1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 17 #include "efx.h" 18 19 #include "sfc.h" 20 #include "sfc_debug.h" 21 #include "sfc_log.h" 22 #include "sfc_kvargs.h" 23 #include "sfc_ev.h" 24 #include "sfc_rx.h" 25 #include "sfc_tx.h" 26 #include "sfc_flow.h" 27 #include "sfc_dp.h" 28 #include "sfc_dp_rx.h" 29 30 uint32_t sfc_logtype_driver; 31 32 static struct sfc_dp_list sfc_dp_head = 33 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 34 35 static int 36 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 37 { 38 struct sfc_adapter *sa = dev->data->dev_private; 39 efx_nic_fw_info_t enfi; 40 int ret; 41 int rc; 42 43 /* 44 * Return value of the callback is likely supposed to be 45 * equal to or greater than 0, nevertheless, if an error 46 * occurs, it will be desirable to pass it to the caller 47 */ 48 if ((fw_version == NULL) || (fw_size == 0)) 49 return -EINVAL; 50 51 rc = efx_nic_get_fw_version(sa->nic, &enfi); 52 if (rc != 0) 53 return -rc; 54 55 ret = snprintf(fw_version, fw_size, 56 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 57 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 58 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 59 if (ret < 0) 60 return ret; 61 62 if (enfi.enfi_dpcpu_fw_ids_valid) { 63 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 64 int ret_extra; 65 66 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 67 fw_size - dpcpu_fw_ids_offset, 68 " rx%" PRIx16 " tx%" PRIx16, 69 enfi.enfi_rx_dpcpu_fw_id, 70 enfi.enfi_tx_dpcpu_fw_id); 71 if (ret_extra < 0) 72 return ret_extra; 73 74 ret += ret_extra; 75 } 76 77 if (fw_size < (size_t)(++ret)) 78 return ret; 79 else 80 return 0; 81 } 82 83 static void 84 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 85 { 86 struct sfc_adapter *sa = dev->data->dev_private; 87 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 88 uint64_t txq_offloads_def = 0; 89 90 sfc_log_init(sa, "entry"); 91 92 dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev); 93 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 94 95 /* Autonegotiation may be disabled */ 96 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 97 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 98 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 99 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 100 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 101 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX) 102 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 103 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 104 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 105 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX) 106 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 107 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX) 108 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 109 110 dev_info->max_rx_queues = sa->rxq_max; 111 dev_info->max_tx_queues = sa->txq_max; 112 113 /* By default packets are dropped if no descriptors are available */ 114 dev_info->default_rxconf.rx_drop_en = 1; 115 116 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 117 118 /* 119 * rx_offload_capa includes both device and queue offloads since 120 * the latter may be requested on a per device basis which makes 121 * sense when some offloads are needed to be set on all queues. 122 */ 123 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 124 dev_info->rx_queue_offload_capa; 125 126 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 127 128 /* 129 * tx_offload_capa includes both device and queue offloads since 130 * the latter may be requested on a per device basis which makes 131 * sense when some offloads are needed to be set on all queues. 132 */ 133 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 134 dev_info->tx_queue_offload_capa; 135 136 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 137 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 138 139 dev_info->default_txconf.offloads |= txq_offloads_def; 140 141 dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP; 142 if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) || 143 !encp->enc_hw_tx_insert_vlan_enabled) 144 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL; 145 146 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG) 147 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS; 148 149 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL) 150 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP; 151 152 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT) 153 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT; 154 155 #if EFSYS_OPT_RX_SCALE 156 if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) { 157 dev_info->reta_size = EFX_RSS_TBL_SIZE; 158 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 159 dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS; 160 } 161 #endif 162 163 /* Initialize to hardware limits */ 164 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 165 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 166 /* The RXQ hardware requires that the descriptor count is a power 167 * of 2, but rx_desc_lim cannot properly describe that constraint. 