xref: /dpdk/drivers/net/sfc/sfc_ev.c (revision 25d11a86c56d50947af33d0b79ede622809bd8b9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_debug.h>
11 #include <rte_cycles.h>
12 #include <rte_alarm.h>
13 #include <rte_branch_prediction.h>
14 
15 #include "efx.h"
16 
17 #include "sfc.h"
18 #include "sfc_debug.h"
19 #include "sfc_log.h"
20 #include "sfc_ev.h"
21 #include "sfc_rx.h"
22 #include "sfc_tx.h"
23 #include "sfc_kvargs.h"
24 
25 
26 /* Initial delay when waiting for event queue init complete event */
27 #define SFC_EVQ_INIT_BACKOFF_START_US	(1)
28 /* Maximum delay between event queue polling attempts */
29 #define SFC_EVQ_INIT_BACKOFF_MAX_US	(10 * 1000)
30 /* Event queue init approx timeout */
31 #define SFC_EVQ_INIT_TIMEOUT_US		(2 * US_PER_S)
32 
33 /* Management event queue polling period in microseconds */
34 #define SFC_MGMT_EV_QPOLL_PERIOD_US	(US_PER_S)
35 
36 static const char *
37 sfc_evq_type2str(enum sfc_evq_type type)
38 {
39 	switch (type) {
40 	case SFC_EVQ_TYPE_MGMT:
41 		return "mgmt-evq";
42 	case SFC_EVQ_TYPE_RX:
43 		return "rx-evq";
44 	case SFC_EVQ_TYPE_TX:
45 		return "tx-evq";
46 	default:
47 		SFC_ASSERT(B_FALSE);
48 		return NULL;
49 	}
50 }
51 
52 static boolean_t
53 sfc_ev_initialized(void *arg)
54 {
55 	struct sfc_evq *evq = arg;
56 
57 	/* Init done events may be duplicated on SFN7xxx (SFC bug 31631) */
58 	SFC_ASSERT(evq->init_state == SFC_EVQ_STARTING ||
59 		   evq->init_state == SFC_EVQ_STARTED);
60 
61 	evq->init_state = SFC_EVQ_STARTED;
62 
63 	return B_FALSE;
64 }
65 
66 static boolean_t
67 sfc_ev_nop_rx(void *arg, uint32_t label, uint32_t id,
68 	      uint32_t size, uint16_t flags)
69 {
70 	struct sfc_evq *evq = arg;
71 
72 	sfc_err(evq->sa,
73 		"EVQ %u unexpected Rx event label=%u id=%#x size=%u flags=%#x",
74 		evq->evq_index, label, id, size, flags);
75 	return B_TRUE;
76 }
77 
78 static boolean_t
79 sfc_ev_efx_rx(void *arg, __rte_unused uint32_t label, uint32_t id,
80 	      uint32_t size, uint16_t flags)
81 {
82 	struct sfc_evq *evq = arg;
83 	struct sfc_efx_rxq *rxq;
84 	unsigned int stop;
85 	unsigned int pending_id;
86 	unsigned int delta;
87 	unsigned int i;
88 	struct sfc_efx_rx_sw_desc *rxd;
89 
90 	if (unlikely(evq->exception))
91 		goto done;
92 
93 	rxq = sfc_efx_rxq_by_dp_rxq(evq->dp_rxq);
94 
95 	SFC_ASSERT(rxq != NULL);
96 	SFC_ASSERT(rxq->evq == evq);
97 	SFC_ASSERT(rxq->flags & SFC_EFX_RXQ_FLAG_STARTED);
98 
99 	stop = (id + 1) & rxq->ptr_mask;
100 	pending_id = rxq->pending & rxq->ptr_mask;
101 	delta = (stop >= pending_id) ? (stop - pending_id) :
102 		(rxq->ptr_mask + 1 - pending_id + stop);
103 
104 	if (delta == 0) {
105 		/*
106 		 * Rx event with no new descriptors done and zero length
107 		 * is used to abort scattered packet when there is no room
108 		 * for the tail.
