 0; 1130 } 1131 1132 static const struct sfc_flow_item sfc_flow_items[] = { 1133 { 1134 .type = RTE_FLOW_ITEM_TYPE_VOID, 1135 .name = "VOID", 1136 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER, 1137 .layer = SFC_FLOW_ITEM_ANY_LAYER, 1138 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1139 .parse = sfc_flow_parse_void, 1140 }, 1141 { 1142 .type = RTE_FLOW_ITEM_TYPE_ETH, 1143 .name = "ETH", 1144 .prev_layer = SFC_FLOW_ITEM_START_LAYER, 1145 .layer = SFC_FLOW_ITEM_L2, 1146 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1147 .parse = sfc_flow_parse_eth, 1148 }, 1149 { 1150 .type = RTE_FLOW_ITEM_TYPE_VLAN, 1151 .name = "VLAN", 1152 .prev_layer = SFC_FLOW_ITEM_L2, 1153 .layer = SFC_FLOW_ITEM_L2, 1154 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1155 .parse = sfc_flow_parse_vlan, 1156 }, 1157 { 1158 .type = RTE_FLOW_ITEM_TYPE_PPPOED, 1159 .name = "PPPOED", 1160 .prev_layer = SFC_FLOW_ITEM_L2, 1161 .layer = SFC_FLOW_ITEM_L2, 1162 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1163 .parse = sfc_flow_parse_pppoex, 1164 }, 1165 { 1166 .type = RTE_FLOW_ITEM_TYPE_PPPOES, 1167 .name = "PPPOES", 1168 .prev_layer = SFC_FLOW_ITEM_L2, 1169 .layer = SFC_FLOW_ITEM_L2, 1170 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1171 .parse = sfc_flow_parse_pppoex, 1172 }, 1173 { 1174 .type = RTE_FLOW_ITEM_TYPE_IPV4, 1175 .name = "IPV4", 1176 .prev_layer = SFC_FLOW_ITEM_L2, 1177 .layer = SFC_FLOW_ITEM_L3, 1178 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1179 .parse = sfc_flow_parse_ipv4, 1180 }, 1181 { 1182 .type = RTE_FLOW_ITEM_TYPE_IPV6, 1183 .name = "IPV6", 1184 .prev_layer = SFC_FLOW_ITEM_L2, 1185 .layer = SFC_FLOW_ITEM_L3, 1186 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1187 .parse = sfc_flow_parse_ipv6, 1188 }, 1189 { 1190 .type = RTE_FLOW_ITEM_TYPE_TCP, 1191 .name = "TCP", 1192 .prev_layer = SFC_FLOW_ITEM_L3, 1193 .layer = SFC_FLOW_ITEM_L4, 1194 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1195 .parse = sfc_flow_parse_tcp, 1196 }, 1197 { 1198 .type = RTE_FLOW_ITEM_TYPE_UDP, 1199 .name = "UDP", 1200 .prev_layer = SFC_FLOW_ITEM_L3, 1201 .layer = SFC_FLOW_ITEM_L4, 1202 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1203 .parse = sfc_flow_parse_udp, 1204 }, 1205 { 1206 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 1207 .name = "VXLAN", 1208 .prev_layer = SFC_FLOW_ITEM_L4, 1209 .layer = SFC_FLOW_ITEM_START_LAYER, 1210 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1211 .parse = sfc_flow_parse_vxlan, 1212 }, 1213 { 1214 .type = RTE_FLOW_ITEM_TYPE_GENEVE, 1215 .name = "GENEVE", 1216 .prev_layer = SFC_FLOW_ITEM_L4, 1217 .layer = SFC_FLOW_ITEM_START_LAYER, 1218 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1219 .parse = sfc_flow_parse_geneve, 1220 }, 1221 { 1222 .type = RTE_FLOW_ITEM_TYPE_NVGRE, 1223 .name = "NVGRE", 1224 .prev_layer = SFC_FLOW_ITEM_L3, 1225 .layer = SFC_FLOW_ITEM_START_LAYER, 1226 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1227 .parse = sfc_flow_parse_nvgre, 1228 }, 1229 }; 1230 1231 /* 1232 * Protocol-independent flow API support 1233 */ 1234 static int 1235 sfc_flow_parse_attr(struct sfc_adapter *sa, 1236 const struct rte_flow_attr *attr, 1237 struct rte_flow *flow, 1238 struct rte_flow_error *error) 1239 { 1240 struct sfc_flow_spec *spec = &flow->spec; 1241 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1242 struct sfc_flow_spec_mae *spec_mae = &spec->mae; 1243 struct sfc_mae *mae = &sa->mae; 1244 1245 if (attr == NULL) { 1246 rte_flow_error_set(error, EINVAL, 1247 RTE_FLOW_ERROR_TYPE_ATTR, NULL, 1248 "NULL attribute"); 1249 return -rte_errno; 1250 } 1251 if (attr->group != 0) { 1252 rte_flow_error_set(error, ENOTSUP, 1253 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr, 1254 "Groups are not supported"); 1255 return -rte_errno; 1256 } 1257 if (attr->egress != 0 && attr->transfer == 0) { 1258 rte_flow_error_set(error, ENOTSUP, 1259 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, 1260 "Egress is not supported"); 1261 return -rte_errno; 1262 } 1263 if (attr->ingress == 0 && attr->transfer == 0) { 1264 rte_flow_error_set(error, ENOTSUP, 1265 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, 1266 "Ingress is compulsory"); 1267 return -rte_errno; 1268 } 1269 if (attr->transfer == 0) { 1270 if (attr->priority != 0) { 1271 rte_flow_error_set(error, ENOTSUP, 1272 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1273 attr, "Priorities are unsupported"); 1274 return -rte_errno; 1275 } 1276 spec->type = SFC_FLOW_SPEC_FILTER; 1277 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX; 1278 spec_filter->template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT; 1279 spec_filter->template.efs_priority = EFX_FILTER_PRI_MANUAL; 1280 } else { 1281 if (mae->status != SFC_MAE_STATUS_ADMIN) { 1282 rte_flow_error_set(error, ENOTSUP, 1283 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, 1284 attr, "Transfer is not supported"); 1285 return -rte_errno; 1286 } 1287 if (attr->priority > mae->nb_action_rule_prios_max) { 1288 rte_flow_error_set(error, ENOTSUP, 1289 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1290 attr, "Unsupported priority level"); 1291 return -rte_errno; 1292 } 1293 spec->type = SFC_FLOW_SPEC_MAE; 1294 spec_mae->priority = attr->priority; 1295 spec_mae->match_spec = NULL; 1296 spec_mae->action_set = NULL; 1297 spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID; 1298 } 1299 1300 return 0; 1301 } 1302 1303 /* Get item from array sfc_flow_items */ 1304 static const struct sfc_flow_item * 1305 sfc_flow_get_item(const struct sfc_flow_item *items, 1306 unsigned int nb_items, 1307 enum rte_flow_item_type type) 1308 { 1309 unsigned int i; 1310 1311 for (i = 0; i < nb_items; i++) 1312 if (items[i].type == type) 1313 return &items[i]; 1314 1315 return NULL; 1316 } 1317 1318 int 1319 sfc_flow_parse_pattern(struct sfc_adapter *sa, 1320 const struct sfc_flow_item *flow_items, 1321 unsigned int nb_flow_items, 1322 const struct rte_flow_item pattern[], 1323 struct sfc_flow_parse_ctx *parse_ctx, 1324 struct rte_flow_error *error) 1325 { 1326 int rc; 1327 unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER; 1328 boolean_t is_ifrm = B_FALSE; 1329 const struct sfc_flow_item *item; 1330 1331 if (pattern == NULL) { 1332 rte_flow_error_set(error, EINVAL, 1333 RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, 1334 "NULL pattern"); 1335 return -rte_errno; 1336 } 1337 1338 for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) { 1339 item = sfc_flow_get_item(flow_items, nb_flow_items, 1340 pattern->type); 1341 if (item == NULL) { 1342 rte_flow_error_set(error, ENOTSUP, 1343 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1344 "Unsupported pattern item"); 1345 return -rte_errno; 1346 } 1347 1348 /* 1349 * Omitting one or several protocol layers at the beginning 1350 * of pattern is supported 1351 */ 1352 if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER && 1353 prev_layer != SFC_FLOW_ITEM_ANY_LAYER && 1354 item->prev_layer != prev_layer) { 1355 rte_flow_error_set(error, ENOTSUP, 1356 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1357 "Unexpected sequence of pattern items"); 1358 return -rte_errno; 1359 } 1360 1361 /* 1362 * Allow only VOID and ETH pattern items in the inner frame. 