xref: /dpdk/drivers/net/sfc/sfc_flow.c (revision 250c9eb3ca895127f21a729caf4a928eb2f04d2c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2017-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_byteorder.h>
11 #include <rte_tailq.h>
12 #include <rte_common.h>
13 #include <rte_ethdev_driver.h>
14 #include <rte_eth_ctrl.h>
15 #include <rte_ether.h>
16 #include <rte_flow.h>
17 #include <rte_flow_driver.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_rx.h"
23 #include "sfc_filter.h"
24 #include "sfc_flow.h"
25 #include "sfc_log.h"
26 #include "sfc_dp_rx.h"
27 
28 /*
29  * At now flow API is implemented in such a manner that each
30  * flow rule is converted to one or more hardware filters.
31  * All elements of flow rule (attributes, pattern items, actions)
32  * correspond to one or more fields in the efx_filter_spec_s structure
33  * that is responsible for the hardware filter.
34  * If some required field is unset in the flow rule, then a handful
35  * of filter copies will be created to cover all possible values
36  * of such a field.
37  */
38 
39 enum sfc_flow_item_layers {
40 	SFC_FLOW_ITEM_ANY_LAYER,
41 	SFC_FLOW_ITEM_START_LAYER,
42 	SFC_FLOW_ITEM_L2,
43 	SFC_FLOW_ITEM_L3,
44 	SFC_FLOW_ITEM_L4,
45 };
46 
47 typedef int (sfc_flow_item_parse)(const struct rte_flow_item *item,
48 				  efx_filter_spec_t *spec,
49 				  struct rte_flow_error *error);
50 
51 struct sfc_flow_item {
52 	enum rte_flow_item_type type;		/* Type of item */
53 	enum sfc_flow_item_layers layer;	/* Layer of item */
54 	enum sfc_flow_item_layers prev_layer;	/* Previous layer of item */
55 	sfc_flow_item_parse *parse;		/* Parsing function */
56 };
57 
58 static sfc_flow_item_parse sfc_flow_parse_void;
59 static sfc_flow_item_parse sfc_flow_parse_eth;
60 static sfc_flow_item_parse sfc_flow_parse_vlan;
61 static sfc_flow_item_parse sfc_flow_parse_ipv4;
62 static sfc_flow_item_parse sfc_flow_parse_ipv6;
63 static sfc_flow_item_parse sfc_flow_parse_tcp;
64 static sfc_flow_item_parse sfc_flow_parse_udp;
65 static sfc_flow_item_parse sfc_flow_parse_vxlan;
66 static sfc_flow_item_parse sfc_flow_parse_geneve;
67 static sfc_flow_item_parse sfc_flow_parse_nvgre;
68 
69 typedef int (sfc_flow_spec_set_vals)(struct sfc_flow_spec *spec,
70 				     unsigned int filters_count_for_one_val,
71 				     struct rte_flow_error *error);
72 
73 typedef boolean_t (sfc_flow_spec_check)(efx_filter_match_flags_t match,
74 					efx_filter_spec_t *spec,
75 					struct sfc_filter *filter);
76 
77 struct sfc_flow_copy_flag {
78 	/* EFX filter specification match flag */
79 	efx_filter_match_flags_t flag;
80 	/* Number of values of corresponding field */
81 	unsigned int vals_count;
82 	/* Function to set values in specifications */
83 	sfc_flow_spec_set_vals *set_vals;
84 	/*
85 	 * Function to check that the specification is suitable
86 	 * for adding this match flag
87 	 */
88 	sfc_flow_spec_check *spec_check;
89 };
90 
91 static sfc_flow_spec_set_vals sfc_flow_set_unknown_dst_flags;
92 static sfc_flow_spec_check sfc_flow_check_unknown_dst_flags;
93 static sfc_flow_spec_set_vals sfc_flow_set_ethertypes;
94 static sfc_flow_spec_set_vals sfc_flow_set_ifrm_unknown_dst_flags;
95 static sfc_flow_spec_check sfc_flow_check_ifrm_unknown_dst_flags;
96 
97 static boolean_t
98 sfc_flow_is_zero(const uint8_t *buf, unsigned int size)
99 {
100 	uint8_t sum = 0;
101 	unsigned int i;
102 
103 	for (i = 0; i < size; i++)
104 		sum |= buf[i];
105 
106 	return (sum == 0) ? B_TRUE : B_FALSE;
107 }
108 
109 /*
110  * Validate item and prepare structures spec and mask for parsing
111  */
112 static int
113 sfc_flow_parse_init(const struct rte_flow_item *item,
114 		    const void **spec_ptr,
115 		    const void **mask_ptr,
116 		    const void *supp_mask,
117 		    const void *def_mask,
118 		    unsigned int size,
119 		    struct rte_flow_error *error)
120 {
121 	const uint8_t *spec;
122 	const uint8_t *mask;
123 	const uint8_t *last;
124 	uint8_t supp;
125 	unsigned int i;
126 
127 	if (item == NULL) {
128 		rte_flow_error_set(error, EINVAL,
129 				   RTE_FLOW_ERROR_TYPE_ITEM, NULL,
130 				   "NULL item");
131 		return -rte_errno;
132 	}
133 
134 	if ((item->last != NULL || item->mask != NULL) && item->spec == NULL) {
135 		rte_flow_error_set(error, EINVAL,
136 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
137 				   "Mask or last is set without spec");
138 		return -rte_errno;
139 	}
140 
141 	/*
142 	 * If "mask" is not set, default mask is used,
143 	 * but if default mask is NULL, "mask" should be set
144 	 */
145 	if (item->mask == NULL) {
146 		if (def_mask == NULL) {
147 			rte_flow_error_set(error, EINVAL,
148 				RTE_FLOW_ERROR_TYPE_ITEM, NULL,
149 				"Mask should be specified");
150 			return -rte_errno;
151 		}
152 
153 		mask = def_mask;
154 	} else {
155 		mask = item->mask;
156 	}
157 
158 	spec = item->spec;
159 	last = item->last;
160 
161 	if (spec == NULL)
162 		goto exit;
163 
164 	/*
165 	 * If field values in "last" are either 0 or equal to the corresponding
166 	 * values in "spec" then they are ignored
167 	 */
168 	if (last != NULL &&
169 	    !sfc_flow_is_zero(last, size) &&
170 	    memcmp(last, spec, size) != 0) {
171 		rte_flow_error_set(error, ENOTSUP,
172 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
173 				   "Ranging is not supported");
174 		return -rte_errno;
175 	}
176 
177 	if (supp_mask == NULL) {
178 		rte_flow_error_set(error, EINVAL,
179 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
180 			"Supported mask for item should be specified");
181 		return -rte_errno;
182 	}
183 
184 	/* Check that mask does not ask for more match than supp_mask */
185 	for (i = 0; i < size; i++) {
186 		supp = ((const uint8_t *)supp_mask)[i];
187 
188 		if (~supp & mask[i]) {
189 			rte_flow_error_set(error, ENOTSUP,
190 					   RTE_FLOW_ERROR_TYPE_ITEM, item,
191 					   "Item's field is not supported");
192 			return -rte_errno;
193 		}
194 	}
195 
196 exit:
197 	*spec_ptr = spec;
198 	*mask_ptr = mask;
199 	return 0;
200 }
201 
202 /*
203  * Protocol parsers.
204  * Masking is not supported, so masks in items should be either
205  * full or empty (zeroed) and set only for supported fields which
206  * are specified in the supp_mask.
207  */
208 
209 static int
210 sfc_flow_parse_void(__rte_unused const struct rte_flow_item *item,
211 		    __rte_unused efx_filter_spec_t *efx_spec,
212 		    __rte_unused struct rte_flow_error *error)
213 {
214 	return 0;
215 }
216 
217 /**
218  * Convert Ethernet item to EFX filter specification.
219  *
220  * @param item[in]
221  *   Item specification. Outer frame specification may only comprise
222  *   source/destination addresses and Ethertype field.
223  *   Inner frame specification may contain destination address only.
224  *   There is support for individual/group mask as well as for empty and full.
225  *   If the mask is NULL, default mask will be used. Ranging is not supported.
226  * @param efx_spec[in, out]
227  *   EFX filter specification to update.
228  * @param[out] error
229  *   Perform verbose error reporting if not NULL.
230  */
231 static int
232 sfc_flow_parse_eth(const struct rte_flow_item *item,
233 		   efx_filter_spec_t *efx_spec,
234 		   struct rte_flow_error *error)
235 {
236 	int rc;
237 	const struct rte_flow_item_eth *spec = NULL;
238 	const struct rte_flow_item_eth *mask = NULL;
239 	const struct rte_flow_item_eth supp_mask = {
240 		.dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
241 		.src.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
242 		.type = 0xffff,
243 	};
244 	const struct rte_flow_item_eth ifrm_supp_mask = {
245 		.dst.addr_bytes = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
246 	};
247 	const uint8_t ig_mask[EFX_MAC_ADDR_LEN] = {
248 		0x01, 0x00, 0x00, 0x00, 0x00, 0x00
249 	};
250 	const struct rte_flow_item_eth *supp_mask_p;
251 	const struct rte_flow_item_eth *def_mask_p;
252 	uint8_t *loc_mac = NULL;
253 	boolean_t is_ifrm = (efx_spec->efs_encap_type !=
254 		EFX_TUNNEL_PROTOCOL_NONE);
255 
256 	if (is_ifrm) {
257 		supp_mask_p = &ifrm_supp_mask;
258 		def_mask_p = &ifrm_supp_mask;
259 		loc_mac = efx_spec->efs_ifrm_loc_mac;
260 	} else {
261 		supp_mask_p = &supp_mask;
262 		def_mask_p = &rte_flow_item_eth_mask;
263 		loc_mac = efx_spec->efs_loc_mac;
264 	}
265 
266 	rc = sfc_flow_parse_init(item,
267 				 (const void **)&spec,
268 				 (const void **)&mask,
269 				 supp_mask_p, def_mask_p,
270 				 sizeof(struct rte_flow_item_eth),
271 				 error);
272 	if (rc != 0)
273 		return rc;
274 
275 	/* If "spec" is not set, could be any Ethernet */
276 	if (spec == NULL)
277 		return 0;
278 
279 	if (is_same_ether_addr(&mask->dst, &supp_mask.dst)) {
280 		efx_spec->efs_match_flags |= is_ifrm ?
281 			EFX_FILTER_MATCH_IFRM_LOC_MAC :
282 			EFX_FILTER_MATCH_LOC_MAC;
283 		rte_memcpy(loc_mac, spec->dst.addr_bytes,
284 			   EFX_MAC_ADDR_LEN);
285 	} else if (memcmp(mask->dst.addr_bytes, ig_mask,
286 			  EFX_MAC_ADDR_LEN) == 0) {
287 		if (is_unicast_ether_addr(&spec->dst))
288 			efx_spec->efs_match_flags |= is_ifrm ?
289 				EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST :
290 				EFX_FILTER_MATCH_UNKNOWN_UCAST_DST;
291 		else
292 			efx_spec->efs_match_flags |= is_ifrm ?
