1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2017-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_byteorder.h> 11 #include <rte_tailq.h> 12 #include <rte_common.h> 13 #include <rte_ethdev_driver.h> 14 #include <rte_ether.h> 15 #include <rte_flow.h> 16 #include <rte_flow_driver.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_rx.h" 22 #include "sfc_filter.h" 23 #include "sfc_flow.h" 24 #include "sfc_log.h" 25 #include "sfc_dp_rx.h" 26 27 struct sfc_flow_ops_by_spec { 28 sfc_flow_parse_cb_t *parse; 29 sfc_flow_insert_cb_t *insert; 30 sfc_flow_remove_cb_t *remove; 31 }; 32 33 static sfc_flow_parse_cb_t sfc_flow_parse_rte_to_filter; 34 static sfc_flow_insert_cb_t sfc_flow_filter_insert; 35 static sfc_flow_remove_cb_t sfc_flow_filter_remove; 36 37 static const struct sfc_flow_ops_by_spec sfc_flow_ops_filter = { 38 .parse = sfc_flow_parse_rte_to_filter, 39 .insert = sfc_flow_filter_insert, 40 .remove = sfc_flow_filter_remove, 41 }; 42 43 static const struct sfc_flow_ops_by_spec * 44 sfc_flow_get_ops_by_spec(struct rte_flow *flow) 45 { 46 struct sfc_flow_spec *spec = &flow->spec; 47 const struct sfc_flow_ops_by_spec *ops = NULL; 48 49 switch (spec->type) { 50 case SFC_FLOW_SPEC_FILTER: 51 ops = &sfc_flow_ops_filter; 52 break; 53 default: 54 SFC_ASSERT(false); 55 break; 56 } 57 58 return ops; 59 } 60 61 /* 62 * Currently, filter-based (VNIC) flow API is implemented in such a manner 63 * that each flow rule is converted to one or more hardware filters. 64 * All elements of flow rule (attributes, pattern items, actions) 65 * correspond to one or more fields in the efx_filter_spec_s structure 66 * that is responsible for the hardware filter. 67 * If some required field is unset in the flow rule, then a handful 68 * of filter copies will be created to cover all possible values 69 * of such a field. 70 */ 71 72 static sfc_flow_item_parse sfc_flow_parse_void; 73 static sfc_flow_item_parse sfc_flow_parse_eth; 74 static sfc_flow_item_parse sfc_flow_parse_vlan; 75 static sfc_flow_item_parse sfc_flow_parse_ipv4; 76 static sfc_flow_item_parse sfc_flow_parse_ipv6; 77 static sfc_flow_item_parse sfc_flow_parse_tcp; 78 static sfc_flow_item_parse sfc_flow_parse_udp; 79 static sfc_flow_item_parse sfc_flow_parse_vxlan; 80 static sfc_flow_item_parse sfc_flow_parse_geneve; 81 static sfc_flow_item_parse sfc_flow_parse_nvgre; 82 83 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec, 84 unsigned int filters_count_for_one_val, 85 struct rte_flow_error *error); 86 87 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match, 88 efx_filter_spec_t *spec, 89 struct sfc_filter *filter); 90 91 struct sfc_flow_copy_flag { 92 /* EFX filter specification match flag */ 93 efx_filter_match_flags_t flag; 94 /* Number of values of corresponding field */ 95 unsigned int vals_count; 96 /* Function to set values in specifications */ 97 sfc_flow_spec_set_vals *set_vals; 98 /* 99 * Function to check that the specification is suitable 100 * for adding this match flag 101 */ 102 sfc_flow_spec_check *spec_check; 103 }; 104 105 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags; 106 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags; 107 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes; 108 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags; 109 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags; 110 static sfc_flow_spec_set_vals sfc_flow_set_outer_vid_flag; 111 static sfc_flow_spec_check sfc_flow_check_outer_vid_flag; 112 113 static boolean_t 114 sfc_flow_is_zero(const uint8_t *buf, unsigned int size) 115 { 116 uint8_t sum = 0; 117 unsigned int i; 118 119 for (i = 0; i < size; i++) 120 sum |= buf[i]; 121 122 return (sum == 0) ? B_TRUE : B_FALSE; 123 } 124 125 /* 126 * Validate item and prepare structures spec and mask for parsing 127 */ 128 int 129 sfc_flow_parse_init(const struct rte_flow_item *item, 130 const void **spec_ptr, 131 const void **mask_ptr, 132 const void *supp_mask, 133 const void *def_mask, 134 unsigned int size, 135 struct rte_flow_error *error) 136 { 137 const uint8_t *spec; 138 const uint8_t *mask; 139 const uint8_t *last; 140 uint8_t supp; 141 unsigned int i; 142 143 if (item == NULL) { 144 rte_flow_error_set(error, EINVAL, 145 RTE_FLOW_ERROR_TYPE_ITEM, NULL, 146 "NULL item"); 147 return -rte_errno; 148 } 149 150 if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) { 151 rte_flow_error_set(error, EINVAL, 152 RTE_FLOW_ERROR_TYPE_ITEM, item, 153 "Mask or last is set without spec"); 154 return -rte_errno; 155 } 156 157 /* 158 * If "mask" is not set, default mask is used, 159 * but if default mask is NULL, "mask" should be set 160 */ 161 if (item->mask == NULL) { 162 if (def_mask == NULL) { 163 rte_flow_error_set(error, EINVAL, 164 RTE_FLOW_ERROR_TYPE_ITEM, NULL, 165 "Mask should be specified"); 166 return -rte_errno; 167 } 168 169 mask = def_mask; 170 } else { 171 mask = item->mask; 172 } 173 174 spec = item->spec; 175 last = item->last; 176 177 if (spec == NULL) 178 goto exit; 179 180 /* 181 * If field values in "last" are either 0 or equal to the corresponding 182 * values in "spec" then they are ignored 183 */ 184 if (last != NULL && 185 !sfc_flow_is_zero(last, size) && 186 memcmp(last, spec, size) != 0) { 187 rte_flow_error_set(error, ENOTSUP, 188 RTE_FLOW_ERROR_TYPE_ITEM, item, 189 "Ranging is not supported"); 190 return -rte_errno; 191 } 192 193 if (supp_mask == NULL) { 194 rte_flow_error_set(error, EINVAL, 195 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 196 "Supported mask for item should be specified"); 197 return -rte_errno; 198 } 199 200 /* Check that mask does not ask for more match than supp_mask */ 201 for (i = 0; i < size; i++) { 202 supp = ((const uint8_t *)supp_mask)[i]; 203 204 if (~supp & mask[i]) { 205 rte_flow_error_set(error, ENOTSUP, 206 RTE_FLOW_ERROR_TYPE_ITEM, item, 207 "Item's field is not supported"); 208 return -rte_errno; 209 } 210 } 211 212 exit: 213 *spec_ptr = spec; 214 *mask_ptr = mask; 215 return 0; 216 } 217 218 /* 219 * Protocol parsers. 220 * Masking is not supported, so masks in items should be either 221 * full or empty (zeroed) and set only for supported fields which 222 * are specified in the supp_mask. 223 */ 224 225 static int 226 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item, 227 __rte_unused struct sfc_flow_parse_ctx *parse_ctx, 228 __rte_unused struct rte_flow_error *error) 229 { 230 return 0; 231 } 232 233 /** 234 * Convert Ethernet item to EFX filter specification. 235 * 236 * @param item[in] 237 * Item specification. Outer frame specification may only comprise 238 * source/destination addresses and Ethertype field. 239 * Inner frame specification may contain destination address only. 240 * There is support for individual/group mask as well as for empty and full. 241 * If the mask is NULL, default mask will be used. Ranging is not supported. 242 * @param efx_spec[in, out] 243 * EFX filter specification to update. 244 * @param[out] error 245 * Perform verbose error reporting if not NULL. 246 */ 247 static int 248 sfc_flow_parse_eth(const struct rte_flow_item *item, 249 struct sfc_flow_parse_ctx *parse_ctx, 250 struct rte_flow_error *error) 251 { 252 int rc; 253 efx_filter_spec_t *efx_spec = parse_ctx->filter; 254 const struct rte_flow_item_eth *spec = NULL; 255 const struct rte_flow_item_eth *mask = NULL; 256 const struct rte_flow_item_eth supp_mask = { 257 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 258 .src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 259 .type = 0xffff, 260 }; 261 const struct rte_flow_item_eth ifrm_supp_mask = { 262 .dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, 263 }; 264 const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = { 265 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 266 }; 267 const struct rte_flow_item_eth *supp_mask_p; 268 const struct rte_flow_item_eth *def_mask_p; 269 uint8_t *loc_mac = NULL; 270 boolean_t is_ifrm = (efx_spec->efs_encap_type != 271 EFX_TUNNEL_PROTOCOL_NONE); 272 273 if (is_ifrm) { 274 supp_mask_p = &ifrm_supp_mask; 275 def_mask_p = &ifrm_supp_mask; 276 loc_mac = efx_spec->efs_ifrm_loc_mac; 277 } else { 278 supp_mask_p = &supp_mask; 279 def_mask_p = &rte_flow_item_eth_mask; 280 loc_mac = efx_spec->efs_loc_mac; 281 } 282 283 rc = sfc_flow_parse_init(item, 284 (const void **)&spec, 285 (const void **)&mask, 286 supp_mask_p, def_mask_p, 287 sizeof(struct rte_flow_item_eth), 288 error); 289 if (rc != 0) 290 return rc; 291 292 /* If "spec" is not set, could be any Ethernet */ 293 if (spec == NULL) 294 return 0; 295 296 if (rte_is_same_ether_addr(&mask->dst, &supp_mask.dst)) { 297 efx_spec->efs_match_flags |= is_ifrm ? 298 EFX_FILTER_MATCH_IFRM_LOC_MAC : 299 EFX_FILTER_MATCH_LOC_MAC; 300 rte_memcpy(loc_mac, spec->dst.addr_bytes, 301 EFX_MAC_ADDR_LEN); 302 } else if (memcmp(mask->dst.addr_bytes, ig_mask, 303 EFX_MAC_ADDR_LEN) == 0) { 304 if (rte_is_unicast_ether_addr(&spec->dst)) 305 efx_spec->efs_match_flags |= is_ifrm ? 306 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST : 307 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST; 308 else 309 efx_spec->efs_match_flags |= is_ifrm ? 310 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST : 311 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST; 312 } else if (!rte_is_zero_ether_addr(&mask->dst)) { 313 goto fail_bad_mask; 314 } 315 316 /* 317 * ifrm_supp_mask ensures that the source address and 318 * ethertype masks are equal to zero in inner frame, 319 * so these fields are filled in only for the outer frame 320 */ 321 if (rte_is_same_ether_addr(&mask->src, &supp_mask.src)) { 322 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC; 323 rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes, 324 EFX_MAC_ADDR_LEN); 325 } else if (!rte_is_zero_ether_addr(&mask->src)) { 326 goto fail_bad_mask; 327 } 328 329 /* 330 * Ether type is in big-endian byte order in item and 331 * in little-endian in efx_spec, so byte swap is used 332 */ 333 if (mask->type == supp_mask.type) { 334 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 335 efx_spec->efs_ether_type = rte_bswap16(spec->type); 336 } else if (mask->type != 0) { 337 goto fail_bad_mask; 338 } 339 340 return 0; 341 342 fail_bad_mask: 343 rte_flow_error_set(error, EINVAL, 344 RTE_FLOW_ERROR_TYPE_ITEM, item, 345 "Bad mask in the ETH pattern item"); 346 return -rte_errno; 347 } 348 349 /** 350 * Convert VLAN item to EFX filter specification. 