109 		 */
110 		if (unlikely(size != 0)) {
111 			evq->exception = B_TRUE;
112 			sfc_err(evq->sa,
113 				"EVQ %u RxQ %u invalid RX abort "
114 				"(id=%#x size=%u flags=%#x); needs restart",
115 				evq->evq_index, rxq->dp.dpq.queue_id,
116 				id, size, flags);
117 			goto done;
118 		}
119 
120 		/* Add discard flag to the first fragment */
121 		rxq->sw_desc[pending_id].flags |= EFX_DISCARD;
122 		/* Remove continue flag from the last fragment */
123 		rxq->sw_desc[id].flags &= ~EFX_PKT_CONT;
124 	} else if (unlikely(delta > rxq->batch_max)) {
125 		evq->exception = B_TRUE;
126 
127 		sfc_err(evq->sa,
128 			"EVQ %u RxQ %u completion out of order "
129 			"(id=%#x delta=%u flags=%#x); needs restart",
130 			evq->evq_index, rxq->dp.dpq.queue_id,
131 			id, delta, flags);
132 
133 		goto done;
134 	}
135 
136 	for (i = pending_id; i != stop; i = (i + 1) & rxq->ptr_mask) {
137 		rxd = &rxq->sw_desc[i];
138 
139 		rxd->flags = flags;
140 
141 		SFC_ASSERT(size < (1 << 16));
142 		rxd->size = (uint16_t)size;
143 	}
144 
145 	rxq->pending += delta;
146 
147 done:
148 	return B_FALSE;
149 }
150 
151 static boolean_t
152 sfc_ev_dp_rx(void *arg, __rte_unused uint32_t label, uint32_t id,
153 	     __rte_unused uint32_t size, __rte_unused uint16_t flags)
154 {
155 	struct sfc_evq *evq = arg;
156 	struct sfc_dp_rxq *dp_rxq;
157 
158 	dp_rxq = evq->dp_rxq;
159 	SFC_ASSERT(dp_rxq != NULL);
160 
161 	SFC_ASSERT(evq->sa->priv.dp_rx->qrx_ev != NULL);
162 	return evq->sa->priv.dp_rx->qrx_ev(dp_rxq, id);
163 }
164 
165 static boolean_t
166 sfc_ev_nop_rx_ps(void *arg, uint32_t label, uint32_t id,
167 		 uint32_t pkt_count, uint16_t flags)
168 {
169 	struct sfc_evq *evq = arg;
170 
171 	sfc_err(evq->sa,
172 		"EVQ %u unexpected packed stream Rx event label=%u id=%#x pkt_count=%u flags=%#x",
173 		evq->evq_index, label, id, pkt_count, flags);
174 	return B_TRUE;
175 }
176 
177 /* It is not actually used on datapath, but required on RxQ flush */
178 static boolean_t
179 sfc_ev_dp_rx_ps(void *arg, __rte_unused uint32_t label, uint32_t id,
180 		__rte_unused uint32_t pkt_count, __rte_unused uint16_t flags)
181 {
182 	struct sfc_evq *evq = arg;
183 	struct sfc_dp_rxq *dp_rxq;
184 
185 	dp_rxq = evq->dp_rxq;
186 	SFC_ASSERT(dp_rxq != NULL);
187 
188 	if (evq->sa->priv.dp_rx->qrx_ps_ev != NULL)
189 		return evq->sa->priv.dp_rx->qrx_ps_ev(dp_rxq, id);
190 	else
191 		return B_FALSE;
192 }
193 
194 static boolean_t
195 sfc_ev_nop_tx(void *arg, uint32_t label, uint32_t id)
196 {
197 	struct sfc_evq *evq = arg;
198 
199 	sfc_err(evq->sa, "EVQ %u unexpected Tx event label=%u id=%#x",
200 		evq->evq_index, label, id);
201 	return B_TRUE;
202 }
203 
204 static boolean_t
205 sfc_ev_tx(void *arg, __rte_unused uint32_t label, uint32_t id)
206 {
207 	struct sfc_evq *evq = arg;
208 	struct sfc_dp_txq *dp_txq;
209 	struct sfc_efx_txq *txq;
210 	unsigned int stop;
211 	unsigned int delta;
212 
213 	dp_txq = evq->dp_txq;
214 	SFC_ASSERT(dp_txq != NULL);
215 
216 	txq = sfc_efx_txq_by_dp_txq(dp_txq);
217 	SFC_ASSERT(txq->evq == evq);
218 
219 	if (unlikely((txq->flags & SFC_EFX_TXQ_FLAG_STARTED) == 0))
