xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision f67615ea626e23e61b71d27f894fe9a4ef716df3)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <ethdev_driver.h>
12 #include <ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_flow_tunnel.h"
30 #include "sfc_dp.h"
31 #include "sfc_dp_rx.h"
32 #include "sfc_repr.h"
33 #include "sfc_sw_stats.h"
34 #include "sfc_switch.h"
35 #include "sfc_nic_dma.h"
36 
37 #define SFC_XSTAT_ID_INVALID_VAL  UINT64_MAX
38 #define SFC_XSTAT_ID_INVALID_NAME '\0'
39 
40 uint32_t sfc_logtype_driver;
41 
42 static struct sfc_dp_list sfc_dp_head =
43 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
44 
45 
46 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
47 
48 
49 static int
50 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
51 {
52 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
53 	efx_nic_fw_info_t enfi;
54 	int ret;
55 	int rc;
56 
57 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
58 	if (rc != 0)
59 		return -rc;
60 
61 	ret = snprintf(fw_version, fw_size,
62 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
63 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
64 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
65 	if (ret < 0)
66 		return ret;
67 
68 	if (enfi.enfi_dpcpu_fw_ids_valid) {
69 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
70 		int ret_extra;
71 
72 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
73 				     fw_size - dpcpu_fw_ids_offset,
74 				     " rx%" PRIx16 " tx%" PRIx16,
75 				     enfi.enfi_rx_dpcpu_fw_id,
76 				     enfi.enfi_tx_dpcpu_fw_id);
77 		if (ret_extra < 0)
78 			return ret_extra;
79 
80 		ret += ret_extra;
81 	}
82 
83 	if (fw_size < (size_t)(++ret))
84 		return ret;
85 	else
86 		return 0;
87 }
88 
89 static int
90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
91 {
92 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
93 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
94 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
95 	struct sfc_rss *rss = &sas->rss;
96 	struct sfc_mae *mae = &sa->mae;
97 
98 	sfc_log_init(sa, "entry");
99 
100 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
101 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
102 
103 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
104 
105 	dev_info->max_vfs = sa->sriov.num_vfs;
106 
107 	/* Autonegotiation may be disabled */
108 	dev_info->speed_capa = RTE_ETH_LINK_SPEED_FIXED;
109 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
110 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_1G;
111 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
112 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_10G;
113 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
114 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_25G;
115 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
116 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_40G;
117 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
118 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_50G;
119 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
120 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_100G;
121 
122 	dev_info->max_rx_queues = sa->rxq_max;
123 	dev_info->max_tx_queues = sa->txq_max;
124 
125 	/* By default packets are dropped if no descriptors are available */
126 	dev_info->default_rxconf.rx_drop_en = 1;
127 
128 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
129 
130 	/*
131 	 * rx_offload_capa includes both device and queue offloads since
132 	 * the latter may be requested on a per device basis which makes
133 	 * sense when some offloads are needed to be set on all queues.
134 	 */
135 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
136 				    dev_info->rx_queue_offload_capa;
137 
138 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
139 
140 	/*
141 	 * tx_offload_capa includes both device and queue offloads since
142 	 * the latter may be requested on a per device basis which makes
143 	 * sense when some offloads are needed to be set on all queues.
144 	 */
145 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
146 				    dev_info->tx_queue_offload_capa;
147 
148 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
149 		uint64_t rte_hf = 0;
150 		unsigned int i;
151 
152 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
153 			rte_hf |= rss->hf_map[i].rte;
154 
155 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
156 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
157 		dev_info->flow_type_rss_offloads = rte_hf;
158 	}
159 
160 	/* Initialize to hardware limits */
161 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
162 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
163 	/* The RXQ hardware requires that the descriptor count is a power
164 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
165 	 */
166 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
167 
168 	/* Initialize to hardware limits */
169 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
170 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
171 	/*
172 	 * The TXQ hardware requires that the descriptor count is a power
173 	 * of 2, but tx_desc_lim cannot properly describe that constraint
174 	 */
175 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
176 
177 	if (sap->dp_rx->get_dev_info != NULL)
178 		sap->dp_rx->get_dev_info(dev_info);
179 	if (sap->dp_tx->get_dev_info != NULL)
180 		sap->dp_tx->get_dev_info(dev_info);
181 
182 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
183 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
184 	dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
185 
186 	if (mae->status == SFC_MAE_STATUS_SUPPORTED ||
187 	    mae->status == SFC_MAE_STATUS_ADMIN) {
188 		dev_info->switch_info.name = dev->device->driver->name;
189 		dev_info->switch_info.domain_id = mae->switch_domain_id;
190 		dev_info->switch_info.port_id = mae->switch_port_id;
191 	}
192 
193 	return 0;
194 }
195 
196 static const uint32_t *
197 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
198 {
199 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
200 
201 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
202 }
203 
204 static int
205 sfc_dev_configure(struct rte_eth_dev *dev)
206 {
207 	struct rte_eth_dev_data *dev_data = dev->data;
208 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
209 	int rc;
210 
211 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
212 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
213 
214 	sfc_adapter_lock(sa);
215 	switch (sa->state) {
216 	case SFC_ETHDEV_CONFIGURED:
217 		/* FALLTHROUGH */
218 	case SFC_ETHDEV_INITIALIZED:
219 		rc = sfc_configure(sa);
220 		break;
221 	default:
222 		sfc_err(sa, "unexpected adapter state %u to configure",
223 			sa->state);
224 		rc = EINVAL;
225 		break;
226 	}
227 	sfc_adapter_unlock(sa);
228 
229 	sfc_log_init(sa, "done %d", rc);
230 	SFC_ASSERT(rc >= 0);
231 	return -rc;
232 }
233 
234 static int
235 sfc_dev_start(struct rte_eth_dev *dev)
236 {
237 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
238 	int rc;
239 
240 	sfc_log_init(sa, "entry");
241 
242 	sfc_adapter_lock(sa);
243 	rc = sfc_start(sa);
244 	sfc_adapter_unlock(sa);
245 
246 	sfc_log_init(sa, "done %d", rc);
247 	SFC_ASSERT(rc >= 0);
248 	return -rc;
249 }
250 
251 static int
252 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
253 {
254 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
255 	struct rte_eth_link current_link;
256 	int ret;
257 
258 	sfc_log_init(sa, "entry");
259 
260 	if (sa->state != SFC_ETHDEV_STARTED) {
261 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
262 	} else if (wait_to_complete) {
263 		efx_link_mode_t link_mode;
264 
265 		if (efx_port_poll(sa->nic, &link_mode) != 0)
266 			link_mode = EFX_LINK_UNKNOWN;
267 		sfc_port_link_mode_to_info(link_mode, &current_link);
268 
269 	} else {
270 		sfc_ev_mgmt_qpoll(sa);
271 		rte_eth_linkstatus_get(dev, &current_link);
272 	}
273 
274 	ret = rte_eth_linkstatus_set(dev, &current_link);
275 	if (ret == 0)
276 		sfc_notice(sa, "Link status is %s",
277 			   current_link.link_status ? "UP" : "DOWN");
278 
279 	return ret;
280 }
281 
282 static int
283 sfc_dev_stop(struct rte_eth_dev *dev)
284 {
285 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
286 
287 	sfc_log_init(sa, "entry");
288 
289 	sfc_adapter_lock(sa);
290 	sfc_stop(sa);
291 	sfc_adapter_unlock(sa);
292 
293 	sfc_log_init(sa, "done");
294 
295 	return 0;
296 }
297 
298 static int
299 sfc_dev_set_link_up(struct rte_eth_dev *dev)
300 {
301 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
302 	int rc;
303 
304 	sfc_log_init(sa, "entry");
305 
306 	sfc_adapter_lock(sa);
307 	rc = sfc_start(sa);
308 	sfc_adapter_unlock(sa);
309 
310 	SFC_ASSERT(rc >= 0);
311 	return -rc;
312 }
313 
314 static int
315 sfc_dev_set_link_down(struct rte_eth_dev *dev)
316 {
317 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
318 
319 	sfc_log_init(sa, "entry");
320 
321 	sfc_adapter_lock(sa);
322 	sfc_stop(sa);
323 	sfc_adapter_unlock(sa);
324 
325 	return 0;
326 }
327 
328 static void
329 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
330 {
331 	free(dev->process_private);
332 	rte_eth_dev_release_port(dev);
333 }
334 
335 static int
336 sfc_dev_close(struct rte_eth_dev *dev)
337 {
338 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
339 
340 	sfc_log_init(sa, "entry");
341 
342 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
343 		sfc_eth_dev_secondary_clear_ops(dev);
344 		return 0;
345 	}
346 
347 	sfc_pre_detach(sa);
348 
349 	sfc_adapter_lock(sa);
350 	switch (sa->state) {
351 	case SFC_ETHDEV_STARTED:
352 		sfc_stop(sa);
353 		SFC_ASSERT(sa->state == SFC_ETHDEV_CONFIGURED);
354 		/* FALLTHROUGH */
355 	case SFC_ETHDEV_CONFIGURED:
356 		sfc_close(sa);
357 		SFC_ASSERT(sa->state == SFC_ETHDEV_INITIALIZED);
358 		/* FALLTHROUGH */
359 	case SFC_ETHDEV_INITIALIZED:
360 		break;
361 	default:
362 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
363 		break;
364 	}
365 
366 	/*
367 	 * Cleanup all resources.
368 	 * Rollback primary process sfc_eth_dev_init() below.
369 	 */
370 
371 	sfc_eth_dev_clear_ops(dev);
372 
373 	sfc_nic_dma_detach(sa);
374 	sfc_detach(sa);
375 	sfc_unprobe(sa);
376 
377 	sfc_kvargs_cleanup(sa);
378 
379 	sfc_adapter_unlock(sa);
380 	sfc_adapter_lock_fini(sa);
381 
382 	sfc_log_init(sa, "done");
383 
384 	/* Required for logging, so cleanup last */
385 	sa->eth_dev = NULL;
386 
387 	free(sa);
388 
389 	return 0;
390 }
391 
392 static int
393 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
394 		   boolean_t enabled)
395 {
396 	struct sfc_port *port;
397 	boolean_t *toggle;
398 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
399 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
400 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
401 	int rc = 0;
402 
403 	sfc_adapter_lock(sa);
404 
405 	port = &sa->port;
406 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
407 
408 	if (*toggle != enabled) {
409 		*toggle = enabled;
410 
411 		if (sfc_sa2shared(sa)->isolated) {
412 			sfc_warn(sa, "isolated mode is active on the port");
413 			sfc_warn(sa, "the change is to be applied on the next "
414 				     "start provided that isolated mode is "
415 				     "disabled prior the next start");
416 		} else if ((sa->state == SFC_ETHDEV_STARTED) &&
417 			   ((rc = sfc_set_rx_mode(sa)) != 0)) {
418 			*toggle = !(enabled);
419 			sfc_warn(sa, "Failed to %s %s mode, rc = %d",
420 				 ((enabled) ? "enable" : "disable"), desc, rc);
421 
422 			/*
423 			 * For promiscuous and all-multicast filters a
424 			 * permission failure should be reported as an
425 			 * unsupported filter.