351 * 352 * @param item[in] 353 * Item specification. Only VID field is supported. 354 * The mask can not be NULL. Ranging is not supported. 355 * @param efx_spec[in, out] 356 * EFX filter specification to update. 357 * @param[out] error 358 * Perform verbose error reporting if not NULL. 359 */ 360 static int 361 sfc_flow_parse_vlan(const struct rte_flow_item *item, 362 struct sfc_flow_parse_ctx *parse_ctx, 363 struct rte_flow_error *error) 364 { 365 int rc; 366 uint16_t vid; 367 efx_filter_spec_t *efx_spec = parse_ctx->filter; 368 const struct rte_flow_item_vlan *spec = NULL; 369 const struct rte_flow_item_vlan *mask = NULL; 370 const struct rte_flow_item_vlan supp_mask = { 371 .tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX), 372 .inner_type = RTE_BE16(0xffff), 373 }; 374 375 rc = sfc_flow_parse_init(item, 376 (const void **)&spec, 377 (const void **)&mask, 378 &supp_mask, 379 NULL, 380 sizeof(struct rte_flow_item_vlan), 381 error); 382 if (rc != 0) 383 return rc; 384 385 /* 386 * VID is in big-endian byte order in item and 387 * in little-endian in efx_spec, so byte swap is used. 388 * If two VLAN items are included, the first matches 389 * the outer tag and the next matches the inner tag. 390 */ 391 if (mask->tci == supp_mask.tci) { 392 /* Apply mask to keep VID only */ 393 vid = rte_bswap16(spec->tci & mask->tci); 394 395 if (!(efx_spec->efs_match_flags & 396 EFX_FILTER_MATCH_OUTER_VID)) { 397 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID; 398 efx_spec->efs_outer_vid = vid; 399 } else if (!(efx_spec->efs_match_flags & 400 EFX_FILTER_MATCH_INNER_VID)) { 401 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID; 402 efx_spec->efs_inner_vid = vid; 403 } else { 404 rte_flow_error_set(error, EINVAL, 405 RTE_FLOW_ERROR_TYPE_ITEM, item, 406 "More than two VLAN items"); 407 return -rte_errno; 408 } 409 } else { 410 rte_flow_error_set(error, EINVAL, 411 RTE_FLOW_ERROR_TYPE_ITEM, item, 412 "VLAN ID in TCI match is required"); 413 return -rte_errno; 414 } 415 416 if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) { 417 rte_flow_error_set(error, EINVAL, 418 RTE_FLOW_ERROR_TYPE_ITEM, item, 419 "VLAN TPID matching is not supported"); 420 return -rte_errno; 421 } 422 if (mask->inner_type == supp_mask.inner_type) { 423 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 424 efx_spec->efs_ether_type = rte_bswap16(spec->inner_type); 425 } else if (mask->inner_type) { 426 rte_flow_error_set(error, EINVAL, 427 RTE_FLOW_ERROR_TYPE_ITEM, item, 428 "Bad mask for VLAN inner_type"); 429 return -rte_errno; 430 } 431 432 return 0; 433 } 434 435 /** 436 * Convert IPv4 item to EFX filter specification. 437 * 438 * @param item[in] 439 * Item specification. Only source and destination addresses and 440 * protocol fields are supported. If the mask is NULL, default 441 * mask will be used. Ranging is not supported. 442 * @param efx_spec[in, out] 443 * EFX filter specification to update. 444 * @param[out] error 445 * Perform verbose error reporting if not NULL. 446 */ 447 static int 448 sfc_flow_parse_ipv4(const struct rte_flow_item *item, 449 struct sfc_flow_parse_ctx *parse_ctx, 450 struct rte_flow_error *error) 451 { 452 int rc; 453 efx_filter_spec_t *efx_spec = parse_ctx->filter; 454 const struct rte_flow_item_ipv4 *spec = NULL; 455 const struct rte_flow_item_ipv4 *mask = NULL; 456 const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4); 457 const struct rte_flow_item_ipv4 supp_mask = { 458 .hdr = { 459 .src_addr = 0xffffffff, 460 .dst_addr = 0xffffffff, 461 .next_proto_id = 0xff, 462 } 463 }; 464 465 rc = sfc_flow_parse_init(item, 466 (const void **)&spec, 467 (const void **)&mask, 468 &supp_mask, 469 &rte_flow_item_ipv4_mask, 470 sizeof(struct rte_flow_item_ipv4), 471 error); 472 if (rc != 0) 473 return rc; 474 475 /* 476 * Filtering by IPv4 source and destination addresses requires 477 * the appropriate ETHER_TYPE in hardware filters 478 */ 479 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) { 480 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 481 efx_spec->efs_ether_type = ether_type_ipv4; 482 } else if (efx_spec->efs_ether_type != ether_type_ipv4) { 483 rte_flow_error_set(error, EINVAL, 484 RTE_FLOW_ERROR_TYPE_ITEM, item, 485 "Ethertype in pattern with IPV4 item should be appropriate"); 486 return -rte_errno; 487 } 488 489 if (spec == NULL) 490 return 0; 491 492 /* 493 * IPv4 addresses are in big-endian byte order in item and in 494 * efx_spec 495 */ 496 if (mask->hdr.src_addr == supp_mask.hdr.src_addr) { 497 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST; 498 efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr; 499 } else if (mask->hdr.src_addr != 0) { 500 goto fail_bad_mask; 501 } 502 503 if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) { 504 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST; 505 efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr; 506 } else if (mask->hdr.dst_addr != 0) { 507 goto fail_bad_mask; 508 } 509 510 if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) { 511 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 512 efx_spec->efs_ip_proto = spec->hdr.next_proto_id; 513 } else if (mask->hdr.next_proto_id != 0) { 514 goto fail_bad_mask; 515 } 516 517 return 0; 518 519 fail_bad_mask: 520 rte_flow_error_set(error, EINVAL, 521 RTE_FLOW_ERROR_TYPE_ITEM, item, 522 "Bad mask in the IPV4 pattern item"); 523 return -rte_errno; 524 } 525 526 /** 527 * Convert IPv6 item to EFX filter specification. 528 * 529 * @param item[in] 530 * Item specification. Only source and destination addresses and 531 * next header fields are supported. If the mask is NULL, default 532 * mask will be used. Ranging is not supported. 533 * @param efx_spec[in, out] 534 * EFX filter specification to update. 535 * @param[out] error 536 * Perform verbose error reporting if not NULL. 537 */ 538 static int 539 sfc_flow_parse_ipv6(const struct rte_flow_item *item, 540 struct sfc_flow_parse_ctx *parse_ctx, 541 struct rte_flow_error *error) 542 { 543 int rc; 544 efx_filter_spec_t *efx_spec = parse_ctx->filter; 545 const struct rte_flow_item_ipv6 *spec = NULL; 546 const struct rte_flow_item_ipv6 *mask = NULL; 547 const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6); 548 const struct rte_flow_item_ipv6 supp_mask = { 549 .hdr = { 550 .src_addr = { 0xff, 0xff, 0xff, 0xff, 551 0xff, 0xff, 0xff, 0xff, 552 0xff, 0xff, 0xff, 0xff, 553 0xff, 0xff, 0xff, 0xff }, 554 .dst_addr = { 0xff, 0xff, 0xff, 0xff, 555 0xff, 0xff, 0xff, 0xff, 556 0xff, 0xff, 0xff, 0xff, 557 0xff, 0xff, 0xff, 0xff }, 558 .proto = 0xff, 559 } 560 }; 561 562 rc = sfc_flow_parse_init(item, 563 (const void **)&spec, 564 (const void **)&mask, 565 &supp_mask, 566 &rte_flow_item_ipv6_mask, 567 sizeof(struct rte_flow_item_ipv6), 568 error); 569 if (rc != 0) 570 return rc; 571 572 /* 573 * Filtering by IPv6 source and destination addresses requires 574 * the appropriate ETHER_TYPE in hardware filters 575 */ 576 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) { 577 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 578 efx_spec->efs_ether_type = ether_type_ipv6; 579 } else if (efx_spec->efs_ether_type != ether_type_ipv6) { 580 rte_flow_error_set(error, EINVAL, 581 RTE_FLOW_ERROR_TYPE_ITEM, item, 582 "Ethertype in pattern with IPV6 item should be appropriate"); 583 return -rte_errno; 584 } 585 586 if (spec == NULL) 587 return 0; 588 589 /* 590 * IPv6 addresses are in big-endian byte order in item and in 591 * efx_spec 592 */ 593 if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr, 594 sizeof(mask->hdr.src_addr)) == 0) { 595 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST; 596 597 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) != 598 sizeof(spec->hdr.src_addr)); 599 rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr, 600 sizeof(efx_spec->efs_rem_host)); 601 } else if (!sfc_flow_is_zero(mask->hdr.src_addr, 602 sizeof(mask->hdr.src_addr))) { 603 goto fail_bad_mask; 604 } 605 606 if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr, 607 sizeof(mask->hdr.dst_addr)) == 0) { 608 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST; 609 610 RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) != 611 sizeof(spec->hdr.dst_addr)); 612 rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr, 613 sizeof(efx_spec->efs_loc_host)); 614 } else if (!sfc_flow_is_zero(mask->hdr.dst_addr, 615 sizeof(mask->hdr.dst_addr))) { 616 goto fail_bad_mask; 617 } 618 619 if (mask->hdr.proto == supp_mask.hdr.proto) { 620 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 621 efx_spec->efs_ip_proto = spec->hdr.proto; 622 } else if (mask->hdr.proto != 0) { 623 goto fail_bad_mask; 624 } 625 626 return 0; 627 628 fail_bad_mask: 629 rte_flow_error_set(error, EINVAL, 630 RTE_FLOW_ERROR_TYPE_ITEM, item, 631 "Bad mask in the IPV6 pattern item"); 632 return -rte_errno; 633 } 634 635 /** 636 * Convert TCP item to EFX filter specification. 637 * 638 * @param item[in] 639 * Item specification. Only source and destination ports fields 640 * are supported. If the mask is NULL, default mask will be used. 641 * Ranging is not supported. 642 * @param efx_spec[in, out] 643 * EFX filter specification to update. 