168 */ 169 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 170 171 /* Initialize to hardware limits */ 172 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 173 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 174 /* 175 * The TXQ hardware requires that the descriptor count is a power 176 * of 2, but tx_desc_lim cannot properly describe that constraint 177 */ 178 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 179 180 if (sa->dp_rx->get_dev_info != NULL) 181 sa->dp_rx->get_dev_info(dev_info); 182 if (sa->dp_tx->get_dev_info != NULL) 183 sa->dp_tx->get_dev_info(dev_info); 184 } 185 186 static const uint32_t * 187 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 188 { 189 struct sfc_adapter *sa = dev->data->dev_private; 190 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 191 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 192 193 return sa->dp_rx->supported_ptypes_get(tunnel_encaps); 194 } 195 196 static int 197 sfc_dev_configure(struct rte_eth_dev *dev) 198 { 199 struct rte_eth_dev_data *dev_data = dev->data; 200 struct sfc_adapter *sa = dev_data->dev_private; 201 int rc; 202 203 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 204 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 205 206 sfc_adapter_lock(sa); 207 switch (sa->state) { 208 case SFC_ADAPTER_CONFIGURED: 209 /* FALLTHROUGH */ 210 case SFC_ADAPTER_INITIALIZED: 211 rc = sfc_configure(sa); 212 break; 213 default: 214 sfc_err(sa, "unexpected adapter state %u to configure", 215 sa->state); 216 rc = EINVAL; 217 break; 218 } 219 sfc_adapter_unlock(sa); 220 221 sfc_log_init(sa, "done %d", rc); 222 SFC_ASSERT(rc >= 0); 223 return -rc; 224 } 225 226 static int 227 sfc_dev_start(struct rte_eth_dev *dev) 228 { 229 struct sfc_adapter *sa = dev->data->dev_private; 230 int rc; 231 232 sfc_log_init(sa, "entry"); 233 234 sfc_adapter_lock(sa); 235 rc = sfc_start(sa); 236 sfc_adapter_unlock(sa); 237 238 sfc_log_init(sa, "done %d", rc); 239 SFC_ASSERT(rc >= 0); 240 return -rc; 241 } 242 243 static int 244 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 245 { 246 struct sfc_adapter *sa = dev->data->dev_private; 247 struct rte_eth_link current_link; 248 int ret; 249 250 sfc_log_init(sa, "entry"); 251 252 if (sa->state != SFC_ADAPTER_STARTED) { 253 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 254 } else if (wait_to_complete) { 255 efx_link_mode_t link_mode; 256 257 if (efx_port_poll(sa->nic, &link_mode) != 0) 258 link_mode = EFX_LINK_UNKNOWN; 259 sfc_port_link_mode_to_info(link_mode, ¤t_link); 260 261 } else { 262 sfc_ev_mgmt_qpoll(sa); 263 rte_eth_linkstatus_get(dev, ¤t_link); 264 } 265 266 ret = rte_eth_linkstatus_set(dev, ¤t_link); 267 if (ret == 0) 268 sfc_notice(sa, "Link status is %s", 269 current_link.link_status ? "UP" : "DOWN"); 270 271 return ret; 272 } 273 274 static void 275 sfc_dev_stop(struct rte_eth_dev *dev) 276 { 277 struct sfc_adapter *sa = dev->data->dev_private; 278 279 sfc_log_init(sa, "entry"); 280 281 sfc_adapter_lock(sa); 282 sfc_stop(sa); 283 sfc_adapter_unlock(sa); 284 285 sfc_log_init(sa, "done"); 286 } 287 288 static int 289 sfc_dev_set_link_up(struct rte_eth_dev *dev) 290 { 291 struct sfc_adapter *sa = dev->data->dev_private; 292 int rc; 293 294 sfc_log_init(sa, "entry"); 295 296 sfc_adapter_lock(sa); 297 rc = sfc_start(sa); 298 sfc_adapter_unlock(sa); 299 300 SFC_ASSERT(rc >= 0); 301 return -rc; 302 } 303 304 static int 305 sfc_dev_set_link_down(struct rte_eth_dev *dev) 306 { 307 struct sfc_adapter *sa = dev->data->dev_private; 308 309 sfc_log_init(sa, "entry"); 310 311 sfc_adapter_lock(sa); 312 sfc_stop(sa); 313 sfc_adapter_unlock(sa); 314 315 return 0; 316 } 317 318 static void 319 sfc_dev_close(struct rte_eth_dev *dev) 320 { 321 struct sfc_adapter *sa = dev->data->dev_private; 322 323 sfc_log_init(sa, "entry"); 324 325 sfc_adapter_lock(sa); 326 switch (sa->state) { 327 case SFC_ADAPTER_STARTED: 328 sfc_stop(sa); 329 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 330 /* FALLTHROUGH */ 331 case SFC_ADAPTER_CONFIGURED: 332 sfc_close(sa); 333 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 334 /* FALLTHROUGH */ 335 case