220 		goto done;
221 
222 	stop = (id + 1) & txq->ptr_mask;
223 	id = txq->pending & txq->ptr_mask;
224 
225 	delta = (stop >= id) ? (stop - id) : (txq->ptr_mask + 1 - id + stop);
226 
227 	txq->pending += delta;
228 
229 done:
230 	return B_FALSE;
231 }
232 
233 static boolean_t
234 sfc_ev_dp_tx(void *arg, __rte_unused uint32_t label, uint32_t id)
235 {
236 	struct sfc_evq *evq = arg;
237 	struct sfc_dp_txq *dp_txq;
238 
239 	dp_txq = evq->dp_txq;
240 	SFC_ASSERT(dp_txq != NULL);
241 
242 	SFC_ASSERT(evq->sa->priv.dp_tx->qtx_ev != NULL);
243 	return evq->sa->priv.dp_tx->qtx_ev(dp_txq, id);
244 }
245 
246 static boolean_t
247 sfc_ev_exception(void *arg, uint32_t code, __rte_unused uint32_t data)
248 {
249 	struct sfc_evq *evq = arg;
250 
251 	if (code == EFX_EXCEPTION_UNKNOWN_SENSOREVT)
252 		return B_FALSE;
253 
254 	evq->exception = B_TRUE;
255 	sfc_warn(evq->sa,
256 		 "hardware exception %s (code=%u, data=%#x) on EVQ %u;"
257 		 " needs recovery",
258 		 (code == EFX_EXCEPTION_RX_RECOVERY) ? "RX_RECOVERY" :
259 		 (code == EFX_EXCEPTION_RX_DSC_ERROR) ? "RX_DSC_ERROR" :
260 		 (code == EFX_EXCEPTION_TX_DSC_ERROR) ? "TX_DSC_ERROR" :
261 		 (code == EFX_EXCEPTION_FWALERT_SRAM) ? "FWALERT_SRAM" :
262 		 (code == EFX_EXCEPTION_UNKNOWN_FWALERT) ? "UNKNOWN_FWALERT" :
263 		 (code == EFX_EXCEPTION_RX_ERROR) ? "RX_ERROR" :
264 		 (code == EFX_EXCEPTION_TX_ERROR) ? "TX_ERROR" :
265 		 (code == EFX_EXCEPTION_EV_ERROR) ? "EV_ERROR" :
266 		 "UNKNOWN",
267 		 code, data, evq->evq_index);
268 
269 	return B_TRUE;
270 }
271 
272 static boolean_t
273 sfc_ev_nop_rxq_flush_done(void *arg, uint32_t rxq_hw_index)
274 {
275 	struct sfc_evq *evq = arg;
276 
277 	sfc_err(evq->sa, "EVQ %u unexpected RxQ %u flush done",
278 		evq->evq_index, rxq_hw_index);
279 	return B_TRUE;
280 }
281 
282 static boolean_t
283 sfc_ev_rxq_flush_done(void *arg, __rte_unused uint32_t rxq_hw_index)
284 {
285 	struct sfc_evq *evq = arg;
286 	struct sfc_dp_rxq *dp_rxq;
287 	struct sfc_rxq *rxq;
288 
289 	dp_rxq = evq->dp_rxq;
290 	SFC_ASSERT(dp_rxq != NULL);
291 
292 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
293 	SFC_ASSERT(rxq != NULL);
294 	SFC_ASSERT(rxq->hw_index == rxq_hw_index);
295 	SFC_ASSERT(rxq->evq == evq);
296 	RTE_SET_USED(rxq);
297 
298 	sfc_rx_qflush_done(sfc_rxq_info_by_dp_rxq(dp_rxq));
299 
300 	return B_FALSE;
301 }
302 
303 static boolean_t
304 sfc_ev_nop_rxq_flush_failed(void *arg, uint32_t rxq_hw_index)
305 {
306 	struct sfc_evq *evq = arg;
307 
308 	sfc_err(evq->sa, "EVQ %u unexpected RxQ %u flush failed",
309 		evq->evq_index, rxq_hw_index);
310 	return B_TRUE;
311 }
312 
313 static boolean_t
314 sfc_ev_rxq_flush_failed(void *arg, __rte_unused uint32_t rxq_hw_index)
315 {
316 	struct sfc_evq *evq = arg;
317 	struct sfc_dp_rxq *dp_rxq;
318 	struct sfc_rxq *rxq;
319 
320 	dp_rxq = evq->dp_rxq;
321 	SFC_ASSERT(dp_rxq != NULL);
322 
323 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
324 	SFC_ASSERT(rxq != NULL);
325 	SFC_ASSERT(rxq->hw_index == rxq_hw_index);
326 	SFC_ASSERT(rxq->evq == evq);
327 	RTE_SET_USED(rxq);
328 
