1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2020 Xilinx, Inc. 4 * Copyright(c) 2016-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 32 uint32_t sfc_logtype_driver; 33 34 static struct sfc_dp_list sfc_dp_head = 35 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 36 37 38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev); 39 40 41 static int 42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 43 { 44 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 45 efx_nic_fw_info_t enfi; 46 int ret; 47 int rc; 48 49 /* 50 * Return value of the callback is likely supposed to be 51 * equal to or greater than 0, nevertheless, if an error 52 * occurs, it will be desirable to pass it to the caller 53 */ 54 if ((fw_version == NULL) || (fw_size == 0)) 55 return -EINVAL; 56 57 rc = efx_nic_get_fw_version(sa->nic, &enfi); 58 if (rc != 0) 59 return -rc; 60 61 ret = snprintf(fw_version, fw_size, 62 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 63 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 64 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 65 if (ret < 0) 66 return ret; 67 68 if (enfi.enfi_dpcpu_fw_ids_valid) { 69 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 70 int ret_extra; 71 72 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 73 fw_size - dpcpu_fw_ids_offset, 74 " rx%" PRIx16 " tx%" PRIx16, 75 enfi.enfi_rx_dpcpu_fw_id, 76 enfi.enfi_tx_dpcpu_fw_id); 77 if (ret_extra < 0) 78 return ret_extra; 79 80 ret += ret_extra; 81 } 82 83 if (fw_size < (size_t)(++ret)) 84 return ret; 85 else 86 return 0; 87 } 88 89 static int 90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 91 { 92 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 93 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 94 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 95 struct sfc_rss *rss = &sas->rss; 96 uint64_t txq_offloads_def = 0; 97 98 sfc_log_init(sa, "entry"); 99 100 dev_info->min_mtu = RTE_ETHER_MIN_MTU; 101 dev_info->max_mtu = EFX_MAC_SDU_MAX; 102 103 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 104 105 dev_info->max_vfs = sa->sriov.num_vfs; 106 107 /* Autonegotiation may be disabled */ 108 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 109 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 110 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 111 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 112 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 113 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 114 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 115 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 116 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 117 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 118 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 119 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 120 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 121 122 dev_info->max_rx_queues = sa->rxq_max; 123 dev_info->max_tx_queues = sa->txq_max; 124 125 /* By default packets are dropped if no descriptors are available */ 126 dev_info->default_rxconf.rx_drop_en = 1; 127 128 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 129 130 /* 131 * rx_offload_capa includes both device and queue offloads since 132 * the latter may be requested on a per device basis which makes 133 * sense when some offloads are needed to be set on all queues. 134 */ 135 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 136 dev_info->rx_queue_offload_capa; 137 138 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 139 140 /* 141 * tx_offload_capa includes both device and queue offloads since 142 * the latter may be requested on a per device basis which makes 143 * sense when some offloads are needed to be set on all queues. 144 */ 145 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 146 dev_info->tx_queue_offload_capa; 147 148 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 149 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 150 151 dev_info->default_txconf.offloads |= txq_offloads_def; 152 153 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 154 uint64_t rte_hf = 0; 155 unsigned int i; 156 157 for (i = 0; i < rss->hf_map_nb_entries; ++i) 158 rte_hf |= rss->hf_map[i].rte; 159 160 dev_info->reta_size = EFX_RSS_TBL_SIZE; 161 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 162 dev_info->flow_type_rss_offloads = rte_hf; 163 } 164 165 /* Initialize to hardware limits */ 166 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 167 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 168 /* The RXQ hardware requires that the descriptor count is a power 169 * of 2, but rx_desc_lim cannot properly describe that constraint. 170 */ 171 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 172 173 /* Initialize to hardware limits */ 174 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 175 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 176 /* 177 * The TXQ hardware requires that the descriptor count is a power 178 * of 2, but tx_desc_lim cannot properly describe that constraint 179 */ 180 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 181 182 if (sap->dp_rx->get_dev_info != NULL) 183 sap->dp_rx->get_dev_info(dev_info); 184 if (sap->dp_tx->get_dev_info != NULL) 185 sap->dp_tx->get_dev_info(dev_info); 186 187 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 188 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 189 190 return 0; 191 } 192 193 static const uint32_t * 194 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 195 { 196 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 197 198 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 199 } 200 201 static int 202 sfc_dev_configure(struct rte_eth_dev *dev) 203 { 204 struct rte_eth_dev_data *dev_data = dev->data; 205 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 206 int rc; 207 208 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 209 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 210 211 sfc_adapter_lock(sa); 212 switch (sa->state) { 213 case SFC_ADAPTER_CONFIGURED: 214 /* FALLTHROUGH */ 215 case SFC_ADAPTER_INITIALIZED: 216 rc = sfc_configure(sa); 217 break; 218 default: 219 sfc_err(sa, "unexpected adapter state %u to configure", 220 sa->state); 221 rc = EINVAL; 222 break; 223 } 224 sfc_adapter_unlock(sa); 225 226 sfc_log_init(sa, "done %d", rc); 227 SFC_ASSERT(rc >= 0); 228 return -rc; 229 } 230 231 static int 232 sfc_dev_start(struct rte_eth_dev *dev) 233 { 234 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 235 int rc; 236 237 sfc_log_init(sa, "entry"); 238 239 sfc_adapter_lock(sa); 240 rc = sfc_start(sa); 241 sfc_adapter_unlock(sa); 242 243 sfc_log_init(sa, "done %d", rc); 244 SFC_ASSERT(rc >= 0); 245 return -rc; 246 } 247 248 static int 249 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 250 { 251 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 252 struct rte_eth_link current_link; 253 int ret; 254 255 sfc_log_init(sa, "entry"); 256 257 if (sa->state != SFC_ADAPTER_STARTED) { 258 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 259 } else if (wait_to_complete) { 260 efx_link_mode_t link_mode; 261 262 if (efx_port_poll(sa->nic, &link_mode) != 0) 263 link_mode = EFX_LINK_UNKNOWN; 264 sfc_port_link_mode_to_info(link_mode, ¤t_link); 265 266 } else { 267 sfc_ev_mgmt_qpoll(sa); 268 rte_eth_linkstatus_get(dev, ¤t_link); 269 } 270 271 ret = rte_eth_linkstatus_set(dev, ¤t_link); 272 if (ret == 0) 273 sfc_notice(sa, "Link status is %s", 274 current_link.link_status ? "UP" : "DOWN"); 275 276 return ret; 277 } 278 279 static void 280 sfc_dev_stop(struct rte_eth_dev *dev) 281 { 282 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 283 284 sfc_log_init(sa, "entry"); 285 286 sfc_adapter_lock(sa); 287 sfc_stop(sa); 288 sfc_adapter_unlock(sa); 289 290 sfc_log_init(sa, "done"); 291 } 292 293 static int 294 sfc_dev_set_link_up(struct rte_eth_dev *dev) 295 { 296 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 297 int rc; 298 299 sfc_log_init(sa, "entry"); 300 301 sfc_adapter_lock(sa); 302 rc = sfc_start(sa); 303 