1363 * Also check that there is only one tunneling protocol. 1364 */ 1365 switch (item->type) { 1366 case RTE_FLOW_ITEM_TYPE_VOID: 1367 case RTE_FLOW_ITEM_TYPE_ETH: 1368 break; 1369 1370 case RTE_FLOW_ITEM_TYPE_VXLAN: 1371 case RTE_FLOW_ITEM_TYPE_GENEVE: 1372 case RTE_FLOW_ITEM_TYPE_NVGRE: 1373 if (is_ifrm) { 1374 rte_flow_error_set(error, EINVAL, 1375 RTE_FLOW_ERROR_TYPE_ITEM, 1376 pattern, 1377 "More than one tunneling protocol"); 1378 return -rte_errno; 1379 } 1380 is_ifrm = B_TRUE; 1381 break; 1382 1383 default: 1384 if (parse_ctx->type == SFC_FLOW_PARSE_CTX_FILTER && 1385 is_ifrm) { 1386 rte_flow_error_set(error, EINVAL, 1387 RTE_FLOW_ERROR_TYPE_ITEM, 1388 pattern, 1389 "There is an unsupported pattern item " 1390 "in the inner frame"); 1391 return -rte_errno; 1392 } 1393 break; 1394 } 1395 1396 if (parse_ctx->type != item->ctx_type) { 1397 rte_flow_error_set(error, EINVAL, 1398 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1399 "Parse context type mismatch"); 1400 return -rte_errno; 1401 } 1402 1403 rc = item->parse(pattern, parse_ctx, error); 1404 if (rc != 0) { 1405 sfc_err(sa, "failed to parse item %s: %s", 1406 item->name, strerror(-rc)); 1407 return rc; 1408 } 1409 1410 if (item->layer != SFC_FLOW_ITEM_ANY_LAYER) 1411 prev_layer = item->layer; 1412 } 1413 1414 return 0; 1415 } 1416 1417 static int 1418 sfc_flow_parse_queue(struct sfc_adapter *sa, 1419 const struct rte_flow_action_queue *queue, 1420 struct rte_flow *flow) 1421 { 1422 struct sfc_flow_spec *spec = &flow->spec; 1423 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1424 struct sfc_rxq *rxq; 1425 struct sfc_rxq_info *rxq_info; 1426 1427 if (queue->index >= sfc_sa2shared(sa)->ethdev_rxq_count) 1428 return -EINVAL; 1429 1430 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, queue->index); 1431 spec_filter->template.efs_dmaq_id = (uint16_t)rxq->hw_index; 1432 1433 rxq_info = &sfc_sa2shared(sa)->rxq_info[queue->index]; 1434 1435 if ((rxq_info->rxq_flags & SFC_RXQ_FLAG_RSS_HASH) != 0) { 1436 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1437 struct sfc_rss *ethdev_rss = &sas->rss; 1438 1439 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX_RSS; 1440 spec_filter->rss_ctx = ðdev_rss->dummy_ctx; 1441 } 1442 1443 return 0; 1444 } 1445 1446 static int 1447 sfc_flow_parse_rss(struct sfc_adapter *sa, 1448 const struct rte_flow_action_rss *action_rss, 1449 struct rte_flow *flow) 1450 { 1451 struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter; 1452 struct sfc_flow_rss_conf conf; 1453 uint16_t sw_qid_min; 1454 struct sfc_rxq *rxq; 1455 int rc; 1456 1457 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX_RSS; 1458 1459 rc = sfc_flow_rss_parse_conf(sa, action_rss, &conf, &sw_qid_min); 1460 if (rc != 0) 1461 return -rc; 1462 1463 rxq = sfc_rxq_ctrl_by_ethdev_qid(sa, sw_qid_min); 1464 spec_filter->template.efs_dmaq_id = rxq->hw_index; 1465 1466 spec_filter->rss_ctx = sfc_flow_rss_ctx_reuse(sa, &conf, sw_qid_min, 1467 action_rss->queue); 1468 if (spec_filter->rss_ctx != NULL) 1469 return 0; 1470 1471 rc = sfc_flow_rss_ctx_add(sa, &conf, sw_qid_min, action_rss->queue, 1472 &spec_filter->rss_ctx); 1473 if (rc != 0) 1474 return -rc; 1475 1476 return 0; 1477 } 1478 1479 static int 1480 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec, 1481 unsigned int filters_count) 1482 { 1483 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1484 unsigned int i; 1485 int ret = 0; 1486 1487 for (i = 0; i < filters_count; i++) { 1488 int rc; 1489 1490 rc = efx_filter_remove(sa->nic, &spec_filter->filters[i]); 1491 if (ret == 0 && rc != 0) { 1492 sfc_err(sa, "failed to remove filter specification " 1493 "(rc = %d)", rc); 1494 ret = rc; 1495 } 1496 } 1497 1498 return ret; 1499 } 1500 1501 static int 1502 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec) 1503 { 1504 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1505 unsigned int i; 1506 int rc = 0; 1507 1508 for (i = 0; i < spec_filter->count; i++) { 1509 rc = efx_filter_insert(sa->nic, &spec_filter->filters[i]); 1510 if (rc != 0) { 1511 sfc_flow_spec_flush(sa, spec, i); 1512 break; 1513 } 1514 } 1515 1516 return rc; 1517 } 1518 1519 static int 1520 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec) 1521 { 1522 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1523 1524 return sfc_flow_spec_flush(sa, spec, spec_filter->count); 1525 } 1526 1527 static int 1528 sfc_flow_filter_insert(struct sfc_adapter *sa, 1529 struct rte_flow *flow) 1530 { 1531 struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter; 1532 struct sfc_flow_rss_ctx *rss_ctx = spec_filter->rss_ctx; 1533 int rc = 0; 1534 1535 rc = sfc_flow_rss_ctx_program(sa, rss_ctx); 1536 if (rc != 0) 1537 goto fail_rss_ctx_program; 1538 1539 if (rss_ctx != NULL) { 1540 unsigned int i; 1541 1542 /* 1543 * At this point, fully elaborated filter specifications 1544 * have been produced from the template. To make sure that 1545 * RSS behaviour is consistent between them, set the same 1546 * RSS context value everywhere. 