329 	sfc_rx_qflush_failed(sfc_rxq_info_by_dp_rxq(dp_rxq));
330 
331 	return B_FALSE;
332 }
333 
334 static boolean_t
335 sfc_ev_nop_txq_flush_done(void *arg, uint32_t txq_hw_index)
336 {
337 	struct sfc_evq *evq = arg;
338 
339 	sfc_err(evq->sa, "EVQ %u unexpected TxQ %u flush done",
340 		evq->evq_index, txq_hw_index);
341 	return B_TRUE;
342 }
343 
344 static boolean_t
345 sfc_ev_txq_flush_done(void *arg, __rte_unused uint32_t txq_hw_index)
346 {
347 	struct sfc_evq *evq = arg;
348 	struct sfc_dp_txq *dp_txq;
349 	struct sfc_txq *txq;
350 
351 	dp_txq = evq->dp_txq;
352 	SFC_ASSERT(dp_txq != NULL);
353 
354 	txq = sfc_txq_by_dp_txq(dp_txq);
355 	SFC_ASSERT(txq != NULL);
356 	SFC_ASSERT(txq->hw_index == txq_hw_index);
357 	SFC_ASSERT(txq->evq == evq);
358 	RTE_SET_USED(txq);
359 
360 	sfc_tx_qflush_done(sfc_txq_info_by_dp_txq(dp_txq));
361 
362 	return B_FALSE;
363 }
364 
365 static boolean_t
366 sfc_ev_software(void *arg, uint16_t magic)
367 {
368 	struct sfc_evq *evq = arg;
369 
370 	sfc_err(evq->sa, "EVQ %u unexpected software event magic=%#.4x",
371 		evq->evq_index, magic);
372 	return B_TRUE;
373 }
374 
375 static boolean_t
376 sfc_ev_sram(void *arg, uint32_t code)
377 {
378 	struct sfc_evq *evq = arg;
379 
380 	sfc_err(evq->sa, "EVQ %u unexpected SRAM event code=%u",
381 		evq->evq_index, code);
382 	return B_TRUE;
383 }
384 
385 static boolean_t
386 sfc_ev_wake_up(void *arg, uint32_t index)
387 {
388 	struct sfc_evq *evq = arg;
389 
390 	sfc_err(evq->sa, "EVQ %u unexpected wake up event index=%u",
391 		evq->evq_index, index);
392 	return B_TRUE;
393 }
394 
395 static boolean_t
396 sfc_ev_timer(void *arg, uint32_t index)
397 {
398 	struct sfc_evq *evq = arg;
399 
400 	sfc_err(evq->sa, "EVQ %u unexpected timer event index=%u",
401 		evq->evq_index, index);
402 	return B_TRUE;
403 }
404 
405 static boolean_t
406 sfc_ev_nop_link_change(void *arg, __rte_unused efx_link_mode_t link_mode)
407 {
408 	struct sfc_evq *evq = arg;
409 
410 	sfc_err(evq->sa, "EVQ %u unexpected link change event",
411 		evq->evq_index);
412 	return B_TRUE;
413 }
414 
415 static boolean_t
416 sfc_ev_link_change(void *arg, efx_link_mode_t link_mode)
417 {
418 	struct sfc_evq *evq = arg;
419 	struct sfc_adapter *sa = evq->sa;
420 	struct rte_eth_link new_link;
421 
422 	sfc_port_link_mode_to_info(link_mode, &new_link);
423 	if (rte_eth_linkstatus_set(sa->eth_dev, &new_link))
424 		evq->sa->port.lsc_seq++;
425 
426 	return B_FALSE;
427 }
428 
429 static const efx_ev_callbacks_t sfc_ev_callbacks = {
430 	.eec_initialized	= sfc_ev_initialized,
431 	.eec_rx			= sfc_ev_nop_rx,
432 	.eec_rx_ps		= sfc_ev_nop_rx_ps,
433 	.eec_tx			= sfc_ev_nop_tx,
434 	.eec_exception		= sfc_ev_exception,
435 	.eec_rxq_flush_done	= sfc_ev_nop_rxq_flush_done,
436 	.eec_rxq_flush_failed	= sfc_ev_nop_rxq_flush_failed,
437 	.eec_txq_flush_done	= sfc_ev_nop_txq_flush_done,
438 	.eec_software		= sfc_ev_software,
439 	.eec_sram		= sfc_ev_sram,
440 	.eec_wake_up		= sfc_ev_wake_up,
441 	.eec_timer		= sfc_ev_timer,
442 	.eec_link_change	= sfc_ev_link_change,
443 };
444 
445 static const efx_ev_callbacks_t sfc_ev_callbacks_efx_rx = {