644 * @param[out] error 645 * Perform verbose error reporting if not NULL. 646 */ 647 static int 648 sfc_flow_parse_tcp(const struct rte_flow_item *item, 649 struct sfc_flow_parse_ctx *parse_ctx, 650 struct rte_flow_error *error) 651 { 652 int rc; 653 efx_filter_spec_t *efx_spec = parse_ctx->filter; 654 const struct rte_flow_item_tcp *spec = NULL; 655 const struct rte_flow_item_tcp *mask = NULL; 656 const struct rte_flow_item_tcp supp_mask = { 657 .hdr = { 658 .src_port = 0xffff, 659 .dst_port = 0xffff, 660 } 661 }; 662 663 rc = sfc_flow_parse_init(item, 664 (const void **)&spec, 665 (const void **)&mask, 666 &supp_mask, 667 &rte_flow_item_tcp_mask, 668 sizeof(struct rte_flow_item_tcp), 669 error); 670 if (rc != 0) 671 return rc; 672 673 /* 674 * Filtering by TCP source and destination ports requires 675 * the appropriate IP_PROTO in hardware filters 676 */ 677 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 678 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 679 efx_spec->efs_ip_proto = EFX_IPPROTO_TCP; 680 } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) { 681 rte_flow_error_set(error, EINVAL, 682 RTE_FLOW_ERROR_TYPE_ITEM, item, 683 "IP proto in pattern with TCP item should be appropriate"); 684 return -rte_errno; 685 } 686 687 if (spec == NULL) 688 return 0; 689 690 /* 691 * Source and destination ports are in big-endian byte order in item and 692 * in little-endian in efx_spec, so byte swap is used 693 */ 694 if (mask->hdr.src_port == supp_mask.hdr.src_port) { 695 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT; 696 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port); 697 } else if (mask->hdr.src_port != 0) { 698 goto fail_bad_mask; 699 } 700 701 if (mask->hdr.dst_port == supp_mask.hdr.dst_port) { 702 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT; 703 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port); 704 } else if (mask->hdr.dst_port != 0) { 705 goto fail_bad_mask; 706 } 707 708 return 0; 709 710 fail_bad_mask: 711 rte_flow_error_set(error, EINVAL, 712 RTE_FLOW_ERROR_TYPE_ITEM, item, 713 "Bad mask in the TCP pattern item"); 714 return -rte_errno; 715 } 716 717 /** 718 * Convert UDP item to EFX filter specification. 719 * 720 * @param item[in] 721 * Item specification. Only source and destination ports fields 722 * are supported. If the mask is NULL, default mask will be used. 723 * Ranging is not supported. 724 * @param efx_spec[in, out] 725 * EFX filter specification to update. 726 * @param[out] error 727 * Perform verbose error reporting if not NULL. 728 */ 729 static int 730 sfc_flow_parse_udp(const struct rte_flow_item *item, 731 struct sfc_flow_parse_ctx *parse_ctx, 732 struct rte_flow_error *error) 733 { 734 int rc; 735 efx_filter_spec_t *efx_spec = parse_ctx->filter; 736 const struct rte_flow_item_udp *spec = NULL; 737 const struct rte_flow_item_udp *mask = NULL; 738 const struct rte_flow_item_udp supp_mask = { 739 .hdr = { 740 .src_port = 0xffff, 741 .dst_port = 0xffff, 742 } 743 }; 744 745 rc = sfc_flow_parse_init(item, 746 (const void **)&spec, 747 (const void **)&mask, 748 &supp_mask, 749 &rte_flow_item_udp_mask, 750 sizeof(struct rte_flow_item_udp), 751 error); 752 if (rc != 0) 753 return rc; 754 755 /* 756 * Filtering by UDP source and destination ports requires 757 * the appropriate IP_PROTO in hardware filters 758 */ 759 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 760 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 761 efx_spec->efs_ip_proto = EFX_IPPROTO_UDP; 762 } else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) { 763 rte_flow_error_set(error, EINVAL, 764 RTE_FLOW_ERROR_TYPE_ITEM, item, 765 "IP proto in pattern with UDP item should be appropriate"); 766 return -rte_errno; 767 } 768 769 if (spec == NULL) 770 return 0; 771 772 /* 773 * Source and destination ports are in big-endian byte order in item and 774 * in little-endian in efx_spec, so byte swap is used 775 */ 776 if (mask->hdr.src_port == supp_mask.hdr.src_port) { 777 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT; 778 efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port); 779 } else if (mask->hdr.src_port != 0) { 780 goto fail_bad_mask; 781 } 782 783 if (mask->hdr.dst_port == supp_mask.hdr.dst_port) { 784 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT; 785 efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port); 786 } else if (mask->hdr.dst_port != 0) { 787 goto fail_bad_mask; 788 } 789 790 return 0; 791 792 fail_bad_mask: 793 rte_flow_error_set(error, EINVAL, 794 RTE_FLOW_ERROR_TYPE_ITEM, item, 795 "Bad mask in the UDP pattern item"); 796 return -rte_errno; 797 } 798 799 /* 800 * Filters for encapsulated packets match based on the EtherType and IP 801 * protocol in the outer frame. 802 */ 803 static int 804 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item, 805 efx_filter_spec_t *efx_spec, 806 uint8_t ip_proto, 807 struct rte_flow_error *error) 808 { 809 if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) { 810 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO; 811 efx_spec->efs_ip_proto = ip_proto; 812 } else if (efx_spec->efs_ip_proto != ip_proto) { 813 switch (ip_proto) { 814 case EFX_IPPROTO_UDP: 815 rte_flow_error_set(error, EINVAL, 816 RTE_FLOW_ERROR_TYPE_ITEM, item, 817 "Outer IP header protocol must be UDP " 818 "in VxLAN/GENEVE pattern"); 819 return -rte_errno; 820 821 case EFX_IPPROTO_GRE: 822 rte_flow_error_set(error, EINVAL, 823 RTE_FLOW_ERROR_TYPE_ITEM, item, 824 "Outer IP header protocol must be GRE " 825 "in NVGRE pattern"); 826 return -rte_errno; 827 828 default: 829 rte_flow_error_set(error, EINVAL, 830 RTE_FLOW_ERROR_TYPE_ITEM, item, 831 "Only VxLAN/GENEVE/NVGRE tunneling patterns " 832 "are supported"); 833 return -rte_errno; 834 } 835 } 836 837 if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE && 838 efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 && 839 efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) { 840 rte_flow_error_set(error, EINVAL, 841 RTE_FLOW_ERROR_TYPE_ITEM, item, 842 "Outer frame EtherType in pattern with tunneling " 843 "must be IPv4 or IPv6"); 844 return -rte_errno; 845 } 846 847 return 0; 848 } 849 850 static int 851 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec, 852 const uint8_t *vni_or_vsid_val, 853 const uint8_t *vni_or_vsid_mask, 854 const struct rte_flow_item *item, 855 struct rte_flow_error *error) 856 { 857 const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = { 858 0xff, 0xff, 0xff 859 }; 860 861 if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask, 862 EFX_VNI_OR_VSID_LEN) == 0) { 863 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID; 864 rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val, 865 EFX_VNI_OR_VSID_LEN); 866 } else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) { 867 rte_flow_error_set(error, EINVAL, 868 RTE_FLOW_ERROR_TYPE_ITEM, item, 869 "Unsupported VNI/VSID mask"); 870 return -rte_errno; 871 } 872 873 return 0; 874 } 875 876 /** 877 * Convert VXLAN item to EFX filter specification. 878 * 879 * @param item[in] 880 * Item specification. Only VXLAN network identifier field is supported. 881 * If the mask is NULL, default mask will be used. 882 * Ranging is not supported. 883 * @param efx_spec[in, out] 884 * EFX filter specification to update. 885 * @param[out] error 886 * Perform verbose error reporting if not NULL. 887 */ 888 static int 889 sfc_flow_parse_vxlan(const struct rte_flow_item *item, 890 struct sfc_flow_parse_ctx *parse_ctx, 891 struct rte_flow_error *error) 892 { 893 int rc; 894 efx_filter_spec_t *efx_spec = parse_ctx->filter; 895 const struct rte_flow_item_vxlan *spec = NULL; 896 const struct rte_flow_item_vxlan *mask = NULL; 897 const struct rte_flow_item_vxlan supp_mask = { 898 .vni = { 0xff, 0xff, 0xff } 899 }; 900 901 rc = sfc_flow_parse_init(item, 902 (const void **)&spec, 903 (const void **)&mask, 904 &supp_mask, 905 &rte_flow_item_vxlan_mask, 906 sizeof(struct rte_flow_item_vxlan), 907 error); 908 if (rc != 0) 909 return rc; 910 911 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 912 EFX_IPPROTO_UDP, error); 913 if (rc != 0) 914 return rc; 915 916 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN; 917 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 918 919 if (spec == NULL) 920 return 0; 921 922 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni, 923 mask->vni, item, error); 924 925 return rc; 926 } 927 928 /** 929 * Convert GENEVE item to EFX filter specification. 930 * 931 * @param item[in] 932 * Item specification. Only Virtual Network Identifier and protocol type 933 * fields are supported. But protocol type can be only Ethernet (0x6558). 934 * If the mask is NULL, default mask will be used. 935 * Ranging is not supported. 936 * @param efx_spec[in, out] 937 * EFX filter specification to update. 938 * @param[out] error 939 * Perform verbose error reporting if not NULL. 940 */ 941 static int 942 sfc_flow_parse_geneve(const struct rte_flow_item *item, 943 struct sfc_flow_parse_ctx *parse_ctx, 944 struct rte_flow_error *error) 945 { 946 int rc; 947 efx_filter_spec_t *efx_spec = parse_ctx->filter; 948 const struct rte_flow_item_geneve *spec = NULL; 949 const struct rte_flow_item_geneve *mask = NULL; 950 const struct rte_flow_item_geneve supp_mask = { 951 .protocol = RTE_BE16(0xffff), 952 .vni = { 0xff, 0xff, 0xff } 953 }; 954 955 rc = sfc_flow_parse_init(item, 956 (const void **)&spec, 957 (const void **)&mask, 958 &supp_mask, 959 &rte_flow_item_geneve_mask, 960 sizeof(struct rte_flow_item_geneve), 961 error); 962 if (rc != 0) 963 return rc; 964 965 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 966 EFX_IPPROTO_UDP, error); 967 if (rc != 0) 968 return rc; 969 970 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE; 971 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 972 973 if (spec == NULL) 974 return 0; 975 976 if (mask->protocol == supp_mask.protocol) { 977 if (spec->protocol != rte_cpu_to_be_16(RTE_ETHER_TYPE_TEB)) { 978 rte_flow_error_set(error, EINVAL, 979 RTE_FLOW_ERROR_TYPE_ITEM, item, 980 "GENEVE encap. protocol must be Ethernet " 981 "(0x6558) in the GENEVE pattern item"); 982 return -rte_errno; 983 } 984 } else if (mask->protocol != 0) { 985 rte_flow_error_set(error, EINVAL, 986 RTE_FLOW_ERROR_TYPE_ITEM, item, 987 "Unsupported mask for GENEVE encap. protocol"); 988 return -rte_errno; 989 } 990 991 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni, 992 mask->vni, item, error); 993 994 return rc; 995 } 996 997 /** 998 * Convert NVGRE item to EFX filter specification. 