1547 */ 1548 for (i = 0; i < spec_filter->count; i++) { 1549 efx_filter_spec_t *spec = &spec_filter->filters[i]; 1550 1551 spec->efs_rss_context = rss_ctx->nic_handle; 1552 } 1553 } 1554 1555 rc = sfc_flow_spec_insert(sa, &flow->spec); 1556 if (rc != 0) 1557 goto fail_filter_insert; 1558 1559 return 0; 1560 1561 fail_filter_insert: 1562 sfc_flow_rss_ctx_terminate(sa, rss_ctx); 1563 1564 fail_rss_ctx_program: 1565 return rc; 1566 } 1567 1568 static int 1569 sfc_flow_filter_remove(struct sfc_adapter *sa, 1570 struct rte_flow *flow) 1571 { 1572 struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter; 1573 int rc = 0; 1574 1575 rc = sfc_flow_spec_remove(sa, &flow->spec); 1576 if (rc != 0) 1577 return rc; 1578 1579 sfc_flow_rss_ctx_terminate(sa, spec_filter->rss_ctx); 1580 1581 return 0; 1582 } 1583 1584 static int 1585 sfc_flow_parse_mark(struct sfc_adapter *sa, 1586 const struct rte_flow_action_mark *mark, 1587 struct rte_flow *flow) 1588 { 1589 struct sfc_flow_spec *spec = &flow->spec; 1590 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1591 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1592 uint32_t mark_max; 1593 1594 mark_max = encp->enc_filter_action_mark_max; 1595 if (sfc_ft_is_active(sa)) 1596 mark_max = RTE_MIN(mark_max, SFC_FT_USER_MARK_MASK); 1597 1598 if (mark == NULL || mark->id > mark_max) 1599 return EINVAL; 1600 1601 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK; 1602 spec_filter->template.efs_mark = mark->id; 1603 1604 return 0; 1605 } 1606 1607 static int 1608 sfc_flow_parse_actions(struct sfc_adapter *sa, 1609 const struct rte_flow_action actions[], 1610 struct rte_flow *flow, 1611 struct rte_flow_error *error) 1612 { 1613 int rc; 1614 struct sfc_flow_spec *spec = &flow->spec; 1615 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1616 const unsigned int dp_rx_features = sa->priv.dp_rx->features; 1617 const uint64_t rx_metadata = sa->negotiated_rx_metadata; 1618 uint32_t actions_set = 0; 1619 const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) | 1620 (1UL << RTE_FLOW_ACTION_TYPE_RSS) | 1621 (1UL << RTE_FLOW_ACTION_TYPE_DROP); 1622 const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) | 1623 (1UL << RTE_FLOW_ACTION_TYPE_FLAG); 1624 1625 if (actions == NULL) { 1626 rte_flow_error_set(error, EINVAL, 1627 RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, 1628 "NULL actions"); 1629 return -rte_errno; 1630 } 1631 1632 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 1633 switch (actions->type) { 1634 case RTE_FLOW_ACTION_TYPE_VOID: 1635 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID, 1636 actions_set); 1637 break; 1638 1639 case RTE_FLOW_ACTION_TYPE_QUEUE: 1640 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE, 1641 actions_set); 1642 if ((actions_set & fate_actions_mask) != 0) 1643 goto fail_fate_actions; 1644 1645 rc = sfc_flow_parse_queue(sa, actions->conf, flow); 1646 if (rc != 0) { 1647 rte_flow_error_set(error, EINVAL, 1648 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1649 "Bad QUEUE action"); 1650 return -rte_errno; 1651 } 1652 break; 1653 1654 case RTE_FLOW_ACTION_TYPE_RSS: 1655 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS, 1656 actions_set); 1657 if ((actions_set & fate_actions_mask) != 0) 1658 goto fail_fate_actions; 1659 1660 rc = sfc_flow_parse_rss(sa, actions->conf, flow); 1661 if (rc != 0) { 1662 rte_flow_error_set(error, -rc, 1663 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1664 "Bad RSS action"); 1665 return -rte_errno; 1666 } 1667 break; 1668 1669 case RTE_FLOW_ACTION_TYPE_DROP: 1670 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP, 1671 actions_set); 1672 if ((actions_set & fate_actions_mask) != 0) 1673 goto fail_fate_actions; 1674 1675 spec_filter->template.efs_dmaq_id = 1676 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP; 1677 break; 1678 1679 case RTE_FLOW_ACTION_TYPE_FLAG: 1680 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG, 1681 actions_set); 1682 if ((actions_set & mark_actions_mask) != 0) 1683 goto fail_actions_overlap; 1684 1685 if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) { 1686 rte_flow_error_set(error, ENOTSUP, 1687 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1688 "FLAG action is not supported on the current Rx datapath"); 1689 return -rte_errno; 1690 } else if ((rx_metadata & 1691 RTE_ETH_RX_METADATA_USER_FLAG) == 0) { 1692 rte_flow_error_set(error, ENOTSUP, 1693 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1694 "flag delivery has not been negotiated"); 1695 return -rte_errno; 1696 } 1697 1698 spec_filter->template.efs_flags |= 1699 EFX_FILTER_FLAG_ACTION_FLAG; 1700 break; 1701 1702 case RTE_FLOW_ACTION_TYPE_MARK: 1703 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK, 1704 actions_set); 1705 if ((actions_set & mark_actions_mask) != 0) 1706 goto fail_actions_overlap; 1707 1708 if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) { 1709 rte_flow_error_set(error, ENOTSUP, 1710 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1711 "MARK action is not supported on the current Rx datapath"); 1712 return -rte_errno; 1713 } else if ((rx_metadata & 1714 RTE_ETH_RX_METADATA_USER_MARK) == 0) { 1715 rte_flow_error_set(error, ENOTSUP, 1716 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1717 "mark delivery has not been negotiated"); 1718 return -rte_errno; 1719 } 1720 1721 rc = sfc_flow_parse_mark(sa, actions->conf, flow); 1722 if (rc != 0) { 1723 rte_flow_error_set(error, rc, 1724 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1725 "Bad MARK action"); 1726 return -rte_errno; 1727 } 1728 break; 1729 1730 default: 1731 rte_flow_error_set(error, ENOTSUP, 1732 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1733 "Action is not supported"); 1734 return -rte_errno; 1735 } 1736 1737 actions_set |= (1UL << actions->type); 1738 } 1739 1740 /* When fate is unknown, drop traffic. */ 1741 if ((actions_set & fate_actions_mask) == 0) { 1742 spec_filter->template.efs_dmaq_id = 1743 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP; 1744 } 1745 1746 return 0; 1747 1748 fail_fate_actions: 1749 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions, 1750 "Cannot combine several fate-deciding actions, " 1751 "choose between QUEUE, RSS or DROP"); 1752 return -rte_errno; 1753 1754 fail_actions_overlap: 1755 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions, 1756 "Overlapping actions are not supported"); 1757 return -rte_errno; 1758 } 1759 1760 /** 1761 * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST 1762 * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same 1763 * specifications after copying. 1764 * 1765 * @param spec[in, out] 1766 * SFC flow specification to update. 1767 * @param filters_count_for_one_val[in] 1768 * How many specifications should have the same match flag, what is the 1769 * number of specifications before copying. 