426 			 */
427 			if (rc == EPERM)
428 				rc = ENOTSUP;
429 		}
430 	}
431 
432 	sfc_adapter_unlock(sa);
433 	return rc;
434 }
435 
436 static int
437 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
438 {
439 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
440 
441 	SFC_ASSERT(rc >= 0);
442 	return -rc;
443 }
444 
445 static int
446 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
447 {
448 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
449 
450 	SFC_ASSERT(rc >= 0);
451 	return -rc;
452 }
453 
454 static int
455 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
456 {
457 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
458 
459 	SFC_ASSERT(rc >= 0);
460 	return -rc;
461 }
462 
463 static int
464 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
465 {
466 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
467 
468 	SFC_ASSERT(rc >= 0);
469 	return -rc;
470 }
471 
472 static int
473 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
474 		   uint16_t nb_rx_desc, unsigned int socket_id,
475 		   const struct rte_eth_rxconf *rx_conf,
476 		   struct rte_mempool *mb_pool)
477 {
478 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
479 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
480 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
481 	struct sfc_rxq_info *rxq_info;
482 	sfc_sw_index_t sw_index;
483 	int rc;
484 
485 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
486 		     ethdev_qid, nb_rx_desc, socket_id);
487 
488 	sfc_adapter_lock(sa);
489 
490 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
491 	rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id,
492 			  rx_conf, mb_pool);
493 	if (rc != 0)
494 		goto fail_rx_qinit;
495 
496 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
497 	dev->data->rx_queues[ethdev_qid] = rxq_info->dp;
498 
499 	sfc_adapter_unlock(sa);
500 
501 	return 0;
502 
503 fail_rx_qinit:
504 	sfc_adapter_unlock(sa);
505 	SFC_ASSERT(rc > 0);
506 	return -rc;
507 }
508 
509 static void
510 sfc_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
511 {
512 	struct sfc_dp_rxq *dp_rxq = dev->data->rx_queues[qid];
513 	struct sfc_rxq *rxq;
514 	struct sfc_adapter *sa;
515 	sfc_sw_index_t sw_index;
516 
517 	if (dp_rxq == NULL)
518 		return;
519 
520 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
521 	sa = rxq->evq->sa;
522 	sfc_adapter_lock(sa);
523 
524 	sw_index = dp_rxq->dpq.queue_id;
525 
526 	sfc_log_init(sa, "RxQ=%u", sw_index);
527 
528 	sfc_rx_qfini(sa, sw_index);
529 
530 	sfc_adapter_unlock(sa);
531 }
532 
533 static int
534 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
535 		   uint16_t nb_tx_desc, unsigned int socket_id,
536 		   const struct rte_eth_txconf *tx_conf)
537 {
538 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
539 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
540 	struct sfc_txq_info *txq_info;
541 	sfc_sw_index_t sw_index;
542 	int rc;
543 
544 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
545 		     ethdev_qid, nb_tx_desc, socket_id);
546 
547 	sfc_adapter_lock(sa);
548 
549 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
550 	rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf);
551 	if (rc != 0)
552 		goto fail_tx_qinit;
553 
554 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
555 	dev->data->tx_queues[ethdev_qid] = txq_info->dp;
556 
557 	sfc_adapter_unlock(sa);
558 	return 0;
559 
560 fail_tx_qinit:
561 	sfc_adapter_unlock(sa);
562 	SFC_ASSERT(rc > 0);
563 	return -rc;
564 }
565 
566 static void
567 sfc_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
568 {
569 	struct sfc_dp_txq *dp_txq = dev->data->tx_queues[qid];
570 	struct sfc_txq *txq;
571 	sfc_sw_index_t sw_index;
572 	struct sfc_adapter *sa;
573 
574 	if (dp_txq == NULL)
575 		return;
576 
577 	txq = sfc_txq_by_dp_txq(dp_txq);
578 	sw_index = dp_txq->dpq.queue_id;
579 
580 	SFC_ASSERT(txq->evq != NULL);
581 	sa = txq->evq->sa;
582 
583 	sfc_log_init(sa, "TxQ = %u", sw_index);
584 
585 	sfc_adapter_lock(sa);
586 
587 	sfc_tx_qfini(sa, sw_index);
588 
589 	sfc_adapter_unlock(sa);
590 }
591 
592 static void
593 sfc_stats_get_dp_rx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
594 {
595 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
596 	uint64_t pkts_sum = 0;
597 	uint64_t bytes_sum = 0;
598 	unsigned int i;
599 
600 	for (i = 0; i < sas->ethdev_rxq_count; ++i) {
601 		struct sfc_rxq_info *rxq_info;
602 
603 		rxq_info = sfc_rxq_info_by_ethdev_qid(sas, i);
604 		if (rxq_info->state & SFC_RXQ_INITIALIZED) {
605 			union sfc_pkts_bytes qstats;
606 
607 			sfc_pkts_bytes_get(&rxq_info->dp->dpq.stats, &qstats);
608 			pkts_sum += qstats.pkts -
609 					sa->sw_stats.reset_rx_pkts[i];
610 			bytes_sum += qstats.bytes -
611 					sa->sw_stats.reset_rx_bytes[i];
612 		}
613 	}
614 
615 	*pkts = pkts_sum;
616 	*bytes = bytes_sum;
617 }
618 
619 static void
620 sfc_stats_get_dp_tx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
621 {
622 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
623 	uint64_t pkts_sum = 0;
624 	uint64_t bytes_sum = 0;
625 	unsigned int i;
626 
627 	for (i = 0; i < sas->ethdev_txq_count; ++i) {
628 		struct sfc_txq_info *txq_info;
629 
630 		txq_info = sfc_txq_info_by_ethdev_qid(sas, i);
631 		if (txq_info->state & SFC_TXQ_INITIALIZED) {
632 			union sfc_pkts_bytes qstats;
633 
634 			sfc_pkts_bytes_get(&txq_info->dp->dpq.stats, &qstats);
635 			pkts_sum += qstats.pkts -
636 					sa->sw_stats.reset_tx_pkts[i];
637 			bytes_sum += qstats.bytes -
638 					sa->sw_stats.reset_tx_bytes[i];
639 		}
640 	}
641 
642 	*pkts = pkts_sum;
643 	*bytes = bytes_sum;
644 }
645 
646 /*
647  * Some statistics are computed as A - B where A and B each increase
648  * monotonically with some hardware counter(s) and the counters are read
649  * asynchronously.
650  *
651  * If packet X is counted in A, but not counted in B yet, computed value is
652  * greater than real.
653  *
654  * If packet X is not counted in A at the moment of reading the counter,
655  * but counted in B at the moment of reading the counter, computed value
656  * is less than real.
657  *
658  * However, counter which grows backward is worse evil than slightly wrong
659  * value. So, let's try to guarantee that it never happens except may be
660  * the case when the MAC stats are zeroed as a result of a NIC reset.
661  */
662 static void
663 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
664 {
665 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
666 		*stat = newval;
667 }
668 
669 static int
670 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
671 {
672 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
673 	bool have_dp_rx_stats = sap->dp_rx->features & SFC_DP_RX_FEAT_STATS;
674 	bool have_dp_tx_stats = sap->dp_tx->features & SFC_DP_TX_FEAT_STATS;
675 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
676 	struct sfc_port *port = &sa->port;
677 	uint64_t *mac_stats;
678 	int ret;
679 
680 	sfc_adapter_lock(sa);
681 
682 	if (have_dp_rx_stats)
683 		sfc_stats_get_dp_rx(sa, &stats->ipackets, &stats->ibytes);
684 	if (have_dp_tx_stats)
685 		sfc_stats_get_dp_tx(sa, &stats->opackets, &stats->obytes);
686 
687 	ret = sfc_port_update_mac_stats(sa, B_FALSE);
688 	if (ret != 0)
689 		goto unlock;
690 
691 	mac_stats = port->mac_stats_buf;
692 
693 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
694 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
695 		if (!have_dp_rx_stats) {
696 			stats->ipackets =
697 				mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
698 				mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
699 				mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
700 			stats->ibytes =
701 				mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
702 				mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
703 				mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
704 
705 			/* CRC is included in these stats, but shouldn't be */
706 			stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
707 		}
708 		if (!have_dp_tx_stats) {
709 			stats->opackets =
710 				mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
711 				mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
712 				mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
713 			stats->obytes =
714 				mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
715 				mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
716 				mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
717 
718 			/* CRC is included in these stats, but shouldn't be */
719 			stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN;
720 		}
721 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
722 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
723 	} else {
724 		if (!have_dp_tx_stats) {
725 			stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
726 			stats->obytes = mac_stats[EFX_MAC_TX_OCTETS] -
727 				mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN;
728 		}
729 
730 		/*
731 		 * Take into account stats which are whenever supported
732 		 * on EF10. If some stat is not supported by current
733 		 * firmware variant or HW revision, it is guaranteed
734 		 * to be zero in mac_stats.
735 		 */
736 		stats->imissed =
737 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
738 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
739 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
740 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
741 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
742 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
743 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
744 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
745 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
746 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
747 		stats->ierrors =
748 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
749 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
750 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
751 		/* no oerrors counters supported on EF10 */
752 
753 		if (!have_dp_rx_stats) {
754 			/* Exclude missed, errors and pauses from Rx packets */
755 			sfc_update_diff_stat(&port->ipackets,
756 				mac_stats[EFX_MAC_RX_PKTS] -
757 				mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
758 				stats->imissed - stats->ierrors);
759 			stats->ipackets = port->ipackets;
760 			stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS] -
761 				mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN;
762 		}
763 	}
764 
765 unlock:
766 	sfc_adapter_unlock(sa);
767 	SFC_ASSERT(ret >= 0);
768 	return -ret;
769 }
770 
771 static int
772 sfc_stats_reset(struct rte_eth_dev *dev)
773 {
774 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
775 	struct sfc_port *port = &sa->port;
776 	int rc;
777 
778 	sfc_adapter_lock(sa);
779 
780 	if (sa->state != SFC_ETHDEV_STARTED) {
781 		/*
782 		 * The operation cannot be done if port is not started; it
783 		 * will be scheduled to be done during the next port start
784 		 */
785 		port->mac_stats_reset_pending = B_TRUE;
786 		sfc_adapter_unlock(sa);
787 		return 0;
788 	}
789 
790 	rc = sfc_port_reset_mac_stats(sa);
791 	if (rc != 0)
792 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
793 
794 	sfc_sw_xstats_reset(sa);
795 
796 	sfc_adapter_unlock(sa);
797 
798 	SFC_ASSERT(rc >= 0);
799 	return -rc;
800 }
801 
802 static unsigned int
803 sfc_xstats_get_nb_supported(struct sfc_adapter *sa)
804 {
805 	struct sfc_port *port = &sa->port;
806 	unsigned int nb_supported;
807 
808 	sfc_adapter_lock(sa);
809 	nb_supported = port->mac_stats_nb_supported +
810 		       sfc_sw_xstats_get_nb_supported(sa);
811 	sfc_adapter_unlock(sa);
812 
813 	return nb_supported;
814 }
815 
816 static int
817 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
818 	       unsigned int xstats_count)
819 {
820 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
821 	unsigned int nb_written = 0;
822 	unsigned int nb_supported = 0;
823 	int rc;
824 
825 	if (unlikely(xstats == NULL))
826 		return sfc_xstats_get_nb_supported(sa);
827 
828 	rc = sfc_port_get_mac_stats(sa, xstats, xstats_count, &nb_written);
829 	if (rc < 0)
830 		return rc;
831 
832 	nb_supported = rc;
833 	sfc_sw_xstats_get_vals(sa, xstats, xstats_count, &nb_written,
834 			       &nb_supported);
835 
836 	return nb_supported;
837 }
838 
839 static int
840 sfc_xstats_get_names(struct rte_eth_dev *dev,
841 		     struct rte_eth_xstat_name *xstats_names,
842 		     unsigned int xstats_count)
843 {
844 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
845 	struct sfc_port *port = &sa->port;
846 	unsigned int i;
847 	unsigned int nstats = 0;
848 	unsigned int nb_written = 0;
849 	int ret;
850 
851 	if (unlikely(xstats_names == NULL))
852 		return sfc_xstats_get_nb_supported(sa);
853 
854 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
855 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
856 			if (nstats < xstats_count) {
857 				strlcpy(xstats_names[nstats].name,
858 					efx_mac_stat_name(sa->nic, i),
859 					sizeof(xstats_names[0].name));
860 				nb_written++;
861 			}
862 			nstats++;
863 		}
864 	}
865 
866 	ret = sfc_sw_xstats_get_names(sa, xstats_names, xstats_count,
867 				      &nb_written, &nstats);
868 	if (ret != 0) {
869 		SFC_ASSERT(ret < 0);
870 		return ret;
871 	}
872 
873 	return nstats;
874 }
875 
876 static int
877 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
878 		     uint64_t *values, unsigned int n)
879 {
880 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
881 	struct sfc_port *port = &sa->port;
882 	unsigned int nb_supported;
883 	unsigned int i;
884 	int rc;
885 
886 	if (unlikely(ids == NULL || values == NULL))
887 		return -EINVAL;
888 
889 	/*
890 	 * Values array could be filled in nonsequential order. Fill values with
891 	 * constant indicating invalid ID first.
892 	 */
893 	for (i = 0; i < n; i++)
894 		values[i] = SFC_XSTAT_ID_INVALID_VAL;
895 
896 	rc = sfc_port_get_mac_stats_by_id(sa, ids, values, n);
897 	if (rc != 0)
898 		return rc;
899 
900 	nb_supported = port->mac_stats_nb_supported;
901 	sfc_sw_xstats_get_vals_by_id(sa, ids, values, n, &nb_supported);
902 
903 	/* Return number of written stats before invalid ID is encountered. */
904 	for (i = 0; i < n; i++) {
905 		if (values[i] == SFC_XSTAT_ID_INVALID_VAL)
906 			return i;
907 	}
908 
909 	return n;
910 }
911 
912 static int
913 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
914 			   const uint64_t *ids,
915 			   struct rte_eth_xstat_name *xstats_names,
916 			   unsigned int size)
917 {
918 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
919 	struct sfc_port *port = &sa->port;
920 	unsigned int nb_supported;
921 	unsigned int i;
922 	int ret;
923 
924 	if (unlikely(xstats_names == NULL && ids != NULL) ||
925 	    unlikely(xstats_names != NULL && ids == NULL))
926 		return -EINVAL;
927 
928 	if (unlikely(xstats_names == NULL && ids == NULL))
929 		return sfc_xstats_get_nb_supported(sa);
930 
931 	/*
932 	 * Names array could be filled in nonsequential order. Fill names with
933 	 * string indicating invalid ID first.