999 * 1000 * @param item[in] 1001 * Item specification. Only virtual subnet ID field is supported. 1002 * If the mask is NULL, default mask will be used. 1003 * Ranging is not supported. 1004 * @param efx_spec[in, out] 1005 * EFX filter specification to update. 1006 * @param[out] error 1007 * Perform verbose error reporting if not NULL. 1008 */ 1009 static int 1010 sfc_flow_parse_nvgre(const struct rte_flow_item *item, 1011 struct sfc_flow_parse_ctx *parse_ctx, 1012 struct rte_flow_error *error) 1013 { 1014 int rc; 1015 efx_filter_spec_t *efx_spec = parse_ctx->filter; 1016 const struct rte_flow_item_nvgre *spec = NULL; 1017 const struct rte_flow_item_nvgre *mask = NULL; 1018 const struct rte_flow_item_nvgre supp_mask = { 1019 .tni = { 0xff, 0xff, 0xff } 1020 }; 1021 1022 rc = sfc_flow_parse_init(item, 1023 (const void **)&spec, 1024 (const void **)&mask, 1025 &supp_mask, 1026 &rte_flow_item_nvgre_mask, 1027 sizeof(struct rte_flow_item_nvgre), 1028 error); 1029 if (rc != 0) 1030 return rc; 1031 1032 rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec, 1033 EFX_IPPROTO_GRE, error); 1034 if (rc != 0) 1035 return rc; 1036 1037 efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE; 1038 efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE; 1039 1040 if (spec == NULL) 1041 return 0; 1042 1043 rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni, 1044 mask->tni, item, error); 1045 1046 return rc; 1047 } 1048 1049 static const struct sfc_flow_item sfc_flow_items[] = { 1050 { 1051 .type = RTE_FLOW_ITEM_TYPE_VOID, 1052 .prev_layer = SFC_FLOW_ITEM_ANY_LAYER, 1053 .layer = SFC_FLOW_ITEM_ANY_LAYER, 1054 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1055 .parse = sfc_flow_parse_void, 1056 }, 1057 { 1058 .type = RTE_FLOW_ITEM_TYPE_ETH, 1059 .prev_layer = SFC_FLOW_ITEM_START_LAYER, 1060 .layer = SFC_FLOW_ITEM_L2, 1061 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1062 .parse = sfc_flow_parse_eth, 1063 }, 1064 { 1065 .type = RTE_FLOW_ITEM_TYPE_VLAN, 1066 .prev_layer = SFC_FLOW_ITEM_L2, 1067 .layer = SFC_FLOW_ITEM_L2, 1068 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1069 .parse = sfc_flow_parse_vlan, 1070 }, 1071 { 1072 .type = RTE_FLOW_ITEM_TYPE_IPV4, 1073 .prev_layer = SFC_FLOW_ITEM_L2, 1074 .layer = SFC_FLOW_ITEM_L3, 1075 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1076 .parse = sfc_flow_parse_ipv4, 1077 }, 1078 { 1079 .type = RTE_FLOW_ITEM_TYPE_IPV6, 1080 .prev_layer = SFC_FLOW_ITEM_L2, 1081 .layer = SFC_FLOW_ITEM_L3, 1082 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1083 .parse = sfc_flow_parse_ipv6, 1084 }, 1085 { 1086 .type = RTE_FLOW_ITEM_TYPE_TCP, 1087 .prev_layer = SFC_FLOW_ITEM_L3, 1088 .layer = SFC_FLOW_ITEM_L4, 1089 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1090 .parse = sfc_flow_parse_tcp, 1091 }, 1092 { 1093 .type = RTE_FLOW_ITEM_TYPE_UDP, 1094 .prev_layer = SFC_FLOW_ITEM_L3, 1095 .layer = SFC_FLOW_ITEM_L4, 1096 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1097 .parse = sfc_flow_parse_udp, 1098 }, 1099 { 1100 .type = RTE_FLOW_ITEM_TYPE_VXLAN, 1101 .prev_layer = SFC_FLOW_ITEM_L4, 1102 .layer = SFC_FLOW_ITEM_START_LAYER, 1103 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1104 .parse = sfc_flow_parse_vxlan, 1105 }, 1106 { 1107 .type = RTE_FLOW_ITEM_TYPE_GENEVE, 1108 .prev_layer = SFC_FLOW_ITEM_L4, 1109 .layer = SFC_FLOW_ITEM_START_LAYER, 1110 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1111 .parse = sfc_flow_parse_geneve, 1112 }, 1113 { 1114 .type = RTE_FLOW_ITEM_TYPE_NVGRE, 1115 .prev_layer = SFC_FLOW_ITEM_L3, 1116 .layer = SFC_FLOW_ITEM_START_LAYER, 1117 .ctx_type = SFC_FLOW_PARSE_CTX_FILTER, 1118 .parse = sfc_flow_parse_nvgre, 1119 }, 1120 }; 1121 1122 /* 1123 * Protocol-independent flow API support 1124 */ 1125 static int 1126 sfc_flow_parse_attr(const struct rte_flow_attr *attr, 1127 struct rte_flow *flow, 1128 struct rte_flow_error *error) 1129 { 1130 struct sfc_flow_spec *spec = &flow->spec; 1131 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1132 1133 if (attr == NULL) { 1134 rte_flow_error_set(error, EINVAL, 1135 RTE_FLOW_ERROR_TYPE_ATTR, NULL, 1136 "NULL attribute"); 1137 return -rte_errno; 1138 } 1139 if (attr->group != 0) { 1140 rte_flow_error_set(error, ENOTSUP, 1141 RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr, 1142 "Groups are not supported"); 1143 return -rte_errno; 1144 } 1145 if (attr->egress != 0) { 1146 rte_flow_error_set(error, ENOTSUP, 1147 RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr, 1148 "Egress is not supported"); 1149 return -rte_errno; 1150 } 1151 if (attr->ingress == 0) { 1152 rte_flow_error_set(error, ENOTSUP, 1153 RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr, 1154 "Ingress is compulsory"); 1155 return -rte_errno; 1156 } 1157 if (attr->transfer == 0) { 1158 if (attr->priority != 0) { 1159 rte_flow_error_set(error, ENOTSUP, 1160 RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, 1161 attr, "Priorities are unsupported"); 1162 return -rte_errno; 1163 } 1164 spec->type = SFC_FLOW_SPEC_FILTER; 1165 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_RX; 1166 spec_filter->template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT; 1167 } else { 1168 rte_flow_error_set(error, ENOTSUP, 1169 RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, attr, 1170 "Transfer is not supported"); 1171 return -rte_errno; 1172 } 1173 1174 return 0; 1175 } 1176 1177 /* Get item from array sfc_flow_items */ 1178 static const struct sfc_flow_item * 1179 sfc_flow_get_item(const struct sfc_flow_item *items, 1180 unsigned int nb_items, 1181 enum rte_flow_item_type type) 1182 { 1183 unsigned int i; 1184 1185 for (i = 0; i < nb_items; i++) 1186 if (items[i].type == type) 1187 return &items[i]; 1188 1189 return NULL; 1190 } 1191 1192 int 1193 sfc_flow_parse_pattern(const struct sfc_flow_item *flow_items, 1194 unsigned int nb_flow_items, 1195 const struct rte_flow_item pattern[], 1196 struct sfc_flow_parse_ctx *parse_ctx, 1197 struct rte_flow_error *error) 1198 { 1199 int rc; 1200 unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER; 1201 boolean_t is_ifrm = B_FALSE; 1202 const struct sfc_flow_item *item; 1203 1204 if (pattern == NULL) { 1205 rte_flow_error_set(error, EINVAL, 1206 RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL, 1207 "NULL pattern"); 1208 return -rte_errno; 1209 } 1210 1211 for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) { 1212 item = sfc_flow_get_item(flow_items, nb_flow_items, 1213 pattern->type); 1214 if (item == NULL) { 1215 rte_flow_error_set(error, ENOTSUP, 1216 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1217 "Unsupported pattern item"); 1218 return -rte_errno; 1219 } 1220 1221 /* 1222 * Omitting one or several protocol layers at the beginning 1223 * of pattern is supported 1224 */ 1225 if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER && 1226 prev_layer != SFC_FLOW_ITEM_ANY_LAYER && 1227 item->prev_layer != prev_layer) { 1228 rte_flow_error_set(error, ENOTSUP, 1229 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1230 "Unexpected sequence of pattern items"); 1231 return -rte_errno; 1232 } 1233 1234 /* 1235 * Allow only VOID and ETH pattern items in the inner frame. 1236 * Also check that there is only one tunneling protocol. 1237 */ 1238 switch (item->type) { 1239 case RTE_FLOW_ITEM_TYPE_VOID: 1240 case RTE_FLOW_ITEM_TYPE_ETH: 1241 break; 1242 1243 case RTE_FLOW_ITEM_TYPE_VXLAN: 1244 case RTE_FLOW_ITEM_TYPE_GENEVE: 1245 case RTE_FLOW_ITEM_TYPE_NVGRE: 1246 if (is_ifrm) { 1247 rte_flow_error_set(error, EINVAL, 1248 RTE_FLOW_ERROR_TYPE_ITEM, 1249 pattern, 1250 "More than one tunneling protocol"); 1251 return -rte_errno; 1252 } 1253 is_ifrm = B_TRUE; 1254 break; 1255 1256 default: 1257 if (is_ifrm) { 1258 rte_flow_error_set(error, EINVAL, 1259 RTE_FLOW_ERROR_TYPE_ITEM, 1260 pattern, 1261 "There is an unsupported pattern item " 1262 "in the inner frame"); 1263 return -rte_errno; 1264 } 1265 break; 1266 } 1267 1268 if (parse_ctx->type != item->ctx_type) { 1269 rte_flow_error_set(error, EINVAL, 1270 RTE_FLOW_ERROR_TYPE_ITEM, pattern, 1271 "Parse context type mismatch"); 1272 return -rte_errno; 1273 } 1274 1275 rc = item->parse(pattern, parse_ctx, error); 1276 if (rc != 0) 1277 return rc; 1278 1279 if (item->layer != SFC_FLOW_ITEM_ANY_LAYER) 1280 prev_layer = item->layer; 1281 } 1282 1283 return 0; 1284 } 1285 1286 static int 1287 sfc_flow_parse_queue(struct sfc_adapter *sa, 1288 const struct rte_flow_action_queue *queue, 1289 struct rte_flow *flow) 1290 { 1291 struct sfc_flow_spec *spec = &flow->spec; 1292 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1293 struct sfc_rxq *rxq; 1294 1295 if (queue->index >= sfc_sa2shared(sa)->rxq_count) 1296 return -EINVAL; 1297 1298 rxq = &sa->rxq_ctrl[queue->index]; 1299 spec_filter->template.efs_dmaq_id = (uint16_t)rxq->hw_index; 1300 1301 return 0; 1302 } 1303 1304 static int 1305 sfc_flow_parse_rss(struct sfc_adapter *sa, 1306 const struct rte_flow_action_rss *action_rss, 1307 struct rte_flow *flow) 1308 { 1309 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1310 struct sfc_rss *rss = &sas->rss; 1311 unsigned int rxq_sw_index; 1312 struct sfc_rxq *rxq; 1313 unsigned int rxq_hw_index_min; 1314 unsigned int rxq_hw_index_max; 1315 efx_rx_hash_type_t efx_hash_types; 1316 const uint8_t *rss_key; 1317 struct sfc_flow_spec *spec = &flow->spec; 1318 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1319 struct sfc_flow_rss *sfc_rss_conf = &spec_filter->rss_conf; 1320 unsigned int i; 1321 1322 if (action_rss->queue_num == 0) 1323 return -EINVAL; 1324 1325 rxq_sw_index = sfc_sa2shared(sa)->rxq_count - 1; 1326 rxq = &sa->rxq_ctrl[rxq_sw_index]; 1327 rxq_hw_index_min = rxq->hw_index; 1328 rxq_hw_index_max = 0; 1329 1330 for (i = 0; i < action_rss->queue_num; ++i) { 1331 rxq_sw_index = action_rss->queue[i]; 1332 1333 if (rxq_sw_index >= sfc_sa2shared(sa)->rxq_count) 1334 return -EINVAL; 1335 1336 rxq = &sa->rxq_ctrl[rxq_sw_index]; 1337 1338 if (rxq->hw_index < rxq_hw_index_min) 1339 rxq_hw_index_min = rxq->hw_index; 1340 1341 if (rxq->hw_index > rxq_hw_index_max) 1342 rxq_hw_index_max = rxq->hw_index; 1343 } 1344 1345 switch (action_rss->func) { 1346 case RTE_ETH_HASH_FUNCTION_DEFAULT: 1347 case RTE_ETH_HASH_FUNCTION_TOEPLITZ: 1348 break; 1349 default: 1350 return -EINVAL; 1351 } 1352 1353 if (action_rss->level) 1354 return -EINVAL; 1355 1356 /* 1357 * Dummy RSS action with only one queue and no specific settings 1358 * for hash types and key does not require dedicated RSS context 1359 * and may be simplified to single queue action. 