293 				EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST :
294 				EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
295 	} else if (!is_zero_ether_addr(&mask->dst)) {
296 		goto fail_bad_mask;
297 	}
298 
299 	/*
300 	 * ifrm_supp_mask ensures that the source address and
301 	 * ethertype masks are equal to zero in inner frame,
302 	 * so these fields are filled in only for the outer frame
303 	 */
304 	if (is_same_ether_addr(&mask->src, &supp_mask.src)) {
305 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_MAC;
306 		rte_memcpy(efx_spec->efs_rem_mac, spec->src.addr_bytes,
307 			   EFX_MAC_ADDR_LEN);
308 	} else if (!is_zero_ether_addr(&mask->src)) {
309 		goto fail_bad_mask;
310 	}
311 
312 	/*
313 	 * Ether type is in big-endian byte order in item and
314 	 * in little-endian in efx_spec, so byte swap is used
315 	 */
316 	if (mask->type == supp_mask.type) {
317 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
318 		efx_spec->efs_ether_type = rte_bswap16(spec->type);
319 	} else if (mask->type != 0) {
320 		goto fail_bad_mask;
321 	}
322 
323 	return 0;
324 
325 fail_bad_mask:
326 	rte_flow_error_set(error, EINVAL,
327 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
328 			   "Bad mask in the ETH pattern item");
329 	return -rte_errno;
330 }
331 
332 /**
333  * Convert VLAN item to EFX filter specification.
334  *
335  * @param item[in]
336  *   Item specification. Only VID field is supported.
337  *   The mask can not be NULL. Ranging is not supported.
338  * @param efx_spec[in, out]
339  *   EFX filter specification to update.
340  * @param[out] error
341  *   Perform verbose error reporting if not NULL.
342  */
343 static int
344 sfc_flow_parse_vlan(const struct rte_flow_item *item,
345 		    efx_filter_spec_t *efx_spec,
346 		    struct rte_flow_error *error)
347 {
348 	int rc;
349 	uint16_t vid;
350 	const struct rte_flow_item_vlan *spec = NULL;
351 	const struct rte_flow_item_vlan *mask = NULL;
352 	const struct rte_flow_item_vlan supp_mask = {
353 		.tci = rte_cpu_to_be_16(ETH_VLAN_ID_MAX),
354 		.inner_type = RTE_BE16(0xffff),
355 	};
356 
357 	rc = sfc_flow_parse_init(item,
358 				 (const void **)&spec,
359 				 (const void **)&mask,
360 				 &supp_mask,
361 				 NULL,
362 				 sizeof(struct rte_flow_item_vlan),
363 				 error);
364 	if (rc != 0)
365 		return rc;
366 
367 	/*
368 	 * VID is in big-endian byte order in item and
369 	 * in little-endian in efx_spec, so byte swap is used.
370 	 * If two VLAN items are included, the first matches
371 	 * the outer tag and the next matches the inner tag.
372 	 */
373 	if (mask->tci == supp_mask.tci) {
374 		/* Apply mask to keep VID only */
375 		vid = rte_bswap16(spec->tci & mask->tci);
376 
377 		if (!(efx_spec->efs_match_flags &
378 		      EFX_FILTER_MATCH_OUTER_VID)) {
379 			efx_spec->efs_match_flags |= EFX_FILTER_MATCH_OUTER_VID;
380 			efx_spec->efs_outer_vid = vid;
381 		} else if (!(efx_spec->efs_match_flags &
382 			     EFX_FILTER_MATCH_INNER_VID)) {
383 			efx_spec->efs_match_flags |= EFX_FILTER_MATCH_INNER_VID;
384 			efx_spec->efs_inner_vid = vid;
385 		} else {
386 			rte_flow_error_set(error, EINVAL,
387 					   RTE_FLOW_ERROR_TYPE_ITEM, item,
388 					   "More than two VLAN items");
389 			return -rte_errno;
390 		}
391 	} else {
392 		rte_flow_error_set(error, EINVAL,
393 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
394 				   "VLAN ID in TCI match is required");
395 		return -rte_errno;
396 	}
397 
398 	if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE) {
399 		rte_flow_error_set(error, EINVAL,
400 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
401 				   "VLAN TPID matching is not supported");
402 		return -rte_errno;
403 	}
404 	if (mask->inner_type == supp_mask.inner_type) {
405 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
406 		efx_spec->efs_ether_type = rte_bswap16(spec->inner_type);
407 	} else if (mask->inner_type) {
408 		rte_flow_error_set(error, EINVAL,
409 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
410 				   "Bad mask for VLAN inner_type");
411 		return -rte_errno;
412 	}
413 
414 	return 0;
415 }
416 
417 /**
418  * Convert IPv4 item to EFX filter specification.
419  *
420  * @param item[in]
421  *   Item specification. Only source and destination addresses and
422  *   protocol fields are supported. If the mask is NULL, default
423  *   mask will be used. Ranging is not supported.
424  * @param efx_spec[in, out]
425  *   EFX filter specification to update.
426  * @param[out] error
427  *   Perform verbose error reporting if not NULL.
428  */
429 static int
430 sfc_flow_parse_ipv4(const struct rte_flow_item *item,
431 		    efx_filter_spec_t *efx_spec,
432 		    struct rte_flow_error *error)
433 {
434 	int rc;
435 	const struct rte_flow_item_ipv4 *spec = NULL;
436 	const struct rte_flow_item_ipv4 *mask = NULL;
437 	const uint16_t ether_type_ipv4 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV4);
438 	const struct rte_flow_item_ipv4 supp_mask = {
439 		.hdr = {
440 			.src_addr = 0xffffffff,
441 			.dst_addr = 0xffffffff,
442 			.next_proto_id = 0xff,
443 		}
444 	};
445 
446 	rc = sfc_flow_parse_init(item,
447 				 (const void **)&spec,
448 				 (const void **)&mask,
449 				 &supp_mask,
450 				 &rte_flow_item_ipv4_mask,
451 				 sizeof(struct rte_flow_item_ipv4),
452 				 error);
453 	if (rc != 0)
454 		return rc;
455 
456 	/*
457 	 * Filtering by IPv4 source and destination addresses requires
458 	 * the appropriate ETHER_TYPE in hardware filters
459 	 */
460 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
461 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
462 		efx_spec->efs_ether_type = ether_type_ipv4;
463 	} else if (efx_spec->efs_ether_type != ether_type_ipv4) {
464 		rte_flow_error_set(error, EINVAL,
465 			RTE_FLOW_ERROR_TYPE_ITEM, item,
466 			"Ethertype in pattern with IPV4 item should be appropriate");
467 		return -rte_errno;
468 	}
469 
470 	if (spec == NULL)
471 		return 0;
472 
473 	/*
474 	 * IPv4 addresses are in big-endian byte order in item and in
475 	 * efx_spec
476 	 */
477 	if (mask->hdr.src_addr == supp_mask.hdr.src_addr) {
478 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
479 		efx_spec->efs_rem_host.eo_u32[0] = spec->hdr.src_addr;
480 	} else if (mask->hdr.src_addr != 0) {
481 		goto fail_bad_mask;
482 	}
483 
484 	if (mask->hdr.dst_addr == supp_mask.hdr.dst_addr) {
485 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
486 		efx_spec->efs_loc_host.eo_u32[0] = spec->hdr.dst_addr;
487 	} else if (mask->hdr.dst_addr != 0) {
488 		goto fail_bad_mask;
489 	}
490 
491 	if (mask->hdr.next_proto_id == supp_mask.hdr.next_proto_id) {
492 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
493 		efx_spec->efs_ip_proto = spec->hdr.next_proto_id;
494 	} else if (mask->hdr.next_proto_id != 0) {
495 		goto fail_bad_mask;
496 	}
497 
498 	return 0;
499 
500 fail_bad_mask:
501 	rte_flow_error_set(error, EINVAL,
502 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
503 			   "Bad mask in the IPV4 pattern item");
504 	return -rte_errno;
505 }
506 
507 /**
508  * Convert IPv6 item to EFX filter specification.
509  *
510  * @param item[in]
511  *   Item specification. Only source and destination addresses and
512  *   next header fields are supported. If the mask is NULL, default
513  *   mask will be used. Ranging is not supported.
514  * @param efx_spec[in, out]
515  *   EFX filter specification to update.
516  * @param[out] error
517  *   Perform verbose error reporting if not NULL.
518  */
519 static int
520 sfc_flow_parse_ipv6(const struct rte_flow_item *item,
521 		    efx_filter_spec_t *efx_spec,
522 		    struct rte_flow_error *error)
523 {
524 	int rc;
525 	const struct rte_flow_item_ipv6 *spec = NULL;
526 	const struct rte_flow_item_ipv6 *mask = NULL;
527 	const uint16_t ether_type_ipv6 = rte_cpu_to_le_16(EFX_ETHER_TYPE_IPV6);
528 	const struct rte_flow_item_ipv6 supp_mask = {
529 		.hdr = {
530 			.src_addr = { 0xff, 0xff, 0xff, 0xff,
531 				      0xff, 0xff, 0xff, 0xff,
532 				      0xff, 0xff, 0xff, 0xff,
533 				      0xff, 0xff, 0xff, 0xff },
534 			.dst_addr = { 0xff, 0xff, 0xff, 0xff,
535 				      0xff, 0xff, 0xff, 0xff,
536 				      0xff, 0xff, 0xff, 0xff,
537 				      0xff, 0xff, 0xff, 0xff },
538 			.proto = 0xff,
539 		}
540 	};
541 
542 	rc = sfc_flow_parse_init(item,
543 				 (const void **)&spec,
544 				 (const void **)&mask,
545 				 &supp_mask,
546 				 &rte_flow_item_ipv6_mask,
547 				 sizeof(struct rte_flow_item_ipv6),
548 				 error);
549 	if (rc != 0)
550 		return rc;
551 
552 	/*
553 	 * Filtering by IPv6 source and destination addresses requires
554 	 * the appropriate ETHER_TYPE in hardware filters
555 	 */
556 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE)) {
557 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ETHER_TYPE;
558 		efx_spec->efs_ether_type = ether_type_ipv6;
559 	} else if (efx_spec->efs_ether_type != ether_type_ipv6) {
560 		rte_flow_error_set(error, EINVAL,
561 			RTE_FLOW_ERROR_TYPE_ITEM, item,
562 			"Ethertype in pattern with IPV6 item should be appropriate");
563 		return -rte_errno;
564 	}
565 
566 	if (spec == NULL)
567 		return 0;
568 
569 	/*
570 	 * IPv6 addresses are in big-endian byte order in item and in
571 	 * efx_spec
572 	 */
573 	if (memcmp(mask->hdr.src_addr, supp_mask.hdr.src_addr,
574 		   sizeof(mask->hdr.src_addr)) == 0) {
575 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_HOST;
576 
577 		RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_rem_host) !=
578 				 sizeof(spec->hdr.src_addr));
579 		rte_memcpy(&efx_spec->efs_rem_host, spec->hdr.src_addr,
580 			   sizeof(efx_spec->efs_rem_host));
581 	} else if (!sfc_flow_is_zero(mask->hdr.src_addr,
582 				     sizeof(mask->hdr.src_addr))) {
583 		goto fail_bad_mask;
584 	}
585 
586 	if (memcmp(mask->hdr.dst_addr, supp_mask.hdr.dst_addr,
587 		   sizeof(mask->hdr.dst_addr)) == 0) {
588 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_HOST;
589 
590 		RTE_BUILD_BUG_ON(sizeof(efx_spec->efs_loc_host) !=
591 				 sizeof(spec->hdr.dst_addr));
592 		rte_memcpy(&efx_spec->efs_loc_host, spec->hdr.dst_addr,
593 			   sizeof(efx_spec->efs_loc_host));
594 	} else if (!sfc_flow_is_zero(mask->hdr.dst_addr,
595 				     sizeof(mask->hdr.dst_addr))) {
596 		goto fail_bad_mask;
597 	}
598 
599 	if (mask->hdr.proto == supp_mask.hdr.proto) {
600 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
601 		efx_spec->efs_ip_proto = spec->hdr.proto;
602 	} else if (mask->hdr.proto != 0) {
603 		goto fail_bad_mask;
604 	}
605 
606 	return 0;
607 
608 fail_bad_mask:
609 	rte_flow_error_set(error, EINVAL,
610 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
611 			   "Bad mask in the IPV6 pattern item");
612 	return -rte_errno;
613 }
614 
615 /**
616  * Convert TCP item to EFX filter specification.