934 	 */
935 	for (i = 0; i < size; i++)
936 		xstats_names[i].name[0] = SFC_XSTAT_ID_INVALID_NAME;
937 
938 	sfc_adapter_lock(sa);
939 
940 	SFC_ASSERT(port->mac_stats_nb_supported <=
941 		   RTE_DIM(port->mac_stats_by_id));
942 
943 	for (i = 0; i < size; i++) {
944 		if (ids[i] < port->mac_stats_nb_supported) {
945 			strlcpy(xstats_names[i].name,
946 				efx_mac_stat_name(sa->nic,
947 						 port->mac_stats_by_id[ids[i]]),
948 				sizeof(xstats_names[0].name));
949 		}
950 	}
951 
952 	nb_supported = port->mac_stats_nb_supported;
953 
954 	sfc_adapter_unlock(sa);
955 
956 	ret = sfc_sw_xstats_get_names_by_id(sa, ids, xstats_names, size,
957 					    &nb_supported);
958 	if (ret != 0) {
959 		SFC_ASSERT(ret < 0);
960 		return ret;
961 	}
962 
963 	/* Return number of written names before invalid ID is encountered. */
964 	for (i = 0; i < size; i++) {
965 		if (xstats_names[i].name[0] == SFC_XSTAT_ID_INVALID_NAME)
966 			return i;
967 	}
968 
969 	return size;
970 }
971 
972 static int
973 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
974 {
975 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
976 	unsigned int wanted_fc, link_fc;
977 
978 	memset(fc_conf, 0, sizeof(*fc_conf));
979 
980 	sfc_adapter_lock(sa);
981 
982 	if (sa->state == SFC_ETHDEV_STARTED)
983 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
984 	else
985 		link_fc = sa->port.flow_ctrl;
986 
987 	switch (link_fc) {
988 	case 0:
989 		fc_conf->mode = RTE_ETH_FC_NONE;
990 		break;
991 	case EFX_FCNTL_RESPOND:
992 		fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
993 		break;
994 	case EFX_FCNTL_GENERATE:
995 		fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
996 		break;
997 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
998 		fc_conf->mode = RTE_ETH_FC_FULL;
999 		break;
1000 	default:
1001 		sfc_err(sa, "%s: unexpected flow control value %#x",
1002 			__func__, link_fc);
1003 	}
1004 
1005 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
1006 
1007 	sfc_adapter_unlock(sa);
1008 
1009 	return 0;
1010 }
1011 
1012 static int
1013 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1014 {
1015 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1016 	struct sfc_port *port = &sa->port;
1017 	unsigned int fcntl;
1018 	int rc;
1019 
1020 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
1021 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
1022 	    fc_conf->mac_ctrl_frame_fwd != 0) {
1023 		sfc_err(sa, "unsupported flow control settings specified");
1024 		rc = EINVAL;
1025 		goto fail_inval;
1026 	}
1027 
1028 	switch (fc_conf->mode) {
1029 	case RTE_ETH_FC_NONE:
1030 		fcntl = 0;
1031 		break;
1032 	case RTE_ETH_FC_RX_PAUSE:
1033 		fcntl = EFX_FCNTL_RESPOND;
1034 		break;
1035 	case RTE_ETH_FC_TX_PAUSE:
1036 		fcntl = EFX_FCNTL_GENERATE;
1037 		break;
1038 	case RTE_ETH_FC_FULL:
1039 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
1040 		break;
1041 	default:
1042 		rc = EINVAL;
1043 		goto fail_inval;
1044 	}
1045 
1046 	sfc_adapter_lock(sa);
1047 
1048 	if (sa->state == SFC_ETHDEV_STARTED) {
1049 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
1050 		if (rc != 0)
1051 			goto fail_mac_fcntl_set;
1052 	}
1053 
1054 	port->flow_ctrl = fcntl;
1055 	port->flow_ctrl_autoneg = fc_conf->autoneg;
1056 
1057 	sfc_adapter_unlock(sa);
1058 
1059 	return 0;
1060 
1061 fail_mac_fcntl_set:
1062 	sfc_adapter_unlock(sa);
1063 fail_inval:
1064 	SFC_ASSERT(rc > 0);
1065 	return -rc;
1066 }
1067 
1068 static int
1069 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
1070 {
1071 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1072 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1073 	boolean_t scatter_enabled;
1074 	const char *error;
1075 	unsigned int i;
1076 
1077 	for (i = 0; i < sas->rxq_count; i++) {
1078 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
1079 			continue;
1080 
1081 		scatter_enabled = (sas->rxq_info[i].type_flags &
1082 				   EFX_RXQ_FLAG_SCATTER);
1083 
1084 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
1085 					  encp->enc_rx_prefix_size,
1086 					  scatter_enabled,
1087 					  encp->enc_rx_scatter_max, &error)) {
1088 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
1089 				error);
1090 			return EINVAL;
1091 		}
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 static int
1098 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
1099 {
1100 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1101 	size_t pdu = EFX_MAC_PDU(mtu);
1102 	size_t old_pdu;
1103 	int rc;
1104 
1105 	sfc_log_init(sa, "mtu=%u", mtu);
1106 
1107 	rc = EINVAL;
1108 	if (pdu < EFX_MAC_PDU_MIN) {
1109 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
1110 			(unsigned int)mtu, (unsigned int)pdu,
1111 			EFX_MAC_PDU_MIN);
1112 		goto fail_inval;
1113 	}
1114 	if (pdu > EFX_MAC_PDU_MAX) {
1115 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
1116 			(unsigned int)mtu, (unsigned int)pdu,
1117 			(unsigned int)EFX_MAC_PDU_MAX);
1118 		goto fail_inval;
1119 	}
1120 
1121 	sfc_adapter_lock(sa);
1122 
1123 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
1124 	if (rc != 0)
1125 		goto fail_check_scatter;
1126 
1127 	if (pdu != sa->port.pdu) {
1128 		if (sa->state == SFC_ETHDEV_STARTED) {
1129 			sfc_stop(sa);
1130 
1131 			old_pdu = sa->port.pdu;
1132 			sa->port.pdu = pdu;
1133 			rc = sfc_start(sa);
1134 			if (rc != 0)
1135 				goto fail_start;
1136 		} else {
1137 			sa->port.pdu = pdu;
1138 		}
1139 	}
1140 
1141 	sfc_adapter_unlock(sa);
1142 
1143 	sfc_log_init(sa, "done");
1144 	return 0;
1145 
1146 fail_start:
1147 	sa->port.pdu = old_pdu;
1148 	if (sfc_start(sa) != 0)
1149 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1150 			"PDU max size - port is stopped",
1151 			(unsigned int)pdu, (unsigned int)old_pdu);
1152 
1153 fail_check_scatter:
1154 	sfc_adapter_unlock(sa);
1155 
1156 fail_inval:
1157 	sfc_log_init(sa, "failed %d", rc);
1158 	SFC_ASSERT(rc > 0);
1159 	return -rc;
1160 }
1161 static int
1162 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1163 {
1164 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1165 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1166 	struct sfc_port *port = &sa->port;
1167 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1168 	int rc = 0;
1169 
1170 	sfc_adapter_lock(sa);
1171 
1172 	if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1173 		goto unlock;
1174 
1175 	/*
1176 	 * Copy the address to the device private data so that
1177 	 * it could be recalled in the case of adapter restart.
1178 	 */
1179 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1180 
1181 	/*
1182 	 * Neither of the two following checks can return
1183 	 * an error. The new MAC address is preserved in
1184 	 * the device private data and can be activated
1185 	 * on the next port start if the user prevents
1186 	 * isolated mode from being enabled.
1187 	 */
1188 	if (sfc_sa2shared(sa)->isolated) {
1189 		sfc_warn(sa, "isolated mode is active on the port");
1190 		sfc_warn(sa, "will not set MAC address");
1191 		goto unlock;
1192 	}
1193 
1194 	if (sa->state != SFC_ETHDEV_STARTED) {
1195 		sfc_notice(sa, "the port is not started");
1196 		sfc_notice(sa, "the new MAC address will be set on port start");
1197 
1198 		goto unlock;
1199 	}
1200 
1201 	if (encp->enc_allow_set_mac_with_installed_filters) {
1202 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1203 		if (rc != 0) {
1204 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1205 			goto unlock;
1206 		}
1207 
1208 		/*
1209 		 * Changing the MAC address by means of MCDI request
1210 		 * has no effect on received traffic, therefore
1211 		 * we also need to update unicast filters
1212 		 */
1213 		rc = sfc_set_rx_mode_unchecked(sa);
1214 		if (rc != 0) {
1215 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1216 			/* Rollback the old address */
1217 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1218 			(void)sfc_set_rx_mode_unchecked(sa);
1219 		}
1220 	} else {
1221 		sfc_warn(sa, "cannot set MAC address with filters installed");
1222 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1223 		sfc_warn(sa, "(some traffic may be dropped)");
1224 
1225 		/*
1226 		 * Since setting MAC address with filters installed is not
1227 		 * allowed on the adapter, the new MAC address will be set
1228 		 * by means of adapter restart. sfc_start() shall retrieve
1229 		 * the new address from the device private data and set it.
1230 		 */
1231 		sfc_stop(sa);
1232 		rc = sfc_start(sa);
1233 		if (rc != 0)
1234 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1235 	}
1236 
1237 unlock:
1238 	if (rc != 0)
1239 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1240 
1241 	sfc_adapter_unlock(sa);
1242 
1243 	SFC_ASSERT(rc >= 0);
1244 	return -rc;
1245 }
1246 
1247 
1248 static int
1249 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1250 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1251 {
1252 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1253 	struct sfc_port *port = &sa->port;
1254 	uint8_t *mc_addrs = port->mcast_addrs;
1255 	int rc;
1256 	unsigned int i;
1257 
1258 	if (sfc_sa2shared(sa)->isolated) {
1259 		sfc_err(sa, "isolated mode is active on the port");
1260 		sfc_err(sa, "will not set multicast address list");
1261 		return -ENOTSUP;
1262 	}
1263 
1264 	if (mc_addrs == NULL)
1265 		return -ENOBUFS;
1266 
1267 	if (nb_mc_addr > port->max_mcast_addrs) {
1268 		sfc_err(sa, "too many multicast addresses: %u > %u",
1269 			 nb_mc_addr, port->max_mcast_addrs);
1270 		return -EINVAL;
1271 	}
1272 
1273 	for (i = 0; i < nb_mc_addr; ++i) {
1274 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1275 				 EFX_MAC_ADDR_LEN);
1276 		mc_addrs += EFX_MAC_ADDR_LEN;
1277 	}
1278 
1279 	port->nb_mcast_addrs = nb_mc_addr;
1280 
1281 	if (sa->state != SFC_ETHDEV_STARTED)
1282 		return 0;
1283 
1284 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1285 					port->nb_mcast_addrs);
1286 	if (rc != 0)
1287 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1288 
1289 	SFC_ASSERT(rc >= 0);
1290 	return -rc;
1291 }
1292 
1293 /*
1294  * The function is used by the secondary process as well. It must not
1295  * use any process-local pointers from the adapter data.
1296  */
1297 static void
1298 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1299 		      struct rte_eth_rxq_info *qinfo)
1300 {
1301 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1302 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1303 	struct sfc_rxq_info *rxq_info;
1304 
1305 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1306 
1307 	qinfo->mp = rxq_info->refill_mb_pool;
1308 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1309 	qinfo->conf.rx_drop_en = 1;
1310 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1311 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1312 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1313 		qinfo->conf.offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
1314 		qinfo->scattered_rx = 1;
1315 	}
1316 	qinfo->nb_desc = rxq_info->entries;
1317 }
1318 
1319 /*
1320  * The function is used by the secondary process as well. It must not
1321  * use any process-local pointers from the adapter data.
1322  */
1323 static void
1324 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1325 		      struct rte_eth_txq_info *qinfo)
1326 {
1327 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1328 	struct sfc_txq_info *txq_info;
1329 
1330 	SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count);
1331 
1332 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1333 
1334 	memset(qinfo, 0, sizeof(*qinfo));
1335 
1336 	qinfo->conf.offloads = txq_info->offloads;
1337 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1338 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1339 	qinfo->nb_desc = txq_info->entries;
1340 }
1341 
1342 /*
1343  * The function is used by the secondary process as well. It must not
1344  * use any process-local pointers from the adapter data.
1345  */
1346 static uint32_t
1347 sfc_rx_queue_count(void *rx_queue)
1348 {
1349 	struct sfc_dp_rxq *dp_rxq = rx_queue;
1350 	const struct sfc_dp_rx *dp_rx;
1351 	struct sfc_rxq_info *rxq_info;
1352 
1353 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1354 	rxq_info = sfc_rxq_info_by_dp_rxq(dp_rxq);
1355 
1356 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1357 		return 0;
1358 
1359 	return dp_rx->qdesc_npending(dp_rxq);
1360 }
1361 
1362 /*
1363  * The function is used by the secondary process as well. It must not
1364  * use any process-local pointers from the adapter data.