1360 */ 1361 if (action_rss->queue_num == 1 && action_rss->types == 0 && 1362 action_rss->key_len == 0) { 1363 spec_filter->template.efs_dmaq_id = rxq_hw_index_min; 1364 return 0; 1365 } 1366 1367 if (action_rss->types) { 1368 int rc; 1369 1370 rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types, 1371 &efx_hash_types); 1372 if (rc != 0) 1373 return -rc; 1374 } else { 1375 unsigned int i; 1376 1377 efx_hash_types = 0; 1378 for (i = 0; i < rss->hf_map_nb_entries; ++i) 1379 efx_hash_types |= rss->hf_map[i].efx; 1380 } 1381 1382 if (action_rss->key_len) { 1383 if (action_rss->key_len != sizeof(rss->key)) 1384 return -EINVAL; 1385 1386 rss_key = action_rss->key; 1387 } else { 1388 rss_key = rss->key; 1389 } 1390 1391 spec_filter->rss = B_TRUE; 1392 1393 sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min; 1394 sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max; 1395 sfc_rss_conf->rss_hash_types = efx_hash_types; 1396 rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key)); 1397 1398 for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) { 1399 unsigned int nb_queues = action_rss->queue_num; 1400 unsigned int rxq_sw_index = action_rss->queue[i % nb_queues]; 1401 struct sfc_rxq *rxq = &sa->rxq_ctrl[rxq_sw_index]; 1402 1403 sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min; 1404 } 1405 1406 return 0; 1407 } 1408 1409 static int 1410 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec, 1411 unsigned int filters_count) 1412 { 1413 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1414 unsigned int i; 1415 int ret = 0; 1416 1417 for (i = 0; i < filters_count; i++) { 1418 int rc; 1419 1420 rc = efx_filter_remove(sa->nic, &spec_filter->filters[i]); 1421 if (ret == 0 && rc != 0) { 1422 sfc_err(sa, "failed to remove filter specification " 1423 "(rc = %d)", rc); 1424 ret = rc; 1425 } 1426 } 1427 1428 return ret; 1429 } 1430 1431 static int 1432 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec) 1433 { 1434 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1435 unsigned int i; 1436 int rc = 0; 1437 1438 for (i = 0; i < spec_filter->count; i++) { 1439 rc = efx_filter_insert(sa->nic, &spec_filter->filters[i]); 1440 if (rc != 0) { 1441 sfc_flow_spec_flush(sa, spec, i); 1442 break; 1443 } 1444 } 1445 1446 return rc; 1447 } 1448 1449 static int 1450 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec) 1451 { 1452 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1453 1454 return sfc_flow_spec_flush(sa, spec, spec_filter->count); 1455 } 1456 1457 static int 1458 sfc_flow_filter_insert(struct sfc_adapter *sa, 1459 struct rte_flow *flow) 1460 { 1461 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 1462 struct sfc_rss *rss = &sas->rss; 1463 struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter; 1464 struct sfc_flow_rss *flow_rss = &spec_filter->rss_conf; 1465 uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT; 1466 unsigned int i; 1467 int rc = 0; 1468 1469 if (spec_filter->rss) { 1470 unsigned int rss_spread = MIN(flow_rss->rxq_hw_index_max - 1471 flow_rss->rxq_hw_index_min + 1, 1472 EFX_MAXRSS); 1473 1474 rc = efx_rx_scale_context_alloc(sa->nic, 1475 EFX_RX_SCALE_EXCLUSIVE, 1476 rss_spread, 1477 &efs_rss_context); 1478 if (rc != 0) 1479 goto fail_scale_context_alloc; 1480 1481 rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context, 1482 rss->hash_alg, 1483 flow_rss->rss_hash_types, B_TRUE); 1484 if (rc != 0) 1485 goto fail_scale_mode_set; 1486 1487 rc = efx_rx_scale_key_set(sa->nic, efs_rss_context, 1488 flow_rss->rss_key, 1489 sizeof(rss->key)); 1490 if (rc != 0) 1491 goto fail_scale_key_set; 1492 1493 /* 1494 * At this point, fully elaborated filter specifications 1495 * have been produced from the template. To make sure that 1496 * RSS behaviour is consistent between them, set the same 1497 * RSS context value everywhere. 1498 */ 1499 for (i = 0; i < spec_filter->count; i++) { 1500 efx_filter_spec_t *spec = &spec_filter->filters[i]; 1501 1502 spec->efs_rss_context = efs_rss_context; 1503 spec->efs_dmaq_id = flow_rss->rxq_hw_index_min; 1504 spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS; 1505 } 1506 } 1507 1508 rc = sfc_flow_spec_insert(sa, &flow->spec); 1509 if (rc != 0) 1510 goto fail_filter_insert; 1511 1512 if (spec_filter->rss) { 1513 /* 1514 * Scale table is set after filter insertion because 1515 * the table entries are relative to the base RxQ ID 1516 * and the latter is submitted to the HW by means of 1517 * inserting a filter, so by the time of the request 1518 * the HW knows all the information needed to verify 1519 * the table entries, and the operation will succeed 1520 */ 1521 rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context, 1522 flow_rss->rss_tbl, 1523 RTE_DIM(flow_rss->rss_tbl)); 1524 if (rc != 0) 1525 goto fail_scale_tbl_set; 1526 } 1527 1528 return 0; 1529 1530 fail_scale_tbl_set: 1531 sfc_flow_spec_remove(sa, &flow->spec); 1532 1533 fail_filter_insert: 1534 fail_scale_key_set: 1535 fail_scale_mode_set: 1536 if (efs_rss_context != EFX_RSS_CONTEXT_DEFAULT) 1537 efx_rx_scale_context_free(sa->nic, efs_rss_context); 1538 1539 fail_scale_context_alloc: 1540 return rc; 1541 } 1542 1543 static int 1544 sfc_flow_filter_remove(struct sfc_adapter *sa, 1545 struct rte_flow *flow) 1546 { 1547 struct sfc_flow_spec_filter *spec_filter = &flow->spec.filter; 1548 int rc = 0; 1549 1550 rc = sfc_flow_spec_remove(sa, &flow->spec); 1551 if (rc != 0) 1552 return rc; 1553 1554 if (spec_filter->rss) { 1555 /* 1556 * All specifications for a given flow rule have the same RSS 1557 * context, so that RSS context value is taken from the first 1558 * filter specification 1559 */ 1560 efx_filter_spec_t *spec = &spec_filter->filters[0]; 1561 1562 rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context); 1563 } 1564 1565 return rc; 1566 } 1567 1568 static int 1569 sfc_flow_parse_mark(struct sfc_adapter *sa, 1570 const struct rte_flow_action_mark *mark, 1571 struct rte_flow *flow) 1572 { 1573 struct sfc_flow_spec *spec = &flow->spec; 1574 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1575 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1576 1577 if (mark == NULL || mark->id > encp->enc_filter_action_mark_max) 1578 return EINVAL; 1579 1580 spec_filter->template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK; 1581 spec_filter->template.efs_mark = mark->id; 1582 1583 return 0; 1584 } 1585 1586 static int 1587 sfc_flow_parse_actions(struct sfc_adapter *sa, 1588 const struct rte_flow_action actions[], 1589 struct rte_flow *flow, 1590 struct rte_flow_error *error) 1591 { 1592 int rc; 1593 struct sfc_flow_spec *spec = &flow->spec; 1594 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1595 const unsigned int dp_rx_features = sa->priv.dp_rx->features; 1596 uint32_t actions_set = 0; 1597 const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) | 1598 (1UL << RTE_FLOW_ACTION_TYPE_RSS) | 1599 (1UL << RTE_FLOW_ACTION_TYPE_DROP); 1600 const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) | 1601 (1UL << RTE_FLOW_ACTION_TYPE_FLAG); 1602 1603 if (actions == NULL) { 1604 rte_flow_error_set(error, EINVAL, 1605 RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL, 1606 "NULL actions"); 1607 return -rte_errno; 1608 } 1609 1610 #define SFC_BUILD_SET_OVERFLOW(_action, _set) \ 1611 RTE_BUILD_BUG_ON(_action >= sizeof(_set) * CHAR_BIT) 1612 1613 for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) { 1614 switch (actions->type) { 1615 case RTE_FLOW_ACTION_TYPE_VOID: 1616 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID, 1617 actions_set); 1618 break; 1619 1620 case RTE_FLOW_ACTION_TYPE_QUEUE: 1621 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE, 1622 actions_set); 1623 if ((actions_set & fate_actions_mask) != 0) 1624 goto fail_fate_actions; 1625 1626 rc = sfc_flow_parse_queue(sa, actions->conf, flow); 1627 if (rc != 0) { 1628 rte_flow_error_set(error, EINVAL, 1629 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1630 "Bad QUEUE action"); 1631 return -rte_errno; 1632 } 1633 break; 1634 1635 case RTE_FLOW_ACTION_TYPE_RSS: 1636 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS, 1637 actions_set); 1638 if ((actions_set & fate_actions_mask) != 0) 1639 goto fail_fate_actions; 1640 1641 rc = sfc_flow_parse_rss(sa, actions->conf, flow); 1642 if (rc != 0) { 1643 rte_flow_error_set(error, -rc, 1644 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1645 "Bad RSS action"); 1646 return -rte_errno; 1647 } 1648 break; 1649 1650 case RTE_FLOW_ACTION_TYPE_DROP: 1651 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP, 1652 actions_set); 1653 if ((actions_set & fate_actions_mask) != 0) 1654 goto fail_fate_actions; 1655 1656 spec_filter->template.efs_dmaq_id = 1657 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP; 1658 break; 1659 1660 case RTE_FLOW_ACTION_TYPE_FLAG: 1661 