617  *
618  * @param item[in]
619  *   Item specification. Only source and destination ports fields
620  *   are supported. If the mask is NULL, default mask will be used.
621  *   Ranging is not supported.
622  * @param efx_spec[in, out]
623  *   EFX filter specification to update.
624  * @param[out] error
625  *   Perform verbose error reporting if not NULL.
626  */
627 static int
628 sfc_flow_parse_tcp(const struct rte_flow_item *item,
629 		   efx_filter_spec_t *efx_spec,
630 		   struct rte_flow_error *error)
631 {
632 	int rc;
633 	const struct rte_flow_item_tcp *spec = NULL;
634 	const struct rte_flow_item_tcp *mask = NULL;
635 	const struct rte_flow_item_tcp supp_mask = {
636 		.hdr = {
637 			.src_port = 0xffff,
638 			.dst_port = 0xffff,
639 		}
640 	};
641 
642 	rc = sfc_flow_parse_init(item,
643 				 (const void **)&spec,
644 				 (const void **)&mask,
645 				 &supp_mask,
646 				 &rte_flow_item_tcp_mask,
647 				 sizeof(struct rte_flow_item_tcp),
648 				 error);
649 	if (rc != 0)
650 		return rc;
651 
652 	/*
653 	 * Filtering by TCP source and destination ports requires
654 	 * the appropriate IP_PROTO in hardware filters
655 	 */
656 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
657 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
658 		efx_spec->efs_ip_proto = EFX_IPPROTO_TCP;
659 	} else if (efx_spec->efs_ip_proto != EFX_IPPROTO_TCP) {
660 		rte_flow_error_set(error, EINVAL,
661 			RTE_FLOW_ERROR_TYPE_ITEM, item,
662 			"IP proto in pattern with TCP item should be appropriate");
663 		return -rte_errno;
664 	}
665 
666 	if (spec == NULL)
667 		return 0;
668 
669 	/*
670 	 * Source and destination ports are in big-endian byte order in item and
671 	 * in little-endian in efx_spec, so byte swap is used
672 	 */
673 	if (mask->hdr.src_port == supp_mask.hdr.src_port) {
674 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
675 		efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
676 	} else if (mask->hdr.src_port != 0) {
677 		goto fail_bad_mask;
678 	}
679 
680 	if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
681 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
682 		efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
683 	} else if (mask->hdr.dst_port != 0) {
684 		goto fail_bad_mask;
685 	}
686 
687 	return 0;
688 
689 fail_bad_mask:
690 	rte_flow_error_set(error, EINVAL,
691 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
692 			   "Bad mask in the TCP pattern item");
693 	return -rte_errno;
694 }
695 
696 /**
697  * Convert UDP item to EFX filter specification.
698  *
699  * @param item[in]
700  *   Item specification. Only source and destination ports fields
701  *   are supported. If the mask is NULL, default mask will be used.
702  *   Ranging is not supported.
703  * @param efx_spec[in, out]
704  *   EFX filter specification to update.
705  * @param[out] error
706  *   Perform verbose error reporting if not NULL.
707  */
708 static int
709 sfc_flow_parse_udp(const struct rte_flow_item *item,
710 		   efx_filter_spec_t *efx_spec,
711 		   struct rte_flow_error *error)
712 {
713 	int rc;
714 	const struct rte_flow_item_udp *spec = NULL;
715 	const struct rte_flow_item_udp *mask = NULL;
716 	const struct rte_flow_item_udp supp_mask = {
717 		.hdr = {
718 			.src_port = 0xffff,
719 			.dst_port = 0xffff,
720 		}
721 	};
722 
723 	rc = sfc_flow_parse_init(item,
724 				 (const void **)&spec,
725 				 (const void **)&mask,
726 				 &supp_mask,
727 				 &rte_flow_item_udp_mask,
728 				 sizeof(struct rte_flow_item_udp),
729 				 error);
730 	if (rc != 0)
731 		return rc;
732 
733 	/*
734 	 * Filtering by UDP source and destination ports requires
735 	 * the appropriate IP_PROTO in hardware filters
736 	 */
737 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
738 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
739 		efx_spec->efs_ip_proto = EFX_IPPROTO_UDP;
740 	} else if (efx_spec->efs_ip_proto != EFX_IPPROTO_UDP) {
741 		rte_flow_error_set(error, EINVAL,
742 			RTE_FLOW_ERROR_TYPE_ITEM, item,
743 			"IP proto in pattern with UDP item should be appropriate");
744 		return -rte_errno;
745 	}
746 
747 	if (spec == NULL)
748 		return 0;
749 
750 	/*
751 	 * Source and destination ports are in big-endian byte order in item and
752 	 * in little-endian in efx_spec, so byte swap is used
753 	 */
754 	if (mask->hdr.src_port == supp_mask.hdr.src_port) {
755 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_REM_PORT;
756 		efx_spec->efs_rem_port = rte_bswap16(spec->hdr.src_port);
757 	} else if (mask->hdr.src_port != 0) {
758 		goto fail_bad_mask;
759 	}
760 
761 	if (mask->hdr.dst_port == supp_mask.hdr.dst_port) {
762 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_LOC_PORT;
763 		efx_spec->efs_loc_port = rte_bswap16(spec->hdr.dst_port);
764 	} else if (mask->hdr.dst_port != 0) {
765 		goto fail_bad_mask;
766 	}
767 
768 	return 0;
769 
770 fail_bad_mask:
771 	rte_flow_error_set(error, EINVAL,
772 			   RTE_FLOW_ERROR_TYPE_ITEM, item,
773 			   "Bad mask in the UDP pattern item");
774 	return -rte_errno;
775 }
776 
777 /*
778  * Filters for encapsulated packets match based on the EtherType and IP
779  * protocol in the outer frame.
780  */
781 static int
782 sfc_flow_set_match_flags_for_encap_pkts(const struct rte_flow_item *item,
783 					efx_filter_spec_t *efx_spec,
784 					uint8_t ip_proto,
785 					struct rte_flow_error *error)
786 {
787 	if (!(efx_spec->efs_match_flags & EFX_FILTER_MATCH_IP_PROTO)) {
788 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_IP_PROTO;
789 		efx_spec->efs_ip_proto = ip_proto;
790 	} else if (efx_spec->efs_ip_proto != ip_proto) {
791 		switch (ip_proto) {
792 		case EFX_IPPROTO_UDP:
793 			rte_flow_error_set(error, EINVAL,
794 				RTE_FLOW_ERROR_TYPE_ITEM, item,
795 				"Outer IP header protocol must be UDP "
796 				"in VxLAN/GENEVE pattern");
797 			return -rte_errno;
798 
799 		case EFX_IPPROTO_GRE:
800 			rte_flow_error_set(error, EINVAL,
801 				RTE_FLOW_ERROR_TYPE_ITEM, item,
802 				"Outer IP header protocol must be GRE "
803 				"in NVGRE pattern");
804 			return -rte_errno;
805 
806 		default:
807 			rte_flow_error_set(error, EINVAL,
808 				RTE_FLOW_ERROR_TYPE_ITEM, item,
809 				"Only VxLAN/GENEVE/NVGRE tunneling patterns "
810 				"are supported");
811 			return -rte_errno;
812 		}
813 	}
814 
815 	if (efx_spec->efs_match_flags & EFX_FILTER_MATCH_ETHER_TYPE &&
816 	    efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV4 &&
817 	    efx_spec->efs_ether_type != EFX_ETHER_TYPE_IPV6) {
818 		rte_flow_error_set(error, EINVAL,
819 			RTE_FLOW_ERROR_TYPE_ITEM, item,
820 			"Outer frame EtherType in pattern with tunneling "
821 			"must be IPv4 or IPv6");
822 		return -rte_errno;
823 	}
824 
825 	return 0;
826 }
827 
828 static int
829 sfc_flow_set_efx_spec_vni_or_vsid(efx_filter_spec_t *efx_spec,
830 				  const uint8_t *vni_or_vsid_val,
831 				  const uint8_t *vni_or_vsid_mask,
832 				  const struct rte_flow_item *item,
833 				  struct rte_flow_error *error)
834 {
835 	const uint8_t vni_or_vsid_full_mask[EFX_VNI_OR_VSID_LEN] = {
836 		0xff, 0xff, 0xff
837 	};
838 
839 	if (memcmp(vni_or_vsid_mask, vni_or_vsid_full_mask,
840 		   EFX_VNI_OR_VSID_LEN) == 0) {
841 		efx_spec->efs_match_flags |= EFX_FILTER_MATCH_VNI_OR_VSID;
842 		rte_memcpy(efx_spec->efs_vni_or_vsid, vni_or_vsid_val,
843 			   EFX_VNI_OR_VSID_LEN);
844 	} else if (!sfc_flow_is_zero(vni_or_vsid_mask, EFX_VNI_OR_VSID_LEN)) {
845 		rte_flow_error_set(error, EINVAL,
846 				   RTE_FLOW_ERROR_TYPE_ITEM, item,
847 				   "Unsupported VNI/VSID mask");
848 		return -rte_errno;
849 	}
850 
851 	return 0;
852 }
853 
854 /**
855  * Convert VXLAN item to EFX filter specification.
856  *
857  * @param item[in]
858  *   Item specification. Only VXLAN network identifier field is supported.
859  *   If the mask is NULL, default mask will be used.
860  *   Ranging is not supported.
861  * @param efx_spec[in, out]
862  *   EFX filter specification to update.
863  * @param[out] error
864  *   Perform verbose error reporting if not NULL.
865  */
866 static int
867 sfc_flow_parse_vxlan(const struct rte_flow_item *item,
868 		     efx_filter_spec_t *efx_spec,
869 		     struct rte_flow_error *error)
870 {
871 	int rc;
872 	const struct rte_flow_item_vxlan *spec = NULL;
873 	const struct rte_flow_item_vxlan *mask = NULL;
874 	const struct rte_flow_item_vxlan supp_mask = {
875 		.vni = { 0xff, 0xff, 0xff }
876 	};
877 
878 	rc = sfc_flow_parse_init(item,
879 				 (const void **)&spec,
880 				 (const void **)&mask,
881 				 &supp_mask,
882 				 &rte_flow_item_vxlan_mask,
883 				 sizeof(struct rte_flow_item_vxlan),
884 				 error);
885 	if (rc != 0)
886 		return rc;
887 
888 	rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
889 						     EFX_IPPROTO_UDP, error);
890 	if (rc != 0)
891 		return rc;
892 
893 	efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
894 	efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
895 
896 	if (spec == NULL)
897 		return 0;
898 
899 	rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
900 					       mask->vni, item, error);
901 
902 	return rc;
903 }
904 
905 /**
906  * Convert GENEVE item to EFX filter specification.