1365  */
1366 static int
1367 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1368 {
1369 	struct sfc_dp_rxq *dp_rxq = queue;
1370 	const struct sfc_dp_rx *dp_rx;
1371 
1372 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1373 
1374 	return dp_rx->qdesc_status(dp_rxq, offset);
1375 }
1376 
1377 /*
1378  * The function is used by the secondary process as well. It must not
1379  * use any process-local pointers from the adapter data.
1380  */
1381 static int
1382 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1383 {
1384 	struct sfc_dp_txq *dp_txq = queue;
1385 	const struct sfc_dp_tx *dp_tx;
1386 
1387 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1388 
1389 	return dp_tx->qdesc_status(dp_txq, offset);
1390 }
1391 
1392 static int
1393 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1394 {
1395 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1396 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1397 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1398 	struct sfc_rxq_info *rxq_info;
1399 	sfc_sw_index_t sw_index;
1400 	int rc;
1401 
1402 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1403 
1404 	sfc_adapter_lock(sa);
1405 
1406 	rc = EINVAL;
1407 	if (sa->state != SFC_ETHDEV_STARTED)
1408 		goto fail_not_started;
1409 
1410 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1411 	if (rxq_info->state != SFC_RXQ_INITIALIZED)
1412 		goto fail_not_setup;
1413 
1414 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1415 	rc = sfc_rx_qstart(sa, sw_index);
1416 	if (rc != 0)
1417 		goto fail_rx_qstart;
1418 
1419 	rxq_info->deferred_started = B_TRUE;
1420 
1421 	sfc_adapter_unlock(sa);
1422 
1423 	return 0;
1424 
1425 fail_rx_qstart:
1426 fail_not_setup:
1427 fail_not_started:
1428 	sfc_adapter_unlock(sa);
1429 	SFC_ASSERT(rc > 0);
1430 	return -rc;
1431 }
1432 
1433 static int
1434 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1435 {
1436 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1437 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1438 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1439 	struct sfc_rxq_info *rxq_info;
1440 	sfc_sw_index_t sw_index;
1441 
1442 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1443 
1444 	sfc_adapter_lock(sa);
1445 
1446 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1447 	sfc_rx_qstop(sa, sw_index);
1448 
1449 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1450 	rxq_info->deferred_started = B_FALSE;
1451 
1452 	sfc_adapter_unlock(sa);
1453 
1454 	return 0;
1455 }
1456 
1457 static int
1458 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1459 {
1460 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1461 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1462 	struct sfc_txq_info *txq_info;
1463 	sfc_sw_index_t sw_index;
1464 	int rc;
1465 
1466 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1467 
1468 	sfc_adapter_lock(sa);
1469 
1470 	rc = EINVAL;
1471 	if (sa->state != SFC_ETHDEV_STARTED)
1472 		goto fail_not_started;
1473 
1474 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1475 	if (txq_info->state != SFC_TXQ_INITIALIZED)
1476 		goto fail_not_setup;
1477 
1478 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1479 	rc = sfc_tx_qstart(sa, sw_index);
1480 	if (rc != 0)
1481 		goto fail_tx_qstart;
1482 
1483 	txq_info->deferred_started = B_TRUE;
1484 
1485 	sfc_adapter_unlock(sa);
1486 	return 0;
1487 
1488 fail_tx_qstart:
1489 
1490 fail_not_setup:
1491 fail_not_started:
1492 	sfc_adapter_unlock(sa);
1493 	SFC_ASSERT(rc > 0);
1494 	return -rc;
1495 }
1496 
1497 static int
1498 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1499 {
1500 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1501 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1502 	struct sfc_txq_info *txq_info;
1503 	sfc_sw_index_t sw_index;
1504 
1505 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1506 
1507 	sfc_adapter_lock(sa);
1508 
1509 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1510 	sfc_tx_qstop(sa, sw_index);
1511 
1512 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1513 	txq_info->deferred_started = B_FALSE;
1514 
1515 	sfc_adapter_unlock(sa);
1516 	return 0;
1517 }
1518 
1519 static efx_tunnel_protocol_t
1520 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1521 {
1522 	switch (rte_type) {
1523 	case RTE_ETH_TUNNEL_TYPE_VXLAN:
1524 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1525 	case RTE_ETH_TUNNEL_TYPE_GENEVE:
1526 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1527 	default:
1528 		return EFX_TUNNEL_NPROTOS;
1529 	}
1530 }
1531 
1532 enum sfc_udp_tunnel_op_e {
1533 	SFC_UDP_TUNNEL_ADD_PORT,
1534 	SFC_UDP_TUNNEL_DEL_PORT,
1535 };
1536 
1537 static int
1538 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1539 		      struct rte_eth_udp_tunnel *tunnel_udp,
1540 		      enum sfc_udp_tunnel_op_e op)
1541 {
1542 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1543 	efx_tunnel_protocol_t tunnel_proto;
1544 	int rc;
1545 
1546 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1547 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1548 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1549 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1550 
1551 	tunnel_proto =
1552 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1553 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1554 		rc = ENOTSUP;
1555 		goto fail_bad_proto;
1556 	}
1557 
1558 	sfc_adapter_lock(sa);
1559 
1560 	switch (op) {
1561 	case SFC_UDP_TUNNEL_ADD_PORT:
1562 		rc = efx_tunnel_config_udp_add(sa->nic,
1563 					       tunnel_udp->udp_port,
1564 					       tunnel_proto);
1565 		break;
1566 	case SFC_UDP_TUNNEL_DEL_PORT:
1567 		rc = efx_tunnel_config_udp_remove(sa->nic,
1568 						  tunnel_udp->udp_port,
1569 						  tunnel_proto);
1570 		break;
1571 	default:
1572 		rc = EINVAL;
1573 		goto fail_bad_op;
1574 	}
1575 
1576 	if (rc != 0)
1577 		goto fail_op;
1578 
1579 	if (sa->state == SFC_ETHDEV_STARTED) {
1580 		rc = efx_tunnel_reconfigure(sa->nic);
1581 		if (rc == EAGAIN) {
1582 			/*
1583 			 * Configuration is accepted by FW and MC reboot
1584 			 * is initiated to apply the changes. MC reboot
1585 			 * will be handled in a usual way (MC reboot
1586 			 * event on management event queue and adapter
1587 			 * restart).
1588 			 */
1589 			rc = 0;
1590 		} else if (rc != 0) {
1591 			goto fail_reconfigure;
1592 		}
1593 	}
1594 
1595 	sfc_adapter_unlock(sa);
1596 	return 0;
1597 
1598 fail_reconfigure:
1599 	/* Remove/restore entry since the change makes the trouble */
1600 	switch (op) {
1601 	case SFC_UDP_TUNNEL_ADD_PORT:
1602 		(void)efx_tunnel_config_udp_remove(sa->nic,
1603 						   tunnel_udp->udp_port,
1604 						   tunnel_proto);
1605 		break;
1606 	case SFC_UDP_TUNNEL_DEL_PORT:
1607 		(void)efx_tunnel_config_udp_add(sa->nic,
1608 						tunnel_udp->udp_port,
1609 						tunnel_proto);
1610 		break;
1611 	}
1612 
1613 fail_op:
1614 fail_bad_op:
1615 	sfc_adapter_unlock(sa);
1616 
1617 fail_bad_proto:
1618 	SFC_ASSERT(rc > 0);
1619 	return -rc;
1620 }
1621 
1622 static int
1623 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1624 			    struct rte_eth_udp_tunnel *tunnel_udp)
1625 {
1626 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1627 }
1628 
1629 static int
1630 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1631 			    struct rte_eth_udp_tunnel *tunnel_udp)
1632 {
1633 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1634 }
1635 
1636 /*
1637  * The function is used by the secondary process as well. It must not
1638  * use any process-local pointers from the adapter data.
1639  */
1640 static int
1641 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1642 			  struct rte_eth_rss_conf *rss_conf)
1643 {
1644 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1645 	struct sfc_rss *rss = &sas->rss;
1646 
1647 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1648 		return -ENOTSUP;
1649 
1650 	/*
1651 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1652 	 * hence, conversion is done here to derive a correct set of RTE_ETH_RSS
1653 	 * flags which corresponds to the active EFX configuration stored
1654 	 * locally in 'sfc_adapter' and kept up-to-date
1655 	 */
1656 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1657 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1658 	if (rss_conf->rss_key != NULL)
1659 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1660 
1661 	return 0;
1662 }
1663 
1664 static int
1665 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1666 			struct rte_eth_rss_conf *rss_conf)
1667 {
1668 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1669 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1670 	unsigned int efx_hash_types;
1671 	unsigned int n_contexts;
1672 	unsigned int mode_i = 0;
1673 	unsigned int key_i = 0;
1674 	uint32_t contexts[2];
1675 	unsigned int i = 0;
1676 	int rc = 0;
1677 
1678 	if (sfc_sa2shared(sa)->isolated)
1679 		return -ENOTSUP;
1680 
1681 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1682 		sfc_err(sa, "RSS is not available");
1683 		return -ENOTSUP;
1684 	}
1685 
1686 	if (rss->channels == 0) {
1687 		sfc_err(sa, "RSS is not configured");
1688 		return -EINVAL;
1689 	}
1690 
1691 	if ((rss_conf->rss_key != NULL) &&
1692 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1693 		sfc_err(sa, "RSS key size is wrong (should be %zu)",
1694 			sizeof(rss->key));
1695 		return -EINVAL;
1696 	}
1697 
1698 	sfc_adapter_lock(sa);
1699 
1700 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1701 	if (rc != 0)
1702 		goto fail_rx_hf_rte_to_efx;
1703 
1704 	contexts[0] = EFX_RSS_CONTEXT_DEFAULT;
1705 	contexts[1] = rss->dummy_ctx.nic_handle;
1706 	n_contexts = (rss->dummy_ctx.nic_handle_refcnt == 0) ? 1 : 2;
1707 
1708 	for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1709 		rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1710 					   rss->hash_alg, efx_hash_types,
1711 					   B_TRUE);
1712 		if (rc != 0)
1713 			goto fail_scale_mode_set;
1714 	}
1715 
1716 	if (rss_conf->rss_key != NULL) {
1717 		if (sa->state == SFC_ETHDEV_STARTED) {
1718 			for (key_i = 0; key_i < n_contexts; key_i++) {
1719 				rc = efx_rx_scale_key_set(sa->nic,
1720 							  contexts[key_i],
1721 							  rss_conf->rss_key,
1722 							  sizeof(rss->key));
1723 				if (rc != 0)
1724 					goto fail_scale_key_set;
1725 			}
1726 		}
1727 
1728 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1729 	}
1730 
1731 	rss->hash_types = efx_hash_types;
1732 
1733 	sfc_adapter_unlock(sa);
1734 
1735 	return 0;
1736 
1737 fail_scale_key_set:
1738 	for (i = 0; i < key_i; i++) {
1739 		if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1740 					 sizeof(rss->key)) != 0)
1741 			sfc_err(sa, "failed to restore RSS key");
1742 	}
1743 
1744 fail_scale_mode_set:
1745 	for (i = 0; i < mode_i; i++) {
1746 		if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1747 					  EFX_RX_HASHALG_TOEPLITZ,
1748 					  rss->hash_types, B_TRUE) != 0)
1749 			sfc_err(sa, "failed to restore RSS mode");
1750 	}
1751 
1752 fail_rx_hf_rte_to_efx:
1753 	sfc_adapter_unlock(sa);
1754 	return -rc;
1755 }
1756 
1757 /*
1758  * The function is used by the secondary process as well. It must not
1759  * use any process-local pointers from the adapter data.