sfc_adapter_unlock(sa); 304 305 SFC_ASSERT(rc >= 0); 306 return -rc; 307 } 308 309 static int 310 sfc_dev_set_link_down(struct rte_eth_dev *dev) 311 { 312 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 313 314 sfc_log_init(sa, "entry"); 315 316 sfc_adapter_lock(sa); 317 sfc_stop(sa); 318 sfc_adapter_unlock(sa); 319 320 return 0; 321 } 322 323 static void 324 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 325 { 326 free(dev->process_private); 327 dev->process_private = NULL; 328 dev->dev_ops = NULL; 329 dev->tx_pkt_prepare = NULL; 330 dev->tx_pkt_burst = NULL; 331 dev->rx_pkt_burst = NULL; 332 } 333 334 static int 335 sfc_dev_close(struct rte_eth_dev *dev) 336 { 337 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 338 339 sfc_log_init(sa, "entry"); 340 341 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 342 sfc_eth_dev_secondary_clear_ops(dev); 343 return 0; 344 } 345 346 sfc_adapter_lock(sa); 347 switch (sa->state) { 348 case SFC_ADAPTER_STARTED: 349 sfc_stop(sa); 350 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 351 /* FALLTHROUGH */ 352 case SFC_ADAPTER_CONFIGURED: 353 sfc_close(sa); 354 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 355 /* FALLTHROUGH */ 356 case SFC_ADAPTER_INITIALIZED: 357 break; 358 default: 359 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 360 break; 361 } 362 363 /* 364 * Cleanup all resources. 365 * Rollback primary process sfc_eth_dev_init() below. 366 */ 367 368 sfc_eth_dev_clear_ops(dev); 369 370 sfc_detach(sa); 371 sfc_unprobe(sa); 372 373 sfc_kvargs_cleanup(sa); 374 375 sfc_adapter_unlock(sa); 376 sfc_adapter_lock_fini(sa); 377 378 sfc_log_init(sa, "done"); 379 380 /* Required for logging, so cleanup last */ 381 sa->eth_dev = NULL; 382 383 dev->process_private = NULL; 384 free(sa); 385 386 return 0; 387 } 388 389 static int 390 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 391 boolean_t enabled) 392 { 393 struct sfc_port *port; 394 boolean_t *toggle; 395 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 396 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 397 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 398 int rc = 0; 399 400 sfc_adapter_lock(sa); 401 402 port = &sa->port; 403 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 404 405 if (*toggle != enabled) { 406 *toggle = enabled; 407 408 if (sfc_sa2shared(sa)->isolated) { 409 sfc_warn(sa, "isolated mode is active on the port"); 410 sfc_warn(sa, "the change is to be applied on the next " 411 "start provided that isolated mode is " 412 "disabled prior the next start"); 413 } else if ((sa->state == SFC_ADAPTER_STARTED) && 414 ((rc = sfc_set_rx_mode(sa)) != 0)) { 415 *toggle = !(enabled); 416 sfc_warn(sa, "Failed to %s %s mode, rc = %d", 417 ((enabled) ? "enable" : "disable"), desc, rc); 418 419 /* 420 * For promiscuous and all-multicast filters a 421 * permission failure should be reported as an 422 * unsupported filter. 423 */ 424 if (rc == EPERM) 425 rc = ENOTSUP; 426 } 427 } 428 429 sfc_adapter_unlock(sa); 430 return rc; 431 } 432 433 static int 434 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 435 { 436 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 437 438 SFC_ASSERT(rc >= 0); 439 return -rc; 440 } 441 442 static int 443 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 444 { 445 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 446 447 SFC_ASSERT(rc >= 0); 448 return -rc; 449 } 450 451 static int 452 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 453 { 454 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 455 456 SFC_ASSERT(rc >= 0); 457 return -rc; 458 } 459 460 static int 461 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 462 { 463 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 464 465 SFC_ASSERT(rc >= 0); 466 return -rc; 467 } 468 469 static int 470 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 471 uint16_t nb_rx_desc, unsigned int socket_id, 472 const struct rte_eth_rxconf *rx_conf, 473 struct rte_mempool *mb_pool) 474 { 475 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 476 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 477 int rc; 478 479 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 480 rx_queue_id, nb_rx_desc, socket_id); 481 482 sfc_adapter_lock(sa); 483 484 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 485 rx_conf, mb_pool); 486 if (rc != 0) 487 goto fail_rx_qinit; 488 489 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 490 491 sfc_adapter_unlock(sa); 492 493 return 0; 494 495 fail_rx_qinit: 496 sfc_adapter_unlock(sa); 497 SFC_ASSERT(rc > 0); 498 return -rc; 499 } 500 501 static void 502 sfc_rx_queue_release(void *queue) 503 { 504 struct sfc_dp_rxq *dp_rxq = queue; 505 struct sfc_rxq *rxq; 506 struct sfc_adapter *sa; 507 unsigned int sw_index; 508 509 if (dp_rxq == NULL) 510 return; 511 512 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 513 sa = rxq->evq->sa; 514 sfc_adapter_lock(sa); 515 516 sw_index = dp_rxq->dpq.queue_id; 517 518 sfc_log_init(sa, "RxQ=%u", sw_index); 519 520 sfc_rx_qfini(sa, sw_index); 521 522 sfc_adapter_unlock(sa); 523 } 524 525 static int 526 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 527 uint16_t nb_tx_desc, unsigned int socket_id, 528 const struct rte_eth_txconf *tx_conf) 529 { 530 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 531 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 532 int rc; 533 534 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 535 tx_queue_id, nb_tx_desc, socket_id); 536 537 sfc_adapter_lock(sa); 538 539 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 540 if (rc != 0) 541 goto fail_tx_qinit; 542 543 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; 544 545 sfc_adapter_unlock(sa); 546 return 0; 547 548 fail_tx_qinit: 549 sfc_adapter_unlock(sa); 550 SFC_ASSERT(rc > 0); 551 return -rc; 552 } 553 554 static void 555 sfc_tx_queue_release(void *queue) 556 { 557 struct sfc_dp_txq *dp_txq = queue; 558 struct sfc_txq *txq; 559 unsigned int sw_index; 560 struct sfc_adapter *sa; 561 562 if (dp_txq == NULL) 563 return; 564 565 txq = sfc_txq_by_dp_txq(dp_txq); 566 sw_index = dp_txq->dpq.queue_id; 567 568 SFC_ASSERT(txq->evq != NULL); 569 sa = txq->evq->sa; 570 571 sfc_log_init(sa, "TxQ = %u", sw_index); 572 573 sfc_adapter_lock(sa); 574 575 sfc_tx_qfini(sa, sw_index); 576 577 sfc_adapter_unlock(sa); 578 } 579 580 /* 581 * Some statistics are computed as A - B where A and B each increase 582 * monotonically with some hardware counter(s) and the counters are read 583 * asynchronously. 584 * 585 * If packet X is counted in A, but not counted in B yet, computed value is 586 * greater than real. 587 * 588 * If packet X is not counted in A at the moment of reading the counter, 589 * but counted in B at the moment of reading the counter, computed value 590 * is less than real. 591 * 592 * However, counter which grows backward is worse evil than slightly wrong 593 * value. So, let's try to guarantee that it never happens except may be 594 * the case when the MAC stats are zeroed as a result of a NIC reset. 595 */ 596 static void 597 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 598 { 599 if ((int64_t)(newval - *stat) > 0 || newval == 0) 600 *stat = newval; 601 } 602 603 static int 604 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 605 { 606 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 607 struct sfc_port *port = &sa->port; 608 uint64_t *mac_stats; 609 int ret; 610 611 rte_spinlock_lock(&port->mac_stats_lock); 612 613 ret = sfc_port_update_mac_stats(sa); 614 if (ret != 0) 615 goto unlock; 616 617 mac_stats = port->mac_stats_buf; 618 619 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 620 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 621 stats->ipackets = 622 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 623 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 624 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 625 stats->opackets = 626 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 627 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 628 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 629 stats->ibytes = 630 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 631 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 632 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 633 stats->obytes = 634 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 635 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 636 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 637 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 638 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 639 } else { 640 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 641 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 642 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 643 /* 644 * Take into account stats which are whenever supported 645 * on EF10. If some stat is not supported by current 646 * firmware variant or HW revision, it is guaranteed 647 * to be zero in mac_stats. 