907  *
908  * @param item[in]
909  *   Item specification. Only Virtual Network Identifier and protocol type
910  *   fields are supported. But protocol type can be only Ethernet (0x6558).
911  *   If the mask is NULL, default mask will be used.
912  *   Ranging is not supported.
913  * @param efx_spec[in, out]
914  *   EFX filter specification to update.
915  * @param[out] error
916  *   Perform verbose error reporting if not NULL.
917  */
918 static int
919 sfc_flow_parse_geneve(const struct rte_flow_item *item,
920 		      efx_filter_spec_t *efx_spec,
921 		      struct rte_flow_error *error)
922 {
923 	int rc;
924 	const struct rte_flow_item_geneve *spec = NULL;
925 	const struct rte_flow_item_geneve *mask = NULL;
926 	const struct rte_flow_item_geneve supp_mask = {
927 		.protocol = RTE_BE16(0xffff),
928 		.vni = { 0xff, 0xff, 0xff }
929 	};
930 
931 	rc = sfc_flow_parse_init(item,
932 				 (const void **)&spec,
933 				 (const void **)&mask,
934 				 &supp_mask,
935 				 &rte_flow_item_geneve_mask,
936 				 sizeof(struct rte_flow_item_geneve),
937 				 error);
938 	if (rc != 0)
939 		return rc;
940 
941 	rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
942 						     EFX_IPPROTO_UDP, error);
943 	if (rc != 0)
944 		return rc;
945 
946 	efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
947 	efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
948 
949 	if (spec == NULL)
950 		return 0;
951 
952 	if (mask->protocol == supp_mask.protocol) {
953 		if (spec->protocol != rte_cpu_to_be_16(ETHER_TYPE_TEB)) {
954 			rte_flow_error_set(error, EINVAL,
955 				RTE_FLOW_ERROR_TYPE_ITEM, item,
956 				"GENEVE encap. protocol must be Ethernet "
957 				"(0x6558) in the GENEVE pattern item");
958 			return -rte_errno;
959 		}
960 	} else if (mask->protocol != 0) {
961 		rte_flow_error_set(error, EINVAL,
962 			RTE_FLOW_ERROR_TYPE_ITEM, item,
963 			"Unsupported mask for GENEVE encap. protocol");
964 		return -rte_errno;
965 	}
966 
967 	rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->vni,
968 					       mask->vni, item, error);
969 
970 	return rc;
971 }
972 
973 /**
974  * Convert NVGRE item to EFX filter specification.
975  *
976  * @param item[in]
977  *   Item specification. Only virtual subnet ID field is supported.
978  *   If the mask is NULL, default mask will be used.
979  *   Ranging is not supported.
980  * @param efx_spec[in, out]
981  *   EFX filter specification to update.
982  * @param[out] error
983  *   Perform verbose error reporting if not NULL.
984  */
985 static int
986 sfc_flow_parse_nvgre(const struct rte_flow_item *item,
987 		     efx_filter_spec_t *efx_spec,
988 		     struct rte_flow_error *error)
989 {
990 	int rc;
991 	const struct rte_flow_item_nvgre *spec = NULL;
992 	const struct rte_flow_item_nvgre *mask = NULL;
993 	const struct rte_flow_item_nvgre supp_mask = {
994 		.tni = { 0xff, 0xff, 0xff }
995 	};
996 
997 	rc = sfc_flow_parse_init(item,
998 				 (const void **)&spec,
999 				 (const void **)&mask,
1000 				 &supp_mask,
1001 				 &rte_flow_item_nvgre_mask,
1002 				 sizeof(struct rte_flow_item_nvgre),
1003 				 error);
1004 	if (rc != 0)
1005 		return rc;
1006 
1007 	rc = sfc_flow_set_match_flags_for_encap_pkts(item, efx_spec,
1008 						     EFX_IPPROTO_GRE, error);
1009 	if (rc != 0)
1010 		return rc;
1011 
1012 	efx_spec->efs_encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
1013 	efx_spec->efs_match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
1014 
1015 	if (spec == NULL)
1016 		return 0;
1017 
1018 	rc = sfc_flow_set_efx_spec_vni_or_vsid(efx_spec, spec->tni,
1019 					       mask->tni, item, error);
1020 
1021 	return rc;
1022 }
1023 
1024 static const struct sfc_flow_item sfc_flow_items[] = {
1025 	{
1026 		.type = RTE_FLOW_ITEM_TYPE_VOID,
1027 		.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
1028 		.layer = SFC_FLOW_ITEM_ANY_LAYER,
1029 		.parse = sfc_flow_parse_void,
1030 	},
1031 	{
1032 		.type = RTE_FLOW_ITEM_TYPE_ETH,
1033 		.prev_layer = SFC_FLOW_ITEM_START_LAYER,
1034 		.layer = SFC_FLOW_ITEM_L2,
1035 		.parse = sfc_flow_parse_eth,
1036 	},
1037 	{
1038 		.type = RTE_FLOW_ITEM_TYPE_VLAN,
1039 		.prev_layer = SFC_FLOW_ITEM_L2,
1040 		.layer = SFC_FLOW_ITEM_L2,
1041 		.parse = sfc_flow_parse_vlan,
1042 	},
1043 	{
1044 		.type = RTE_FLOW_ITEM_TYPE_IPV4,
1045 		.prev_layer = SFC_FLOW_ITEM_L2,
1046 		.layer = SFC_FLOW_ITEM_L3,
1047 		.parse = sfc_flow_parse_ipv4,
1048 	},
1049 	{
1050 		.type = RTE_FLOW_ITEM_TYPE_IPV6,
1051 		.prev_layer = SFC_FLOW_ITEM_L2,
1052 		.layer = SFC_FLOW_ITEM_L3,
1053 		.parse = sfc_flow_parse_ipv6,
1054 	},
1055 	{
1056 		.type = RTE_FLOW_ITEM_TYPE_TCP,
1057 		.prev_layer = SFC_FLOW_ITEM_L3,
1058 		.layer = SFC_FLOW_ITEM_L4,
1059 		.parse = sfc_flow_parse_tcp,
1060 	},
1061 	{
1062 		.type = RTE_FLOW_ITEM_TYPE_UDP,
1063 		.prev_layer = SFC_FLOW_ITEM_L3,
1064 		.layer = SFC_FLOW_ITEM_L4,
1065 		.parse = sfc_flow_parse_udp,
1066 	},
1067 	{
1068 		.type = RTE_FLOW_ITEM_TYPE_VXLAN,
1069 		.prev_layer = SFC_FLOW_ITEM_L4,
1070 		.layer = SFC_FLOW_ITEM_START_LAYER,
1071 		.parse = sfc_flow_parse_vxlan,
1072 	},
1073 	{
1074 		.type = RTE_FLOW_ITEM_TYPE_GENEVE,
1075 		.prev_layer = SFC_FLOW_ITEM_L4,
1076 		.layer = SFC_FLOW_ITEM_START_LAYER,
1077 		.parse = sfc_flow_parse_geneve,
1078 	},
1079 	{
1080 		.type = RTE_FLOW_ITEM_TYPE_NVGRE,
1081 		.prev_layer = SFC_FLOW_ITEM_L3,
1082 		.layer = SFC_FLOW_ITEM_START_LAYER,
1083 		.parse = sfc_flow_parse_nvgre,
1084 	},
1085 };
1086 
1087 /*
1088  * Protocol-independent flow API support
1089  */
1090 static int
1091 sfc_flow_parse_attr(const struct rte_flow_attr *attr,
1092 		    struct rte_flow *flow,
1093 		    struct rte_flow_error *error)
1094 {
1095 	if (attr == NULL) {
1096 		rte_flow_error_set(error, EINVAL,
1097 				   RTE_FLOW_ERROR_TYPE_ATTR, NULL,
1098 				   "NULL attribute");
1099 		return -rte_errno;
1100 	}
1101 	if (attr->group != 0) {
1102 		rte_flow_error_set(error, ENOTSUP,
1103 				   RTE_FLOW_ERROR_TYPE_ATTR_GROUP, attr,
1104 				   "Groups are not supported");
1105 		return -rte_errno;
1106 	}
1107 	if (attr->priority != 0) {
1108 		rte_flow_error_set(error, ENOTSUP,
1109 				   RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, attr,
1110 				   "Priorities are not supported");
1111 		return -rte_errno;
1112 	}
1113 	if (attr->egress != 0) {
1114 		rte_flow_error_set(error, ENOTSUP,
1115 				   RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, attr,
1116 				   "Egress is not supported");
1117 		return -rte_errno;
1118 	}
1119 	if (attr->transfer != 0) {
1120 		rte_flow_error_set(error, ENOTSUP,
1121 				   RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER, attr,
1122 				   "Transfer is not supported");
1123 		return -rte_errno;
1124 	}
1125 	if (attr->ingress == 0) {
1126 		rte_flow_error_set(error, ENOTSUP,
1127 				   RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, attr,
1128 				   "Only ingress is supported");
1129 		return -rte_errno;
1130 	}
1131 
1132 	flow->spec.template.efs_flags |= EFX_FILTER_FLAG_RX;
1133 	flow->spec.template.efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1134 
1135 	return 0;
1136 }
1137 
1138 /* Get item from array sfc_flow_items */
1139 static const struct sfc_flow_item *
1140 sfc_flow_get_item(enum rte_flow_item_type type)
1141 {
1142 	unsigned int i;
1143 
1144 	for (i = 0; i < RTE_DIM(sfc_flow_items); i++)
1145 		if (sfc_flow_items[i].type == type)
1146 			return &sfc_flow_items[i];
1147 
1148 	return NULL;
1149 }
1150 
1151 static int
1152 sfc_flow_parse_pattern(const struct rte_flow_item pattern[],
1153 		       struct rte_flow *flow,
1154 		       struct rte_flow_error *error)
1155 {
1156 	int rc;
1157 	unsigned int prev_layer = SFC_FLOW_ITEM_ANY_LAYER;
1158 	boolean_t is_ifrm = B_FALSE;
1159 	const struct sfc_flow_item *item;
1160 
1161 	if (pattern == NULL) {
1162 		rte_flow_error_set(error, EINVAL,
1163 				   RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
1164 				   "NULL pattern");
1165 		return -rte_errno;
1166 	}
1167 
1168 	for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
1169 		item = sfc_flow_get_item(pattern->type);
1170 		if (item == NULL) {
1171 			rte_flow_error_set(error, ENOTSUP,
1172 					   RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1173 					   "Unsupported pattern item");
1174 			return -rte_errno;
1175 		}
1176 
1177 		/*
1178 		 * Omitting one or several protocol layers at the beginning
1179 		 * of pattern is supported
1180 		 */
1181 		if (item->prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1182 		    prev_layer != SFC_FLOW_ITEM_ANY_LAYER &&
1183 		    item->prev_layer != prev_layer) {
1184 			rte_flow_error_set(error, ENOTSUP,
1185 					   RTE_FLOW_ERROR_TYPE_ITEM, pattern,
1186 					   "Unexpected sequence of pattern items");
1187 			return -rte_errno;
1188 		}
1189 
1190 		/*
1191 		 * Allow only VOID and ETH pattern items in the inner frame.
1192 		 * Also check that there is only one tunneling protocol.