1770 * @param error[out] 1771 * Perform verbose error reporting if not NULL. 1772 */ 1773 static int 1774 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec, 1775 unsigned int filters_count_for_one_val, 1776 struct rte_flow_error *error) 1777 { 1778 unsigned int i; 1779 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1780 static const efx_filter_match_flags_t vals[] = { 1781 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, 1782 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST 1783 }; 1784 1785 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 1786 rte_flow_error_set(error, EINVAL, 1787 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1788 "Number of specifications is incorrect while copying " 1789 "by unknown destination flags"); 1790 return -rte_errno; 1791 } 1792 1793 for (i = 0; i < spec_filter->count; i++) { 1794 /* The check above ensures that divisor can't be zero here */ 1795 spec_filter->filters[i].efs_match_flags |= 1796 vals[i / filters_count_for_one_val]; 1797 } 1798 1799 return 0; 1800 } 1801 1802 /** 1803 * Check that the following conditions are met: 1804 * - the list of supported filters has a filter 1805 * with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of 1806 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also 1807 * be inserted. 1808 * 1809 * @param match[in] 1810 * The match flags of filter. 1811 * @param spec[in] 1812 * Specification to be supplemented. 1813 * @param filter[in] 1814 * SFC filter with list of supported filters. 1815 */ 1816 static boolean_t 1817 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match, 1818 __rte_unused efx_filter_spec_t *spec, 1819 struct sfc_filter *filter) 1820 { 1821 unsigned int i; 1822 efx_filter_match_flags_t match_mcast_dst; 1823 1824 match_mcast_dst = 1825 (match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) | 1826 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST; 1827 for (i = 0; i < filter->supported_match_num; i++) { 1828 if (match_mcast_dst == filter->supported_match[i]) 1829 return B_TRUE; 1830 } 1831 1832 return B_FALSE; 1833 } 1834 1835 /** 1836 * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and 1837 * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same 1838 * specifications after copying. 1839 * 1840 * @param spec[in, out] 1841 * SFC flow specification to update. 1842 * @param filters_count_for_one_val[in] 1843 * How many specifications should have the same EtherType value, what is the 1844 * number of specifications before copying. 1845 * @param error[out] 1846 * Perform verbose error reporting if not NULL. 1847 */ 1848 static int 1849 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec, 1850 unsigned int filters_count_for_one_val, 1851 struct rte_flow_error *error) 1852 { 1853 unsigned int i; 1854 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1855 static const uint16_t vals[] = { 1856 EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6 1857 }; 1858 1859 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 1860 rte_flow_error_set(error, EINVAL, 1861 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1862 "Number of specifications is incorrect " 1863 "while copying by Ethertype"); 1864 return -rte_errno; 1865 } 1866 1867 for (i = 0; i < spec_filter->count; i++) { 1868 spec_filter->filters[i].efs_match_flags |= 1869 EFX_FILTER_MATCH_ETHER_TYPE; 1870 1871 /* 1872 * The check above ensures that 1873 * filters_count_for_one_val is not 0 1874 */ 1875 spec_filter->filters[i].efs_ether_type = 1876 vals[i / filters_count_for_one_val]; 1877 } 1878 1879 return 0; 1880 } 1881 1882 /** 1883 * Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0 1884 * in the same specifications after copying. 1885 * 1886 * @param spec[in, out] 1887 * SFC flow specification to update. 1888 * @param filters_count_for_one_val[in] 1889 * How many specifications should have the same match flag, what is the 1890 * number of specifications before copying. 1891 * @param error[out] 1892 * Perform verbose error reporting if not NULL. 1893 */ 1894 static int 1895 sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec, 1896 unsigned int filters_count_for_one_val, 1897 struct rte_flow_error *error) 1898 { 1899 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1900 unsigned int i; 1901 1902 if (filters_count_for_one_val != spec_filter->count) { 1903 rte_flow_error_set(error, EINVAL, 1904 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1905 "Number of specifications is incorrect " 1906 "while copying by outer VLAN ID"); 1907 return -rte_errno; 1908 } 1909 1910 for (i = 0; i < spec_filter->count; i++) { 1911 spec_filter->filters[i].efs_match_flags |= 1912 EFX_FILTER_MATCH_OUTER_VID; 1913 1914 spec_filter->filters[i].efs_outer_vid = 0; 1915 } 1916 1917 return 0; 1918 } 1919 1920 /** 1921 * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and 1922 * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same 1923 * specifications after copying. 1924 * 1925 * @param spec[in, out] 1926 * SFC flow specification to update. 1927 * @param filters_count_for_one_val[in] 1928 * How many specifications should have the same match flag, what is the 1929 * number of specifications before copying. 1930 * @param error[out] 1931 * Perform verbose error reporting if not NULL. 1932 */ 1933 static int 1934 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec, 1935 unsigned int filters_count_for_one_val, 1936 struct rte_flow_error *error) 1937 { 1938 unsigned int i; 1939 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1940 static const efx_filter_match_flags_t vals[] = { 1941 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, 1942 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST 1943 }; 1944 1945 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 1946 rte_flow_error_set(error, EINVAL, 1947 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1948 "Number of specifications is incorrect while copying " 1949 "by inner frame unknown destination flags"); 1950 return -rte_errno; 1951 } 1952 1953 for (i = 0; i < spec_filter->count; i++) { 1954 /* The check above ensures that divisor can't be zero here */ 1955 spec_filter->filters[i].efs_match_flags |= 1956 vals[i / filters_count_for_one_val]; 1957 } 1958 1959 return 0; 1960 } 1961 1962 /** 1963 * Check that the following conditions are met: 1964 * - the specification corresponds to a filter for encapsulated traffic 1965 * - the list of supported filters has a filter 1966 * with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of 1967 * EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also 1968 * be inserted. 1969 * 1970 * @param match[in] 1971 * The match flags of filter. 1972 * @param spec[in] 1973 * Specification to be supplemented. 