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG, 1662 actions_set); 1663 if ((actions_set & mark_actions_mask) != 0) 1664 goto fail_actions_overlap; 1665 1666 if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) { 1667 rte_flow_error_set(error, ENOTSUP, 1668 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1669 "FLAG action is not supported on the current Rx datapath"); 1670 return -rte_errno; 1671 } 1672 1673 spec_filter->template.efs_flags |= 1674 EFX_FILTER_FLAG_ACTION_FLAG; 1675 break; 1676 1677 case RTE_FLOW_ACTION_TYPE_MARK: 1678 SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK, 1679 actions_set); 1680 if ((actions_set & mark_actions_mask) != 0) 1681 goto fail_actions_overlap; 1682 1683 if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) { 1684 rte_flow_error_set(error, ENOTSUP, 1685 RTE_FLOW_ERROR_TYPE_ACTION, NULL, 1686 "MARK action is not supported on the current Rx datapath"); 1687 return -rte_errno; 1688 } 1689 1690 rc = sfc_flow_parse_mark(sa, actions->conf, flow); 1691 if (rc != 0) { 1692 rte_flow_error_set(error, rc, 1693 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1694 "Bad MARK action"); 1695 return -rte_errno; 1696 } 1697 break; 1698 1699 default: 1700 rte_flow_error_set(error, ENOTSUP, 1701 RTE_FLOW_ERROR_TYPE_ACTION, actions, 1702 "Action is not supported"); 1703 return -rte_errno; 1704 } 1705 1706 actions_set |= (1UL << actions->type); 1707 } 1708 #undef SFC_BUILD_SET_OVERFLOW 1709 1710 /* When fate is unknown, drop traffic. */ 1711 if ((actions_set & fate_actions_mask) == 0) { 1712 spec_filter->template.efs_dmaq_id = 1713 EFX_FILTER_SPEC_RX_DMAQ_ID_DROP; 1714 } 1715 1716 return 0; 1717 1718 fail_fate_actions: 1719 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions, 1720 "Cannot combine several fate-deciding actions, " 1721 "choose between QUEUE, RSS or DROP"); 1722 return -rte_errno; 1723 1724 fail_actions_overlap: 1725 rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions, 1726 "Overlapping actions are not supported"); 1727 return -rte_errno; 1728 } 1729 1730 /** 1731 * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST 1732 * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same 1733 * specifications after copying. 1734 * 1735 * @param spec[in, out] 1736 * SFC flow specification to update. 1737 * @param filters_count_for_one_val[in] 1738 * How many specifications should have the same match flag, what is the 1739 * number of specifications before copying. 1740 * @param error[out] 1741 * Perform verbose error reporting if not NULL. 1742 */ 1743 static int 1744 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec, 1745 unsigned int filters_count_for_one_val, 1746 struct rte_flow_error *error) 1747 { 1748 unsigned int i; 1749 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1750 static const efx_filter_match_flags_t vals[] = { 1751 EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, 1752 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST 1753 }; 1754 1755 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 1756 rte_flow_error_set(error, EINVAL, 1757 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1758 "Number of specifications is incorrect while copying " 1759 "by unknown destination flags"); 1760 return -rte_errno; 1761 } 1762 1763 for (i = 0; i < spec_filter->count; i++) { 1764 /* The check above ensures that divisor can't be zero here */ 1765 spec_filter->filters[i].efs_match_flags |= 1766 vals[i / filters_count_for_one_val]; 1767 } 1768 1769 return 0; 1770 } 1771 1772 /** 1773 * Check that the following conditions are met: 1774 * - the list of supported filters has a filter 1775 * with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of 1776 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also 1777 * be inserted. 1778 * 1779 * @param match[in] 1780 * The match flags of filter. 1781 * @param spec[in] 1782 * Specification to be supplemented. 1783 * @param filter[in] 1784 * SFC filter with list of supported filters. 1785 */ 1786 static boolean_t 1787 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match, 1788 __rte_unused efx_filter_spec_t *spec, 1789 struct sfc_filter *filter) 1790 { 1791 unsigned int i; 1792 efx_filter_match_flags_t match_mcast_dst; 1793 1794 match_mcast_dst = 1795 (match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) | 1796 EFX_FILTER_MATCH_UNKNOWN_MCAST_DST; 1797 for (i = 0; i < filter->supported_match_num; i++) { 1798 if (match_mcast_dst == filter->supported_match[i]) 1799 return B_TRUE; 1800 } 1801 1802 return B_FALSE; 1803 } 1804 1805 /** 1806 * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and 1807 * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same 1808 * specifications after copying. 1809 * 1810 * @param spec[in, out] 1811 * SFC flow specification to update. 1812 * @param filters_count_for_one_val[in] 1813 * How many specifications should have the same EtherType value, what is the 1814 * number of specifications before copying. 1815 * @param error[out] 1816 * Perform verbose error reporting if not NULL. 1817 */ 1818 static int 1819 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec, 1820 unsigned int filters_count_for_one_val, 1821 struct rte_flow_error *error) 1822 { 1823 unsigned int i; 1824 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1825 static const uint16_t vals[] = { 1826 EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6 1827 }; 1828 1829 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 1830 rte_flow_error_set(error, EINVAL, 1831 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1832 "Number of specifications is incorrect " 1833 "while copying by Ethertype"); 1834 return -rte_errno; 1835 } 1836 1837 for (i = 0; i < spec_filter->count; i++) { 1838 spec_filter->filters[i].efs_match_flags |= 1839 EFX_FILTER_MATCH_ETHER_TYPE; 1840 1841 /* 1842 * The check above ensures that 1843 * filters_count_for_one_val is not 0 1844 */ 1845 spec_filter->filters[i].efs_ether_type = 1846 vals[i / filters_count_for_one_val]; 1847 } 1848 1849 return 0; 1850 } 1851 1852 /** 1853 * Set the EFX_FILTER_MATCH_OUTER_VID match flag with value 0 1854 * in the same specifications after copying. 1855 * 1856 * @param spec[in, out] 1857 * SFC flow specification to update. 1858 * @param filters_count_for_one_val[in] 1859 * How many specifications should have the same match flag, what is the 1860 * number of specifications before copying. 1861 * @param error[out] 1862 * Perform verbose error reporting if not NULL. 1863 */ 1864 static int 1865 sfc_flow_set_outer_vid_flag(struct sfc_flow_spec *spec, 1866 unsigned int filters_count_for_one_val, 1867 struct rte_flow_error *error) 1868 { 1869 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1870 unsigned int i; 1871 1872 if (filters_count_for_one_val != spec_filter->count) { 1873 rte_flow_error_set(error, EINVAL, 1874 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1875 "Number of specifications is incorrect " 1876 "while copying by outer VLAN ID"); 1877 return -rte_errno; 1878 } 1879 1880 for (i = 0; i < spec_filter->count; i++) { 1881 spec_filter->filters[i].efs_match_flags |= 1882 EFX_FILTER_MATCH_OUTER_VID; 1883 1884 spec_filter->filters[i].efs_outer_vid = 0; 1885 } 1886 1887 return 0; 1888 } 1889 1890 /** 1891 * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and 1892 * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same 1893 * specifications after copying. 1894 * 1895 * @param spec[in, out] 1896 * SFC flow specification to update. 1897 * @param filters_count_for_one_val[in] 1898 * How many specifications should have the same match flag, what is the 1899 * number of specifications before copying. 1900 * @param error[out] 1901 * Perform verbose error reporting if not NULL. 1902 */ 1903 static int 1904 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec, 1905 unsigned int filters_count_for_one_val, 1906 struct rte_flow_error *error) 1907 { 1908 unsigned int i; 1909 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 1910 static const efx_filter_match_flags_t vals[] = { 1911 EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, 1912 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST 1913 }; 1914 1915 if (filters_count_for_one_val * RTE_DIM(vals) != spec_filter->count) { 1916 rte_flow_error_set(error, EINVAL, 1917 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 1918 "Number of specifications is incorrect while copying " 1919 "by inner frame unknown destination flags"); 1920 return -rte_errno; 1921 } 1922 1923 for (i = 0; i < spec_filter->count; i++) { 1924 /* The check above ensures that divisor can't be zero here */ 1925 spec_filter->filters[i].efs_match_flags |= 1926 vals[i / filters_count_for_one_val]; 1927 } 1928 1929 return 0; 1930 } 1931 1932 /** 1933 * Check that the following conditions are met: 1934 * - the specification corresponds to a filter for encapsulated traffic 1935 * - the list of supported filters has a filter 1936 * with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of 1937 * EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also 1938 * be inserted. 1939 * 1940 * @param match[in] 1941 * The match flags of filter. 1942 * @param spec[in] 1943 * Specification to be supplemented. 1944 * @param filter[in] 1945 * SFC filter with list of supported filters. 1946 */ 1947 static boolean_t 1948 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match, 1949 efx_filter_spec_t *spec, 1950 struct sfc_filter *filter) 1951 { 1952 unsigned int i; 1953 efx_tunnel_protocol_t encap_type = spec->efs_encap_type; 1954 efx_filter_match_flags_t match_mcast_dst; 1955 1956 if (encap_type == EFX_TUNNEL_PROTOCOL_NONE) 1957 return B_FALSE; 1958 1959 match_mcast_dst = 1960 (match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) | 1961 EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST; 1962 for (i = 0; i < filter->supported_match_num; i++) { 1963 if (match_mcast_dst == filter->supported_match[i]) 1964 return B_TRUE; 1965 } 1966 1967 return B_FALSE; 1968 } 1969 1970 /** 1971 * Check that the list of supported filters has a filter that differs 1972 * from @p match in that it has no flag EFX_FILTER_MATCH_OUTER_VID 1973 * in this case that filter will be used and the flag 1974 * EFX_FILTER_MATCH_OUTER_VID is not needed. 