1193 		 */
1194 		switch (item->type) {
1195 		case RTE_FLOW_ITEM_TYPE_VOID:
1196 		case RTE_FLOW_ITEM_TYPE_ETH:
1197 			break;
1198 
1199 		case RTE_FLOW_ITEM_TYPE_VXLAN:
1200 		case RTE_FLOW_ITEM_TYPE_GENEVE:
1201 		case RTE_FLOW_ITEM_TYPE_NVGRE:
1202 			if (is_ifrm) {
1203 				rte_flow_error_set(error, EINVAL,
1204 					RTE_FLOW_ERROR_TYPE_ITEM,
1205 					pattern,
1206 					"More than one tunneling protocol");
1207 				return -rte_errno;
1208 			}
1209 			is_ifrm = B_TRUE;
1210 			break;
1211 
1212 		default:
1213 			if (is_ifrm) {
1214 				rte_flow_error_set(error, EINVAL,
1215 					RTE_FLOW_ERROR_TYPE_ITEM,
1216 					pattern,
1217 					"There is an unsupported pattern item "
1218 					"in the inner frame");
1219 				return -rte_errno;
1220 			}
1221 			break;
1222 		}
1223 
1224 		rc = item->parse(pattern, &flow->spec.template, error);
1225 		if (rc != 0)
1226 			return rc;
1227 
1228 		if (item->layer != SFC_FLOW_ITEM_ANY_LAYER)
1229 			prev_layer = item->layer;
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 static int
1236 sfc_flow_parse_queue(struct sfc_adapter *sa,
1237 		     const struct rte_flow_action_queue *queue,
1238 		     struct rte_flow *flow)
1239 {
1240 	struct sfc_rxq *rxq;
1241 
1242 	if (queue->index >= sa->rxq_count)
1243 		return -EINVAL;
1244 
1245 	rxq = sa->rxq_info[queue->index].rxq;
1246 	flow->spec.template.efs_dmaq_id = (uint16_t)rxq->hw_index;
1247 
1248 	return 0;
1249 }
1250 
1251 static int
1252 sfc_flow_parse_rss(struct sfc_adapter *sa,
1253 		   const struct rte_flow_action_rss *action_rss,
1254 		   struct rte_flow *flow)
1255 {
1256 	struct sfc_rss *rss = &sa->rss;
1257 	unsigned int rxq_sw_index;
1258 	struct sfc_rxq *rxq;
1259 	unsigned int rxq_hw_index_min;
1260 	unsigned int rxq_hw_index_max;
1261 	efx_rx_hash_type_t efx_hash_types;
1262 	const uint8_t *rss_key;
1263 	struct sfc_flow_rss *sfc_rss_conf = &flow->rss_conf;
1264 	unsigned int i;
1265 
1266 	if (action_rss->queue_num == 0)
1267 		return -EINVAL;
1268 
1269 	rxq_sw_index = sa->rxq_count - 1;
1270 	rxq = sa->rxq_info[rxq_sw_index].rxq;
1271 	rxq_hw_index_min = rxq->hw_index;
1272 	rxq_hw_index_max = 0;
1273 
1274 	for (i = 0; i < action_rss->queue_num; ++i) {
1275 		rxq_sw_index = action_rss->queue[i];
1276 
1277 		if (rxq_sw_index >= sa->rxq_count)
1278 			return -EINVAL;
1279 
1280 		rxq = sa->rxq_info[rxq_sw_index].rxq;
1281 
1282 		if (rxq->hw_index < rxq_hw_index_min)
1283 			rxq_hw_index_min = rxq->hw_index;
1284 
1285 		if (rxq->hw_index > rxq_hw_index_max)
1286 			rxq_hw_index_max = rxq->hw_index;
1287 	}
1288 
1289 	switch (action_rss->func) {
1290 	case RTE_ETH_HASH_FUNCTION_DEFAULT:
1291 	case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
1292 		break;
1293 	default:
1294 		return -EINVAL;
1295 	}
1296 
1297 	if (action_rss->level)
1298 		return -EINVAL;
1299 
1300 	/*
1301 	 * Dummy RSS action with only one queue and no specific settings
1302 	 * for hash types and key does not require dedicated RSS context
1303 	 * and may be simplified to single queue action.
1304 	 */
1305 	if (action_rss->queue_num == 1 && action_rss->types == 0 &&
1306 	    action_rss->key_len == 0) {
1307 		flow->spec.template.efs_dmaq_id = rxq_hw_index_min;
1308 		return 0;
1309 	}
1310 
1311 	if (action_rss->types) {
1312 		int rc;
1313 
1314 		rc = sfc_rx_hf_rte_to_efx(sa, action_rss->types,
1315 					  &efx_hash_types);
1316 		if (rc != 0)
1317 			return -rc;
1318 	} else {
1319 		unsigned int i;
1320 
1321 		efx_hash_types = 0;
1322 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
1323 			efx_hash_types |= rss->hf_map[i].efx;
1324 	}
1325 
1326 	if (action_rss->key_len) {
1327 		if (action_rss->key_len != sizeof(rss->key))
1328 			return -EINVAL;
1329 
1330 		rss_key = action_rss->key;
1331 	} else {
1332 		rss_key = rss->key;
1333 	}
1334 
1335 	flow->rss = B_TRUE;
1336 
1337 	sfc_rss_conf->rxq_hw_index_min = rxq_hw_index_min;
1338 	sfc_rss_conf->rxq_hw_index_max = rxq_hw_index_max;
1339 	sfc_rss_conf->rss_hash_types = efx_hash_types;
1340 	rte_memcpy(sfc_rss_conf->rss_key, rss_key, sizeof(rss->key));
1341 
1342 	for (i = 0; i < RTE_DIM(sfc_rss_conf->rss_tbl); ++i) {
1343 		unsigned int nb_queues = action_rss->queue_num;
1344 		unsigned int rxq_sw_index = action_rss->queue[i % nb_queues];
1345 		struct sfc_rxq *rxq = sa->rxq_info[rxq_sw_index].rxq;
1346 
1347 		sfc_rss_conf->rss_tbl[i] = rxq->hw_index - rxq_hw_index_min;
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 static int
1354 sfc_flow_spec_flush(struct sfc_adapter *sa, struct sfc_flow_spec *spec,
1355 		    unsigned int filters_count)
1356 {
1357 	unsigned int i;
1358 	int ret = 0;
1359 
1360 	for (i = 0; i < filters_count; i++) {
1361 		int rc;
1362 
1363 		rc = efx_filter_remove(sa->nic, &spec->filters[i]);
1364 		if (ret == 0 && rc != 0) {
1365 			sfc_err(sa, "failed to remove filter specification "
1366 				"(rc = %d)", rc);
1367 			ret = rc;
1368 		}
1369 	}
1370 
1371 	return ret;
1372 }
1373 
1374 static int
1375 sfc_flow_spec_insert(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1376 {
1377 	unsigned int i;
1378 	int rc = 0;
1379 
1380 	for (i = 0; i < spec->count; i++) {
1381 		rc = efx_filter_insert(sa->nic, &spec->filters[i]);
1382 		if (rc != 0) {
1383 			sfc_flow_spec_flush(sa, spec, i);
1384 			break;
1385 		}
1386 	}
1387 
1388 	return rc;
1389 }
1390 
1391 static int
1392 sfc_flow_spec_remove(struct sfc_adapter *sa, struct sfc_flow_spec *spec)
1393 {
1394 	return sfc_flow_spec_flush(sa, spec, spec->count);
1395 }
1396 
1397 static int
1398 sfc_flow_filter_insert(struct sfc_adapter *sa,
1399 		       struct rte_flow *flow)
1400 {
1401 	struct sfc_rss *rss = &sa->rss;
1402 	struct sfc_flow_rss *flow_rss = &flow->rss_conf;
1403 	uint32_t efs_rss_context = EFX_RSS_CONTEXT_DEFAULT;
1404 	unsigned int i;
1405 	int rc = 0;
1406 
1407 	if (flow->rss) {
1408 		unsigned int rss_spread = MIN(flow_rss->rxq_hw_index_max -
1409 					      flow_rss->rxq_hw_index_min + 1,
1410 					      EFX_MAXRSS);
1411 
1412 		rc = efx_rx_scale_context_alloc(sa->nic,
1413 						EFX_RX_SCALE_EXCLUSIVE,
1414 						rss_spread,
1415 						&efs_rss_context);
1416 		if (rc != 0)
1417 			goto fail_scale_context_alloc;
1418 
1419 		rc = efx_rx_scale_mode_set(sa->nic, efs_rss_context,
1420 					   rss->hash_alg,
1421 					   flow_rss->rss_hash_types, B_TRUE);
1422 		if (rc != 0)
1423 			goto fail_scale_mode_set;
1424 
1425 		rc = efx_rx_scale_key_set(sa->nic, efs_rss_context,
1426 					  flow_rss->rss_key,
1427 					  sizeof(rss->key));
1428 		if (rc != 0)
1429 			goto fail_scale_key_set;
1430 
1431 		/*
1432 		 * At this point, fully elaborated filter specifications
1433 		 * have been produced from the template. To make sure that
1434 		 * RSS behaviour is consistent between them, set the same
1435 		 * RSS context value everywhere.