1974 * @param filter[in] 1975 * SFC filter with list of supported filters. 1976 */ 1977 static boolean_t 1978 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match, 1979 efx_filter_spec_t *spec, 1980 struct sfc_filter *filter) 1981 { 1982 unsigned int i; 1983 efx_tunnel_protocol_t encap_type = spec->efs_encap_type; 1984 efx_filter_match_flags_t match_mcast_dst; 1985 1986 if (encap_type == EFX_TUNNEL_PROTOCOL_NONE) 1987 return B_FALSE; 1988 1989 match_mcast_dst = 1990 (match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) | 1991 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST; 1992 for (i = 0; i < filter->supported_match_num; i++) { 1993 if (match_mcast_dst == filter->supported_match[i]) 1994 return B_TRUE; 1995 } 1996 1997 return B_FALSE; 1998 } 1999 2000 /** 2001 * Check that the list of supported filters has a filter that differs 2002 * from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID 2003 * in this case that filter will be used and the flag 2004 * EFX_FILTER_MATCH_OUTER_VID is not needed. 2005 * 2006 * @param match[in] 2007 * The match flags of filter. 2008 * @param spec[in] 2009 * Specification to be supplemented. 2010 * @param filter[in] 2011 * SFC filter with list of supported filters. 2012 */ 2013 static boolean_t 2014 sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match, 2015 __rte_unused efx_filter_spec_t *spec, 2016 struct sfc_filter *filter) 2017 { 2018 unsigned int i; 2019 efx_filter_match_flags_t match_without_vid = 2020 match & ~EFX_FILTER_MATCH_OUTER_VID; 2021 2022 for (i = 0; i < filter->supported_match_num; i++) { 2023 if (match_without_vid == filter->supported_match[i]) 2024 return B_FALSE; 2025 } 2026 2027 return B_TRUE; 2028 } 2029 2030 /* 2031 * Match flags that can be automatically added to filters. 2032 * Selecting the last minimum when searching for the copy flag ensures that the 2033 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than 2034 * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter 2035 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported 2036 * filters. 2037 */ 2038 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = { 2039 { 2040 .flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, 2041 .vals_count = 2, 2042 .set_vals = sfc_flow_set_unknown_dst_flags, 2043 .spec_check = sfc_flow_check_unknown_dst_flags, 2044 }, 2045 { 2046 .flag = EFX_FILTER_MATCH_ETHER_TYPE, 2047 .vals_count = 2, 2048 .set_vals = sfc_flow_set_ethertypes, 2049 .spec_check = NULL, 2050 }, 2051 { 2052 .flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, 2053 .vals_count = 2, 2054 .set_vals = sfc_flow_set_ifrm_unknown_dst_flags, 2055 .spec_check = sfc_flow_check_ifrm_unknown_dst_flags, 2056 }, 2057 { 2058 .flag = EFX_FILTER_MATCH_OUTER_VID, 2059 .vals_count = 1, 2060 .set_vals = sfc_flow_set_outer_vid_flag, 2061 .spec_check = sfc_flow_check_outer_vid_flag, 2062 }, 2063 }; 2064 2065 /* Get item from array sfc_flow_copy_flags */ 2066 static const struct sfc_flow_copy_flag * 2067 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag) 2068 { 2069 unsigned int i; 2070 2071 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2072 if (sfc_flow_copy_flags[i].flag == flag) 2073 return &sfc_flow_copy_flags[i]; 2074 } 2075 2076 return NULL; 2077 } 2078 2079 /** 2080 * Make copies of the specifications, set match flag and values 2081 * of the field that corresponds to it. 2082 * 2083 * @param spec[in, out] 2084 * SFC flow specification to update. 2085 * @param flag[in] 2086 * The match flag to add. 2087 * @param error[out] 2088 * Perform verbose error reporting if not NULL. 2089 */ 2090 static int 2091 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec, 2092 efx_filter_match_flags_t flag, 2093 struct rte_flow_error *error) 2094 { 2095 unsigned int i; 2096 unsigned int new_filters_count; 2097 unsigned int filters_count_for_one_val; 2098 const struct sfc_flow_copy_flag *copy_flag; 2099 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2100 int rc; 2101 2102 copy_flag = sfc_flow_get_copy_flag(flag); 2103 if (copy_flag == NULL) { 2104 rte_flow_error_set(error, ENOTSUP, 2105 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2106 "Unsupported spec field for copying"); 2107 return -rte_errno; 2108 } 2109 2110 new_filters_count = spec_filter->count * copy_flag->vals_count; 2111 if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) { 2112 rte_flow_error_set(error, EINVAL, 2113 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2114 "Too much EFX specifications in the flow rule"); 2115 return -rte_errno; 2116 } 2117 2118 /* Copy filters specifications */ 2119 for (i = spec_filter->count; i < new_filters_count; i++) { 2120 spec_filter->filters[i] = 2121 spec_filter->filters[i - spec_filter->count]; 2122 } 2123 2124 filters_count_for_one_val = spec_filter->count; 2125 spec_filter->count = new_filters_count; 2126 2127 rc = copy_flag->set_vals(spec, filters_count_for_one_val, error); 2128 if (rc != 0) 2129 return rc; 2130 2131 return 0; 2132 } 2133 2134 /** 2135 * Check that the given set of match flags missing in the original filter spec 2136 * could be covered by adding spec copies which specify the corresponding 2137 * flags and packet field values to match. 2138 * 2139 * @param miss_flags[in] 2140 * Flags that are missing until the supported filter. 2141 * @param spec[in] 2142 * Specification to be supplemented. 2143 * @param filter[in] 2144 * SFC filter. 2145 * 2146 * @return 2147 * Number of specifications after copy or 0, if the flags can not be added. 2148 */ 2149 static unsigned int 2150 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags, 2151 efx_filter_spec_t *spec, 2152 struct sfc_filter *filter) 2153 { 2154 unsigned int i; 2155 efx_filter_match_flags_t copy_flags = 0; 2156 efx_filter_match_flags_t flag; 2157 efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags; 2158 sfc_flow_spec_check *check; 2159 unsigned int multiplier = 1; 2160 2161 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2162 flag = sfc_flow_copy_flags[i].flag; 2163 check = sfc_flow_copy_flags[i].spec_check; 2164 if ((flag & miss_flags) == flag) { 2165 if (check != NULL && (!check(match, spec, filter))) 2166 continue; 2167 2168 copy_flags |= flag; 2169 multiplier *= sfc_flow_copy_flags[i].vals_count; 2170 } 2171 } 2172 2173 if (copy_flags == miss_flags) 2174 return multiplier; 2175 2176 return 0; 2177 } 2178 2179 /** 2180 * Attempt to supplement the specification template to the minimally 2181 * supported set of match flags. To do this, it is necessary to copy 2182 * the specifications, filling them with the values of fields that 2183 * correspond to the missing flags. 