1760  */
1761 static int
1762 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1763 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1764 		       uint16_t reta_size)
1765 {
1766 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1767 	struct sfc_rss *rss = &sas->rss;
1768 	int entry;
1769 
1770 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1771 		return -ENOTSUP;
1772 
1773 	if (rss->channels == 0)
1774 		return -EINVAL;
1775 
1776 	if (reta_size != EFX_RSS_TBL_SIZE)
1777 		return -EINVAL;
1778 
1779 	for (entry = 0; entry < reta_size; entry++) {
1780 		int grp = entry / RTE_ETH_RETA_GROUP_SIZE;
1781 		int grp_idx = entry % RTE_ETH_RETA_GROUP_SIZE;
1782 
1783 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1784 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 static int
1791 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1792 			struct rte_eth_rss_reta_entry64 *reta_conf,
1793 			uint16_t reta_size)
1794 {
1795 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1796 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1797 	unsigned int *rss_tbl_new;
1798 	uint16_t entry;
1799 	int rc = 0;
1800 
1801 
1802 	if (sfc_sa2shared(sa)->isolated)
1803 		return -ENOTSUP;
1804 
1805 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1806 		sfc_err(sa, "RSS is not available");
1807 		return -ENOTSUP;
1808 	}
1809 
1810 	if (rss->channels == 0) {
1811 		sfc_err(sa, "RSS is not configured");
1812 		return -EINVAL;
1813 	}
1814 
1815 	if (reta_size != EFX_RSS_TBL_SIZE) {
1816 		sfc_err(sa, "RETA size is wrong (should be %u)",
1817 			EFX_RSS_TBL_SIZE);
1818 		return -EINVAL;
1819 	}
1820 
1821 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1822 	if (rss_tbl_new == NULL)
1823 		return -ENOMEM;
1824 
1825 	sfc_adapter_lock(sa);
1826 
1827 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1828 
1829 	for (entry = 0; entry < reta_size; entry++) {
1830 		int grp_idx = entry % RTE_ETH_RETA_GROUP_SIZE;
1831 		struct rte_eth_rss_reta_entry64 *grp;
1832 
1833 		grp = &reta_conf[entry / RTE_ETH_RETA_GROUP_SIZE];
1834 
1835 		if (grp->mask & (1ull << grp_idx)) {
1836 			if (grp->reta[grp_idx] >= rss->channels) {
1837 				rc = EINVAL;
1838 				goto bad_reta_entry;
1839 			}
1840 			rss_tbl_new[entry] = grp->reta[grp_idx];
1841 		}
1842 	}
1843 
1844 	if (sa->state == SFC_ETHDEV_STARTED) {
1845 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1846 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1847 		if (rc != 0)
1848 			goto fail_scale_tbl_set;
1849 	}
1850 
1851 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1852 
1853 fail_scale_tbl_set:
1854 bad_reta_entry:
1855 	sfc_adapter_unlock(sa);
1856 
1857 	rte_free(rss_tbl_new);
1858 
1859 	SFC_ASSERT(rc >= 0);
1860 	return -rc;
1861 }
1862 
1863 static int
1864 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
1865 		     const struct rte_flow_ops **ops)
1866 {
1867 	*ops = &sfc_flow_ops;
1868 	return 0;
1869 }
1870 
1871 static int
1872 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1873 {
1874 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1875 
1876 	/*
1877 	 * If Rx datapath does not provide callback to check mempool,
1878 	 * all pools are supported.
1879 	 */
1880 	if (sap->dp_rx->pool_ops_supported == NULL)
1881 		return 1;
1882 
1883 	return sap->dp_rx->pool_ops_supported(pool);
1884 }
1885 
1886 static int
1887 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1888 {
1889 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1890 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1891 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1892 	struct sfc_rxq_info *rxq_info;
1893 
1894 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1895 
1896 	return sap->dp_rx->intr_enable(rxq_info->dp);
1897 }
1898 
1899 static int
1900 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1901 {
1902 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1903 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1904 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1905 	struct sfc_rxq_info *rxq_info;
1906 
1907 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1908 
1909 	return sap->dp_rx->intr_disable(rxq_info->dp);
1910 }
1911 
1912 struct sfc_mport_journal_ctx {
1913 	struct sfc_adapter		*sa;
1914 	uint16_t			switch_domain_id;
1915 	uint32_t			mcdi_handle;
1916 	bool				controllers_assigned;
1917 	efx_pcie_interface_t		*controllers;
1918 	size_t				nb_controllers;
1919 };
1920 
1921 static int
1922 sfc_journal_ctx_add_controller(struct sfc_mport_journal_ctx *ctx,
1923 			       efx_pcie_interface_t intf)
1924 {
1925 	efx_pcie_interface_t *new_controllers;
1926 	size_t i, target;
1927 	size_t new_size;
1928 
1929 	if (ctx->controllers == NULL) {
1930 		ctx->controllers = rte_malloc("sfc_controller_mapping",
1931 					      sizeof(ctx->controllers[0]), 0);
1932 		if (ctx->controllers == NULL)
1933 			return ENOMEM;
1934 
1935 		ctx->controllers[0] = intf;
1936 		ctx->nb_controllers = 1;
1937 
1938 		return 0;
1939 	}
1940 
1941 	for (i = 0; i < ctx->nb_controllers; i++) {
1942 		if (ctx->controllers[i] == intf)
1943 			return 0;
1944 		if (ctx->controllers[i] > intf)
1945 			break;
1946 	}
1947 	target = i;
1948 
1949 	ctx->nb_controllers += 1;
1950 	new_size = ctx->nb_controllers * sizeof(ctx->controllers[0]);
1951 
1952 	new_controllers = rte_realloc(ctx->controllers, new_size, 0);
1953 	if (new_controllers == NULL) {
1954 		rte_free(ctx->controllers);
1955 		return ENOMEM;
1956 	}
1957 	ctx->controllers = new_controllers;
1958 
1959 	for (i = target + 1; i < ctx->nb_controllers; i++)
1960 		ctx->controllers[i] = ctx->controllers[i - 1];
1961 
1962 	ctx->controllers[target] = intf;
1963 
1964 	return 0;
1965 }
1966 
1967 static efx_rc_t
1968 sfc_process_mport_journal_entry(struct sfc_mport_journal_ctx *ctx,
1969 				efx_mport_desc_t *mport)
1970 {
1971 	struct sfc_mae_switch_port_request req;
1972 	efx_mport_sel_t entity_selector;
1973 	efx_mport_sel_t ethdev_mport;
1974 	uint16_t switch_port_id;
1975 	efx_rc_t efx_rc;
1976 	int rc;
1977 
1978 	sfc_dbg(ctx->sa,
1979 		"processing mport id %u (controller %u pf %u vf %u)",
1980 		mport->emd_id.id, mport->emd_vnic.ev_intf,
1981 		mport->emd_vnic.ev_pf, mport->emd_vnic.ev_vf);
1982 	efx_mae_mport_invalid(&ethdev_mport);
1983 
1984 	if (!ctx->controllers_assigned) {
1985 		rc = sfc_journal_ctx_add_controller(ctx,
1986 						    mport->emd_vnic.ev_intf);
1987 		if (rc != 0)
1988 			return rc;
1989 	}
1990 
1991 	/* Build Mport selector */
1992 	efx_rc = efx_mae_mport_by_pcie_mh_function(mport->emd_vnic.ev_intf,
1993 						mport->emd_vnic.ev_pf,
1994 						mport->emd_vnic.ev_vf,
1995 						&entity_selector);
1996 	if (efx_rc != 0) {
1997 		sfc_err(ctx->sa, "failed to build entity mport selector for c%upf%uvf%u",
1998 			mport->emd_vnic.ev_intf,
1999 			mport->emd_vnic.ev_pf,
2000 			mport->emd_vnic.ev_vf);
2001 		return efx_rc;
2002 	}
2003 
2004 	rc = sfc_mae_switch_port_id_by_entity(ctx->switch_domain_id,
2005 					      &entity_selector,
2006 					      SFC_MAE_SWITCH_PORT_REPRESENTOR,
2007 					      &switch_port_id);
2008 	switch (rc) {
2009 	case 0:
2010 		/* Already registered */
2011 		break;
2012 	case ENOENT:
2013 		/*
2014 		 * No representor has been created for this entity.
2015 		 * Create a dummy switch registry entry with an invalid ethdev
2016 		 * mport selector. When a corresponding representor is created,
2017 		 * this entry will be updated.
2018 		 */
2019 		req.type = SFC_MAE_SWITCH_PORT_REPRESENTOR;
2020 		req.entity_mportp = &entity_selector;
2021 		req.ethdev_mportp = &ethdev_mport;
2022 		req.ethdev_port_id = RTE_MAX_ETHPORTS;
2023 		req.port_data.repr.intf = mport->emd_vnic.ev_intf;
2024 		req.port_data.repr.pf = mport->emd_vnic.ev_pf;
2025 		req.port_data.repr.vf = mport->emd_vnic.ev_vf;
2026 
2027 		rc = sfc_mae_assign_switch_port(ctx->switch_domain_id,
2028 						&req, &switch_port_id);
2029 		if (rc != 0) {
2030 			sfc_err(ctx->sa,
2031 				"failed to assign MAE switch port for c%upf%uvf%u: %s",
2032 				mport->emd_vnic.ev_intf,
2033 				mport->emd_vnic.ev_pf,
2034 				mport->emd_vnic.ev_vf,
2035 				rte_strerror(rc));
2036 			return rc;
2037 		}
2038 		break;
2039 	default:
2040 		sfc_err(ctx->sa, "failed to find MAE switch port for c%upf%uvf%u: %s",
2041 			mport->emd_vnic.ev_intf,
2042 			mport->emd_vnic.ev_pf,
2043 			mport->emd_vnic.ev_vf,
2044 			rte_strerror(rc));
2045 		return rc;
2046 	}
2047 
2048 	return 0;
2049 }
2050 
2051 static efx_rc_t
2052 sfc_process_mport_journal_cb(void *data, efx_mport_desc_t *mport,
2053 			     size_t mport_len)
2054 {
2055 	struct sfc_mport_journal_ctx *ctx = data;
2056 
2057 	if (ctx == NULL || ctx->sa == NULL) {
2058 		sfc_err(ctx->sa, "received NULL context or SFC adapter");
2059 		return EINVAL;
2060 	}
2061 
2062 	if (mport_len != sizeof(*mport)) {
2063 		sfc_err(ctx->sa, "actual and expected mport buffer sizes differ");
2064 		return EINVAL;
2065 	}
2066 
2067 	SFC_ASSERT(sfc_adapter_is_locked(ctx->sa));
2068 
2069 	/*
2070 	 * If a zombie flag is set, it means the mport has been marked for
2071 	 * deletion and cannot be used for any new operations. The mport will
2072 	 * be destroyed completely once all references to it are released.