1436 		 */
1437 		for (i = 0; i < flow->spec.count; i++) {
1438 			efx_filter_spec_t *spec = &flow->spec.filters[i];
1439 
1440 			spec->efs_rss_context = efs_rss_context;
1441 			spec->efs_dmaq_id = flow_rss->rxq_hw_index_min;
1442 			spec->efs_flags |= EFX_FILTER_FLAG_RX_RSS;
1443 		}
1444 	}
1445 
1446 	rc = sfc_flow_spec_insert(sa, &flow->spec);
1447 	if (rc != 0)
1448 		goto fail_filter_insert;
1449 
1450 	if (flow->rss) {
1451 		/*
1452 		 * Scale table is set after filter insertion because
1453 		 * the table entries are relative to the base RxQ ID
1454 		 * and the latter is submitted to the HW by means of
1455 		 * inserting a filter, so by the time of the request
1456 		 * the HW knows all the information needed to verify
1457 		 * the table entries, and the operation will succeed
1458 		 */
1459 		rc = efx_rx_scale_tbl_set(sa->nic, efs_rss_context,
1460 					  flow_rss->rss_tbl,
1461 					  RTE_DIM(flow_rss->rss_tbl));
1462 		if (rc != 0)
1463 			goto fail_scale_tbl_set;
1464 	}
1465 
1466 	return 0;
1467 
1468 fail_scale_tbl_set:
1469 	sfc_flow_spec_remove(sa, &flow->spec);
1470 
1471 fail_filter_insert:
1472 fail_scale_key_set:
1473 fail_scale_mode_set:
1474 	if (efs_rss_context != EFX_RSS_CONTEXT_DEFAULT)
1475 		efx_rx_scale_context_free(sa->nic, efs_rss_context);
1476 
1477 fail_scale_context_alloc:
1478 	return rc;
1479 }
1480 
1481 static int
1482 sfc_flow_filter_remove(struct sfc_adapter *sa,
1483 		       struct rte_flow *flow)
1484 {
1485 	int rc = 0;
1486 
1487 	rc = sfc_flow_spec_remove(sa, &flow->spec);
1488 	if (rc != 0)
1489 		return rc;
1490 
1491 	if (flow->rss) {
1492 		/*
1493 		 * All specifications for a given flow rule have the same RSS
1494 		 * context, so that RSS context value is taken from the first
1495 		 * filter specification
1496 		 */
1497 		efx_filter_spec_t *spec = &flow->spec.filters[0];
1498 
1499 		rc = efx_rx_scale_context_free(sa->nic, spec->efs_rss_context);
1500 	}
1501 
1502 	return rc;
1503 }
1504 
1505 static int
1506 sfc_flow_parse_mark(struct sfc_adapter *sa,
1507 		    const struct rte_flow_action_mark *mark,
1508 		    struct rte_flow *flow)
1509 {
1510 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1511 
1512 	if (mark == NULL || mark->id > encp->enc_filter_action_mark_max)
1513 		return EINVAL;
1514 
1515 	flow->spec.template.efs_flags |= EFX_FILTER_FLAG_ACTION_MARK;
1516 	flow->spec.template.efs_mark = mark->id;
1517 
1518 	return 0;
1519 }
1520 
1521 static int
1522 sfc_flow_parse_actions(struct sfc_adapter *sa,
1523 		       const struct rte_flow_action actions[],
1524 		       struct rte_flow *flow,
1525 		       struct rte_flow_error *error)
1526 {
1527 	int rc;
1528 	const unsigned int dp_rx_features = sa->dp_rx->features;
1529 	uint32_t actions_set = 0;
1530 	const uint32_t fate_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_QUEUE) |
1531 					   (1UL << RTE_FLOW_ACTION_TYPE_RSS) |
1532 					   (1UL << RTE_FLOW_ACTION_TYPE_DROP);
1533 	const uint32_t mark_actions_mask = (1UL << RTE_FLOW_ACTION_TYPE_MARK) |
1534 					   (1UL << RTE_FLOW_ACTION_TYPE_FLAG);
1535 
1536 	if (actions == NULL) {
1537 		rte_flow_error_set(error, EINVAL,
1538 				   RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
1539 				   "NULL actions");
1540 		return -rte_errno;
1541 	}
1542 
1543 #define SFC_BUILD_SET_OVERFLOW(_action, _set) \
1544 	RTE_BUILD_BUG_ON(_action >= sizeof(_set) * CHAR_BIT)
1545 
1546 	for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1547 		switch (actions->type) {
1548 		case RTE_FLOW_ACTION_TYPE_VOID:
1549 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VOID,
1550 					       actions_set);
1551 			break;
1552 
1553 		case RTE_FLOW_ACTION_TYPE_QUEUE:
1554 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_QUEUE,
1555 					       actions_set);
1556 			if ((actions_set & fate_actions_mask) != 0)
1557 				goto fail_fate_actions;
1558 
1559 			rc = sfc_flow_parse_queue(sa, actions->conf, flow);
1560 			if (rc != 0) {
1561 				rte_flow_error_set(error, EINVAL,
1562 					RTE_FLOW_ERROR_TYPE_ACTION, actions,
1563 					"Bad QUEUE action");
1564 				return -rte_errno;
1565 			}
1566 			break;
1567 
1568 		case RTE_FLOW_ACTION_TYPE_RSS:
1569 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_RSS,
1570 					       actions_set);
1571 			if ((actions_set & fate_actions_mask) != 0)
1572 				goto fail_fate_actions;
1573 
1574 			rc = sfc_flow_parse_rss(sa, actions->conf, flow);
1575 			if (rc != 0) {
1576 				rte_flow_error_set(error, -rc,
1577 					RTE_FLOW_ERROR_TYPE_ACTION, actions,
1578 					"Bad RSS action");
1579 				return -rte_errno;
1580 			}
1581 			break;
1582 
1583 		case RTE_FLOW_ACTION_TYPE_DROP:
1584 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
1585 					       actions_set);
1586 			if ((actions_set & fate_actions_mask) != 0)
1587 				goto fail_fate_actions;
1588 
1589 			flow->spec.template.efs_dmaq_id =
1590 				EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1591 			break;
1592 
1593 		case RTE_FLOW_ACTION_TYPE_FLAG:
1594 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
1595 					       actions_set);
1596 			if ((actions_set & mark_actions_mask) != 0)
1597 				goto fail_actions_overlap;
1598 
1599 			if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_FLAG) == 0) {
1600 				rte_flow_error_set(error, ENOTSUP,
1601 					RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1602 					"FLAG action is not supported on the current Rx datapath");
1603 				return -rte_errno;
1604 			}
1605 
1606 			flow->spec.template.efs_flags |=
1607 				EFX_FILTER_FLAG_ACTION_FLAG;
1608 			break;
1609 
1610 		case RTE_FLOW_ACTION_TYPE_MARK:
1611 			SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
1612 					       actions_set);
1613 			if ((actions_set & mark_actions_mask) != 0)
1614 				goto fail_actions_overlap;
1615 
1616 			if ((dp_rx_features & SFC_DP_RX_FEAT_FLOW_MARK) == 0) {
1617 				rte_flow_error_set(error, ENOTSUP,
1618 					RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1619 					"MARK action is not supported on the current Rx datapath");
1620 				return -rte_errno;
1621 			}
1622 
1623 			rc = sfc_flow_parse_mark(sa, actions->conf, flow);
1624 			if (rc != 0) {
1625 				rte_flow_error_set(error, rc,
1626 					RTE_FLOW_ERROR_TYPE_ACTION, actions,
1627 					"Bad MARK action");
1628 				return -rte_errno;
1629 			}
1630 			break;
1631 
1632 		default:
1633 			rte_flow_error_set(error, ENOTSUP,
1634 					   RTE_FLOW_ERROR_TYPE_ACTION, actions,
1635 					   "Action is not supported");
1636 			return -rte_errno;
1637 		}
1638 
1639 		actions_set |= (1UL << actions->type);
1640 	}
1641 #undef SFC_BUILD_SET_OVERFLOW
1642 
1643 	/* When fate is unknown, drop traffic. */
1644 	if ((actions_set & fate_actions_mask) == 0) {
1645 		flow->spec.template.efs_dmaq_id =
1646 			EFX_FILTER_SPEC_RX_DMAQ_ID_DROP;
1647 	}
1648 
1649 	return 0;
1650 
1651 fail_fate_actions:
1652 	rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1653 			   "Cannot combine several fate-deciding actions, "
1654 			   "choose between QUEUE, RSS or DROP");
1655 	return -rte_errno;
1656 
1657 fail_actions_overlap:
1658 	rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, actions,
1659 			   "Overlapping actions are not supported");
1660 	return -rte_errno;
1661 }
1662 
1663 /**
1664  * Set the EFX_FILTER_MATCH_UNKNOWN_UCAST_DST
1665  * and EFX_FILTER_MATCH_UNKNOWN_MCAST_DST match flags in the same
1666  * specifications after copying.
1667  *
1668  * @param spec[in, out]
1669  *   SFC flow specification to update.
1670  * @param filters_count_for_one_val[in]
1671  *   How many specifications should have the same match flag, what is the
1672  *   number of specifications before copying.
1673  * @param error[out]
1674  *   Perform verbose error reporting if not NULL.
1675  */
1676 static int
1677 sfc_flow_set_unknown_dst_flags(struct sfc_flow_spec *spec,
1678 			       unsigned int filters_count_for_one_val,
1679 			       struct rte_flow_error *error)
1680 {
1681 	unsigned int i;
1682 	static const efx_filter_match_flags_t vals[] = {
1683 		EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
1684 		EFX_FILTER_MATCH_UNKNOWN_MCAST_DST
1685 	};
1686 
1687 	if (filters_count_for_one_val * RTE_DIM(vals) != spec->count) {
1688 		rte_flow_error_set(error, EINVAL,
1689 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1690 			"Number of specifications is incorrect while copying "
1691 			"by unknown destination flags");
1692 		return -rte_errno;
1693 	}
1694 
1695 	for (i = 0; i < spec->count; i++) {
1696 		/* The check above ensures that divisor can't be zero here */
1697 		spec->filters[i].efs_match_flags |=
1698 			vals[i / filters_count_for_one_val];
1699 	}
1700 
1701 	return 0;
1702 }
1703 
1704 /**
1705  * Check that the following conditions are met:
1706  * - the list of supported filters has a filter
1707  *   with EFX_FILTER_MATCH_UNKNOWN_MCAST_DST flag instead of
1708  *   EFX_FILTER_MATCH_UNKNOWN_UCAST_DST, since this filter will also
1709  *   be inserted.
1710  *
1711  * @param match[in]
1712  *   The match flags of filter.
1713  * @param spec[in]
1714  *   Specification to be supplemented.
1715  * @param filter[in]
1716  *   SFC filter with list of supported filters.
1717  */
1718 static boolean_t
1719 sfc_flow_check_unknown_dst_flags(efx_filter_match_flags_t match,
1720 				 __rte_unused efx_filter_spec_t *spec,
1721 				 struct sfc_filter *filter)
1722 {
1723 	unsigned int i;
1724 	efx_filter_match_flags_t match_mcast_dst;
1725 
1726 	match_mcast_dst =
1727 		(match & ~EFX_FILTER_MATCH_UNKNOWN_UCAST_DST) |
1728 		EFX_FILTER_MATCH_UNKNOWN_MCAST_DST;
1729 	for (i = 0; i < filter->supported_match_num; i++) {
1730 		if (match_mcast_dst == filter->supported_match[i])
1731 			return B_TRUE;
1732 	}
1733 
1734 	return B_FALSE;
1735 }
1736 
1737 /**
1738  * Set the EFX_FILTER_MATCH_ETHER_TYPE match flag and EFX_ETHER_TYPE_IPV4 and
1739  * EFX_ETHER_TYPE_IPV6 values of the corresponding field in the same
1740  * specifications after copying.
1741  *
1742  * @param spec[in, out]
1743  *   SFC flow specification to update.
1744  * @param filters_count_for_one_val[in]
1745  *   How many specifications should have the same EtherType value, what is the
1746  *   number of specifications before copying.
1747  * @param error[out]
1748  *   Perform verbose error reporting if not NULL.
1749  */
1750 static int
1751 sfc_flow_set_ethertypes(struct sfc_flow_spec *spec,
1752 			unsigned int filters_count_for_one_val,
1753 			struct rte_flow_error *error)
1754 {
1755 	unsigned int i;
1756 	static const uint16_t vals[] = {
1757 		EFX_ETHER_TYPE_IPV4, EFX_ETHER_TYPE_IPV6
1758 	};
1759 
1760 	if (filters_count_for_one_val * RTE_DIM(vals) != spec->count) {
1761 		rte_flow_error_set(error, EINVAL,
1762 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1763 			"Number of specifications is incorrect "
1764 			"while copying by Ethertype");
1765 		return -rte_errno;
1766 	}
1767 
1768 	for (i = 0; i < spec->count; i++) {
1769 		spec->filters[i].efs_match_flags |=
1770 			EFX_FILTER_MATCH_ETHER_TYPE;
1771 
1772 		/*
1773 		 * The check above ensures that
1774 		 * filters_count_for_one_val is not 0
1775 		 */
1776 		spec->filters[i].efs_ether_type =
1777 			vals[i / filters_count_for_one_val];
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 /**
1784  * Set the EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST and
1785  * EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST match flags in the same
1786  * specifications after copying.
1787  *
1788  * @param spec[in, out]
1789  *   SFC flow specification to update.
1790  * @param filters_count_for_one_val[in]
1791  *   How many specifications should have the same match flag, what is the
1792  *   number of specifications before copying.
1793  * @param error[out]
1794  *   Perform verbose error reporting if not NULL.