2184 * The necessary and sufficient filter is built from the fewest number 2185 * of copies which could be made to cover the minimally required set 2186 * of flags. 2187 * 2188 * @param sa[in] 2189 * SFC adapter. 2190 * @param spec[in, out] 2191 * SFC flow specification to update. 2192 * @param error[out] 2193 * Perform verbose error reporting if not NULL. 2194 */ 2195 static int 2196 sfc_flow_spec_filters_complete(struct sfc_adapter *sa, 2197 struct sfc_flow_spec *spec, 2198 struct rte_flow_error *error) 2199 { 2200 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2201 struct sfc_filter *filter = &sa->filter; 2202 efx_filter_match_flags_t miss_flags; 2203 efx_filter_match_flags_t min_miss_flags = 0; 2204 efx_filter_match_flags_t match; 2205 unsigned int min_multiplier = UINT_MAX; 2206 unsigned int multiplier; 2207 unsigned int i; 2208 int rc; 2209 2210 match = spec_filter->template.efs_match_flags; 2211 for (i = 0; i < filter->supported_match_num; i++) { 2212 if ((match & filter->supported_match[i]) == match) { 2213 miss_flags = filter->supported_match[i] & (~match); 2214 multiplier = sfc_flow_check_missing_flags(miss_flags, 2215 &spec_filter->template, filter); 2216 if (multiplier > 0) { 2217 if (multiplier <= min_multiplier) { 2218 min_multiplier = multiplier; 2219 min_miss_flags = miss_flags; 2220 } 2221 } 2222 } 2223 } 2224 2225 if (min_multiplier == UINT_MAX) { 2226 rte_flow_error_set(error, ENOTSUP, 2227 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2228 "The flow rule pattern is unsupported"); 2229 return -rte_errno; 2230 } 2231 2232 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2233 efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag; 2234 2235 if ((flag & min_miss_flags) == flag) { 2236 rc = sfc_flow_spec_add_match_flag(spec, flag, error); 2237 if (rc != 0) 2238 return rc; 2239 } 2240 } 2241 2242 return 0; 2243 } 2244 2245 /** 2246 * Check that set of match flags is referred to by a filter. Filter is 2247 * described by match flags with the ability to add OUTER_VID and INNER_VID 2248 * flags. 2249 * 2250 * @param match_flags[in] 2251 * Set of match flags. 2252 * @param flags_pattern[in] 2253 * Pattern of filter match flags. 2254 */ 2255 static boolean_t 2256 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags, 2257 efx_filter_match_flags_t flags_pattern) 2258 { 2259 if ((match_flags & flags_pattern) != flags_pattern) 2260 return B_FALSE; 2261 2262 switch (match_flags & ~flags_pattern) { 2263 case 0: 2264 case EFX_FILTER_MATCH_OUTER_VID: 2265 case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID: 2266 return B_TRUE; 2267 default: 2268 return B_FALSE; 2269 } 2270 } 2271 2272 /** 2273 * Check whether the spec maps to a hardware filter which is known to be 2274 * ineffective despite being valid. 2275 * 2276 * @param filter[in] 2277 * SFC filter with list of supported filters. 2278 * @param spec[in] 2279 * SFC flow specification. 2280 */ 2281 static boolean_t 2282 sfc_flow_is_match_flags_exception(struct sfc_filter *filter, 2283 struct sfc_flow_spec *spec) 2284 { 2285 unsigned int i; 2286 uint16_t ether_type; 2287 uint8_t ip_proto; 2288 efx_filter_match_flags_t match_flags; 2289 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2290 2291 for (i = 0; i < spec_filter->count; i++) { 2292 match_flags = spec_filter->filters[i].efs_match_flags; 2293 2294 if (sfc_flow_is_match_with_vids(match_flags, 2295 EFX_FILTER_MATCH_ETHER_TYPE) || 2296 sfc_flow_is_match_with_vids(match_flags, 2297 EFX_FILTER_MATCH_ETHER_TYPE | 2298 EFX_FILTER_MATCH_LOC_MAC)) { 2299 ether_type = spec_filter->filters[i].efs_ether_type; 2300 if (filter->supports_ip_proto_or_addr_filter && 2301 (ether_type == EFX_ETHER_TYPE_IPV4 || 2302 ether_type == EFX_ETHER_TYPE_IPV6)) 2303 return B_TRUE; 2304 } else if (sfc_flow_is_match_with_vids(match_flags, 2305 EFX_FILTER_MATCH_ETHER_TYPE | 2306 EFX_FILTER_MATCH_IP_PROTO) || 2307 sfc_flow_is_match_with_vids(match_flags, 2308 EFX_FILTER_MATCH_ETHER_TYPE | 2309 EFX_FILTER_MATCH_IP_PROTO | 2310 EFX_FILTER_MATCH_LOC_MAC)) { 2311 ip_proto = spec_filter->filters[i].efs_ip_proto; 2312 if (filter->supports_rem_or_local_port_filter && 2313 (ip_proto == EFX_IPPROTO_TCP || 2314 ip_proto == EFX_IPPROTO_UDP)) 2315 return B_TRUE; 2316 } 2317 } 2318 2319 return B_FALSE; 2320 } 2321 2322 static int 2323 sfc_flow_validate_match_flags(struct sfc_adapter *sa, 2324 struct rte_flow *flow, 2325 struct rte_flow_error *error) 2326 { 2327 struct sfc_flow_spec *spec = &flow->spec; 2328 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2329 efx_filter_spec_t *spec_tmpl = &spec_filter->template; 2330 efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags; 2331 int rc; 2332 2333 /* Initialize the first filter spec with template */ 2334 spec_filter->filters[0] = *spec_tmpl; 2335 spec_filter->count = 1; 2336 2337 if (!sfc_filter_is_match_supported(sa, match_flags)) { 2338 rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error); 2339 if (rc != 0) 2340 return rc; 2341 } 2342 2343 if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) { 2344 rte_flow_error_set(error, ENOTSUP, 2345 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2346 "The flow rule pattern is unsupported"); 2347 return -rte_errno; 2348 } 2349 2350 return 0; 2351 } 2352 2353 static int 2354 sfc_flow_parse_rte_to_filter(struct rte_eth_dev *dev, 2355 const struct rte_flow_item pattern[], 2356 const struct rte_flow_action actions[], 2357 struct rte_flow *flow, 2358 struct rte_flow_error *error) 2359 { 2360 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2361 struct sfc_flow_spec *spec = &flow->spec; 2362 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2363 struct sfc_flow_parse_ctx ctx; 2364 int rc; 2365 2366 ctx.type = SFC_FLOW_PARSE_CTX_FILTER; 2367 ctx.filter = &spec_filter->template; 2368 2369 rc = sfc_flow_parse_pattern(sa, sfc_flow_items, RTE_DIM(sfc_flow_items), 2370 pattern, &ctx, error); 2371 if (rc != 0) 2372 goto fail_bad_value; 2373 2374 rc = sfc_flow_parse_actions(sa, actions, flow, error); 2375 if (rc != 0) 2376 goto fail_bad_value; 2377 2378 rc = sfc_flow_validate_match_flags(sa, flow, error); 2379 if (rc != 0) 2380 goto fail_bad_value; 2381 2382 return 0; 2383 2384 fail_bad_value: 2385 return rc; 2386 } 2387 2388 static int 2389 