2073 	 */
2074 	if (mport->emd_zombie) {
2075 		sfc_dbg(ctx->sa, "mport is a zombie, skipping");
2076 		return 0;
2077 	}
2078 	if (mport->emd_type != EFX_MPORT_TYPE_VNIC) {
2079 		sfc_dbg(ctx->sa, "mport is not a VNIC, skipping");
2080 		return 0;
2081 	}
2082 	if (mport->emd_vnic.ev_client_type != EFX_MPORT_VNIC_CLIENT_FUNCTION) {
2083 		sfc_dbg(ctx->sa, "mport is not a function, skipping");
2084 		return 0;
2085 	}
2086 	if (mport->emd_vnic.ev_handle == ctx->mcdi_handle) {
2087 		sfc_dbg(ctx->sa, "mport is this driver instance, skipping");
2088 		return 0;
2089 	}
2090 
2091 	return sfc_process_mport_journal_entry(ctx, mport);
2092 }
2093 
2094 static int
2095 sfc_process_mport_journal(struct sfc_adapter *sa)
2096 {
2097 	struct sfc_mport_journal_ctx ctx;
2098 	const efx_pcie_interface_t *controllers;
2099 	size_t nb_controllers;
2100 	efx_rc_t efx_rc;
2101 	int rc;
2102 
2103 	memset(&ctx, 0, sizeof(ctx));
2104 	ctx.sa = sa;
2105 	ctx.switch_domain_id = sa->mae.switch_domain_id;
2106 
2107 	efx_rc = efx_mcdi_get_own_client_handle(sa->nic, &ctx.mcdi_handle);
2108 	if (efx_rc != 0) {
2109 		sfc_err(sa, "failed to get own MCDI handle");
2110 		SFC_ASSERT(efx_rc > 0);
2111 		return efx_rc;
2112 	}
2113 
2114 	rc = sfc_mae_switch_domain_controllers(ctx.switch_domain_id,
2115 					       &controllers, &nb_controllers);
2116 	if (rc != 0) {
2117 		sfc_err(sa, "failed to get controller mapping");
2118 		return rc;
2119 	}
2120 
2121 	ctx.controllers_assigned = controllers != NULL;
2122 	ctx.controllers = NULL;
2123 	ctx.nb_controllers = 0;
2124 
2125 	efx_rc = efx_mae_read_mport_journal(sa->nic,
2126 					    sfc_process_mport_journal_cb, &ctx);
2127 	if (efx_rc != 0) {
2128 		sfc_err(sa, "failed to process MAE mport journal");
2129 		SFC_ASSERT(efx_rc > 0);
2130 		return efx_rc;
2131 	}
2132 
2133 	if (controllers == NULL) {
2134 		rc = sfc_mae_switch_domain_map_controllers(ctx.switch_domain_id,
2135 							   ctx.controllers,
2136 							   ctx.nb_controllers);
2137 		if (rc != 0)
2138 			return rc;
2139 	}
2140 
2141 	return 0;
2142 }
2143 
2144 static void
2145 sfc_count_representors_cb(enum sfc_mae_switch_port_type type,
2146 			  const efx_mport_sel_t *ethdev_mportp __rte_unused,
2147 			  uint16_t ethdev_port_id __rte_unused,
2148 			  const efx_mport_sel_t *entity_mportp __rte_unused,
2149 			  uint16_t switch_port_id __rte_unused,
2150 			  union sfc_mae_switch_port_data *port_datap
2151 				__rte_unused,
2152 			  void *user_datap)
2153 {
2154 	int *counter = user_datap;
2155 
2156 	SFC_ASSERT(counter != NULL);
2157 
2158 	if (type == SFC_MAE_SWITCH_PORT_REPRESENTOR)
2159 		(*counter)++;
2160 }
2161 
2162 struct sfc_get_representors_ctx {
2163 	struct rte_eth_representor_info	*info;
2164 	struct sfc_adapter		*sa;
2165 	uint16_t			switch_domain_id;
2166 	const efx_pcie_interface_t	*controllers;
2167 	size_t				nb_controllers;
2168 };
2169 
2170 static void
2171 sfc_get_representors_cb(enum sfc_mae_switch_port_type type,
2172 			const efx_mport_sel_t *ethdev_mportp __rte_unused,
2173 			uint16_t ethdev_port_id __rte_unused,
2174 			const efx_mport_sel_t *entity_mportp __rte_unused,
2175 			uint16_t switch_port_id,
2176 			union sfc_mae_switch_port_data *port_datap,
2177 			void *user_datap)
2178 {
2179 	struct sfc_get_representors_ctx *ctx = user_datap;
2180 	struct rte_eth_representor_range *range;
2181 	int ret;
2182 	int rc;
2183 
2184 	SFC_ASSERT(ctx != NULL);
2185 	SFC_ASSERT(ctx->info != NULL);
2186 	SFC_ASSERT(ctx->sa != NULL);
2187 
2188 	if (type != SFC_MAE_SWITCH_PORT_REPRESENTOR) {
2189 		sfc_dbg(ctx->sa, "not a representor, skipping");
2190 		return;
2191 	}
2192 	if (ctx->info->nb_ranges >= ctx->info->nb_ranges_alloc) {
2193 		sfc_dbg(ctx->sa, "info structure is full already");
2194 		return;
2195 	}
2196 
2197 	range = &ctx->info->ranges[ctx->info->nb_ranges];
2198 	rc = sfc_mae_switch_controller_from_mapping(ctx->controllers,
2199 						    ctx->nb_controllers,
2200 						    port_datap->repr.intf,
2201 						    &range->controller);
2202 	if (rc != 0) {
2203 		sfc_err(ctx->sa, "invalid representor controller: %d",
2204 			port_datap->repr.intf);
2205 		range->controller = -1;
2206 	}
2207 	range->pf = port_datap->repr.pf;
2208 	range->id_base = switch_port_id;
2209 	range->id_end = switch_port_id;
2210 
2211 	if (port_datap->repr.vf != EFX_PCI_VF_INVALID) {
2212 		range->type = RTE_ETH_REPRESENTOR_VF;
2213 		range->vf = port_datap->repr.vf;
2214 		ret = snprintf(range->name, RTE_DEV_NAME_MAX_LEN,
2215 			       "c%dpf%dvf%d", range->controller, range->pf,
2216 			       range->vf);
2217 	} else {
2218 		range->type = RTE_ETH_REPRESENTOR_PF;
2219 		ret = snprintf(range->name, RTE_DEV_NAME_MAX_LEN,
2220 			 "c%dpf%d", range->controller, range->pf);
2221 	}
2222 	if (ret >= RTE_DEV_NAME_MAX_LEN) {
2223 		sfc_err(ctx->sa, "representor name has been truncated: %s",
2224 			range->name);
2225 	}
2226 
2227 	ctx->info->nb_ranges++;
2228 }
2229 
2230 static int
2231 sfc_representor_info_get(struct rte_eth_dev *dev,
2232 			 struct rte_eth_representor_info *info)
2233 {
2234 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2235 	struct sfc_get_representors_ctx get_repr_ctx;
2236 	const efx_nic_cfg_t *nic_cfg;
2237 	uint16_t switch_domain_id;
2238 	uint32_t nb_repr;
2239 	int controller;
2240 	int rc;
2241 
2242 	sfc_adapter_lock(sa);
2243 
2244 	if (sa->mae.status != SFC_MAE_STATUS_ADMIN) {
2245 		sfc_adapter_unlock(sa);
2246 		return -ENOTSUP;
2247 	}
2248 
2249 	rc = sfc_process_mport_journal(sa);
2250 	if (rc != 0) {
2251 		sfc_adapter_unlock(sa);
2252 		SFC_ASSERT(rc > 0);
2253 		return -rc;
2254 	}
2255 
2256 	switch_domain_id = sa->mae.switch_domain_id;
2257 
2258 	nb_repr = 0;
2259 	rc = sfc_mae_switch_ports_iterate(switch_domain_id,
2260 					  sfc_count_representors_cb,
2261 					  &nb_repr);
2262 	if (rc != 0) {
2263 		sfc_adapter_unlock(sa);
2264 		SFC_ASSERT(rc > 0);
2265 		return -rc;
2266 	}
2267 
2268 	if (info == NULL) {
2269 		sfc_adapter_unlock(sa);
2270 		return nb_repr;
2271 	}
2272 
2273 	rc = sfc_mae_switch_domain_controllers(switch_domain_id,
2274 					       &get_repr_ctx.controllers,
2275 					       &get_repr_ctx.nb_controllers);
2276 	if (rc != 0) {
2277 		sfc_adapter_unlock(sa);
2278 		SFC_ASSERT(rc > 0);
2279 		return -rc;
2280 	}
2281 
2282 	nic_cfg = efx_nic_cfg_get(sa->nic);
2283 
2284 	rc = sfc_mae_switch_domain_get_controller(switch_domain_id,
2285 						  nic_cfg->enc_intf,
2286 						  &controller);
2287 	if (rc != 0) {
2288 		sfc_err(sa, "invalid controller: %d", nic_cfg->enc_intf);
2289 		controller = -1;
2290 	}
2291 
2292 	info->controller = controller;
2293 	info->pf = nic_cfg->enc_pf;
2294 
2295 	get_repr_ctx.info = info;
2296 	get_repr_ctx.sa = sa;
2297 	get_repr_ctx.switch_domain_id = switch_domain_id;
2298 	rc = sfc_mae_switch_ports_iterate(switch_domain_id,
2299 					  sfc_get_representors_cb,
2300 					  &get_repr_ctx);
2301 	if (rc != 0) {
2302 		sfc_adapter_unlock(sa);
2303 		SFC_ASSERT(rc > 0);
2304 		return -rc;
2305 	}
2306 
2307 	sfc_adapter_unlock(sa);
2308 	return nb_repr;
2309 }
2310 
2311 static int
2312 sfc_rx_metadata_negotiate(struct rte_eth_dev *dev, uint64_t *features)
2313 {
2314 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2315 	uint64_t supported = 0;
2316 
2317 	sfc_adapter_lock(sa);
2318 
2319 	if ((sa->priv.dp_rx->features & SFC_DP_RX_FEAT_FLOW_FLAG) != 0)
2320 		supported |= RTE_ETH_RX_METADATA_USER_FLAG;
2321 
2322 	if ((sa->priv.dp_rx->features & SFC_DP_RX_FEAT_FLOW_MARK) != 0)
2323 		supported |= RTE_ETH_RX_METADATA_USER_MARK;
2324 
2325 	if (sfc_flow_tunnel_is_supported(sa))
2326 		supported |= RTE_ETH_RX_METADATA_TUNNEL_ID;
2327 
2328 	sa->negotiated_rx_metadata = supported & *features;
2329 	*features = sa->negotiated_rx_metadata;
2330 
2331 	sfc_adapter_unlock(sa);
2332 
2333 	return 0;
2334 }
2335 
2336 static const struct eth_dev_ops sfc_eth_dev_ops = {
2337 	.dev_configure			= sfc_dev_configure,
2338 	.dev_start			= sfc_dev_start,
2339 	.dev_stop			= sfc_dev_stop,
2340 	.dev_set_link_up		= sfc_dev_set_link_up,
2341 	.dev_set_link_down		= sfc_dev_set_link_down,
2342 	.dev_close			= sfc_dev_close,
2343 	.promiscuous_enable		= sfc_dev_promisc_enable,
2344 	.promiscuous_disable		= sfc_dev_promisc_disable,
2345 	.allmulticast_enable		= sfc_dev_allmulti_enable,
2346 	.allmulticast_disable		= sfc_dev_allmulti_disable,
2347 	.link_update			= sfc_dev_link_update,
2348 	.stats_get			= sfc_stats_get,
2349 	.stats_reset			= sfc_stats_reset,
2350 	.xstats_get			= sfc_xstats_get,
2351 	.xstats_reset			= sfc_stats_reset,
2352 	.xstats_get_names		= sfc_xstats_get_names,
2353 	.dev_infos_get			= sfc_dev_infos_get,
2354 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2355 	.mtu_set			= sfc_dev_set_mtu,
2356 	.rx_queue_start			= sfc_rx_queue_start,
2357 	.rx_queue_stop			= sfc_rx_queue_stop,
2358 	.tx_queue_start			= sfc_tx_queue_start,
2359 	.tx_queue_stop			= sfc_tx_queue_stop,
2360 	.rx_queue_setup			= sfc_rx_queue_setup,
2361 	.rx_queue_release		= sfc_rx_queue_release,
2362 	.rx_queue_intr_enable		= sfc_rx_queue_intr_enable,
2363 	.rx_queue_intr_disable		= sfc_rx_queue_intr_disable,
2364 	.tx_queue_setup			= sfc_tx_queue_setup,
2365 	.tx_queue_release		= sfc_tx_queue_release,
2366 	.flow_ctrl_get			= sfc_flow_ctrl_get,
2367 	.flow_ctrl_set			= sfc_flow_ctrl_set,
2368 	.mac_addr_set			= sfc_mac_addr_set,
2369 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
2370 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
2371 	.reta_update			= sfc_dev_rss_reta_update,
2372 	.reta_query			= sfc_dev_rss_reta_query,
2373 	.rss_hash_update		= sfc_dev_rss_hash_update,
2374 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2375 	.flow_ops_get			= sfc_dev_flow_ops_get,
2376 	.set_mc_addr_list		= sfc_set_mc_addr_list,
2377 	.rxq_info_get			= sfc_rx_queue_info_get,
2378 	.txq_info_get			= sfc_tx_queue_info_get,
2379 	.fw_version_get			= sfc_fw_version_get,
2380 	.xstats_get_by_id		= sfc_xstats_get_by_id,
2381 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
2382 	.pool_ops_supported		= sfc_pool_ops_supported,
2383 	.representor_info_get		= sfc_representor_info_get,
2384 	.rx_metadata_negotiate		= sfc_rx_metadata_negotiate,
2385 };
2386 
2387 struct sfc_ethdev_init_data {
2388 	uint16_t		nb_representors;
2389 };
2390 
2391 /**
2392  * Duplicate a string in potentially shared memory required for
2393  * multi-process support.
2394  *
2395  * strdup() allocates from process-local heap/memory.