1975 * 1976 * @param match[in] 1977 * The match flags of filter. 1978 * @param spec[in] 1979 * Specification to be supplemented. 1980 * @param filter[in] 1981 * SFC filter with list of supported filters. 1982 */ 1983 static boolean_t 1984 sfc_flow_check_outer_vid_flag(efx_filter_match_flags_t match, 1985 __rte_unused efx_filter_spec_t *spec, 1986 struct sfc_filter *filter) 1987 { 1988 unsigned int i; 1989 efx_filter_match_flags_t match_without_vid = 1990 match & ~EFX_FILTER_MATCH_OUTER_VID; 1991 1992 for (i = 0; i < filter->supported_match_num; i++) { 1993 if (match_without_vid == filter->supported_match[i]) 1994 return B_FALSE; 1995 } 1996 1997 return B_TRUE; 1998 } 1999 2000 /* 2001 * Match flags that can be automatically added to filters. 2002 * Selecting the last minimum when searching for the copy flag ensures that the 2003 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than 2004 * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter 2005 * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported 2006 * filters. 2007 */ 2008 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = { 2009 { 2010 .flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, 2011 .vals_count = 2, 2012 .set_vals = sfc_flow_set_unknown_dst_flags, 2013 .spec_check = sfc_flow_check_unknown_dst_flags, 2014 }, 2015 { 2016 .flag = EFX_FILTER_MATCH_ETHER_TYPE, 2017 .vals_count = 2, 2018 .set_vals = sfc_flow_set_ethertypes, 2019 .spec_check = NULL, 2020 }, 2021 { 2022 .flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, 2023 .vals_count = 2, 2024 .set_vals = sfc_flow_set_ifrm_unknown_dst_flags, 2025 .spec_check = sfc_flow_check_ifrm_unknown_dst_flags, 2026 }, 2027 { 2028 .flag = EFX_FILTER_MATCH_OUTER_VID, 2029 .vals_count = 1, 2030 .set_vals = sfc_flow_set_outer_vid_flag, 2031 .spec_check = sfc_flow_check_outer_vid_flag, 2032 }, 2033 }; 2034 2035 /* Get item from array sfc_flow_copy_flags */ 2036 static const struct sfc_flow_copy_flag * 2037 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag) 2038 { 2039 unsigned int i; 2040 2041 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2042 if (sfc_flow_copy_flags[i].flag == flag) 2043 return &sfc_flow_copy_flags[i]; 2044 } 2045 2046 return NULL; 2047 } 2048 2049 /** 2050 * Make copies of the specifications, set match flag and values 2051 * of the field that corresponds to it. 2052 * 2053 * @param spec[in, out] 2054 * SFC flow specification to update. 2055 * @param flag[in] 2056 * The match flag to add. 2057 * @param error[out] 2058 * Perform verbose error reporting if not NULL. 2059 */ 2060 static int 2061 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec, 2062 efx_filter_match_flags_t flag, 2063 struct rte_flow_error *error) 2064 { 2065 unsigned int i; 2066 unsigned int new_filters_count; 2067 unsigned int filters_count_for_one_val; 2068 const struct sfc_flow_copy_flag *copy_flag; 2069 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2070 int rc; 2071 2072 copy_flag = sfc_flow_get_copy_flag(flag); 2073 if (copy_flag == NULL) { 2074 rte_flow_error_set(error, ENOTSUP, 2075 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2076 "Unsupported spec field for copying"); 2077 return -rte_errno; 2078 } 2079 2080 new_filters_count = spec_filter->count * copy_flag->vals_count; 2081 if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) { 2082 rte_flow_error_set(error, EINVAL, 2083 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2084 "Too much EFX specifications in the flow rule"); 2085 return -rte_errno; 2086 } 2087 2088 /* Copy filters specifications */ 2089 for (i = spec_filter->count; i < new_filters_count; i++) { 2090 spec_filter->filters[i] = 2091 spec_filter->filters[i - spec_filter->count]; 2092 } 2093 2094 filters_count_for_one_val = spec_filter->count; 2095 spec_filter->count = new_filters_count; 2096 2097 rc = copy_flag->set_vals(spec, filters_count_for_one_val, error); 2098 if (rc != 0) 2099 return rc; 2100 2101 return 0; 2102 } 2103 2104 /** 2105 * Check that the given set of match flags missing in the original filter spec 2106 * could be covered by adding spec copies which specify the corresponding 2107 * flags and packet field values to match. 2108 * 2109 * @param miss_flags[in] 2110 * Flags that are missing until the supported filter. 2111 * @param spec[in] 2112 * Specification to be supplemented. 2113 * @param filter[in] 2114 * SFC filter. 2115 * 2116 * @return 2117 * Number of specifications after copy or 0, if the flags can not be added. 2118 */ 2119 static unsigned int 2120 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags, 2121 efx_filter_spec_t *spec, 2122 struct sfc_filter *filter) 2123 { 2124 unsigned int i; 2125 efx_filter_match_flags_t copy_flags = 0; 2126 efx_filter_match_flags_t flag; 2127 efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags; 2128 sfc_flow_spec_check *check; 2129 unsigned int multiplier = 1; 2130 2131 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2132 flag = sfc_flow_copy_flags[i].flag; 2133 check = sfc_flow_copy_flags[i].spec_check; 2134 if ((flag & miss_flags) == flag) { 2135 if (check != NULL && (!check(match, spec, filter))) 2136 continue; 2137 2138 copy_flags |= flag; 2139 multiplier *= sfc_flow_copy_flags[i].vals_count; 2140 } 2141 } 2142 2143 if (copy_flags == miss_flags) 2144 return multiplier; 2145 2146 return 0; 2147 } 2148 2149 /** 2150 * Attempt to supplement the specification template to the minimally 2151 * supported set of match flags. To do this, it is necessary to copy 2152 * the specifications, filling them with the values of fields that 2153 * correspond to the missing flags. 2154 * The necessary and sufficient filter is built from the fewest number 2155 * of copies which could be made to cover the minimally required set 2156 * of flags. 2157 * 2158 * @param sa[in] 2159 * SFC adapter. 2160 * @param spec[in, out] 2161 * SFC flow specification to update. 2162 * @param error[out] 2163 * Perform verbose error reporting if not NULL. 2164 */ 2165 static int 2166 sfc_flow_spec_filters_complete(struct sfc_adapter *sa, 2167 struct sfc_flow_spec *spec, 2168 struct rte_flow_error *error) 2169 { 2170 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2171 struct sfc_filter *filter = &sa->filter; 2172 efx_filter_match_flags_t miss_flags; 2173 efx_filter_match_flags_t min_miss_flags = 0; 2174 efx_filter_match_flags_t match; 2175 unsigned int min_multiplier = UINT_MAX; 2176 unsigned int multiplier; 2177 unsigned int i; 2178 int rc; 2179 2180 match = spec_filter->template.efs_match_flags; 2181 for (i = 0; i < filter->supported_match_num; i++) { 2182 if ((match & filter->supported_match[i]) == match) { 2183 miss_flags = filter->supported_match[i] & (~match); 2184 multiplier = sfc_flow_check_missing_flags(miss_flags, 2185 &spec_filter->template, filter); 2186 if (multiplier > 0) { 2187 if (multiplier <= min_multiplier) { 2188 min_multiplier = multiplier; 2189 min_miss_flags = miss_flags; 2190 } 2191 } 2192 } 2193 } 2194 2195 if (min_multiplier == UINT_MAX) { 2196 rte_flow_error_set(error, ENOTSUP, 2197 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2198 "The flow rule pattern is unsupported"); 2199 return -rte_errno; 2200 } 2201 2202 for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) { 2203 efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag; 2204 2205 if ((flag & min_miss_flags) == flag) { 2206 rc = sfc_flow_spec_add_match_flag(spec, flag, error); 2207 if (rc != 0) 2208 return rc; 2209 } 2210 } 2211 2212 return 0; 2213 } 2214 2215 /** 2216 * Check that set of match flags is referred to by a filter. Filter is 2217 * described by match flags with the ability to add OUTER_VID and INNER_VID 2218 * flags. 2219 * 2220 * @param match_flags[in] 2221 * Set of match flags. 2222 * @param flags_pattern[in] 2223 * Pattern of filter match flags. 2224 */ 2225 static boolean_t 2226 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags, 2227 efx_filter_match_flags_t flags_pattern) 2228 { 2229 if ((match_flags & flags_pattern) != flags_pattern) 2230 return B_FALSE; 2231 2232 switch (match_flags & ~flags_pattern) { 2233 case 0: 2234 case EFX_FILTER_MATCH_OUTER_VID: 2235 case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID: 2236 return B_TRUE; 2237 default: 2238 return B_FALSE; 2239 } 2240 } 2241 2242 /** 2243 * Check whether the spec maps to a hardware filter which is known to be 2244 * ineffective despite being valid. 2245 * 2246 * @param filter[in] 2247 * SFC filter with list of supported filters. 2248 * @param spec[in] 2249 * SFC flow specification. 