648 */ 649 stats->imissed = 650 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 651 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 652 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 653 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 654 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 655 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 656 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 657 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 658 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 659 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 660 stats->ierrors = 661 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 662 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 663 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 664 /* no oerrors counters supported on EF10 */ 665 666 /* Exclude missed, errors and pauses from Rx packets */ 667 sfc_update_diff_stat(&port->ipackets, 668 mac_stats[EFX_MAC_RX_PKTS] - 669 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 670 stats->imissed - stats->ierrors); 671 stats->ipackets = port->ipackets; 672 } 673 674 unlock: 675 rte_spinlock_unlock(&port->mac_stats_lock); 676 SFC_ASSERT(ret >= 0); 677 return -ret; 678 } 679 680 static int 681 sfc_stats_reset(struct rte_eth_dev *dev) 682 { 683 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 684 struct sfc_port *port = &sa->port; 685 int rc; 686 687 if (sa->state != SFC_ADAPTER_STARTED) { 688 /* 689 * The operation cannot be done if port is not started; it 690 * will be scheduled to be done during the next port start 691 */ 692 port->mac_stats_reset_pending = B_TRUE; 693 return 0; 694 } 695 696 rc = sfc_port_reset_mac_stats(sa); 697 if (rc != 0) 698 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 699 700 SFC_ASSERT(rc >= 0); 701 return -rc; 702 } 703 704 static int 705 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 706 unsigned int xstats_count) 707 { 708 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 709 struct sfc_port *port = &sa->port; 710 uint64_t *mac_stats; 711 int rc; 712 unsigned int i; 713 int nstats = 0; 714 715 rte_spinlock_lock(&port->mac_stats_lock); 716 717 rc = sfc_port_update_mac_stats(sa); 718 if (rc != 0) { 719 SFC_ASSERT(rc > 0); 720 nstats = -rc; 721 goto unlock; 722 } 723 724 mac_stats = port->mac_stats_buf; 725 726 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 727 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 728 if (xstats != NULL && nstats < (int)xstats_count) { 729 xstats[nstats].id = nstats; 730 xstats[nstats].value = mac_stats[i]; 731 } 732 nstats++; 733 } 734 } 735 736 unlock: 737 rte_spinlock_unlock(&port->mac_stats_lock); 738 739 return nstats; 740 } 741 742 static int 743 sfc_xstats_get_names(struct rte_eth_dev *dev, 744 struct rte_eth_xstat_name *xstats_names, 745 unsigned int xstats_count) 746 { 747 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 748 struct sfc_port *port = &sa->port; 749 unsigned int i; 750 unsigned int nstats = 0; 751 752 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 753 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 754 if (xstats_names != NULL && nstats < xstats_count) 755 strlcpy(xstats_names[nstats].name, 756 efx_mac_stat_name(sa->nic, i), 757 sizeof(xstats_names[0].name)); 758 nstats++; 759 } 760 } 761 762 return nstats; 763 } 764 765 static int 766 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 767 uint64_t *values, unsigned int n) 768 { 769 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 770 struct sfc_port *port = &sa->port; 771 uint64_t *mac_stats; 772 unsigned int nb_supported = 0; 773 unsigned int nb_written = 0; 774 unsigned int i; 775 int ret; 776 int rc; 777 778 if (unlikely(values == NULL) || 779 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 780 return port->mac_stats_nb_supported; 781 782 rte_spinlock_lock(&port->mac_stats_lock); 783 784 rc = sfc_port_update_mac_stats(sa); 785 if (rc != 0) { 786 SFC_ASSERT(rc > 0); 787 ret = -rc; 788 goto unlock; 789 } 790 791 mac_stats = port->mac_stats_buf; 792 793 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 794 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 795 continue; 796 797 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 798 values[nb_written++] = mac_stats[i]; 799 800 ++nb_supported; 801 } 802 803 ret = nb_written; 804 805 unlock: 806 rte_spinlock_unlock(&port->mac_stats_lock); 807 808 return ret; 809 } 810 811 static int 812 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 813 struct rte_eth_xstat_name *xstats_names, 814 const uint64_t *ids, unsigned int size) 815 { 816 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 817 struct sfc_port *port = &sa->port; 818 unsigned int nb_supported = 0; 819 unsigned int nb_written = 0; 820 unsigned int i; 821 822 if (unlikely(xstats_names == NULL) || 823 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 824 return port->mac_stats_nb_supported; 825 826 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 827 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 828 continue; 829 830 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 831 char *name = xstats_names[nb_written++].name; 832 833 strlcpy(name, efx_mac_stat_name(sa->nic, i), 834 sizeof(xstats_names[0].name)); 835 } 836 837 ++nb_supported; 838 } 839 840 return nb_written; 841 } 842 843 static int 844 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 845 { 846 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 847 unsigned int wanted_fc, link_fc; 848 849 memset(fc_conf, 0, sizeof(*fc_conf)); 850 851 sfc_adapter_lock(sa); 852 853 if (sa->state == SFC_ADAPTER_STARTED) 854 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 855 else 856 link_fc = sa->port.flow_ctrl; 857 858 switch (link_fc) { 859 case 0: 860 fc_conf->mode = RTE_FC_NONE; 861 break; 862 case EFX_FCNTL_RESPOND: 863 fc_conf->mode = RTE_FC_RX_PAUSE; 864 break; 865 case EFX_FCNTL_GENERATE: 866 fc_conf->mode = RTE_FC_TX_PAUSE; 867 break; 868 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 869 fc_conf->mode = RTE_FC_FULL; 870 break; 871 default: 872 sfc_err(sa, "%s: unexpected flow control value %#x", 873 __func__, link_fc); 874 } 875 876 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 877 878 sfc_adapter_unlock(sa); 879 880 return 0; 881 } 882 883 static int 884 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 885 { 886 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 887 struct sfc_port *port = &sa->port; 888 unsigned int fcntl; 889 int rc; 890 891 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 892 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 893 fc_conf->mac_ctrl_frame_fwd != 0) { 894 sfc_err(sa, "unsupported flow control settings specified"); 895 rc = EINVAL; 896 goto fail_inval; 897 } 898 899 switch (fc_conf->mode) { 900 case RTE_FC_NONE: 901 fcntl = 0; 902 break; 903 case RTE_FC_RX_PAUSE: 904 fcntl = EFX_FCNTL_RESPOND; 905 break; 906 case RTE_FC_TX_PAUSE: 907 fcntl = EFX_FCNTL_GENERATE; 908 break; 909 case RTE_FC_FULL: 910 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 911 break; 912 default: 913 rc = EINVAL; 914 goto fail_inval; 915 } 916 917 sfc_adapter_lock(sa); 