2396  */
2397 static char *
2398 sfc_strdup(const char *str)
2399 {
2400 	size_t size;
2401 	char *copy;
2402 
2403 	if (str == NULL)
2404 		return NULL;
2405 
2406 	size = strlen(str) + 1;
2407 	copy = rte_malloc(__func__, size, 0);
2408 	if (copy != NULL)
2409 		rte_memcpy(copy, str, size);
2410 
2411 	return copy;
2412 }
2413 
2414 static int
2415 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
2416 {
2417 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2418 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2419 	const struct sfc_dp_rx *dp_rx;
2420 	const struct sfc_dp_tx *dp_tx;
2421 	const efx_nic_cfg_t *encp;
2422 	unsigned int avail_caps = 0;
2423 	const char *rx_name = NULL;
2424 	const char *tx_name = NULL;
2425 	int rc;
2426 
2427 	switch (sa->family) {
2428 	case EFX_FAMILY_HUNTINGTON:
2429 	case EFX_FAMILY_MEDFORD:
2430 	case EFX_FAMILY_MEDFORD2:
2431 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
2432 		avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
2433 		avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
2434 		break;
2435 	case EFX_FAMILY_RIVERHEAD:
2436 		avail_caps |= SFC_DP_HW_FW_CAP_EF100;
2437 		break;
2438 	default:
2439 		break;
2440 	}
2441 
2442 	encp = efx_nic_cfg_get(sa->nic);
2443 	if (encp->enc_rx_es_super_buffer_supported)
2444 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
2445 
2446 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
2447 				sfc_kvarg_string_handler, &rx_name);
2448 	if (rc != 0)
2449 		goto fail_kvarg_rx_datapath;
2450 
2451 	if (rx_name != NULL) {
2452 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
2453 		if (dp_rx == NULL) {
2454 			sfc_err(sa, "Rx datapath %s not found", rx_name);
2455 			rc = ENOENT;
2456 			goto fail_dp_rx;
2457 		}
2458 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
2459 			sfc_err(sa,
2460 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
2461 				rx_name);
2462 			rc = EINVAL;
2463 			goto fail_dp_rx_caps;
2464 		}
2465 	} else {
2466 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
2467 		if (dp_rx == NULL) {
2468 			sfc_err(sa, "Rx datapath by caps %#x not found",
2469 				avail_caps);
2470 			rc = ENOENT;
2471 			goto fail_dp_rx;
2472 		}
2473 	}
2474 
2475 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
2476 	if (sas->dp_rx_name == NULL) {
2477 		rc = ENOMEM;
2478 		goto fail_dp_rx_name;
2479 	}
2480 
2481 	if (strcmp(dp_rx->dp.name, SFC_KVARG_DATAPATH_EF10_ESSB) == 0) {
2482 		/* FLAG and MARK are always available from Rx prefix. */
2483 		sa->negotiated_rx_metadata |= RTE_ETH_RX_METADATA_USER_FLAG;
2484 		sa->negotiated_rx_metadata |= RTE_ETH_RX_METADATA_USER_MARK;
2485 	}
2486 
2487 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
2488 
2489 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
2490 				sfc_kvarg_string_handler, &tx_name);
2491 	if (rc != 0)
2492 		goto fail_kvarg_tx_datapath;
2493 
2494 	if (tx_name != NULL) {
2495 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
2496 		if (dp_tx == NULL) {
2497 			sfc_err(sa, "Tx datapath %s not found", tx_name);
2498 			rc = ENOENT;
2499 			goto fail_dp_tx;
2500 		}
2501 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
2502 			sfc_err(sa,
2503 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
2504 				tx_name);
2505 			rc = EINVAL;
2506 			goto fail_dp_tx_caps;
2507 		}
2508 	} else {
2509 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
2510 		if (dp_tx == NULL) {
2511 			sfc_err(sa, "Tx datapath by caps %#x not found",
2512 				avail_caps);
2513 			rc = ENOENT;
2514 			goto fail_dp_tx;
2515 		}
2516 	}
2517 
2518 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
2519 	if (sas->dp_tx_name == NULL) {
2520 		rc = ENOMEM;
2521 		goto fail_dp_tx_name;
2522 	}
2523 
2524 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
2525 
2526 	sa->priv.dp_rx = dp_rx;
2527 	sa->priv.dp_tx = dp_tx;
2528 
2529 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2530 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2531 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2532 
2533 	dev->rx_queue_count = sfc_rx_queue_count;
2534 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2535 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2536 	dev->dev_ops = &sfc_eth_dev_ops;
2537 
2538 	return 0;
2539 
2540 fail_dp_tx_name:
2541 fail_dp_tx_caps:
2542 fail_dp_tx:
2543 fail_kvarg_tx_datapath:
2544 	rte_free(sas->dp_rx_name);
2545 	sas->dp_rx_name = NULL;
2546 
2547 fail_dp_rx_name:
2548 fail_dp_rx_caps:
2549 fail_dp_rx:
2550 fail_kvarg_rx_datapath:
2551 	return rc;
2552 }
2553 
2554 static void
2555 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2556 {
2557 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2558 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2559 
2560 	dev->dev_ops = NULL;
2561 	dev->tx_pkt_prepare = NULL;
2562 	dev->rx_pkt_burst = NULL;
2563 	dev->tx_pkt_burst = NULL;
2564 
2565 	rte_free(sas->dp_tx_name);
2566 	sas->dp_tx_name = NULL;
2567 	sa->priv.dp_tx = NULL;
2568 
2569 	rte_free(sas->dp_rx_name);
2570 	sas->dp_rx_name = NULL;
2571 	sa->priv.dp_rx = NULL;
2572 }
2573 
2574 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2575 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2576 	.reta_query			= sfc_dev_rss_reta_query,
2577 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2578 	.rxq_info_get			= sfc_rx_queue_info_get,
2579 	.txq_info_get			= sfc_tx_queue_info_get,
2580 };
2581 
2582 static int
2583 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2584 {
2585 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2586 	struct sfc_adapter_priv *sap;
2587 	const struct sfc_dp_rx *dp_rx;
2588 	const struct sfc_dp_tx *dp_tx;
2589 	int rc;
2590 
2591 	/*
2592 	 * Allocate process private data from heap, since it should not
2593 	 * be located in shared memory allocated using rte_malloc() API.
2594 	 */
2595 	sap = calloc(1, sizeof(*sap));
2596 	if (sap == NULL) {
2597 		rc = ENOMEM;
2598 		goto fail_alloc_priv;
2599 	}
2600 
2601 	sap->logtype_main = logtype_main;
2602 
2603 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2604 	if (dp_rx == NULL) {
2605 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2606 			"cannot find %s Rx datapath", sas->dp_rx_name);
2607 		rc = ENOENT;
2608 		goto fail_dp_rx;
2609 	}
2610 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2611 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2612 			"%s Rx datapath does not support multi-process",
2613 			sas->dp_rx_name);
2614 		rc = EINVAL;
2615 		goto fail_dp_rx_multi_process;
2616 	}
2617 
2618 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2619 	if (dp_tx == NULL) {
2620 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2621 			"cannot find %s Tx datapath", sas->dp_tx_name);
2622 		rc = ENOENT;
2623 		goto fail_dp_tx;
2624 	}
2625 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2626 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2627 			"%s Tx datapath does not support multi-process",
2628 			sas->dp_tx_name);
2629 		rc = EINVAL;
2630 		goto fail_dp_tx_multi_process;
2631 	}
2632 
2633 	sap->dp_rx = dp_rx;
2634 	sap->dp_tx = dp_tx;
2635 
2636 	dev->process_private = sap;
2637 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2638 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2639 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2640 	dev->rx_queue_count = sfc_rx_queue_count;
2641 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2642 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2643 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2644 
2645 	return 0;
2646 
2647 fail_dp_tx_multi_process:
2648 fail_dp_tx:
2649 fail_dp_rx_multi_process:
2650 fail_dp_rx:
2651 	free(sap);
2652 
2653 fail_alloc_priv:
2654 	return rc;
2655 }
2656 
2657 static void
2658 sfc_register_dp(void)
2659 {
2660 	/* Register once */
2661 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2662 		/* Prefer EF10 datapath */
2663 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2664 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2665 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2666 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2667 
2668 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2669 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2670 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2671 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2672 	}
2673 }
2674 
2675 static int
2676 sfc_parse_switch_mode(struct sfc_adapter *sa, bool has_representors)
2677 {
2678 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
2679 	const char *switch_mode = NULL;
2680 	int rc;
2681 
2682 	sfc_log_init(sa, "entry");
2683 
2684 	rc = sfc_kvargs_process(sa, SFC_KVARG_SWITCH_MODE,
2685 				sfc_kvarg_string_handler, &switch_mode);
2686 	if (rc != 0)
2687 		goto fail_kvargs;
2688 
2689 	if (switch_mode == NULL) {
2690 		sa->switchdev = encp->enc_mae_admin &&
2691 				(!encp->enc_datapath_cap_evb ||
2692 				 has_representors);
2693 	} else if (strcasecmp(switch_mode, SFC_KVARG_SWITCH_MODE_LEGACY) == 0) {
2694 		sa->switchdev = false;
2695 	} else if (strcasecmp(switch_mode,
2696 			      SFC_KVARG_SWITCH_MODE_SWITCHDEV) == 0) {
2697 		sa->switchdev = true;
2698 	} else {
2699 		sfc_err(sa, "invalid switch mode device argument '%s'",
2700 			switch_mode);
2701 		rc = EINVAL;
2702 		goto fail_mode;
2703 	}
2704 
2705 	sfc_log_init(sa, "done");
2706 
2707 	return 0;
2708 
2709 fail_mode:
2710 fail_kvargs:
2711 	sfc_log_init(sa, "failed: %s", rte_strerror(rc));
2712 
2713 	return rc;
2714 }
2715 
2716 static int
2717 sfc_eth_dev_init(struct rte_eth_dev *dev, void *init_params)
2718 {
2719 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2720 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2721 	struct sfc_ethdev_init_data *init_data = init_params;
2722 	uint32_t logtype_main;
2723 	struct sfc_adapter *sa;
2724 	int rc;
2725 	const efx_nic_cfg_t *encp;
2726 	const struct rte_ether_addr *from;
2727 	int ret;
2728 
2729 	if (sfc_efx_dev_class_get(pci_dev->device.devargs) !=
2730 			SFC_EFX_DEV_CLASS_NET) {
2731 		SFC_GENERIC_LOG(DEBUG,
2732 			"Incompatible device class: skip probing, should be probed by other sfc driver.");
2733 		return 1;
2734 	}
2735 
2736 	rc = sfc_dp_mport_register();
2737 	if (rc != 0)
2738 		return rc;
2739 
2740 	sfc_register_dp();
2741 
2742 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2743 					    SFC_LOGTYPE_MAIN_STR,
2744 					    RTE_LOG_NOTICE);
2745 
2746 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2747 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2748 
2749 	/* Required for logging */
2750 	ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2751 			"PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2752 			pci_dev->addr.domain, pci_dev->addr.bus,
2753 			pci_dev->addr.devid, pci_dev->addr.function,
2754 			dev->data->port_id);
2755 	if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2756 		SFC_GENERIC_LOG(ERR,
2757 			"reserved log prefix is too short for " PCI_PRI_FMT,
2758 			pci_dev->addr.domain, pci_dev->addr.bus,
2759 			pci_dev->addr.devid, pci_dev->addr.function);
2760 		return -EINVAL;
2761 	}
2762 	sas->pci_addr = pci_dev->addr;
2763 	sas->port_id = dev->data->port_id;
2764 
2765 	/*
2766 	 * Allocate process private data from heap, since it should not
2767 	 * be located in shared memory allocated using rte_malloc() API.
2768 	 */
2769 	sa = calloc(1, sizeof(*sa));
2770 	if (sa == NULL) {
2771 		rc = ENOMEM;
2772 		goto fail_alloc_sa;
2773 	}
2774 
2775 	dev->process_private = sa;
2776 
2777 	/* Required for logging */
2778 	sa->priv.shared = sas;
2779 	sa->priv.logtype_main = logtype_main;
2780 
2781 	sa->eth_dev = dev;
2782 
2783 	/* Copy PCI device info to the dev->data */
2784 	rte_eth_copy_pci_info(dev, pci_dev);
2785 	dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
2786 
2787 	rc = sfc_kvargs_parse(sa);
2788 	if (rc != 0)
2789 		goto fail_kvargs_parse;
2790 
2791 	sfc_log_init(sa, "entry");
2792 
2793 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2794 	if (dev->data->mac_addrs == NULL) {
2795 		rc = ENOMEM;
2796 		goto fail_mac_addrs;
2797 	}
2798 
2799 	sfc_adapter_lock_init(sa);
2800 	sfc_adapter_lock(sa);
2801 
2802 	sfc_log_init(sa, "probing");
2803 	rc = sfc_probe(sa);
2804 	if (rc != 0)
2805 		goto fail_probe;
2806 
2807 	/*
2808 	 * Selecting a default switch mode requires the NIC to be probed and
2809 	 * to have its capabilities filled in.
2810 	 */
2811 	rc = sfc_parse_switch_mode(sa, init_data->nb_representors > 0);
2812 	if (rc != 0)
2813 		goto fail_switch_mode;
2814 
2815 	sfc_log_init(sa, "set device ops");
2816 	rc = sfc_eth_dev_set_ops(dev);
2817 	if (rc != 0)
2818 		goto fail_set_ops;
2819 
2820 	sfc_log_init(sa, "attaching");
2821 	rc = sfc_attach(sa);
2822 	if (rc != 0)
2823 		goto fail_attach;
2824 
2825 	if (sa->switchdev && sa->mae.status != SFC_MAE_STATUS_ADMIN) {
2826 		sfc_err(sa,
2827 			"failed to enable switchdev mode without admin MAE privilege");
2828 		rc = ENOTSUP;
2829 		goto fail_switchdev_no_mae;
2830 	}
2831 
2832 	encp = efx_nic_cfg_get(sa->nic);
2833 
2834 	/*
2835 	 * The arguments are really reverse order in comparison to
2836 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2837 	 */
2838 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2839 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2840 
2841 	/*
2842 	 * Setup the NIC DMA mapping handler. All internal mempools
2843 	 * MUST be created on attach before this point, and the
2844 	 * adapter MUST NOT create mempools with the adapter lock
2845 	 * held after this point.