446 	.eec_initialized	= sfc_ev_initialized,
447 	.eec_rx			= sfc_ev_efx_rx,
448 	.eec_rx_ps		= sfc_ev_nop_rx_ps,
449 	.eec_tx			= sfc_ev_nop_tx,
450 	.eec_exception		= sfc_ev_exception,
451 	.eec_rxq_flush_done	= sfc_ev_rxq_flush_done,
452 	.eec_rxq_flush_failed	= sfc_ev_rxq_flush_failed,
453 	.eec_txq_flush_done	= sfc_ev_nop_txq_flush_done,
454 	.eec_software		= sfc_ev_software,
455 	.eec_sram		= sfc_ev_sram,
456 	.eec_wake_up		= sfc_ev_wake_up,
457 	.eec_timer		= sfc_ev_timer,
458 	.eec_link_change	= sfc_ev_nop_link_change,
459 };
460 
461 static const efx_ev_callbacks_t sfc_ev_callbacks_dp_rx = {
462 	.eec_initialized	= sfc_ev_initialized,
463 	.eec_rx			= sfc_ev_dp_rx,
464 	.eec_rx_ps		= sfc_ev_dp_rx_ps,
465 	.eec_tx			= sfc_ev_nop_tx,
466 	.eec_exception		= sfc_ev_exception,
467 	.eec_rxq_flush_done	= sfc_ev_rxq_flush_done,
468 	.eec_rxq_flush_failed	= sfc_ev_rxq_flush_failed,
469 	.eec_txq_flush_done	= sfc_ev_nop_txq_flush_done,
470 	.eec_software		= sfc_ev_software,
471 	.eec_sram		= sfc_ev_sram,
472 	.eec_wake_up		= sfc_ev_wake_up,
473 	.eec_timer		= sfc_ev_timer,
474 	.eec_link_change	= sfc_ev_nop_link_change,
475 };
476 
477 static const efx_ev_callbacks_t sfc_ev_callbacks_efx_tx = {
478 	.eec_initialized	= sfc_ev_initialized,
479 	.eec_rx			= sfc_ev_nop_rx,
480 	.eec_rx_ps		= sfc_ev_nop_rx_ps,
481 	.eec_tx			= sfc_ev_tx,
482 	.eec_exception		= sfc_ev_exception,
483 	.eec_rxq_flush_done	= sfc_ev_nop_rxq_flush_done,
484 	.eec_rxq_flush_failed	= sfc_ev_nop_rxq_flush_failed,
485 	.eec_txq_flush_done	= sfc_ev_txq_flush_done,
486 	.eec_software		= sfc_ev_software,
487 	.eec_sram		= sfc_ev_sram,
488 	.eec_wake_up		= sfc_ev_wake_up,
489 	.eec_timer		= sfc_ev_timer,
490 	.eec_link_change	= sfc_ev_nop_link_change,
491 };
492 
493 static const efx_ev_callbacks_t sfc_ev_callbacks_dp_tx = {
494 	.eec_initialized	= sfc_ev_initialized,
495 	.eec_rx			= sfc_ev_nop_rx,
496 	.eec_rx_ps		= sfc_ev_nop_rx_ps,
497 	.eec_tx			= sfc_ev_dp_tx,
498 	.eec_exception		= sfc_ev_exception,
499 	.eec_rxq_flush_done	= sfc_ev_nop_rxq_flush_done,
500 	.eec_rxq_flush_failed	= sfc_ev_nop_rxq_flush_failed,
501 	.eec_txq_flush_done	= sfc_ev_txq_flush_done,
502 	.eec_software		= sfc_ev_software,
503 	.eec_sram		= sfc_ev_sram,
504 	.eec_wake_up		= sfc_ev_wake_up,
505 	.eec_timer		= sfc_ev_timer,
506 	.eec_link_change	= sfc_ev_nop_link_change,
507 };
508 
509 
510 void
511 sfc_ev_qpoll(struct sfc_evq *evq)
512 {
513 	SFC_ASSERT(evq->init_state == SFC_EVQ_STARTED ||
514 		   evq->init_state == SFC_EVQ_STARTING);
515 
516 	/* Synchronize the DMA memory for reading not required */
517 
518 	efx_ev_qpoll(evq->common, &evq->read_ptr, evq->callbacks, evq);
519 
520 	if (unlikely(evq->exception) && sfc_adapter_trylock(evq->sa)) {
521 		struct sfc_adapter *sa = evq->sa;
522 		int rc;
523 
524 		if (evq->dp_rxq != NULL) {
525 			unsigned int rxq_sw_index;
526 
527 			rxq_sw_index = evq->dp_rxq->dpq.queue_id;
528 
529 			sfc_warn(sa,
530 				 "restart RxQ %u because of exception on its EvQ %u",
531 				 rxq_sw_index, evq->evq_index);
532 
533 			sfc_rx_qstop(sa, rxq_sw_index);
534 			rc = sfc_rx_qstart(sa, rxq_sw_index);