918 919 if (sa->state == SFC_ADAPTER_STARTED) { 920 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 921 if (rc != 0) 922 goto fail_mac_fcntl_set; 923 } 924 925 port->flow_ctrl = fcntl; 926 port->flow_ctrl_autoneg = fc_conf->autoneg; 927 928 sfc_adapter_unlock(sa); 929 930 return 0; 931 932 fail_mac_fcntl_set: 933 sfc_adapter_unlock(sa); 934 fail_inval: 935 SFC_ASSERT(rc > 0); 936 return -rc; 937 } 938 939 static int 940 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 941 { 942 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 943 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 944 boolean_t scatter_enabled; 945 const char *error; 946 unsigned int i; 947 948 for (i = 0; i < sas->rxq_count; i++) { 949 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) 950 continue; 951 952 scatter_enabled = (sas->rxq_info[i].type_flags & 953 EFX_RXQ_FLAG_SCATTER); 954 955 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, 956 encp->enc_rx_prefix_size, 957 scatter_enabled, &error)) { 958 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 959 error); 960 return EINVAL; 961 } 962 } 963 964 return 0; 965 } 966 967 static int 968 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 969 { 970 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 971 size_t pdu = EFX_MAC_PDU(mtu); 972 size_t old_pdu; 973 int rc; 974 975 sfc_log_init(sa, "mtu=%u", mtu); 976 977 rc = EINVAL; 978 if (pdu < EFX_MAC_PDU_MIN) { 979 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 980 (unsigned int)mtu, (unsigned int)pdu, 981 EFX_MAC_PDU_MIN); 982 goto fail_inval; 983 } 984 if (pdu > EFX_MAC_PDU_MAX) { 985 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 986 (unsigned int)mtu, (unsigned int)pdu, 987 (unsigned int)EFX_MAC_PDU_MAX); 988 goto fail_inval; 989 } 990 991 sfc_adapter_lock(sa); 992 993 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 994 if (rc != 0) 995 goto fail_check_scatter; 996 997 if (pdu != sa->port.pdu) { 998 if (sa->state == SFC_ADAPTER_STARTED) { 999 sfc_stop(sa); 1000 1001 old_pdu = sa->port.pdu; 1002 sa->port.pdu = pdu; 1003 rc = sfc_start(sa); 1004 if (rc != 0) 1005 goto fail_start; 1006 } else { 1007 sa->port.pdu = pdu; 1008 } 1009 } 1010 1011 /* 1012 * The driver does not use it, but other PMDs update jumbo frame 1013 * flag and max_rx_pkt_len when MTU is set. 1014 */ 1015 if (mtu > RTE_ETHER_MAX_LEN) { 1016 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 1017 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 1018 } 1019 1020 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 1021 1022 sfc_adapter_unlock(sa); 1023 1024 sfc_log_init(sa, "done"); 1025 return 0; 1026 1027 fail_start: 1028 sa->port.pdu = old_pdu; 1029 if (sfc_start(sa) != 0) 1030 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 1031 "PDU max size - port is stopped", 1032 (unsigned int)pdu, (unsigned int)old_pdu); 1033 1034 fail_check_scatter: 1035 sfc_adapter_unlock(sa); 1036 1037 fail_inval: 1038 sfc_log_init(sa, "failed %d", rc); 1039 SFC_ASSERT(rc > 0); 1040 return -rc; 1041 } 1042 static int 1043 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 1044 { 1045 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1046 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1047 struct sfc_port *port = &sa->port; 1048 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; 1049 int rc = 0; 1050 1051 sfc_adapter_lock(sa); 1052 1053 if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr)) 1054 goto unlock; 1055 1056 /* 1057 * Copy the address to the device private data so that 1058 * it could be recalled in the case of adapter restart. 1059 */ 1060 rte_ether_addr_copy(mac_addr, &port->default_mac_addr); 1061 1062 /* 1063 * Neither of the two following checks can return 1064 * an error. The new MAC address is preserved in 1065 * the device private data and can be activated 1066 * on the next port start if the user prevents 1067 * isolated mode from being enabled. 1068 */ 1069 if (sfc_sa2shared(sa)->isolated) { 1070 sfc_warn(sa, "isolated mode is active on the port"); 1071 sfc_warn(sa, "will not set MAC address"); 1072 goto unlock; 1073 } 1074 1075 if (sa->state != SFC_ADAPTER_STARTED) { 1076 sfc_notice(sa, "the port is not started"); 1077 sfc_notice(sa, "the new MAC address will be set on port start"); 1078 1079 goto unlock; 1080 } 1081 1082 if (encp->enc_allow_set_mac_with_installed_filters) { 1083 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1084 if (rc != 0) { 1085 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1086 goto unlock; 1087 } 1088 1089 /* 1090 * Changing the MAC address by means of MCDI request 1091 * has no effect on received traffic, therefore 1092 * we also need to update unicast filters 1093 */ 1094 rc = sfc_set_rx_mode_unchecked(sa); 1095 if (rc != 0) { 1096 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1097 /* Rollback the old address */ 1098 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1099 (void)sfc_set_rx_mode_unchecked(sa); 1100 } 1101 } else { 1102 sfc_warn(sa, "cannot set MAC address with filters installed"); 1103 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1104 sfc_warn(sa, "(some traffic may be dropped)"); 1105 1106 /* 1107 * Since setting MAC address with filters installed is not 1108 * allowed on the adapter, the new MAC address will be set 1109 * by means of adapter restart. sfc_start() shall retrieve 1110 * the new address from the device private data and set it. 1111 */ 1112 sfc_stop(sa); 1113 rc = sfc_start(sa); 1114 if (rc != 0) 1115 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1116 } 1117 1118 unlock: 1119 if (rc != 0) 1120 rte_ether_addr_copy(old_addr, &port->default_mac_addr); 1121 1122 sfc_adapter_unlock(sa); 1123 1124 SFC_ASSERT(rc >= 0); 1125 return -rc; 1126 } 1127 1128 1129 static int 1130 sfc_set_mc_addr_list(struct rte_eth_dev *dev, 1131 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) 1132 { 1133 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1134 struct sfc_port *port = &sa->port; 1135 uint8_t *mc_addrs = port->mcast_addrs; 1136 int rc; 1137 unsigned int i; 1138 1139 if (sfc_sa2shared(sa)->isolated) { 1140 sfc_err(sa, "isolated mode is active on the port"); 1141 sfc_err(sa, "will not set multicast address list"); 1142 return -ENOTSUP; 1143 } 1144 1145 if (mc_addrs == NULL) 1146 return -ENOBUFS; 1147 1148 if (nb_mc_addr > port->max_mcast_addrs) { 1149 sfc_err(sa, "too many multicast addresses: %u > %u", 1150 nb_mc_addr, port->max_mcast_addrs); 1151 return -EINVAL; 1152 } 1153 1154 for (i = 0; i < nb_mc_addr; ++i) { 1155 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1156 EFX_MAC_ADDR_LEN); 1157 mc_addrs += EFX_MAC_ADDR_LEN; 1158 } 1159 1160 port->nb_mcast_addrs = nb_mc_addr; 1161 1162 if (sa->state != SFC_ADAPTER_STARTED) 1163 return 0; 1164 1165 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1166 port->nb_mcast_addrs); 1167 if (rc != 0) 1168 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1169 1170 SFC_ASSERT(rc >= 0); 1171 return -rc; 1172 } 1173 1174 /* 1175 * The function is used by the secondary process as well. It must not 1176 * use any process-local pointers from the adapter data. 1177 */ 1178 static void 1179 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1180 struct rte_eth_rxq_info *qinfo) 1181 { 1182 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1183 struct sfc_rxq_info *rxq_info; 1184 1185 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1186 1187 rxq_info = &sas->rxq_info[rx_queue_id]; 1188 1189 qinfo->mp = rxq_info->refill_mb_pool; 1190 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1191 qinfo->conf.rx_drop_en = 1; 1192 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1193 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1194 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1195 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1196 qinfo->scattered_rx = 1; 1197 } 1198 qinfo->nb_desc = rxq_info->entries; 1199 } 1200 1201 /* 1202 * The function is used by the secondary process as well. It must not 1203 * use any process-local pointers from the adapter data. 1204 */ 1205 static void 