2846 	 */
2847 	rc = sfc_nic_dma_attach(sa);
2848 	if (rc != 0)
2849 		goto fail_nic_dma_attach;
2850 
2851 	sfc_adapter_unlock(sa);
2852 
2853 	sfc_log_init(sa, "done");
2854 	return 0;
2855 
2856 fail_nic_dma_attach:
2857 fail_switchdev_no_mae:
2858 	sfc_detach(sa);
2859 
2860 fail_attach:
2861 	sfc_eth_dev_clear_ops(dev);
2862 
2863 fail_set_ops:
2864 fail_switch_mode:
2865 	sfc_unprobe(sa);
2866 
2867 fail_probe:
2868 	sfc_adapter_unlock(sa);
2869 	sfc_adapter_lock_fini(sa);
2870 	rte_free(dev->data->mac_addrs);
2871 	dev->data->mac_addrs = NULL;
2872 
2873 fail_mac_addrs:
2874 	sfc_kvargs_cleanup(sa);
2875 
2876 fail_kvargs_parse:
2877 	sfc_log_init(sa, "failed %d", rc);
2878 	dev->process_private = NULL;
2879 	free(sa);
2880 
2881 fail_alloc_sa:
2882 	SFC_ASSERT(rc > 0);
2883 	return -rc;
2884 }
2885 
2886 static int
2887 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2888 {
2889 	sfc_dev_close(dev);
2890 
2891 	return 0;
2892 }
2893 
2894 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2895 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2896 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2897 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2898 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2899 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2900 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2901 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2902 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2903 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2904 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD_VF) },
2905 	{ .vendor_id = 0 /* sentinel */ }
2906 };
2907 
2908 static int
2909 sfc_parse_rte_devargs(const char *args, struct rte_eth_devargs *devargs)
2910 {
2911 	struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
2912 	int rc;
2913 
2914 	if (args != NULL) {
2915 		rc = rte_eth_devargs_parse(args, &eth_da);
2916 		if (rc != 0) {
2917 			SFC_GENERIC_LOG(ERR,
2918 					"Failed to parse generic devargs '%s'",
2919 					args);
2920 			return rc;
2921 		}
2922 	}
2923 
2924 	*devargs = eth_da;
2925 
2926 	return 0;
2927 }
2928 
2929 static int
2930 sfc_eth_dev_find_or_create(struct rte_pci_device *pci_dev,
2931 			   struct sfc_ethdev_init_data *init_data,
2932 			   struct rte_eth_dev **devp,
2933 			   bool *dev_created)
2934 {
2935 	struct rte_eth_dev *dev;
2936 	bool created = false;
2937 	int rc;
2938 
2939 	dev = rte_eth_dev_allocated(pci_dev->device.name);
2940 	if (dev == NULL) {
2941 		rc = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
2942 					sizeof(struct sfc_adapter_shared),
2943 					eth_dev_pci_specific_init, pci_dev,
2944 					sfc_eth_dev_init, init_data);
2945 		if (rc != 0) {
2946 			SFC_GENERIC_LOG(ERR, "Failed to create sfc ethdev '%s'",
2947 					pci_dev->device.name);
2948 			return rc;
2949 		}
2950 
2951 		created = true;
2952 
2953 		dev = rte_eth_dev_allocated(pci_dev->device.name);
2954 		if (dev == NULL) {
2955 			SFC_GENERIC_LOG(ERR,
2956 				"Failed to find allocated sfc ethdev '%s'",
2957 				pci_dev->device.name);
2958 			return -ENODEV;
2959 		}
2960 	}
2961 
2962 	*devp = dev;
2963 	*dev_created = created;
2964 
2965 	return 0;
2966 }
2967 
2968 static int
2969 sfc_eth_dev_create_repr(struct sfc_adapter *sa,
2970 			efx_pcie_interface_t controller,
2971 			uint16_t port,
2972 			uint16_t repr_port,
2973 			enum rte_eth_representor_type type)
2974 {
2975 	struct sfc_repr_entity_info entity;
2976 	efx_mport_sel_t mport_sel;
2977 	int rc;
2978 
2979 	switch (type) {
2980 	case RTE_ETH_REPRESENTOR_NONE:
2981 		return 0;
2982 	case RTE_ETH_REPRESENTOR_VF:
2983 	case RTE_ETH_REPRESENTOR_PF:
2984 		break;
2985 	case RTE_ETH_REPRESENTOR_SF:
2986 		sfc_err(sa, "SF representors are not supported");
2987 		return ENOTSUP;
2988 	default:
2989 		sfc_err(sa, "unknown representor type: %d", type);
2990 		return ENOTSUP;
2991 	}
2992 
2993 	rc = efx_mae_mport_by_pcie_mh_function(controller,
2994 					       port,
2995 					       repr_port,
2996 					       &mport_sel);
2997 	if (rc != 0) {
2998 		sfc_err(sa,
2999 			"failed to get m-port selector for controller %u port %u repr_port %u: %s",
3000 			controller, port, repr_port, rte_strerror(-rc));
3001 		return rc;
3002 	}
3003 
3004 	memset(&entity, 0, sizeof(entity));
3005 	entity.type = type;
3006 	entity.intf = controller;
3007 	entity.pf = port;
3008 	entity.vf = repr_port;
3009 
3010 	rc = sfc_repr_create(sa->eth_dev, &entity, sa->mae.switch_domain_id,
3011 			     &mport_sel);
3012 	if (rc != 0) {
3013 		sfc_err(sa,
3014 			"failed to create representor for controller %u port %u repr_port %u: %s",
3015 			controller, port, repr_port, rte_strerror(-rc));
3016 		return rc;
3017 	}
3018 
3019 	return 0;
3020 }
3021 
3022 static int
3023 sfc_eth_dev_create_repr_port(struct sfc_adapter *sa,
3024 			     const struct rte_eth_devargs *eth_da,
3025 			     efx_pcie_interface_t controller,
3026 			     uint16_t port)
3027 {
3028 	int first_error = 0;
3029 	uint16_t i;
3030 	int rc;
3031 
3032 	if (eth_da->type == RTE_ETH_REPRESENTOR_PF) {
3033 		return sfc_eth_dev_create_repr(sa, controller, port,
3034 					       EFX_PCI_VF_INVALID,
3035 					       eth_da->type);
3036 	}
3037 
3038 	for (i = 0; i < eth_da->nb_representor_ports; i++) {
3039 		rc = sfc_eth_dev_create_repr(sa, controller, port,
3040 					     eth_da->representor_ports[i],
3041 					     eth_da->type);
3042 		if (rc != 0 && first_error == 0)
3043 			first_error = rc;
3044 	}
3045 
3046 	return first_error;
3047 }
3048 
3049 static int
3050 sfc_eth_dev_create_repr_controller(struct sfc_adapter *sa,
3051 				   const struct rte_eth_devargs *eth_da,
3052 				   efx_pcie_interface_t controller)
3053 {
3054 	const efx_nic_cfg_t *encp;
3055 	int first_error = 0;
3056 	uint16_t default_port;
3057 	uint16_t i;
3058 	int rc;
3059 
3060 	if (eth_da->nb_ports == 0) {
3061 		encp = efx_nic_cfg_get(sa->nic);
3062 		default_port = encp->enc_intf == controller ? encp->enc_pf : 0;
3063 		return sfc_eth_dev_create_repr_port(sa, eth_da, controller,
3064 						    default_port);
3065 	}
3066 
3067 	for (i = 0; i < eth_da->nb_ports; i++) {
3068 		rc = sfc_eth_dev_create_repr_port(sa, eth_da, controller,
3069 						  eth_da->ports[i]);
3070 		if (rc != 0 && first_error == 0)
3071 			first_error = rc;
3072 	}
3073 
3074 	return first_error;
3075 }
3076 
3077 static int
3078 sfc_eth_dev_create_representors(struct rte_eth_dev *dev,
3079 				const struct rte_eth_devargs *eth_da)
3080 {
3081 	efx_pcie_interface_t intf;
3082 	const efx_nic_cfg_t *encp;
3083 	struct sfc_adapter *sa;
3084 	uint16_t switch_domain_id;
3085 	uint16_t i;
3086 	int rc;
3087 
3088 	sa = sfc_adapter_by_eth_dev(dev);
3089 	switch_domain_id = sa->mae.switch_domain_id;
3090 
3091 	switch (eth_da->type) {
3092 	case RTE_ETH_REPRESENTOR_NONE:
3093 		return 0;
3094 	case RTE_ETH_REPRESENTOR_PF:
3095 	case RTE_ETH_REPRESENTOR_VF:
3096 		break;
3097 	case RTE_ETH_REPRESENTOR_SF:
3098 		sfc_err(sa, "SF representors are not supported");
3099 		return -ENOTSUP;
3100 	default:
3101 		sfc_err(sa, "unknown representor type: %d",
3102 			eth_da->type);
3103 		return -ENOTSUP;
3104 	}
3105 
3106 	if (!sa->switchdev) {
3107 		sfc_err(sa, "cannot create representors in non-switchdev mode");
3108 		return -EINVAL;
3109 	}
3110 
3111 	if (!sfc_repr_available(sfc_sa2shared(sa))) {
3112 		sfc_err(sa, "cannot create representors: unsupported");
3113 
3114 		return -ENOTSUP;
3115 	}
3116 
3117 	/*
3118 	 * This is needed to construct the DPDK controller -> EFX interface
3119 	 * mapping.
3120 	 */
3121 	sfc_adapter_lock(sa);
3122 	rc = sfc_process_mport_journal(sa);
3123 	sfc_adapter_unlock(sa);
3124 	if (rc != 0) {
3125 		SFC_ASSERT(rc > 0);
3126 		return -rc;
3127 	}
3128 
3129 	if (eth_da->nb_mh_controllers > 0) {
3130 		for (i = 0; i < eth_da->nb_mh_controllers; i++) {
3131 			rc = sfc_mae_switch_domain_get_intf(switch_domain_id,
3132 						eth_da->mh_controllers[i],
3133 						&intf);
3134 			if (rc != 0) {
3135 				sfc_err(sa, "failed to get representor");
3136 				continue;
3137 			}
3138 			sfc_eth_dev_create_repr_controller(sa, eth_da, intf);
3139 		}
3140 	} else {
3141 		encp = efx_nic_cfg_get(sa->nic);
3142 		sfc_eth_dev_create_repr_controller(sa, eth_da, encp->enc_intf);
3143 	}
3144 
3145 	return 0;
3146 }
3147 
3148 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3149 	struct rte_pci_device *pci_dev)
3150 {
3151 	struct sfc_ethdev_init_data init_data;
3152 	struct rte_eth_devargs eth_da;
3153 	struct rte_eth_dev *dev;
3154 	bool dev_created;
3155 	int rc;
3156 
3157 	if (pci_dev->device.devargs != NULL) {
3158 		rc = sfc_parse_rte_devargs(pci_dev->device.devargs->args,
3159 					   &eth_da);
3160 		if (rc != 0)
3161 			return rc;
3162 	} else {
3163 		memset(&eth_da, 0, sizeof(eth_da));
3164 	}
3165 
3166 	/* If no VF representors specified, check for PF ones */
3167 	if (eth_da.nb_representor_ports > 0)
3168 		init_data.nb_representors = eth_da.nb_representor_ports;
3169 	else
3170 		init_data.nb_representors = eth_da.nb_ports;
3171 
3172 	if (init_data.nb_representors > 0 &&
3173 	    rte_eal_process_type() != RTE_PROC_PRIMARY) {
3174 		SFC_GENERIC_LOG(ERR,
3175 			"Create representors from secondary process not supported, dev '%s'",
3176 			pci_dev->device.name);
3177 		return -ENOTSUP;
3178 	}
3179 
3180 	/*
3181 	 * Driver supports RTE_PCI_DRV_PROBE_AGAIN. Hence create device only
3182 	 * if it does not already exist. Re-probing an existing device is
3183 	 * expected to allow additional representors to be configured.
3184 	 */
3185 	rc = sfc_eth_dev_find_or_create(pci_dev, &init_data, &dev,
3186 					&dev_created);
3187 	if (rc != 0)
3188 		return rc;
3189 
3190 	rc = sfc_eth_dev_create_representors(dev, &eth_da);
3191 	if (rc != 0) {
3192 		if (dev_created)
3193 			(void)rte_eth_dev_destroy(dev, sfc_eth_dev_uninit);
3194 
3195 		return rc;
3196 	}
3197 
3198 	return 0;
3199 }
3200 
3201 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
3202 {
3203 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
3204 }
3205 
3206 static struct rte_pci_driver sfc_efx_pmd = {
3207 	.id_table = pci_id_sfc_efx_map,
3208 	.drv_flags =
3209 		RTE_PCI_DRV_INTR_LSC |
3210 		RTE_PCI_DRV_NEED_MAPPING |
3211 		RTE_PCI_DRV_PROBE_AGAIN,
3212 	.probe = sfc_eth_dev_pci_probe,
3213 	.remove = sfc_eth_dev_pci_remove,
3214 };
3215 
3216 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
3217 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
3218 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
3219 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
3220 	SFC_KVARG_SWITCH_MODE "=" SFC_KVARG_VALUES_SWITCH_MODE " "
3221 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
3222 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
3223 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
3224 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
3225 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
3226 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
3227 
3228 RTE_INIT(sfc_driver_register_logtype)
3229 {
3230 	int ret;
3231 
3232 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
3233 						   RTE_LOG_NOTICE);
3234 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
3235 }
3236