1795  */
1796 static int
1797 sfc_flow_set_ifrm_unknown_dst_flags(struct sfc_flow_spec *spec,
1798 				    unsigned int filters_count_for_one_val,
1799 				    struct rte_flow_error *error)
1800 {
1801 	unsigned int i;
1802 	static const efx_filter_match_flags_t vals[] = {
1803 		EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
1804 		EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST
1805 	};
1806 
1807 	if (filters_count_for_one_val * RTE_DIM(vals) != spec->count) {
1808 		rte_flow_error_set(error, EINVAL,
1809 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1810 			"Number of specifications is incorrect while copying "
1811 			"by inner frame unknown destination flags");
1812 		return -rte_errno;
1813 	}
1814 
1815 	for (i = 0; i < spec->count; i++) {
1816 		/* The check above ensures that divisor can't be zero here */
1817 		spec->filters[i].efs_match_flags |=
1818 			vals[i / filters_count_for_one_val];
1819 	}
1820 
1821 	return 0;
1822 }
1823 
1824 /**
1825  * Check that the following conditions are met:
1826  * - the specification corresponds to a filter for encapsulated traffic
1827  * - the list of supported filters has a filter
1828  *   with EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST flag instead of
1829  *   EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST, since this filter will also
1830  *   be inserted.
1831  *
1832  * @param match[in]
1833  *   The match flags of filter.
1834  * @param spec[in]
1835  *   Specification to be supplemented.
1836  * @param filter[in]
1837  *   SFC filter with list of supported filters.
1838  */
1839 static boolean_t
1840 sfc_flow_check_ifrm_unknown_dst_flags(efx_filter_match_flags_t match,
1841 				      efx_filter_spec_t *spec,
1842 				      struct sfc_filter *filter)
1843 {
1844 	unsigned int i;
1845 	efx_tunnel_protocol_t encap_type = spec->efs_encap_type;
1846 	efx_filter_match_flags_t match_mcast_dst;
1847 
1848 	if (encap_type == EFX_TUNNEL_PROTOCOL_NONE)
1849 		return B_FALSE;
1850 
1851 	match_mcast_dst =
1852 		(match & ~EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST) |
1853 		EFX_FILTER_MATCH_IFRM_UNKNOWN_MCAST_DST;
1854 	for (i = 0; i < filter->supported_match_num; i++) {
1855 		if (match_mcast_dst == filter->supported_match[i])
1856 			return B_TRUE;
1857 	}
1858 
1859 	return B_FALSE;
1860 }
1861 
1862 /*
1863  * Match flags that can be automatically added to filters.
1864  * Selecting the last minimum when searching for the copy flag ensures that the
1865  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST flag has a higher priority than
1866  * EFX_FILTER_MATCH_ETHER_TYPE. This is because the filter
1867  * EFX_FILTER_MATCH_UNKNOWN_UCAST_DST is at the end of the list of supported
1868  * filters.
1869  */
1870 static const struct sfc_flow_copy_flag sfc_flow_copy_flags[] = {
1871 	{
1872 		.flag = EFX_FILTER_MATCH_UNKNOWN_UCAST_DST,
1873 		.vals_count = 2,
1874 		.set_vals = sfc_flow_set_unknown_dst_flags,
1875 		.spec_check = sfc_flow_check_unknown_dst_flags,
1876 	},
1877 	{
1878 		.flag = EFX_FILTER_MATCH_ETHER_TYPE,
1879 		.vals_count = 2,
1880 		.set_vals = sfc_flow_set_ethertypes,
1881 		.spec_check = NULL,
1882 	},
1883 	{
1884 		.flag = EFX_FILTER_MATCH_IFRM_UNKNOWN_UCAST_DST,
1885 		.vals_count = 2,
1886 		.set_vals = sfc_flow_set_ifrm_unknown_dst_flags,
1887 		.spec_check = sfc_flow_check_ifrm_unknown_dst_flags,
1888 	},
1889 };
1890 
1891 /* Get item from array sfc_flow_copy_flags */
1892 static const struct sfc_flow_copy_flag *
1893 sfc_flow_get_copy_flag(efx_filter_match_flags_t flag)
1894 {
1895 	unsigned int i;
1896 
1897 	for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
1898 		if (sfc_flow_copy_flags[i].flag == flag)
1899 			return &sfc_flow_copy_flags[i];
1900 	}
1901 
1902 	return NULL;
1903 }
1904 
1905 /**
1906  * Make copies of the specifications, set match flag and values
1907  * of the field that corresponds to it.
1908  *
1909  * @param spec[in, out]
1910  *   SFC flow specification to update.
1911  * @param flag[in]
1912  *   The match flag to add.
1913  * @param error[out]
1914  *   Perform verbose error reporting if not NULL.
1915  */
1916 static int
1917 sfc_flow_spec_add_match_flag(struct sfc_flow_spec *spec,
1918 			     efx_filter_match_flags_t flag,
1919 			     struct rte_flow_error *error)
1920 {
1921 	unsigned int i;
1922 	unsigned int new_filters_count;
1923 	unsigned int filters_count_for_one_val;
1924 	const struct sfc_flow_copy_flag *copy_flag;
1925 	int rc;
1926 
1927 	copy_flag = sfc_flow_get_copy_flag(flag);
1928 	if (copy_flag == NULL) {
1929 		rte_flow_error_set(error, ENOTSUP,
1930 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1931 				   "Unsupported spec field for copying");
1932 		return -rte_errno;
1933 	}
1934 
1935 	new_filters_count = spec->count * copy_flag->vals_count;
1936 	if (new_filters_count > SF_FLOW_SPEC_NB_FILTERS_MAX) {
1937 		rte_flow_error_set(error, EINVAL,
1938 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
1939 			"Too much EFX specifications in the flow rule");
1940 		return -rte_errno;
1941 	}
1942 
1943 	/* Copy filters specifications */
1944 	for (i = spec->count; i < new_filters_count; i++)
1945 		spec->filters[i] = spec->filters[i - spec->count];
1946 
1947 	filters_count_for_one_val = spec->count;
1948 	spec->count = new_filters_count;
1949 
1950 	rc = copy_flag->set_vals(spec, filters_count_for_one_val, error);
1951 	if (rc != 0)
1952 		return rc;
1953 
1954 	return 0;
1955 }
1956 
1957 /**
1958  * Check that the given set of match flags missing in the original filter spec
1959  * could be covered by adding spec copies which specify the corresponding
1960  * flags and packet field values to match.
1961  *
1962  * @param miss_flags[in]
1963  *   Flags that are missing until the supported filter.
1964  * @param spec[in]
1965  *   Specification to be supplemented.
1966  * @param filter[in]
1967  *   SFC filter.
1968  *
1969  * @return
1970  *   Number of specifications after copy or 0, if the flags can not be added.
1971  */
1972 static unsigned int
1973 sfc_flow_check_missing_flags(efx_filter_match_flags_t miss_flags,
1974 			     efx_filter_spec_t *spec,
1975 			     struct sfc_filter *filter)
1976 {
1977 	unsigned int i;
1978 	efx_filter_match_flags_t copy_flags = 0;
1979 	efx_filter_match_flags_t flag;
1980 	efx_filter_match_flags_t match = spec->efs_match_flags | miss_flags;
1981 	sfc_flow_spec_check *check;
1982 	unsigned int multiplier = 1;
1983 
1984 	for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
1985 		flag = sfc_flow_copy_flags[i].flag;
1986 		check = sfc_flow_copy_flags[i].spec_check;
1987 		if ((flag & miss_flags) == flag) {
1988 			if (check != NULL && (!check(match, spec, filter)))
1989 				continue;
1990 
1991 			copy_flags |= flag;
1992 			multiplier *= sfc_flow_copy_flags[i].vals_count;
1993 		}
1994 	}
1995 
1996 	if (copy_flags == miss_flags)
1997 		return multiplier;
1998 
1999 	return 0;
2000 }
2001 
2002 /**
2003  * Attempt to supplement the specification template to the minimally
2004  * supported set of match flags. To do this, it is necessary to copy
2005  * the specifications, filling them with the values of fields that
2006  * correspond to the missing flags.
2007  * The necessary and sufficient filter is built from the fewest number
2008  * of copies which could be made to cover the minimally required set
2009  * of flags.
2010  *
2011  * @param sa[in]
2012  *   SFC adapter.
2013  * @param spec[in, out]
2014  *   SFC flow specification to update.
2015  * @param error[out]
2016  *   Perform verbose error reporting if not NULL.
2017  */
2018 static int
2019 sfc_flow_spec_filters_complete(struct sfc_adapter *sa,
2020 			       struct sfc_flow_spec *spec,
2021 			       struct rte_flow_error *error)
2022 {
2023 	struct sfc_filter *filter = &sa->filter;
2024 	efx_filter_match_flags_t miss_flags;
2025 	efx_filter_match_flags_t min_miss_flags = 0;
2026 	efx_filter_match_flags_t match;
2027 	unsigned int min_multiplier = UINT_MAX;
2028 	unsigned int multiplier;
2029 	unsigned int i;
2030 	int rc;
2031 
2032 	match = spec->template.efs_match_flags;
2033 	for (i = 0; i < filter->supported_match_num; i++) {
2034 		if ((match & filter->supported_match[i]) == match) {
2035 			miss_flags = filter->supported_match[i] & (~match);
2036 			multiplier = sfc_flow_check_missing_flags(miss_flags,
2037 				&spec->template, filter);
2038 			if (multiplier > 0) {
2039 				if (multiplier <= min_multiplier) {
2040 					min_multiplier = multiplier;
2041 					min_miss_flags = miss_flags;
2042 				}
2043 			}
2044 		}
2045 	}
2046 
2047 	if (min_multiplier == UINT_MAX) {
2048 		rte_flow_error_set(error, ENOTSUP,
2049 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2050 				   "The flow rule pattern is unsupported");
2051 		return -rte_errno;
2052 	}
2053 
2054 	for (i = 0; i < RTE_DIM(sfc_flow_copy_flags); i++) {
2055 		efx_filter_match_flags_t flag = sfc_flow_copy_flags[i].flag;
2056 
2057 		if ((flag & min_miss_flags) == flag) {
2058 			rc = sfc_flow_spec_add_match_flag(spec, flag, error);
2059 			if (rc != 0)
2060 				return rc;
2061 		}
2062 	}
2063 
2064 	return 0;
2065 }
2066 
2067 /**
2068  * Check that set of match flags is referred to by a filter. Filter is
2069  * described by match flags with the ability to add OUTER_VID and INNER_VID
2070  * flags.
2071  *
2072  * @param match_flags[in]
2073  *   Set of match flags.
2074  * @param flags_pattern[in]
2075  *   Pattern of filter match flags.
2076  */
2077 static boolean_t
2078 sfc_flow_is_match_with_vids(efx_filter_match_flags_t match_flags,
2079 			    efx_filter_match_flags_t flags_pattern)
2080 {
2081 	if ((match_flags & flags_pattern) != flags_pattern)
2082 		return B_FALSE;
2083 
2084 	switch (match_flags & ~flags_pattern) {
2085 	case 0:
2086 	case EFX_FILTER_MATCH_OUTER_VID:
2087 	case EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_INNER_VID:
2088 		return B_TRUE;
2089 	default:
2090 		return B_FALSE;
2091 	}
2092 }
2093 
2094 /**
2095  * Check whether the spec maps to a hardware filter which is known to be
2096  * ineffective despite being valid.
2097  *
2098  * @param spec[in]
2099  *   SFC flow specification.