SFC_ADAPTER_INITIALIZED: 336 break; 337 default: 338 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 339 break; 340 } 341 sfc_adapter_unlock(sa); 342 343 sfc_log_init(sa, "done"); 344 } 345 346 static void 347 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 348 boolean_t enabled) 349 { 350 struct sfc_port *port; 351 boolean_t *toggle; 352 struct sfc_adapter *sa = dev->data->dev_private; 353 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 354 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 355 356 sfc_adapter_lock(sa); 357 358 port = &sa->port; 359 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 360 361 if (*toggle != enabled) { 362 *toggle = enabled; 363 364 if (port->isolated) { 365 sfc_warn(sa, "isolated mode is active on the port"); 366 sfc_warn(sa, "the change is to be applied on the next " 367 "start provided that isolated mode is " 368 "disabled prior the next start"); 369 } else if ((sa->state == SFC_ADAPTER_STARTED) && 370 (sfc_set_rx_mode(sa) != 0)) { 371 *toggle = !(enabled); 372 sfc_warn(sa, "Failed to %s %s mode", 373 ((enabled) ? "enable" : "disable"), desc); 374 } 375 } 376 377 sfc_adapter_unlock(sa); 378 } 379 380 static void 381 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 382 { 383 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 384 } 385 386 static void 387 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 388 { 389 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 390 } 391 392 static void 393 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 394 { 395 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 396 } 397 398 static void 399 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 400 { 401 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 402 } 403 404 static int 405 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 406 uint16_t nb_rx_desc, unsigned int socket_id, 407 const struct rte_eth_rxconf *rx_conf, 408 struct rte_mempool *mb_pool) 409 { 410 struct sfc_adapter *sa = dev->data->dev_private; 411 int rc; 412 413 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 414 rx_queue_id, nb_rx_desc, socket_id); 415 416 sfc_adapter_lock(sa); 417 418 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 419 rx_conf, mb_pool); 420 if (rc != 0) 421 goto fail_rx_qinit; 422 423 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 424 425 sfc_adapter_unlock(sa); 426 427 return 0; 428 429 fail_rx_qinit: 430 sfc_adapter_unlock(sa); 431 SFC_ASSERT(rc > 0); 432 return -rc; 433 } 434 435 static void 436 sfc_rx_queue_release(void *queue) 437 { 438 struct sfc_dp_rxq *dp_rxq = queue; 439 struct sfc_rxq *rxq; 440 struct sfc_adapter *sa; 441 unsigned int sw_index; 442 443 if (dp_rxq == NULL) 444 return; 445 446 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 447 sa = rxq->evq->sa; 448 sfc_adapter_lock(sa); 449 450 sw_index = sfc_rxq_sw_index(rxq); 451 452 sfc_log_init(sa, "RxQ=%u", sw_index); 453 454 sa->eth_dev->data->rx_queues[sw_index] = NULL; 455 456 sfc_rx_qfini(sa, sw_index); 457 458 sfc_adapter_unlock(sa); 459 } 460 461 static int 462 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 463 uint16_t nb_tx_desc, unsigned int socket_id, 464 const struct rte_eth_txconf *tx_conf) 465 { 466 struct sfc_adapter *sa = dev->data->dev_private; 467 int rc; 468 469 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 470 tx_queue_id, nb_tx_desc, socket_id); 471 472 sfc_adapter_lock(sa); 473 474 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 475 if (rc != 0) 476 goto fail_tx_qinit; 477 478 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 479 480 sfc_adapter_unlock(sa); 481 return 0; 482 483 fail_tx_qinit: 484 sfc_adapter_unlock(sa); 485 SFC_ASSERT(rc > 0); 486 return -rc; 487 } 488 489 static void 490 sfc_tx_queue_release(void *queue) 491 { 492 struct sfc_dp_txq *dp_txq = queue; 493 struct sfc_txq *txq; 494 unsigned int sw_index; 495 struct sfc_adapter *sa; 496 497 if (dp_txq == NULL) 498 return; 499 500 txq = sfc_txq_by_dp_txq(dp_txq); 501 sw_index = sfc_txq_sw_index(txq); 502 503 SFC_ASSERT(txq->evq != NULL); 504 sa = txq->evq->sa; 505 506 sfc_log_init(sa, "TxQ = %u", sw_index); 507 508 sfc_adapter_lock(sa); 509 510 SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues); 511 sa->eth_dev->data->tx_queues[sw_index] = NULL; 512 513 sfc_tx_qfini(sa, sw_index); 514 515 sfc_adapter_unlock(sa); 516 } 517 518 static int 519 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 520 { 521 struct sfc_adapter *sa = dev->data->dev_private; 522 struct sfc_port *port = &sa->port; 523 uint64_t *mac_stats; 524 int ret; 525 526 rte_spinlock_lock(&port->mac_stats_lock); 527 528 ret = sfc_port_update_mac_stats(sa); 