535 			if (rc != 0)
536 				sfc_err(sa, "cannot restart RxQ %u",
537 					rxq_sw_index);
538 		}
539 
540 		if (evq->dp_txq != NULL) {
541 			unsigned int txq_sw_index;
542 
543 			txq_sw_index = evq->dp_txq->dpq.queue_id;
544 
545 			sfc_warn(sa,
546 				 "restart TxQ %u because of exception on its EvQ %u",
547 				 txq_sw_index, evq->evq_index);
548 
549 			sfc_tx_qstop(sa, txq_sw_index);
550 			rc = sfc_tx_qstart(sa, txq_sw_index);
551 			if (rc != 0)
552 				sfc_err(sa, "cannot restart TxQ %u",
553 					txq_sw_index);
554 		}
555 
556 		if (evq->exception)
557 			sfc_panic(sa, "unrecoverable exception on EvQ %u",
558 				  evq->evq_index);
559 
560 		sfc_adapter_unlock(sa);
561 	}
562 
563 	/* Poll-mode driver does not re-prime the event queue for interrupts */
564 }
565 
566 void
567 sfc_ev_mgmt_qpoll(struct sfc_adapter *sa)
568 {
569 	if (rte_spinlock_trylock(&sa->mgmt_evq_lock)) {
570 		if (sa->mgmt_evq_running)
571 			sfc_ev_qpoll(sa->mgmt_evq);
572 
573 		rte_spinlock_unlock(&sa->mgmt_evq_lock);
574 	}
575 }
576 
577 int
578 sfc_ev_qprime(struct sfc_evq *evq)
579 {
580 	SFC_ASSERT(evq->init_state == SFC_EVQ_STARTED);
581 	return efx_ev_qprime(evq->common, evq->read_ptr);
582 }
583 
584 /* Event queue HW index allocation scheme is described in sfc_ev.h. */
585 int
586 sfc_ev_qstart(struct sfc_evq *evq, unsigned int hw_index)
587 {
588 	struct sfc_adapter *sa = evq->sa;
589 	efsys_mem_t *esmp;
590 	uint32_t evq_flags = sa->evq_flags;
591 	unsigned int total_delay_us;
592 	unsigned int delay_us;
593 	int rc;
594 
595 	sfc_log_init(sa, "hw_index=%u", hw_index);
596 
597 	esmp = &evq->mem;
598 
599 	evq->evq_index = hw_index;
600 
601 	/* Clear all events */
602 	(void)memset((void *)esmp->esm_base, 0xff,
603 		     efx_evq_size(sa->nic, evq->entries));
604 
605 	if (sa->intr.lsc_intr && hw_index == sa->mgmt_evq_index)
606 		evq_flags |= EFX_EVQ_FLAGS_NOTIFY_INTERRUPT;
607 	else
608 		evq_flags |= EFX_EVQ_FLAGS_NOTIFY_DISABLED;
609 
610 	/* Create the common code event queue */
611 	rc = efx_ev_qcreate(sa->nic, hw_index, esmp, evq->entries,
612 			    0 /* unused on EF10 */, 0, evq_flags,
613 			    &evq->common);
614 	if (rc != 0)
615 		goto fail_ev_qcreate;
616 
617 	SFC_ASSERT(evq->dp_rxq == NULL || evq->dp_txq == NULL);
618 	if (evq->dp_rxq != 0) {
619 		if (strcmp(sa->priv.dp_rx->dp.name,
620 			   SFC_KVARG_DATAPATH_EFX) == 0)
621 			evq->callbacks = &sfc_ev_callbacks_efx_rx;
622 		else
623 			evq->callbacks = &sfc_ev_callbacks_dp_rx;
624 	} else if (evq->dp_txq != 0) {
625 		if (strcmp(sa->priv.dp_tx->dp.name,
626 			   SFC_KVARG_DATAPATH_EFX) == 0)
627 			evq->callbacks = &sfc_ev_callbacks_efx_tx;
628 		else
629 			evq->callbacks = &sfc_ev_callbacks_dp_tx;
630 	} else {
631 		evq->callbacks = &sfc_ev_callbacks;
632 	}
633 
634 	evq->init_state = SFC_EVQ_STARTING;
635 
636 	/* Wait for the initialization event */
637 	total_delay_us = 0;
638 	delay_us = SFC_EVQ_INIT_BACKOFF_START_US;
639 	do {
640 		(void)sfc_ev_qpoll(evq);
641 
642 		/* Check to see if the initialization complete indication
643 		 * posted by the hardware.