sfc_flow_parse_rte_to_mae(struct rte_eth_dev *dev, 2390 const struct rte_flow_item pattern[], 2391 const struct rte_flow_action actions[], 2392 struct rte_flow *flow, 2393 struct rte_flow_error *error) 2394 { 2395 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2396 struct sfc_flow_spec *spec = &flow->spec; 2397 struct sfc_flow_spec_mae *spec_mae = &spec->mae; 2398 int rc; 2399 2400 /* 2401 * If the flow is meant to be a TUNNEL rule in a FT context, 2402 * preparse its actions and save its properties in spec_mae. 2403 */ 2404 rc = sfc_ft_tunnel_rule_detect(sa, actions, spec_mae, error); 2405 if (rc != 0) 2406 goto fail; 2407 2408 rc = sfc_mae_rule_parse_pattern(sa, pattern, spec_mae, error); 2409 if (rc != 0) 2410 goto fail; 2411 2412 if (spec_mae->ft_rule_type == SFC_FT_RULE_TUNNEL) { 2413 /* 2414 * By design, this flow should be represented solely by the 2415 * outer rule. But the HW/FW hasn't got support for setting 2416 * Rx mark from RECIRC_ID on outer rule lookup yet. Neither 2417 * does it support outer rule counters. As a workaround, an 2418 * action rule of lower priority is used to do the job. 2419 * 2420 * So don't skip sfc_mae_rule_parse_actions() below. 2421 */ 2422 } 2423 2424 rc = sfc_mae_rule_parse_actions(sa, actions, spec_mae, error); 2425 if (rc != 0) 2426 goto fail; 2427 2428 if (spec_mae->ft_ctx != NULL) { 2429 if (spec_mae->ft_rule_type == SFC_FT_RULE_TUNNEL) 2430 spec_mae->ft_ctx->tunnel_rule_is_set = B_TRUE; 2431 2432 ++(spec_mae->ft_ctx->refcnt); 2433 } 2434 2435 return 0; 2436 2437 fail: 2438 /* Reset these values to avoid confusing sfc_mae_flow_cleanup(). */ 2439 spec_mae->ft_rule_type = SFC_FT_RULE_NONE; 2440 spec_mae->ft_ctx = NULL; 2441 2442 return rc; 2443 } 2444 2445 static int 2446 sfc_flow_parse(struct rte_eth_dev *dev, 2447 const struct rte_flow_attr *attr, 2448 const struct rte_flow_item pattern[], 2449 const struct rte_flow_action actions[], 2450 struct rte_flow *flow, 2451 struct rte_flow_error *error) 2452 { 2453 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2454 const struct sfc_flow_ops_by_spec *ops; 2455 int rc; 2456 2457 rc = sfc_flow_parse_attr(sa, attr, flow, error); 2458 if (rc != 0) 2459 return rc; 2460 2461 ops = sfc_flow_get_ops_by_spec(flow); 2462 if (ops == NULL || ops->parse == NULL) { 2463 rte_flow_error_set(error, ENOTSUP, 2464 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2465 "No backend to handle this flow"); 2466 return -rte_errno; 2467 } 2468 2469 return ops->parse(dev, pattern, actions, flow, error); 2470 } 2471 2472 static struct rte_flow * 2473 sfc_flow_zmalloc(struct rte_flow_error *error) 2474 { 2475 struct rte_flow *flow; 2476 2477 flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0); 2478 if (flow == NULL) { 2479 rte_flow_error_set(error, ENOMEM, 2480 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2481 "Failed to allocate memory"); 2482 } 2483 2484 return flow; 2485 } 2486 2487 static void 2488 sfc_flow_free(struct sfc_adapter *sa, struct rte_flow *flow) 2489 { 2490 const struct sfc_flow_ops_by_spec *ops; 2491 2492 ops = sfc_flow_get_ops_by_spec(flow); 2493 if (ops != NULL && ops->cleanup != NULL) 2494 ops->cleanup(sa, flow); 2495 2496 rte_free(flow); 2497 } 2498 2499 static int 2500 sfc_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow, 2501 struct rte_flow_error *error) 2502 { 2503 const struct sfc_flow_ops_by_spec *ops; 2504 int rc; 2505 2506 ops = sfc_flow_get_ops_by_spec(flow); 2507 if (ops == NULL || ops->insert == NULL) { 2508 rte_flow_error_set(error, ENOTSUP, 2509 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2510 "No backend to handle this flow"); 2511 return rte_errno; 2512 } 2513 2514 rc = ops->insert(sa, flow); 2515 if (rc != 0) { 2516 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2517 NULL, "Failed to insert the flow rule"); 2518 } 2519 2520 return rc; 2521 } 2522 2523 static int 2524 sfc_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow, 2525 struct rte_flow_error *error) 2526 { 2527 const struct sfc_flow_ops_by_spec *ops; 2528 int rc; 2529 2530 ops = sfc_flow_get_ops_by_spec(flow); 2531 if (ops == NULL || ops->remove == NULL) { 2532 rte_flow_error_set(error, ENOTSUP, 2533 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2534 "No backend to handle this flow"); 2535 return rte_errno; 2536 } 2537 2538 rc = ops->remove(sa, flow); 2539 if (rc != 0) { 2540 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2541 NULL, "Failed to remove the flow rule"); 2542 } 2543 2544 return rc; 2545 } 2546 2547 static int 2548 sfc_flow_verify(struct sfc_adapter *sa, struct rte_flow *flow, 2549 struct rte_flow_error *error) 2550 { 2551 const struct sfc_flow_ops_by_spec *ops; 2552 int rc = 0; 2553 2554 ops = sfc_flow_get_ops_by_spec(flow); 2555 if (ops == NULL) { 2556 rte_flow_error_set(error, ENOTSUP, 2557 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2558 "No backend to handle this flow"); 2559 return -rte_errno; 2560 } 2561 2562 if (ops->verify != NULL) { 2563 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2564 rc = ops->verify(sa, flow); 2565 } 2566 2567 if (rc != 0) { 2568 rte_flow_error_set(error, rc, 2569 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2570 "Failed to verify flow validity with FW"); 2571 return -rte_errno; 2572 } 2573 2574 return 0; 2575 } 2576 2577 static int 2578 sfc_flow_validate(struct rte_eth_dev *dev, 2579 const struct rte_flow_attr *attr, 2580 const struct rte_flow_item pattern[], 2581 const struct rte_flow_action actions[], 2582 struct rte_flow_error *error) 2583 { 2584 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2585 struct rte_flow *flow; 2586 int rc; 2587 2588 flow = sfc_flow_zmalloc(error); 2589 if (flow == NULL) 2590 return -rte_errno; 2591 2592 sfc_adapter_lock(sa); 2593 2594 rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error); 2595 if (rc == 0) 2596 rc = sfc_flow_verify(sa, flow, error); 2597 2598 sfc_flow_free(sa, flow); 2599 2600 sfc_adapter_unlock(sa); 2601 2602 return rc; 2603 } 2604 2605 static struct rte_flow * 2606 sfc_flow_create(struct rte_eth_dev *dev, 2607 const struct rte_flow_attr *attr, 2608 const struct rte_flow_item pattern[], 2609 const struct rte_flow_action actions[], 2610 struct rte_flow_error *error) 2611 { 2612 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2613 struct rte_flow *flow = NULL; 2614 int rc; 2615 2616 flow = sfc_flow_zmalloc(error); 2617 if (flow == NULL) 2618 goto fail_no_mem; 2619 2620 sfc_adapter_lock(sa); 2621 