529 if (ret != 0) 530 goto unlock; 531 532 mac_stats = port->mac_stats_buf; 533 534 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 535 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 536 stats->ipackets = 537 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 538 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 539 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 540 stats->opackets = 541 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 542 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 543 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 544 stats->ibytes = 545 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 546 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 547 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 548 stats->obytes = 549 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 550 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 551 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 552 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW]; 553 stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 554 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 555 } else { 556 stats->ipackets = mac_stats[EFX_MAC_RX_PKTS]; 557 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 558 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 559 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 560 /* 561 * Take into account stats which are whenever supported 562 * on EF10. If some stat is not supported by current 563 * firmware variant or HW revision, it is guaranteed 564 * to be zero in mac_stats. 565 */ 566 stats->imissed = 567 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 568 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 569 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 570 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 571 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 572 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 573 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 574 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 575 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 576 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 577 stats->ierrors = 578 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 579 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 580 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 581 /* no oerrors counters supported on EF10 */ 582 } 583 584 unlock: 585 rte_spinlock_unlock(&port->mac_stats_lock); 586 SFC_ASSERT(ret >= 0); 587 return -ret; 588 } 589 590 static void 591 sfc_stats_reset(struct rte_eth_dev *dev) 592 { 593 struct sfc_adapter *sa = dev->data->dev_private; 594 struct sfc_port *port = &sa->port; 595 int rc; 596 597 if (sa->state != SFC_ADAPTER_STARTED) { 598 /* 599 * The operation cannot be done if port is not started; it 600 * will be scheduled to be done during the next port start 601 */ 602 port->mac_stats_reset_pending = B_TRUE; 603 return; 604 } 605 606 rc = sfc_port_reset_mac_stats(sa); 607 if (rc != 0) 608 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 609 } 610 611 static int 612 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 613 unsigned int xstats_count) 614 { 615 struct sfc_adapter *sa = dev->data->dev_private; 616 struct sfc_port *port = &sa->port; 617 uint64_t *mac_stats; 618 int rc; 619 unsigned int i; 620 int nstats = 0; 621 622 rte_spinlock_lock(&port->mac_stats_lock); 623 624 rc = sfc_port_update_mac_stats(sa); 625 if (rc != 0) { 626 SFC_ASSERT(rc > 0); 627 nstats = -rc; 628 goto unlock; 629 } 630 631 mac_stats = port->mac_stats_buf; 632 633 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 634 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 635 if (xstats != NULL && nstats < (int)xstats_count) { 636 xstats[nstats].id = nstats; 637 xstats[nstats].value = mac_stats[i]; 638 } 639 nstats++; 640 } 641 } 642 643 unlock: 644 rte_spinlock_unlock(&port->mac_stats_lock); 645 646 return nstats; 647 } 648 649 static int 650 sfc_xstats_get_names(struct rte_eth_dev *dev, 651 struct rte_eth_xstat_name *xstats_names, 652 unsigned int xstats_count) 653 { 654 struct sfc_adapter *sa = dev->data->dev_private; 655 struct sfc_port *port = &sa->port; 656 unsigned int i; 657 unsigned int nstats = 0; 658 659 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 660 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 661 if (xstats_names != NULL && nstats < xstats_count) 662 strncpy(xstats_names[nstats].name, 663 efx_mac_stat_name(sa->nic, i), 664 sizeof(xstats_names[0].name)); 665 nstats++; 666 } 667 } 668 669 return nstats; 670 } 671 672 static int 673 