644 		 */
645 		if (evq->init_state == SFC_EVQ_STARTED)
646 			goto done;
647 
648 		/* Give event queue some time to init */
649 		rte_delay_us(delay_us);
650 
651 		total_delay_us += delay_us;
652 
653 		/* Exponential backoff */
654 		delay_us *= 2;
655 		if (delay_us > SFC_EVQ_INIT_BACKOFF_MAX_US)
656 			delay_us = SFC_EVQ_INIT_BACKOFF_MAX_US;
657 
658 	} while (total_delay_us < SFC_EVQ_INIT_TIMEOUT_US);
659 
660 	rc = ETIMEDOUT;
661 	goto fail_timedout;
662 
663 done:
664 	return 0;
665 
666 fail_timedout:
667 	evq->init_state = SFC_EVQ_INITIALIZED;
668 	efx_ev_qdestroy(evq->common);
669 
670 fail_ev_qcreate:
671 	sfc_log_init(sa, "failed %d", rc);
672 	return rc;
673 }
674 
675 void
676 sfc_ev_qstop(struct sfc_evq *evq)
677 {
678 	if (evq == NULL)
679 		return;
680 
681 	sfc_log_init(evq->sa, "hw_index=%u", evq->evq_index);
682 
683 	if (evq->init_state != SFC_EVQ_STARTED)
684 		return;
685 
686 	evq->init_state = SFC_EVQ_INITIALIZED;
687 	evq->callbacks = NULL;
688 	evq->read_ptr = 0;
689 	evq->exception = B_FALSE;
690 
691 	efx_ev_qdestroy(evq->common);
692 
693 	evq->evq_index = 0;
694 }
695 
696 static void
697 sfc_ev_mgmt_periodic_qpoll(void *arg)
698 {
699 	struct sfc_adapter *sa = arg;
700 	int rc;
701 
702 	sfc_ev_mgmt_qpoll(sa);
703 
704 	rc = rte_eal_alarm_set(SFC_MGMT_EV_QPOLL_PERIOD_US,
705 			       sfc_ev_mgmt_periodic_qpoll, sa);
706 	if (rc == -ENOTSUP) {
707 		sfc_warn(sa, "alarms are not supported");
708 		sfc_warn(sa, "management EVQ must be polled indirectly using no-wait link status update");
709 	} else if (rc != 0) {
710 		sfc_err(sa,
711 			"cannot rearm management EVQ polling alarm (rc=%d)",
712 			rc);
713 	}
714 }
715 
716 static void
717 sfc_ev_mgmt_periodic_qpoll_start(struct sfc_adapter *sa)
718 {
719 	sfc_ev_mgmt_periodic_qpoll(sa);
720 }
721 
722 static void
723 sfc_ev_mgmt_periodic_qpoll_stop(struct sfc_adapter *sa)
724 {
725 	rte_eal_alarm_cancel(sfc_ev_mgmt_periodic_qpoll, sa);
726 }
727 
728 int
729 sfc_ev_start(struct sfc_adapter *sa)
730 {
731 	int rc;
732 
733 	sfc_log_init(sa, "entry");
734 
735 	rc = efx_ev_init(sa->nic);
736 	if (rc != 0)
737 		goto fail_ev_init;
738 
739 	/* Start management EVQ used for global events */
740 
741 	/*
742 	 * Management event queue start polls the queue, but it cannot
743 	 * interfere with other polling contexts since mgmt_evq_running
744 	 * is false yet.
745 	 */
746 	rc = sfc_ev_qstart(sa->mgmt_evq, sa->mgmt_evq_index);
747 	if (rc != 0)
748 		goto fail_mgmt_evq_start;
749 
750 	rte_spinlock_lock(&sa->mgmt_evq_lock);
751 	sa->mgmt_evq_running = true;
752 	rte_spinlock_unlock(&sa->mgmt_evq_lock);
753 
754 	if (sa->intr.lsc_intr) {
755 		rc = sfc_ev_qprime(sa->mgmt_evq);
756 		if (rc != 0)
757 			goto fail_mgmt_evq_prime;
758 	}
759 
760 	/*
761 	 * Start management EVQ polling. If interrupts are disabled
762 	 * (not used), it is required to process link status change
763 	 * and other device level events to avoid unrecoverable
764 	 * error because the event queue overflow.
765 	 */
766 	sfc_ev_mgmt_periodic_qpoll_start(sa);
767 
768 	/*
769 	 * Rx/Tx event queues are started/stopped when corresponding
770 	 * Rx/Tx queue is started/stopped.