2622 rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error); 2623 if (rc != 0) 2624 goto fail_bad_value; 2625 2626 TAILQ_INSERT_TAIL(&sa->flow_list, flow, entries); 2627 2628 if (sa->state == SFC_ETHDEV_STARTED) { 2629 rc = sfc_flow_insert(sa, flow, error); 2630 if (rc != 0) 2631 goto fail_flow_insert; 2632 } 2633 2634 sfc_adapter_unlock(sa); 2635 2636 return flow; 2637 2638 fail_flow_insert: 2639 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2640 2641 fail_bad_value: 2642 sfc_flow_free(sa, flow); 2643 sfc_adapter_unlock(sa); 2644 2645 fail_no_mem: 2646 return NULL; 2647 } 2648 2649 static int 2650 sfc_flow_destroy(struct rte_eth_dev *dev, 2651 struct rte_flow *flow, 2652 struct rte_flow_error *error) 2653 { 2654 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2655 struct rte_flow *flow_ptr; 2656 int rc = EINVAL; 2657 2658 sfc_adapter_lock(sa); 2659 2660 TAILQ_FOREACH(flow_ptr, &sa->flow_list, entries) { 2661 if (flow_ptr == flow) 2662 rc = 0; 2663 } 2664 if (rc != 0) { 2665 rte_flow_error_set(error, rc, 2666 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 2667 "Failed to find flow rule to destroy"); 2668 goto fail_bad_value; 2669 } 2670 2671 if (sa->state == SFC_ETHDEV_STARTED) 2672 rc = sfc_flow_remove(sa, flow, error); 2673 2674 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2675 sfc_flow_free(sa, flow); 2676 2677 fail_bad_value: 2678 sfc_adapter_unlock(sa); 2679 2680 return -rc; 2681 } 2682 2683 static int 2684 sfc_flow_flush(struct rte_eth_dev *dev, 2685 struct rte_flow_error *error) 2686 { 2687 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2688 struct rte_flow *flow; 2689 int ret = 0; 2690 2691 sfc_adapter_lock(sa); 2692 2693 while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) { 2694 if (sa->state == SFC_ETHDEV_STARTED) { 2695 int rc; 2696 2697 rc = sfc_flow_remove(sa, flow, error); 2698 if (rc != 0) 2699 ret = rc; 2700 } 2701 2702 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2703 sfc_flow_free(sa, flow); 2704 } 2705 2706 sfc_adapter_unlock(sa); 2707 2708 return -ret; 2709 } 2710 2711 static int 2712 sfc_flow_query(struct rte_eth_dev *dev, 2713 struct rte_flow *flow, 2714 const struct rte_flow_action *action, 2715 void *data, 2716 struct rte_flow_error *error) 2717 { 2718 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2719 const struct sfc_flow_ops_by_spec *ops; 2720 int ret; 2721 2722 sfc_adapter_lock(sa); 2723 2724 ops = sfc_flow_get_ops_by_spec(flow); 2725 if (ops == NULL || ops->query == NULL) { 2726 ret = rte_flow_error_set(error, ENOTSUP, 2727 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2728 "No backend to handle this flow"); 2729 goto fail_no_backend; 2730 } 2731 2732 if (sa->state != SFC_ETHDEV_STARTED) { 2733 ret = rte_flow_error_set(error, EINVAL, 2734 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2735 "Can't query the flow: the adapter is not started"); 2736 goto fail_not_started; 2737 } 2738 2739 ret = ops->query(dev, flow, action, data, error); 2740 if (ret != 0) 2741 goto fail_query; 2742 2743 sfc_adapter_unlock(sa); 2744 2745 return 0; 2746 2747 fail_query: 2748 fail_not_started: 2749 fail_no_backend: 2750 sfc_adapter_unlock(sa); 2751 return ret; 2752 } 2753 2754 static int 2755 sfc_flow_isolate(struct rte_eth_dev *dev, int enable, 2756 struct rte_flow_error *error) 2757 { 2758 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2759 int ret = 0; 2760 2761 sfc_adapter_lock(sa); 2762 if (sa->state != SFC_ETHDEV_INITIALIZED) { 2763 rte_flow_error_set(error, EBUSY, 2764 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2765 NULL, "please close the port first"); 2766 ret = -rte_errno; 2767 } else { 2768 sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE; 2769 } 2770 sfc_adapter_unlock(sa); 2771 2772 return ret; 2773 } 2774 2775 static int 2776 sfc_flow_pick_transfer_proxy(struct rte_eth_dev *dev, 2777 uint16_t *transfer_proxy_port, 2778 struct rte_flow_error *error) 2779 { 2780 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2781 int ret; 2782 2783 ret = sfc_mae_get_switch_domain_admin(sa->mae.switch_domain_id, 2784 transfer_proxy_port); 2785 if (ret != 0) { 2786 return rte_flow_error_set(error, ret, 2787 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2788 NULL, NULL); 2789 } 2790 2791 return 0; 2792 } 2793 2794 const struct rte_flow_ops sfc_flow_ops = { 2795 .validate = sfc_flow_validate, 2796 .create = sfc_flow_create, 2797 .destroy = sfc_flow_destroy, 2798 .flush = sfc_flow_flush, 2799 .query = sfc_flow_query, 2800 .isolate = sfc_flow_isolate, 2801 .tunnel_decap_set = sfc_ft_decap_set, 2802 .tunnel_match = sfc_ft_match, 2803 .tunnel_action_decap_release = sfc_ft_action_decap_release, 2804 .tunnel_item_release = sfc_ft_item_release, 2805 .get_restore_info = sfc_ft_get_restore_info, 2806 .pick_transfer_proxy = sfc_flow_pick_transfer_proxy, 2807 }; 2808 2809 void 2810 sfc_flow_init(struct sfc_adapter *sa) 2811 { 2812 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2813 2814 TAILQ_INIT(&sa->flow_list); 2815 } 2816 2817 void 2818 sfc_flow_fini(struct sfc_adapter *sa) 2819 { 2820 struct rte_flow *flow; 2821 2822 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2823 2824 while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) { 2825 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2826 sfc_flow_free(sa, flow); 2827 } 2828 } 2829 2830 void 2831 sfc_flow_stop(struct sfc_adapter *sa) 2832 { 2833 struct rte_flow *flow; 2834 2835 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2836 2837 TAILQ_FOREACH(flow, &sa->flow_list, entries) 2838 sfc_flow_remove(sa, flow, NULL); 2839 2840 /* 2841 * MAE counter service is not stopped on flow rule remove to avoid 2842 * extra work. Make sure that it is stopped here. 2843 */ 2844 sfc_mae_counter_stop(sa); 2845 } 2846 2847 int 2848 sfc_flow_start(struct sfc_adapter *sa) 2849 { 2850 struct rte_flow *flow; 2851 int rc = 0; 2852 2853 sfc_log_init(sa, "entry"); 2854 2855 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2856 2857 sfc_ft_counters_reset(sa); 2858 2859 TAILQ_FOREACH(flow, &sa->flow_list, entries) { 2860 rc = sfc_flow_insert(sa, flow, NULL); 2861 if (rc != 0) 2862 goto fail_bad_flow; 2863 } 2864 2865 sfc_log_init(sa, "done"); 2866 2867 fail_bad_flow: 2868 return rc; 2869 } 2870 2871 static void 2872 sfc_flow_cleanup(struct sfc_adapter *sa, struct rte_flow *flow) 2873 { 2874 if (flow == NULL) 2875 return; 2876 2877 sfc_flow_rss_ctx_del(sa, flow->spec.filter.rss_ctx); 2878 } 2879