1206 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1207 struct rte_eth_txq_info *qinfo) 1208 { 1209 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1210 struct sfc_txq_info *txq_info; 1211 1212 SFC_ASSERT(tx_queue_id < sas->txq_count); 1213 1214 txq_info = &sas->txq_info[tx_queue_id]; 1215 1216 memset(qinfo, 0, sizeof(*qinfo)); 1217 1218 qinfo->conf.offloads = txq_info->offloads; 1219 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1220 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1221 qinfo->nb_desc = txq_info->entries; 1222 } 1223 1224 /* 1225 * The function is used by the secondary process as well. It must not 1226 * use any process-local pointers from the adapter data. 1227 */ 1228 static uint32_t 1229 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1230 { 1231 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1232 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1233 struct sfc_rxq_info *rxq_info; 1234 1235 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1236 rxq_info = &sas->rxq_info[rx_queue_id]; 1237 1238 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1239 return 0; 1240 1241 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1242 } 1243 1244 /* 1245 * The function is used by the secondary process as well. It must not 1246 * use any process-local pointers from the adapter data. 1247 */ 1248 static int 1249 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1250 { 1251 struct sfc_dp_rxq *dp_rxq = queue; 1252 const struct sfc_dp_rx *dp_rx; 1253 1254 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1255 1256 return offset < dp_rx->qdesc_npending(dp_rxq); 1257 } 1258 1259 /* 1260 * The function is used by the secondary process as well. It must not 1261 * use any process-local pointers from the adapter data. 1262 */ 1263 static int 1264 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1265 { 1266 struct sfc_dp_rxq *dp_rxq = queue; 1267 const struct sfc_dp_rx *dp_rx; 1268 1269 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1270 1271 return dp_rx->qdesc_status(dp_rxq, offset); 1272 } 1273 1274 /* 1275 * The function is used by the secondary process as well. It must not 1276 * use any process-local pointers from the adapter data. 1277 */ 1278 static int 1279 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1280 { 1281 struct sfc_dp_txq *dp_txq = queue; 1282 const struct sfc_dp_tx *dp_tx; 1283 1284 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1285 1286 return dp_tx->qdesc_status(dp_txq, offset); 1287 } 1288 1289 static int 1290 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1291 { 1292 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1293 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1294 int rc; 1295 1296 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1297 1298 sfc_adapter_lock(sa); 1299 1300 rc = EINVAL; 1301 if (sa->state != SFC_ADAPTER_STARTED) 1302 goto fail_not_started; 1303 1304 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1305 goto fail_not_setup; 1306 1307 rc = sfc_rx_qstart(sa, rx_queue_id); 1308 if (rc != 0) 1309 goto fail_rx_qstart; 1310 1311 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1312 1313 sfc_adapter_unlock(sa); 1314 1315 return 0; 1316 1317 fail_rx_qstart: 1318 fail_not_setup: 1319 fail_not_started: 1320 sfc_adapter_unlock(sa); 1321 SFC_ASSERT(rc > 0); 1322 return -rc; 1323 } 1324 1325 static int 1326 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1327 { 1328 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1329 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1330 1331 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1332 1333 sfc_adapter_lock(sa); 1334 sfc_rx_qstop(sa, rx_queue_id); 1335 1336 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1337 1338 sfc_adapter_unlock(sa); 1339 1340 return 0; 1341 } 1342 1343 static int 1344 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1345 { 1346 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1347 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1348 int rc; 1349 1350 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1351 1352 sfc_adapter_lock(sa); 1353 1354 rc = EINVAL; 1355 if (sa->state != SFC_ADAPTER_STARTED) 1356 goto fail_not_started; 1357 1358 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1359 goto fail_not_setup; 1360 1361 rc = sfc_tx_qstart(sa, tx_queue_id); 1362 if (rc != 0) 1363 goto fail_tx_qstart; 1364 1365 sas->txq_info[tx_queue_id].deferred_started = B_TRUE; 1366 1367 sfc_adapter_unlock(sa); 1368 return 0; 1369 1370 fail_tx_qstart: 1371 1372 fail_not_setup: 1373 fail_not_started: 1374 sfc_adapter_unlock(sa); 1375 SFC_ASSERT(rc > 0); 1376 return -rc; 1377 } 1378 1379 static int 1380 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1381 { 1382 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1383 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1384 1385 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1386 1387 sfc_adapter_lock(sa); 1388 1389 sfc_tx_qstop(sa, tx_queue_id); 1390 1391 sas->txq_info[tx_queue_id].deferred_started = B_FALSE; 1392 1393 sfc_adapter_unlock(sa); 1394 return 0; 1395 } 1396 1397 static efx_tunnel_protocol_t 1398 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1399 { 1400 switch (rte_type) { 1401 case RTE_TUNNEL_TYPE_VXLAN: 1402 return EFX_TUNNEL_PROTOCOL_VXLAN; 1403 case RTE_TUNNEL_TYPE_GENEVE: 1404 return EFX_TUNNEL_PROTOCOL_GENEVE; 1405 default: 1406 return EFX_TUNNEL_NPROTOS; 1407 } 1408 } 1409 1410 enum sfc_udp_tunnel_op_e { 1411 SFC_UDP_TUNNEL_ADD_PORT, 1412 SFC_UDP_TUNNEL_DEL_PORT, 1413 }; 1414 1415 static int 1416 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1417 struct rte_eth_udp_tunnel *tunnel_udp, 1418 enum sfc_udp_tunnel_op_e op) 1419 { 1420 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1421 efx_tunnel_protocol_t tunnel_proto; 1422 int rc; 1423 1424 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1425 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1426 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1427 tunnel_udp->udp_port, tunnel_udp->prot_type); 1428 1429 tunnel_proto = 1430 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1431 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1432 rc = ENOTSUP; 1433 goto fail_bad_proto; 1434 } 1435 1436 sfc_adapter_lock(sa); 1437 1438 switch (op) { 1439 case SFC_UDP_TUNNEL_ADD_PORT: 1440 rc = efx_tunnel_config_udp_add(sa->nic, 1441 tunnel_udp->udp_port, 1442 tunnel_proto); 1443 break; 1444 case SFC_UDP_TUNNEL_DEL_PORT: 1445 rc = efx_tunnel_config_udp_remove(sa->nic, 1446 tunnel_udp->udp_port, 1447 tunnel_proto); 1448 break; 1449 default: 1450 rc = EINVAL; 1451 goto fail_bad_op; 1452 } 1453 1454 if (rc != 0) 1455 goto fail_op; 1456 1457 if (sa->state == SFC_ADAPTER_STARTED) { 1458 rc = efx_tunnel_reconfigure(sa->nic); 1459 if (rc == EAGAIN) { 1460 /* 1461 * Configuration is accepted by FW and MC reboot 1462 * is initiated to apply the changes. MC reboot 1463 * will be handled in a usual way (MC reboot 1464 * event on management event queue and adapter 1465 * restart). 