2250 */ 2251 static boolean_t 2252 sfc_flow_is_match_flags_exception(struct sfc_filter *filter, 2253 struct sfc_flow_spec *spec) 2254 { 2255 unsigned int i; 2256 uint16_t ether_type; 2257 uint8_t ip_proto; 2258 efx_filter_match_flags_t match_flags; 2259 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2260 2261 for (i = 0; i < spec_filter->count; i++) { 2262 match_flags = spec_filter->filters[i].efs_match_flags; 2263 2264 if (sfc_flow_is_match_with_vids(match_flags, 2265 EFX_FILTER_MATCH_ETHER_TYPE) || 2266 sfc_flow_is_match_with_vids(match_flags, 2267 EFX_FILTER_MATCH_ETHER_TYPE | 2268 EFX_FILTER_MATCH_LOC_MAC)) { 2269 ether_type = spec_filter->filters[i].efs_ether_type; 2270 if (filter->supports_ip_proto_or_addr_filter && 2271 (ether_type == EFX_ETHER_TYPE_IPV4 || 2272 ether_type == EFX_ETHER_TYPE_IPV6)) 2273 return B_TRUE; 2274 } else if (sfc_flow_is_match_with_vids(match_flags, 2275 EFX_FILTER_MATCH_ETHER_TYPE | 2276 EFX_FILTER_MATCH_IP_PROTO) || 2277 sfc_flow_is_match_with_vids(match_flags, 2278 EFX_FILTER_MATCH_ETHER_TYPE | 2279 EFX_FILTER_MATCH_IP_PROTO | 2280 EFX_FILTER_MATCH_LOC_MAC)) { 2281 ip_proto = spec_filter->filters[i].efs_ip_proto; 2282 if (filter->supports_rem_or_local_port_filter && 2283 (ip_proto == EFX_IPPROTO_TCP || 2284 ip_proto == EFX_IPPROTO_UDP)) 2285 return B_TRUE; 2286 } 2287 } 2288 2289 return B_FALSE; 2290 } 2291 2292 static int 2293 sfc_flow_validate_match_flags(struct sfc_adapter *sa, 2294 struct rte_flow *flow, 2295 struct rte_flow_error *error) 2296 { 2297 struct sfc_flow_spec *spec = &flow->spec; 2298 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2299 efx_filter_spec_t *spec_tmpl = &spec_filter->template; 2300 efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags; 2301 int rc; 2302 2303 /* Initialize the first filter spec with template */ 2304 spec_filter->filters[0] = *spec_tmpl; 2305 spec_filter->count = 1; 2306 2307 if (!sfc_filter_is_match_supported(sa, match_flags)) { 2308 rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error); 2309 if (rc != 0) 2310 return rc; 2311 } 2312 2313 if (sfc_flow_is_match_flags_exception(&sa->filter, &flow->spec)) { 2314 rte_flow_error_set(error, ENOTSUP, 2315 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2316 "The flow rule pattern is unsupported"); 2317 return -rte_errno; 2318 } 2319 2320 return 0; 2321 } 2322 2323 static int 2324 sfc_flow_parse_rte_to_filter(struct rte_eth_dev *dev, 2325 const struct rte_flow_item pattern[], 2326 const struct rte_flow_action actions[], 2327 struct rte_flow *flow, 2328 struct rte_flow_error *error) 2329 { 2330 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2331 struct sfc_flow_spec *spec = &flow->spec; 2332 struct sfc_flow_spec_filter *spec_filter = &spec->filter; 2333 struct sfc_flow_parse_ctx ctx; 2334 int rc; 2335 2336 ctx.type = SFC_FLOW_PARSE_CTX_FILTER; 2337 ctx.filter = &spec_filter->template; 2338 2339 rc = sfc_flow_parse_pattern(sfc_flow_items, RTE_DIM(sfc_flow_items), 2340 pattern, &ctx, error); 2341 if (rc != 0) 2342 goto fail_bad_value; 2343 2344 rc = sfc_flow_parse_actions(sa, actions, flow, error); 2345 if (rc != 0) 2346 goto fail_bad_value; 2347 2348 rc = sfc_flow_validate_match_flags(sa, flow, error); 2349 if (rc != 0) 2350 goto fail_bad_value; 2351 2352 return 0; 2353 2354 fail_bad_value: 2355 return rc; 2356 } 2357 2358 static int 2359 sfc_flow_parse(struct rte_eth_dev *dev, 2360 const struct rte_flow_attr *attr, 2361 const struct rte_flow_item pattern[], 2362 const struct rte_flow_action actions[], 2363 struct rte_flow *flow, 2364 struct rte_flow_error *error) 2365 { 2366 const struct sfc_flow_ops_by_spec *ops; 2367 int rc; 2368 2369 rc = sfc_flow_parse_attr(attr, flow, error); 2370 if (rc != 0) 2371 return rc; 2372 2373 ops = sfc_flow_get_ops_by_spec(flow); 2374 if (ops == NULL || ops->parse == NULL) { 2375 rte_flow_error_set(error, ENOTSUP, 2376 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2377 "No backend to handle this flow"); 2378 return -rte_errno; 2379 } 2380 2381 return ops->parse(dev, pattern, actions, flow, error); 2382 } 2383 2384 static struct rte_flow * 2385 sfc_flow_zmalloc(struct rte_flow_error *error) 2386 { 2387 struct rte_flow *flow; 2388 2389 flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0); 2390 if (flow == NULL) { 2391 rte_flow_error_set(error, ENOMEM, 2392 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2393 "Failed to allocate memory"); 2394 } 2395 2396 return flow; 2397 } 2398 2399 static void 2400 sfc_flow_free(__rte_unused struct sfc_adapter *sa, struct rte_flow *flow) 2401 { 2402 rte_free(flow); 2403 } 2404 2405 static int 2406 sfc_flow_insert(struct sfc_adapter *sa, struct rte_flow *flow, 2407 struct rte_flow_error *error) 2408 { 2409 const struct sfc_flow_ops_by_spec *ops; 2410 int rc; 2411 2412 ops = sfc_flow_get_ops_by_spec(flow); 2413 if (ops == NULL || ops->insert == NULL) { 2414 rte_flow_error_set(error, ENOTSUP, 2415 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2416 "No backend to handle this flow"); 2417 return rte_errno; 2418 } 2419 2420 rc = ops->insert(sa, flow); 2421 if (rc != 0) { 2422 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2423 NULL, "Failed to insert the flow rule"); 2424 } 2425 2426 return rc; 2427 } 2428 2429 static int 2430 sfc_flow_remove(struct sfc_adapter *sa, struct rte_flow *flow, 2431 struct rte_flow_error *error) 2432 { 2433 const struct sfc_flow_ops_by_spec *ops; 2434 int rc; 2435 2436 ops = sfc_flow_get_ops_by_spec(flow); 2437 if (ops == NULL || ops->remove == NULL) { 2438 rte_flow_error_set(error, ENOTSUP, 2439 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, 2440 "No backend to handle this flow"); 2441 return rte_errno; 2442 } 2443 2444 rc = ops->remove(sa, flow); 2445 if (rc != 0) { 2446 rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2447 NULL, "Failed to remove the flow rule"); 2448 } 2449 2450 return rc; 2451 } 2452 2453 static int 2454 sfc_flow_validate(struct rte_eth_dev *dev, 2455 const struct rte_flow_attr *attr, 2456 const struct rte_flow_item pattern[], 2457 const struct rte_flow_action actions[], 2458 struct rte_flow_error *error) 2459 { 2460 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2461 struct rte_flow *flow; 2462 int rc; 2463 2464 flow = sfc_flow_zmalloc(error); 2465 if (flow == NULL) 2466 return -rte_errno; 2467 2468 rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error); 2469 2470 sfc_flow_free(sa, flow); 2471 2472 return rc; 2473 } 2474 2475 static struct rte_flow * 2476 sfc_flow_create(struct rte_eth_dev *dev, 2477 const struct rte_flow_attr *attr, 2478 const struct rte_flow_item pattern[], 2479 const struct rte_flow_action actions[], 2480 struct rte_flow_error *error) 2481 { 2482 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2483 struct rte_flow *flow = NULL; 2484 int rc; 2485 2486 flow = sfc_flow_zmalloc(error); 2487 if (flow == NULL) 2488 goto fail_no_mem; 2489 2490 rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error); 2491 if (rc != 0) 2492 goto fail_bad_value; 2493 2494 sfc_adapter_lock(sa); 2495 2496 TAILQ_INSERT_TAIL(&sa->flow_list, flow, entries); 2497 2498 if (sa->state == SFC_ADAPTER_STARTED) { 2499 rc = sfc_flow_insert(sa, flow, error); 2500 if (rc != 0) 2501 goto fail_flow_insert; 2502 } 2503 2504 sfc_adapter_unlock(sa); 2505 2506 return flow; 2507 2508 fail_flow_insert: 2509 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2510 2511 fail_bad_value: 2512 sfc_flow_free(sa, flow); 2513 sfc_adapter_unlock(sa); 2514 2515 fail_no_mem: 2516 return NULL; 2517 } 2518 2519 static int 2520 sfc_flow_destroy(struct rte_eth_dev *dev, 2521 struct rte_flow *flow, 2522 struct rte_flow_error *error) 2523 { 2524 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2525 struct rte_flow *flow_ptr; 2526 int rc = EINVAL; 2527 2528 sfc_adapter_lock(sa); 2529 2530 TAILQ_FOREACH(flow_ptr, &sa->flow_list, entries) { 2531 if (flow_ptr == flow) 2532 rc = 0; 2533 } 2534 if (rc != 0) { 2535 rte_flow_error_set(error, rc, 2536 RTE_FLOW_ERROR_TYPE_HANDLE, NULL, 2537 "Failed to find flow rule to destroy"); 2538 goto fail_bad_value; 2539 } 2540 2541 if (sa->state == SFC_ADAPTER_STARTED) 2542 rc = sfc_flow_remove(sa, flow, error); 2543 2544 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2545 sfc_flow_free(sa, flow); 2546 2547 fail_bad_value: 2548 sfc_adapter_unlock(sa); 2549 2550 return -rc; 2551 } 2552 2553 static int 2554 sfc_flow_flush(struct rte_eth_dev *dev, 2555 struct rte_flow_error *error) 2556 { 2557 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2558 struct rte_flow *flow; 2559 int ret = 0; 2560 2561 sfc_adapter_lock(sa); 2562 2563 while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) { 2564 if (sa->state == SFC_ADAPTER_STARTED) { 2565 int rc; 2566 2567 rc = sfc_flow_remove(sa, flow, error); 2568 if (rc != 0) 2569 ret = rc; 2570 } 2571 2572 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2573 sfc_flow_free(sa, flow); 2574 } 2575 2576 sfc_adapter_unlock(sa); 2577 2578 return -ret; 2579 } 2580 2581 static int 2582 sfc_flow_isolate(struct rte_eth_dev *dev, int enable, 2583 struct rte_flow_error *error) 2584 { 2585 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2586 int ret = 0; 2587 2588 sfc_adapter_lock(sa); 2589 if (sa->state != SFC_ADAPTER_INITIALIZED) { 2590 rte_flow_error_set(error, EBUSY, 2591 RTE_FLOW_ERROR_TYPE_UNSPECIFIED, 2592 NULL, "please close the port first"); 2593 ret = -rte_errno; 2594 } else { 2595 sfc_sa2shared(sa)->isolated = (enable) ? B_TRUE : B_FALSE; 2596 } 2597 sfc_adapter_unlock(sa); 2598 2599 return ret; 2600 } 2601 2602 const struct rte_flow_ops sfc_flow_ops = { 2603 .validate = sfc_flow_validate, 2604 .create = sfc_flow_create, 2605 .destroy = sfc_flow_destroy, 2606 .flush = sfc_flow_flush, 2607 .query = NULL, 2608 .isolate = sfc_flow_isolate, 2609 }; 2610 2611 void 2612 sfc_flow_init(struct sfc_adapter *sa) 2613 { 2614 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2615 2616 TAILQ_INIT(&sa->flow_list); 2617 } 2618 2619 void 2620 sfc_flow_fini(struct sfc_adapter *sa) 2621 { 2622 struct rte_flow *flow; 2623 2624 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2625 2626 while ((flow = TAILQ_FIRST(&sa->flow_list)) != NULL) { 2627 TAILQ_REMOVE(&sa->flow_list, flow, entries); 2628 sfc_flow_free(sa, flow); 2629 } 2630 } 2631 2632 void 2633 sfc_flow_stop(struct sfc_adapter *sa) 2634 { 2635 struct rte_flow *flow; 2636 2637 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2638 2639 TAILQ_FOREACH(flow, &sa->flow_list, entries) 2640 sfc_flow_remove(sa, flow, NULL); 2641 } 2642 2643 int 2644 sfc_flow_start(struct sfc_adapter *sa) 2645 { 2646 struct rte_flow *flow; 2647 int rc = 0; 2648 2649 sfc_log_init(sa, "entry"); 2650 2651 SFC_ASSERT(sfc_adapter_is_locked(sa)); 2652 2653 TAILQ_FOREACH(flow, &sa->flow_list, entries) { 2654 rc = sfc_flow_insert(sa, flow, NULL); 2655 if (rc != 0) 2656 goto fail_bad_flow; 2657 } 2658 2659 sfc_log_init(sa, "done"); 2660 2661 fail_bad_flow: 2662 return rc; 2663 } 2664