2100  */
2101 static boolean_t
2102 sfc_flow_is_match_flags_exception(struct sfc_flow_spec *spec)
2103 {
2104 	unsigned int i;
2105 	uint16_t ether_type;
2106 	uint8_t ip_proto;
2107 	efx_filter_match_flags_t match_flags;
2108 
2109 	for (i = 0; i < spec->count; i++) {
2110 		match_flags = spec->filters[i].efs_match_flags;
2111 
2112 		if (sfc_flow_is_match_with_vids(match_flags,
2113 						EFX_FILTER_MATCH_ETHER_TYPE) ||
2114 		    sfc_flow_is_match_with_vids(match_flags,
2115 						EFX_FILTER_MATCH_ETHER_TYPE |
2116 						EFX_FILTER_MATCH_LOC_MAC)) {
2117 			ether_type = spec->filters[i].efs_ether_type;
2118 			if (ether_type == EFX_ETHER_TYPE_IPV4 ||
2119 			    ether_type == EFX_ETHER_TYPE_IPV6)
2120 				return B_TRUE;
2121 		} else if (sfc_flow_is_match_with_vids(match_flags,
2122 				EFX_FILTER_MATCH_ETHER_TYPE |
2123 				EFX_FILTER_MATCH_IP_PROTO) ||
2124 			   sfc_flow_is_match_with_vids(match_flags,
2125 				EFX_FILTER_MATCH_ETHER_TYPE |
2126 				EFX_FILTER_MATCH_IP_PROTO |
2127 				EFX_FILTER_MATCH_LOC_MAC)) {
2128 			ip_proto = spec->filters[i].efs_ip_proto;
2129 			if (ip_proto == EFX_IPPROTO_TCP ||
2130 			    ip_proto == EFX_IPPROTO_UDP)
2131 				return B_TRUE;
2132 		}
2133 	}
2134 
2135 	return B_FALSE;
2136 }
2137 
2138 static int
2139 sfc_flow_validate_match_flags(struct sfc_adapter *sa,
2140 			      struct rte_flow *flow,
2141 			      struct rte_flow_error *error)
2142 {
2143 	efx_filter_spec_t *spec_tmpl = &flow->spec.template;
2144 	efx_filter_match_flags_t match_flags = spec_tmpl->efs_match_flags;
2145 	int rc;
2146 
2147 	/* Initialize the first filter spec with template */
2148 	flow->spec.filters[0] = *spec_tmpl;
2149 	flow->spec.count = 1;
2150 
2151 	if (!sfc_filter_is_match_supported(sa, match_flags)) {
2152 		rc = sfc_flow_spec_filters_complete(sa, &flow->spec, error);
2153 		if (rc != 0)
2154 			return rc;
2155 	}
2156 
2157 	if (sfc_flow_is_match_flags_exception(&flow->spec)) {
2158 		rte_flow_error_set(error, ENOTSUP,
2159 			RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2160 			"The flow rule pattern is unsupported");
2161 		return -rte_errno;
2162 	}
2163 
2164 	return 0;
2165 }
2166 
2167 static int
2168 sfc_flow_parse(struct rte_eth_dev *dev,
2169 	       const struct rte_flow_attr *attr,
2170 	       const struct rte_flow_item pattern[],
2171 	       const struct rte_flow_action actions[],
2172 	       struct rte_flow *flow,
2173 	       struct rte_flow_error *error)
2174 {
2175 	struct sfc_adapter *sa = dev->data->dev_private;
2176 	int rc;
2177 
2178 	rc = sfc_flow_parse_attr(attr, flow, error);
2179 	if (rc != 0)
2180 		goto fail_bad_value;
2181 
2182 	rc = sfc_flow_parse_pattern(pattern, flow, error);
2183 	if (rc != 0)
2184 		goto fail_bad_value;
2185 
2186 	rc = sfc_flow_parse_actions(sa, actions, flow, error);
2187 	if (rc != 0)
2188 		goto fail_bad_value;
2189 
2190 	rc = sfc_flow_validate_match_flags(sa, flow, error);
2191 	if (rc != 0)
2192 		goto fail_bad_value;
2193 
2194 	return 0;
2195 
2196 fail_bad_value:
2197 	return rc;
2198 }
2199 
2200 static int
2201 sfc_flow_validate(struct rte_eth_dev *dev,
2202 		  const struct rte_flow_attr *attr,
2203 		  const struct rte_flow_item pattern[],
2204 		  const struct rte_flow_action actions[],
2205 		  struct rte_flow_error *error)
2206 {
2207 	struct rte_flow flow;
2208 
2209 	memset(&flow, 0, sizeof(flow));
2210 
2211 	return sfc_flow_parse(dev, attr, pattern, actions, &flow, error);
2212 }
2213 
2214 static struct rte_flow *
2215 sfc_flow_create(struct rte_eth_dev *dev,
2216 		const struct rte_flow_attr *attr,
2217 		const struct rte_flow_item pattern[],
2218 		const struct rte_flow_action actions[],
2219 		struct rte_flow_error *error)
2220 {
2221 	struct sfc_adapter *sa = dev->data->dev_private;
2222 	struct rte_flow *flow = NULL;
2223 	int rc;
2224 
2225 	flow = rte_zmalloc("sfc_rte_flow", sizeof(*flow), 0);
2226 	if (flow == NULL) {
2227 		rte_flow_error_set(error, ENOMEM,
2228 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2229 				   "Failed to allocate memory");
2230 		goto fail_no_mem;
2231 	}
2232 
2233 	rc = sfc_flow_parse(dev, attr, pattern, actions, flow, error);
2234 	if (rc != 0)
2235 		goto fail_bad_value;
2236 
2237 	TAILQ_INSERT_TAIL(&sa->filter.flow_list, flow, entries);
2238 
2239 	sfc_adapter_lock(sa);
2240 
2241 	if (sa->state == SFC_ADAPTER_STARTED) {
2242 		rc = sfc_flow_filter_insert(sa, flow);
2243 		if (rc != 0) {
2244 			rte_flow_error_set(error, rc,
2245 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2246 				"Failed to insert filter");
2247 			goto fail_filter_insert;
2248 		}
2249 	}
2250 
2251 	sfc_adapter_unlock(sa);
2252 
2253 	return flow;
2254 
2255 fail_filter_insert:
2256 	TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
2257 
2258 fail_bad_value:
2259 	rte_free(flow);
2260 	sfc_adapter_unlock(sa);
2261 
2262 fail_no_mem:
2263 	return NULL;
2264 }
2265 
2266 static int
2267 sfc_flow_remove(struct sfc_adapter *sa,
2268 		struct rte_flow *flow,
2269 		struct rte_flow_error *error)
2270 {
2271 	int rc = 0;
2272 
2273 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2274 
2275 	if (sa->state == SFC_ADAPTER_STARTED) {
2276 		rc = sfc_flow_filter_remove(sa, flow);
2277 		if (rc != 0)
2278 			rte_flow_error_set(error, rc,
2279 				RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
2280 				"Failed to destroy flow rule");
2281 	}
2282 
2283 	TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
2284 	rte_free(flow);
2285 
2286 	return rc;
2287 }
2288 
2289 static int
2290 sfc_flow_destroy(struct rte_eth_dev *dev,
2291 		 struct rte_flow *flow,
2292 		 struct rte_flow_error *error)
2293 {
2294 	struct sfc_adapter *sa = dev->data->dev_private;
2295 	struct rte_flow *flow_ptr;
2296 	int rc = EINVAL;
2297 
2298 	sfc_adapter_lock(sa);
2299 
2300 	TAILQ_FOREACH(flow_ptr, &sa->filter.flow_list, entries) {
2301 		if (flow_ptr == flow)
2302 			rc = 0;
2303 	}
2304 	if (rc != 0) {
2305 		rte_flow_error_set(error, rc,
2306 				   RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
2307 				   "Failed to find flow rule to destroy");
2308 		goto fail_bad_value;
2309 	}
2310 
2311 	rc = sfc_flow_remove(sa, flow, error);
2312 
2313 fail_bad_value:
2314 	sfc_adapter_unlock(sa);
2315 
2316 	return -rc;
2317 }
2318 
2319 static int
2320 sfc_flow_flush(struct rte_eth_dev *dev,
2321 	       struct rte_flow_error *error)
2322 {
2323 	struct sfc_adapter *sa = dev->data->dev_private;
2324 	struct rte_flow *flow;
2325 	int rc = 0;
2326 	int ret = 0;
2327 
2328 	sfc_adapter_lock(sa);
2329 
2330 	while ((flow = TAILQ_FIRST(&sa->filter.flow_list)) != NULL) {
2331 		rc = sfc_flow_remove(sa, flow, error);
2332 		if (rc != 0)
2333 			ret = rc;
2334 	}
2335 
2336 	sfc_adapter_unlock(sa);
2337 
2338 	return -ret;
2339 }
2340 
2341 static int
2342 sfc_flow_isolate(struct rte_eth_dev *dev, int enable,
2343 		 struct rte_flow_error *error)
2344 {
2345 	struct sfc_adapter *sa = dev->data->dev_private;
2346 	struct sfc_port *port = &sa->port;
2347 	int ret = 0;
2348 
2349 	sfc_adapter_lock(sa);
2350 	if (sa->state != SFC_ADAPTER_INITIALIZED) {
2351 		rte_flow_error_set(error, EBUSY,
2352 				   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2353 				   NULL, "please close the port first");
2354 		ret = -rte_errno;
2355 	} else {
2356 		port->isolated = (enable) ? B_TRUE : B_FALSE;
2357 	}
2358 	sfc_adapter_unlock(sa);
2359 
2360 	return ret;
2361 }
2362 
2363 const struct rte_flow_ops sfc_flow_ops = {
2364 	.validate = sfc_flow_validate,
2365 	.create = sfc_flow_create,
2366 	.destroy = sfc_flow_destroy,
2367 	.flush = sfc_flow_flush,
2368 	.query = NULL,
2369 	.isolate = sfc_flow_isolate,
2370 };
2371 
2372 void
2373 sfc_flow_init(struct sfc_adapter *sa)
2374 {
2375 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2376 
2377 	TAILQ_INIT(&sa->filter.flow_list);
2378 }
2379 
2380 void
2381 sfc_flow_fini(struct sfc_adapter *sa)
2382 {
2383 	struct rte_flow *flow;
2384 
2385 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2386 
2387 	while ((flow = TAILQ_FIRST(&sa->filter.flow_list)) != NULL) {
2388 		TAILQ_REMOVE(&sa->filter.flow_list, flow, entries);
2389 		rte_free(flow);
2390 	}
2391 }
2392 
2393 void
2394 sfc_flow_stop(struct sfc_adapter *sa)
2395 {
2396 	struct rte_flow *flow;
2397 
2398 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2399 
2400 	TAILQ_FOREACH(flow, &sa->filter.flow_list, entries)
2401 		sfc_flow_filter_remove(sa, flow);
2402 }
2403 
2404 int
2405 sfc_flow_start(struct sfc_adapter *sa)
2406 {
2407 	struct rte_flow *flow;
2408 	int rc = 0;
2409 
2410 	sfc_log_init(sa, "entry");
2411 
2412 	SFC_ASSERT(sfc_adapter_is_locked(sa));
2413 
2414 	TAILQ_FOREACH(flow, &sa->filter.flow_list, entries) {
2415 		rc = sfc_flow_filter_insert(sa, flow);
2416 		if (rc != 0)
2417 			goto fail_bad_flow;
2418 	}
2419 
2420 	sfc_log_init(sa, "done");
2421 
2422 fail_bad_flow:
2423 	return rc;
2424 }
2425