1466 */ 1467 rc = 0; 1468 } else if (rc != 0) { 1469 goto fail_reconfigure; 1470 } 1471 } 1472 1473 sfc_adapter_unlock(sa); 1474 return 0; 1475 1476 fail_reconfigure: 1477 /* Remove/restore entry since the change makes the trouble */ 1478 switch (op) { 1479 case SFC_UDP_TUNNEL_ADD_PORT: 1480 (void)efx_tunnel_config_udp_remove(sa->nic, 1481 tunnel_udp->udp_port, 1482 tunnel_proto); 1483 break; 1484 case SFC_UDP_TUNNEL_DEL_PORT: 1485 (void)efx_tunnel_config_udp_add(sa->nic, 1486 tunnel_udp->udp_port, 1487 tunnel_proto); 1488 break; 1489 } 1490 1491 fail_op: 1492 fail_bad_op: 1493 sfc_adapter_unlock(sa); 1494 1495 fail_bad_proto: 1496 SFC_ASSERT(rc > 0); 1497 return -rc; 1498 } 1499 1500 static int 1501 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1502 struct rte_eth_udp_tunnel *tunnel_udp) 1503 { 1504 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1505 } 1506 1507 static int 1508 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1509 struct rte_eth_udp_tunnel *tunnel_udp) 1510 { 1511 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1512 } 1513 1514 /* 1515 * The function is used by the secondary process as well. It must not 1516 * use any process-local pointers from the adapter data. 1517 */ 1518 static int 1519 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1520 struct rte_eth_rss_conf *rss_conf) 1521 { 1522 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1523 struct sfc_rss *rss = &sas->rss; 1524 1525 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1526 return -ENOTSUP; 1527 1528 /* 1529 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1530 * hence, conversion is done here to derive a correct set of ETH_RSS 1531 * flags which corresponds to the active EFX configuration stored 1532 * locally in 'sfc_adapter' and kept up-to-date 1533 */ 1534 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1535 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1536 if (rss_conf->rss_key != NULL) 1537 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1538 1539 return 0; 1540 } 1541 1542 static int 1543 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1544 struct rte_eth_rss_conf *rss_conf) 1545 { 1546 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1547 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1548 unsigned int efx_hash_types; 1549 uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context}; 1550 unsigned int n_contexts; 1551 unsigned int mode_i = 0; 1552 unsigned int key_i = 0; 1553 unsigned int i = 0; 1554 int rc = 0; 1555 1556 n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2; 1557 1558 if (sfc_sa2shared(sa)->isolated) 1559 return -ENOTSUP; 1560 1561 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1562 sfc_err(sa, "RSS is not available"); 1563 return -ENOTSUP; 1564 } 1565 1566 if (rss->channels == 0) { 1567 sfc_err(sa, "RSS is not configured"); 1568 return -EINVAL; 1569 } 1570 1571 if ((rss_conf->rss_key != NULL) && 1572 (rss_conf->rss_key_len != sizeof(rss->key))) { 1573 sfc_err(sa, "RSS key size is wrong (should be %zu)", 1574 sizeof(rss->key)); 1575 return -EINVAL; 1576 } 1577 1578 sfc_adapter_lock(sa); 1579 1580 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1581 if (rc != 0) 1582 goto fail_rx_hf_rte_to_efx; 1583 1584 for (mode_i = 0; mode_i < n_contexts; mode_i++) { 1585 rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i], 1586 rss->hash_alg, efx_hash_types, 1587 B_TRUE); 1588 if (rc != 0) 1589 goto fail_scale_mode_set; 1590 } 1591 1592 if (rss_conf->rss_key != NULL) { 1593 if (sa->state == SFC_ADAPTER_STARTED) { 1594 for (key_i = 0; key_i < n_contexts; key_i++) { 1595 rc = efx_rx_scale_key_set(sa->nic, 1596 contexts[key_i], 1597 rss_conf->rss_key, 1598 sizeof(rss->key)); 1599 if (rc != 0) 1600 goto fail_scale_key_set; 1601 } 1602 } 1603 1604 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1605 } 1606 1607 rss->hash_types = efx_hash_types; 1608 1609 sfc_adapter_unlock(sa); 1610 1611 return 0; 1612 1613 fail_scale_key_set: 1614 for (i = 0; i < key_i; i++) { 1615 if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key, 1616 sizeof(rss->key)) != 0) 1617 sfc_err(sa, "failed to restore RSS key"); 1618 } 1619 1620 fail_scale_mode_set: 1621 for (i = 0; i < mode_i; i++) { 1622 if (efx_rx_scale_mode_set(sa->nic, contexts[i], 1623 EFX_RX_HASHALG_TOEPLITZ, 1624 rss->hash_types, B_TRUE) != 0) 1625 sfc_err(sa, "failed to restore RSS mode"); 1626 } 1627 1628 fail_rx_hf_rte_to_efx: 1629 sfc_adapter_unlock(sa); 1630 return -rc; 1631 } 1632 1633 /* 1634 * The function is used by the secondary process as well. It must not 1635 * use any process-local pointers from the adapter data. 1636 */ 1637 static int 1638 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1639 struct rte_eth_rss_reta_entry64 *reta_conf, 1640 uint16_t reta_size) 1641 { 1642 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1643 struct sfc_rss *rss = &sas->rss; 1644 int entry; 1645 1646 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1647 return -ENOTSUP; 1648 1649 if (rss->channels == 0) 1650 return -EINVAL; 1651 1652 if (reta_size != EFX_RSS_TBL_SIZE) 1653 return -EINVAL; 1654 1655 for (entry = 0; entry < reta_size; entry++) { 1656 int grp = entry / RTE_RETA_GROUP_SIZE; 1657 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1658 1659 if ((reta_conf[grp].mask >> grp_idx) & 1) 1660 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1661 } 1662 1663 return 0; 1664 } 1665 1666 static int 1667 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1668 struct rte_eth_rss_reta_entry64 *reta_conf, 1669 uint16_t reta_size) 1670 { 1671 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1672 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1673 unsigned int *rss_tbl_new; 1674 uint16_t entry; 1675 int rc = 0; 1676 1677 1678 if (sfc_sa2shared(sa)->isolated) 1679 return -ENOTSUP; 1680 1681 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1682 sfc_err(sa, "RSS is not available"); 1683 return -ENOTSUP; 1684 } 1685 1686 if (rss->channels == 0) { 1687 sfc_err(sa, "RSS is not configured"); 1688 return -EINVAL; 1689 } 1690 1691 if (reta_size != EFX_RSS_TBL_SIZE) { 1692 sfc_err(sa, "RETA size is wrong (should be %u)", 1693 EFX_RSS_TBL_SIZE); 1694 return -EINVAL; 1695 } 1696 1697 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1698 if (rss_tbl_new == NULL) 1699 return -ENOMEM; 1700 1701 sfc_adapter_lock(sa); 1702 1703 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1704 1705 for (entry = 0; entry < reta_size; entry++) { 1706 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1707 struct rte_eth_rss_reta_entry64 *grp; 1708 1709 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1710 1711 if (grp->mask & (1ull << grp_idx)) { 1712 if (grp->reta[grp_idx] >= rss->channels) { 1713 rc = EINVAL; 1714 goto bad_reta_entry; 1715 } 1716 rss_tbl_new[entry] = grp->reta[grp_idx]; 1717 } 1718 } 1719 1720 if (sa->state == SFC_ADAPTER_STARTED) { 1721 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1722 rss_tbl_new, EFX_RSS_TBL_SIZE); 1723 if (rc != 0) 1724 goto fail_scale_tbl_set; 1725 } 1726 1727 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1728 1729 fail_scale_tbl_set: 1730 bad_reta_entry: 1731 sfc_adapter_unlock(sa); 1732 1733 rte_free(rss_tbl_new); 1734 1735 SFC_ASSERT(rc >= 0); 1736 return -rc; 1737 } 1738 1739 static int 1740 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1741 enum rte_filter_op filter_op, 1742 void *arg) 1743 { 1744 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1745 int rc = ENOTSUP; 1746 1747 sfc_log_init(sa, "entry"); 1748 1749 switch (filter_type) { 1750 case RTE_ETH_FILTER_NONE: 1751 sfc_err(sa, "Global filters configuration not supported"); 1752 break; 1753 case RTE_ETH_FILTER_MACVLAN: 1754 sfc_err(sa, "MACVLAN filters not supported"); 1755 break; 1756 case RTE_ETH_FILTER_ETHERTYPE: 1757 sfc_err(sa, "EtherType filters not supported"); 1758 break; 1759 case RTE_ETH_FILTER_FLEXIBLE: 1760 sfc_err(sa, "Flexible filters not supported"); 1761 break; 1762 case RTE_ETH_FILTER_SYN: 1763 sfc_err(sa, "SYN filters not supported"); 1764 break; 1765 case RTE_ETH_FILTER_NTUPLE: 1766 sfc_err(sa, "NTUPLE filters not supported"); 1767 break; 1768 case RTE_ETH_FILTER_TUNNEL: 1769 sfc_err(sa, "Tunnel filters not supported"); 1770 break; 1771 case RTE_ETH_FILTER_FDIR: 1772 sfc_err(sa, "Flow Director filters not supported"); 1773 break; 1774 case RTE_ETH_FILTER_HASH: 1775 sfc_err(sa, "Hash filters not supported"); 1776 break; 1777 case RTE_ETH_FILTER_GENERIC: 1778 if (filter_op != RTE_ETH_FILTER_GET) { 1779 rc = EINVAL; 1780 } else { 1781 *(const void **)arg = &sfc_flow_ops; 1782 rc = 0; 1783 } 1784 break; 1785 default: 1786 sfc_err(sa, "Unknown filter type %u", filter_type); 1787 break; 1788 } 1789 1790 sfc_log_init(sa, "exit: %d", -rc); 1791 SFC_ASSERT(rc >= 0); 1792 return -rc; 1793 } 1794 1795 static int 1796 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1797 { 1798 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1799 1800 /* 1801 * If Rx datapath does not provide callback to check mempool, 1802 * all pools are supported. 