771 	 */
772 
773 	return 0;
774 
775 fail_mgmt_evq_prime:
776 	sfc_ev_qstop(sa->mgmt_evq);
777 
778 fail_mgmt_evq_start:
779 	efx_ev_fini(sa->nic);
780 
781 fail_ev_init:
782 	sfc_log_init(sa, "failed %d", rc);
783 	return rc;
784 }
785 
786 void
787 sfc_ev_stop(struct sfc_adapter *sa)
788 {
789 	sfc_log_init(sa, "entry");
790 
791 	sfc_ev_mgmt_periodic_qpoll_stop(sa);
792 
793 	rte_spinlock_lock(&sa->mgmt_evq_lock);
794 	sa->mgmt_evq_running = false;
795 	rte_spinlock_unlock(&sa->mgmt_evq_lock);
796 
797 	sfc_ev_qstop(sa->mgmt_evq);
798 
799 	efx_ev_fini(sa->nic);
800 }
801 
802 int
803 sfc_ev_qinit(struct sfc_adapter *sa,
804 	     enum sfc_evq_type type, unsigned int type_index,
805 	     unsigned int entries, int socket_id, struct sfc_evq **evqp)
806 {
807 	struct sfc_evq *evq;
808 	int rc;
809 
810 	sfc_log_init(sa, "type=%s type_index=%u",
811 		     sfc_evq_type2str(type), type_index);
812 
813 	SFC_ASSERT(rte_is_power_of_2(entries));
814 
815 	rc = ENOMEM;
816 	evq = rte_zmalloc_socket("sfc-evq", sizeof(*evq), RTE_CACHE_LINE_SIZE,
817 				 socket_id);
818 	if (evq == NULL)
819 		goto fail_evq_alloc;
820 
821 	evq->sa = sa;
822 	evq->type = type;
823 	evq->entries = entries;
824 
825 	/* Allocate DMA space */
826 	rc = sfc_dma_alloc(sa, sfc_evq_type2str(type), type_index,
827 			   efx_evq_size(sa->nic, evq->entries), socket_id,
828 			   &evq->mem);
829 	if (rc != 0)
830 		goto fail_dma_alloc;
831 
832 	evq->init_state = SFC_EVQ_INITIALIZED;
833 
834 	sa->evq_count++;
835 
836 	*evqp = evq;
837 
838 	return 0;
839 
840 fail_dma_alloc:
841 	rte_free(evq);
842 
843 fail_evq_alloc:
844 
845 	sfc_log_init(sa, "failed %d", rc);
846 	return rc;
847 }
848 
849 void
850 sfc_ev_qfini(struct sfc_evq *evq)
851 {
852 	struct sfc_adapter *sa = evq->sa;
853 
854 	SFC_ASSERT(evq->init_state == SFC_EVQ_INITIALIZED);
855 
856 	sfc_dma_free(sa, &evq->mem);
857 
858 	rte_free(evq);
859 
860 	SFC_ASSERT(sa->evq_count > 0);
861 	sa->evq_count--;
862 }
863 
864 static int
865 sfc_kvarg_perf_profile_handler(__rte_unused const char *key,
866 			       const char *value_str, void *opaque)
867 {
868 	uint32_t *value = opaque;
869 
870 	if (strcasecmp(value_str, SFC_KVARG_PERF_PROFILE_THROUGHPUT) == 0)
871 		*value = EFX_EVQ_FLAGS_TYPE_THROUGHPUT;
872 	else if (strcasecmp(value_str, SFC_KVARG_PERF_PROFILE_LOW_LATENCY) == 0)
873 		*value = EFX_EVQ_FLAGS_TYPE_LOW_LATENCY;
874 	else if (strcasecmp(value_str, SFC_KVARG_PERF_PROFILE_AUTO) == 0)
875 		*value = EFX_EVQ_FLAGS_TYPE_AUTO;
876 	else
877 		return -EINVAL;
878 
879 	return 0;
880 }
881 
882 int
883 sfc_ev_attach(struct sfc_adapter *sa)
884 {
885 	int rc;
886 
887 	sfc_log_init(sa, "entry");
888 
889 	sa->evq_flags = EFX_EVQ_FLAGS_TYPE_THROUGHPUT;
890 	rc = sfc_kvargs_process(sa, SFC_KVARG_PERF_PROFILE,
891 				sfc_kvarg_perf_profile_handler,
892 				&sa->evq_flags);
893 	if (rc != 0) {
894 		sfc_err(sa, "invalid %s parameter value",
895 			SFC_KVARG_PERF_PROFILE);
896 		goto fail_kvarg_perf_profile;
897 	}
898 
899 	sa->mgmt_evq_index = 0;
900 	rte_spinlock_init(&sa->mgmt_evq_lock);
901 
902 	rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_MGMT, 0, sa->evq_min_entries,
903 			  sa->socket_id, &sa->mgmt_evq);
904 	if (rc != 0)
905 		goto fail_mgmt_evq_init;
906 
907 	/*
908 	 * Rx/Tx event queues are created/destroyed when corresponding
909 	 * Rx/Tx queue is created/destroyed.
910 	 */
911 
912 	return 0;
913 
914 fail_mgmt_evq_init:
915 
916 fail_kvarg_perf_profile:
917 	sfc_log_init(sa, "failed %d", rc);
918 	return rc;
919 }
920 
921 void
922 sfc_ev_detach(struct sfc_adapter *sa)
923 {
924 	sfc_log_init(sa, "entry");
925 
926 	sfc_ev_qfini(sa->mgmt_evq);
927 
928 	if (sa->evq_count != 0)
929 		sfc_err(sa, "%u EvQs are not destroyed before detach",
930 			sa->evq_count);
931 }
932