1803 */ 1804 if (sap->dp_rx->pool_ops_supported == NULL) 1805 return 1; 1806 1807 return sap->dp_rx->pool_ops_supported(pool); 1808 } 1809 1810 static int 1811 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) 1812 { 1813 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1814 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1815 struct sfc_rxq_info *rxq_info; 1816 1817 SFC_ASSERT(queue_id < sas->rxq_count); 1818 rxq_info = &sas->rxq_info[queue_id]; 1819 1820 return sap->dp_rx->intr_enable(rxq_info->dp); 1821 } 1822 1823 static int 1824 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) 1825 { 1826 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1827 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1828 struct sfc_rxq_info *rxq_info; 1829 1830 SFC_ASSERT(queue_id < sas->rxq_count); 1831 rxq_info = &sas->rxq_info[queue_id]; 1832 1833 return sap->dp_rx->intr_disable(rxq_info->dp); 1834 } 1835 1836 static const struct eth_dev_ops sfc_eth_dev_ops = { 1837 .dev_configure = sfc_dev_configure, 1838 .dev_start = sfc_dev_start, 1839 .dev_stop = sfc_dev_stop, 1840 .dev_set_link_up = sfc_dev_set_link_up, 1841 .dev_set_link_down = sfc_dev_set_link_down, 1842 .dev_close = sfc_dev_close, 1843 .promiscuous_enable = sfc_dev_promisc_enable, 1844 .promiscuous_disable = sfc_dev_promisc_disable, 1845 .allmulticast_enable = sfc_dev_allmulti_enable, 1846 .allmulticast_disable = sfc_dev_allmulti_disable, 1847 .link_update = sfc_dev_link_update, 1848 .stats_get = sfc_stats_get, 1849 .stats_reset = sfc_stats_reset, 1850 .xstats_get = sfc_xstats_get, 1851 .xstats_reset = sfc_stats_reset, 1852 .xstats_get_names = sfc_xstats_get_names, 1853 .dev_infos_get = sfc_dev_infos_get, 1854 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1855 .mtu_set = sfc_dev_set_mtu, 1856 .rx_queue_start = sfc_rx_queue_start, 1857 .rx_queue_stop = sfc_rx_queue_stop, 1858 .tx_queue_start = sfc_tx_queue_start, 1859 .tx_queue_stop = sfc_tx_queue_stop, 1860 .rx_queue_setup = sfc_rx_queue_setup, 1861 .rx_queue_release = sfc_rx_queue_release, 1862 .rx_queue_intr_enable = sfc_rx_queue_intr_enable, 1863 .rx_queue_intr_disable = sfc_rx_queue_intr_disable, 1864 .tx_queue_setup = sfc_tx_queue_setup, 1865 .tx_queue_release = sfc_tx_queue_release, 1866 .flow_ctrl_get = sfc_flow_ctrl_get, 1867 .flow_ctrl_set = sfc_flow_ctrl_set, 1868 .mac_addr_set = sfc_mac_addr_set, 1869 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1870 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1871 .reta_update = sfc_dev_rss_reta_update, 1872 .reta_query = sfc_dev_rss_reta_query, 1873 .rss_hash_update = sfc_dev_rss_hash_update, 1874 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1875 .filter_ctrl = sfc_dev_filter_ctrl, 1876 .set_mc_addr_list = sfc_set_mc_addr_list, 1877 .rxq_info_get = sfc_rx_queue_info_get, 1878 .txq_info_get = sfc_tx_queue_info_get, 1879 .fw_version_get = sfc_fw_version_get, 1880 .xstats_get_by_id = sfc_xstats_get_by_id, 1881 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1882 .pool_ops_supported = sfc_pool_ops_supported, 1883 }; 1884 1885 /** 1886 * Duplicate a string in potentially shared memory required for 1887 * multi-process support. 1888 * 1889 * strdup() allocates from process-local heap/memory. 1890 */ 1891 static char * 1892 sfc_strdup(const char *str) 1893 { 1894 size_t size; 1895 char *copy; 1896 1897 if (str == NULL) 1898 return NULL; 1899 1900 size = strlen(str) + 1; 1901 copy = rte_malloc(__func__, size, 0); 1902 if (copy != NULL) 1903 rte_memcpy(copy, str, size); 1904 1905 return copy; 1906 } 1907 1908 static int 1909 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1910 { 1911 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1912 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1913 const struct sfc_dp_rx *dp_rx; 1914 const struct sfc_dp_tx *dp_tx; 1915 const efx_nic_cfg_t *encp; 1916 unsigned int avail_caps = 0; 1917 const char *rx_name = NULL; 1918 const char *tx_name = NULL; 1919 int rc; 1920 1921 switch (sa->family) { 1922 case EFX_FAMILY_HUNTINGTON: 1923 case EFX_FAMILY_MEDFORD: 1924 case EFX_FAMILY_MEDFORD2: 1925 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1926 break; 1927 default: 1928 break; 1929 } 1930 1931 encp = efx_nic_cfg_get(sa->nic); 1932 if (encp->enc_rx_es_super_buffer_supported) 1933 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1934 1935 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1936 sfc_kvarg_string_handler, &rx_name); 1937 if (rc != 0) 1938 goto fail_kvarg_rx_datapath; 1939 1940 if (rx_name != NULL) { 1941 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1942 if (dp_rx == NULL) { 1943 sfc_err(sa, "Rx datapath %s not found", rx_name); 1944 rc = ENOENT; 1945 goto fail_dp_rx; 1946 } 1947 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1948 sfc_err(sa, 1949 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1950 rx_name); 1951 rc = EINVAL; 1952 goto fail_dp_rx_caps; 1953 } 1954 } else { 1955 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1956 if (dp_rx == NULL) { 1957 sfc_err(sa, "Rx datapath by caps %#x not found", 1958 avail_caps); 1959 rc = ENOENT; 1960 goto fail_dp_rx; 1961 } 1962 } 1963 1964 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1965 if (sas->dp_rx_name == NULL) { 1966 rc = ENOMEM; 1967 goto fail_dp_rx_name; 1968 } 1969 1970 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1971 1972 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1973 sfc_kvarg_string_handler, &tx_name); 1974 if (rc != 0) 1975 goto fail_kvarg_tx_datapath; 1976 1977 if (tx_name != NULL) { 1978 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1979 if (dp_tx == NULL) { 1980 sfc_err(sa, "Tx datapath %s not found", tx_name); 1981 rc = ENOENT; 1982 goto fail_dp_tx; 1983 } 1984 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1985 sfc_err(sa, 1986 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1987 tx_name); 1988 rc = EINVAL; 1989 goto fail_dp_tx_caps; 1990 } 1991 } else { 1992 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1993 if (dp_tx == NULL) { 1994 sfc_err(sa, "Tx datapath by caps %#x not found", 1995 avail_caps); 1996 rc = ENOENT; 1997 goto fail_dp_tx; 1998 } 1999 } 2000 2001 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 2002 if (sas->dp_tx_name == NULL) { 2003 rc = ENOMEM; 2004 goto fail_dp_tx_name; 2005 } 2006 2007 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 2008 2009 sa->priv.dp_rx = dp_rx; 2010 sa->priv.dp_tx = dp_tx; 2011 2012 dev->rx_pkt_burst = dp_rx->pkt_burst; 2013 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2014 dev->tx_pkt_burst = dp_tx->pkt_burst; 2015 2016 dev->rx_queue_count = sfc_rx_queue_count; 2017 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2018 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2019 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2020 dev->dev_ops = &sfc_eth_dev_ops; 2021 2022 return 0; 2023 2024 fail_dp_tx_name: 2025 fail_dp_tx_caps: 2026 fail_dp_tx: 2027 fail_kvarg_tx_datapath: 2028 rte_free(sas->dp_rx_name); 2029 sas->dp_rx_name = NULL; 2030 2031 fail_dp_rx_name: 2032 fail_dp_rx_caps: 2033 fail_dp_rx: 2034 fail_kvarg_rx_datapath: 2035 return rc; 2036 } 2037 2038 static void 2039 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 2040 { 2041 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2042 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2043 2044 dev->dev_ops = NULL; 2045 dev->tx_pkt_prepare = NULL; 2046 dev->rx_pkt_burst = NULL; 2047 dev->tx_pkt_burst = NULL; 2048 2049 rte_free(sas->dp_tx_name); 2050 sas->dp_tx_name = NULL; 2051 sa->priv.dp_tx = NULL; 2052 2053 rte_free(sas->dp_rx_name); 2054 sas->dp_rx_name = NULL; 2055 sa->priv.dp_rx = NULL; 2056 } 2057 2058 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 2059 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 2060 .reta_query = sfc_dev_rss_reta_query, 2061 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 2062 .rxq_info_get = sfc_rx_queue_info_get, 2063 .txq_info_get = sfc_tx_queue_info_get, 2064 }; 2065 2066 static int 2067 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 2068 { 2069 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2070 struct sfc_adapter_priv *sap; 2071 const struct sfc_dp_rx *dp_rx; 2072 const struct sfc_dp_tx *dp_tx; 2073 int rc; 2074 2075 /* 2076 * Allocate process private data from heap, since it should not 2077 * be located in shared memory allocated using rte_malloc() API. 2078 */ 2079 sap = calloc(1, sizeof(*sap)); 2080 if (sap == NULL) { 2081 rc = ENOMEM; 2082 goto fail_alloc_priv; 2083 } 2084 2085 sap->logtype_main = logtype_main; 2086 2087 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 2088 if (dp_rx == NULL) { 2089 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2090 "cannot find %s Rx datapath", sas->dp_rx_name); 2091 rc = ENOENT; 2092 goto fail_dp_rx; 2093 } 2094 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 2095 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2096 "%s Rx datapath does not support multi-process", 2097 sas->dp_rx_name); 2098 rc = EINVAL; 2099 goto fail_dp_rx_multi_process; 2100 } 2101 2102 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 2103 if (dp_tx == NULL) { 2104 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2105 "cannot find %s Tx datapath", sas->dp_tx_name); 2106 rc = ENOENT; 2107 goto fail_dp_tx; 2108 } 2109 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 2110 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2111 "%s Tx datapath does not support multi-process", 2112 sas->dp_tx_name); 2113 rc = EINVAL; 2114 goto fail_dp_tx_multi_process; 2115 } 2116 2117 sap->dp_rx = dp_rx; 2118 sap->dp_tx = dp_tx; 2119 2120 dev->process_private = sap; 2121 dev->rx_pkt_burst = dp_rx->pkt_burst; 2122 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2123 dev->tx_pkt_burst = dp_tx->pkt_burst; 2124 dev->rx_queue_count = sfc_rx_queue_count; 2125 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2126 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2127 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2128 dev->dev_ops = &sfc_eth_dev_secondary_ops; 2129 2130 return 0; 2131 2132 fail_dp_tx_multi_process: 2133 fail_dp_tx: 2134 fail_dp_rx_multi_process: 2135 fail_dp_rx: 2136 free(sap); 2137 2138 fail_alloc_priv: 2139 return rc; 2140 } 2141 2142 static void 2143 sfc_register_dp(void) 2144 { 2145 /* Register once */ 2146 if (TAILQ_EMPTY(&sfc_dp_head)) { 2147 /* Prefer EF10 datapath */ 2148 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2149 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2150 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2151 2152 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2153 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2154 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2155 } 2156 } 2157 2158 static int 2159 sfc_eth_dev_init(struct rte_eth_dev *dev) 2160 { 2161 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2162 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2163 uint32_t logtype_main; 2164 struct sfc_adapter *sa; 2165 int rc; 2166 const efx_nic_cfg_t *encp; 2167 const struct rte_ether_addr *from; 2168 int ret; 2169 2170 sfc_register_dp(); 2171 2172 logtype_main = sfc_register_logtype(&pci_dev->addr, 2173 SFC_LOGTYPE_MAIN_STR, 2174 RTE_LOG_NOTICE); 2175 2176 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2177 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2178 2179 /* Required for logging */ 2180 ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix), 2181 "PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ", 2182 pci_dev->addr.domain, pci_dev->addr.bus, 2183 pci_dev->addr.devid, pci_dev->addr.function, 2184 dev->data->port_id); 2185 if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) { 2186 SFC_GENERIC_LOG(ERR, 2187 "reserved log prefix is too short for " PCI_PRI_FMT, 2188 pci_dev->addr.domain, pci_dev->addr.bus, 2189 pci_dev->addr.devid, pci_dev->addr.function); 2190 return -EINVAL; 2191 } 2192 sas->pci_addr = pci_dev->addr; 2193 sas->port_id = dev->data->port_id; 2194 2195 /* 2196 * Allocate process private data from heap, since it should not 2197 * be located in shared memory allocated using rte_malloc() API. 2198 */ 2199 sa = calloc(1, sizeof(*sa)); 2200 if (sa == NULL) { 2201 rc = ENOMEM; 2202 goto fail_alloc_sa; 2203 } 2204 2205 dev->process_private = sa; 2206 2207 /* Required for logging */ 2208 sa->priv.shared = sas; 2209 sa->priv.logtype_main = logtype_main; 2210 2211 sa->eth_dev = dev; 2212 2213 /* Copy PCI device info to the dev->data */ 2214 rte_eth_copy_pci_info(dev, pci_dev); 2215 2216 rc = sfc_kvargs_parse(sa); 2217 if (rc != 0) 2218 goto fail_kvargs_parse; 2219 2220 sfc_log_init(sa, "entry"); 2221 2222 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); 2223 if (dev->data->mac_addrs == NULL) { 2224 rc = ENOMEM; 2225 goto fail_mac_addrs; 2226 } 2227 2228 sfc_adapter_lock_init(sa); 2229 sfc_adapter_lock(sa); 2230 2231 sfc_log_init(sa, "probing"); 2232 rc = sfc_probe(sa); 2233 if (rc != 0) 2234 goto fail_probe; 2235 2236 sfc_log_init(sa, "set device ops"); 2237 rc = sfc_eth_dev_set_ops(dev); 2238 if (rc != 0) 2239 goto fail_set_ops; 2240 2241 sfc_log_init(sa, "attaching"); 2242 rc = sfc_attach(sa); 2243 if (rc != 0) 2244 goto fail_attach; 2245 2246 encp = efx_nic_cfg_get(sa->nic); 2247 2248 /* 2249 * The arguments are really reverse order in comparison to 2250 * Linux kernel. Copy from NIC config to Ethernet device data. 2251 */ 2252 from = (const struct rte_ether_addr *)(encp->enc_mac_addr); 2253 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); 2254 2255 sfc_adapter_unlock(sa); 2256 2257 sfc_log_init(sa, "done"); 2258 return 0; 2259 2260 fail_attach: 2261 sfc_eth_dev_clear_ops(dev); 2262 2263 fail_set_ops: 2264 sfc_unprobe(sa); 2265 2266 fail_probe: 2267 sfc_adapter_unlock(sa); 2268 sfc_adapter_lock_fini(sa); 2269 rte_free(dev->data->mac_addrs); 2270 dev->data->mac_addrs = NULL; 2271 2272 fail_mac_addrs: 2273 sfc_kvargs_cleanup(sa); 2274 2275 fail_kvargs_parse: 2276 sfc_log_init(sa, "failed %d", rc); 2277 dev->process_private = NULL; 2278 free(sa); 2279 2280 fail_alloc_sa: 2281 SFC_ASSERT(rc > 0); 2282 return -rc; 2283 } 2284 2285 static int 2286 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2287 { 2288 sfc_dev_close(dev); 2289 2290 return 0; 2291 } 2292 2293 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2294 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2295 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2296 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2297 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2298 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2299 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2300 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2301 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2302 { .vendor_id = 0 /* sentinel */ } 2303 }; 2304 2305 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2306 struct rte_pci_device *pci_dev) 2307 { 2308 return rte_eth_dev_pci_generic_probe(pci_dev, 2309 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2310 } 2311 2312 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2313 { 2314 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2315 } 2316 2317 static struct rte_pci_driver sfc_efx_pmd = { 2318 .id_table = pci_id_sfc_efx_map, 2319 .drv_flags = 2320 RTE_PCI_DRV_INTR_LSC | 2321 RTE_PCI_DRV_NEED_MAPPING, 2322 .probe = sfc_eth_dev_pci_probe, 2323 .remove = sfc_eth_dev_pci_remove, 2324 }; 2325 2326 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2327 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2328 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2329 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2330 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2331 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2332 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2333 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2334 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2335 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2336 2337 RTE_INIT(sfc_driver_register_logtype) 2338 { 2339 int ret; 2340 2341 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2342 RTE_LOG_NOTICE); 2343 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2344 } 2345