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 674 uint64_t *values, unsigned int n) 675 { 676 struct sfc_adapter *sa = dev->data->dev_private; 677 struct sfc_port *port = &sa->port; 678 uint64_t *mac_stats; 679 unsigned int nb_supported = 0; 680 unsigned int nb_written = 0; 681 unsigned int i; 682 int ret; 683 int rc; 684 685 if (unlikely(values == NULL) || 686 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 687 return port->mac_stats_nb_supported; 688 689 rte_spinlock_lock(&port->mac_stats_lock); 690 691 rc = sfc_port_update_mac_stats(sa); 692 if (rc != 0) { 693 SFC_ASSERT(rc > 0); 694 ret = -rc; 695 goto unlock; 696 } 697 698 mac_stats = port->mac_stats_buf; 699 700 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 701 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 702 continue; 703 704 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 705 values[nb_written++] = mac_stats[i]; 706 707 ++nb_supported; 708 } 709 710 ret = nb_written; 711 712 unlock: 713 rte_spinlock_unlock(&port->mac_stats_lock); 714 715 return ret; 716 } 717 718 static int 719 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 720 struct rte_eth_xstat_name *xstats_names, 721 const uint64_t *ids, unsigned int size) 722 { 723 struct sfc_adapter *sa = dev->data->dev_private; 724 struct sfc_port *port = &sa->port; 725 unsigned int nb_supported = 0; 726 unsigned int nb_written = 0; 727 unsigned int i; 728 729 if (unlikely(xstats_names == NULL) || 730 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 731 return port->mac_stats_nb_supported; 732 733 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 734 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 735 continue; 736 737 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 738 char *name = xstats_names[nb_written++].name; 739 740 strncpy(name, efx_mac_stat_name(sa->nic, i), 741 sizeof(xstats_names[0].name)); 742 name[sizeof(xstats_names[0].name) - 1] = '\0'; 743 } 744 745 ++nb_supported; 746 } 747 748 return nb_written; 749 } 750 751 static int 752 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 753 { 754 struct sfc_adapter *sa = dev->data->dev_private; 755 unsigned int wanted_fc, link_fc; 756 757 memset(fc_conf, 0, sizeof(*fc_conf)); 758 759 sfc_adapter_lock(sa); 760 761 if (sa->state == SFC_ADAPTER_STARTED) 762 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 763 else 764 link_fc = sa->port.flow_ctrl; 765 766 switch (link_fc) { 767 case 0: 768 fc_conf->mode = RTE_FC_NONE; 769 break; 770 case EFX_FCNTL_RESPOND: 771 fc_conf->mode = RTE_FC_RX_PAUSE; 772 break; 773 case EFX_FCNTL_GENERATE: 774 fc_conf->mode = RTE_FC_TX_PAUSE; 775 break; 776 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 777 fc_conf->mode = RTE_FC_FULL; 778 break; 779 default: 780 sfc_err(sa, "%s: unexpected flow control value %#x", 781 __func__, link_fc); 782 } 783 784 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 785 786 sfc_adapter_unlock(sa); 787 788 return 0; 789 } 790 791 static int 792 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 793 { 794 struct sfc_adapter *sa = dev->data->dev_private; 795 struct sfc_port *port = &sa->port; 796 unsigned int fcntl; 797 int rc; 798 799 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 800 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 801 fc_conf->mac_ctrl_frame_fwd != 0) { 802 sfc_err(sa, "unsupported flow control settings specified"); 803 rc = EINVAL; 804 goto fail_inval; 805 } 806 807 switch (fc_conf->mode) { 808 case RTE_FC_NONE: 809 fcntl = 0; 810 break; 811 case RTE_FC_RX_PAUSE: 812 fcntl = EFX_FCNTL_RESPOND; 813 break; 814 case RTE_FC_TX_PAUSE: 815 fcntl = EFX_FCNTL_GENERATE; 816 break; 817 case RTE_FC_FULL: 818 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 819 break; 820 default: 821 rc = EINVAL; 822 goto fail_inval; 823 } 824 825 sfc_adapter_lock(sa); 826 827 if (sa->state == SFC_ADAPTER_STARTED) { 828 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 829 if (rc != 0) 830 goto fail_mac_fcntl_set; 831 } 832 833 port->flow_ctrl = fcntl; 834 port->flow_ctrl_autoneg = fc_conf->autoneg; 835 836 sfc_adapter_unlock(sa); 837 838 return 0; 839 840 fail_mac_fcntl_set: 841 sfc_adapter_unlock(sa); 842 fail_inval: 843 SFC_ASSERT(rc > 0); 844 return -rc; 845 } 846 847 static int 848 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 849 { 850 struct sfc_adapter *sa = dev->data->dev_private; 851 size_t pdu = EFX_MAC_PDU(mtu); 852 size_t old_pdu; 853 int rc; 854 855 sfc_log_init(sa, "mtu=%u", mtu); 856 857 rc = EINVAL; 858 if (pdu < EFX_MAC_PDU_MIN) { 859 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 860 (unsigned int)mtu, (unsigned int)pdu, 861 EFX_MAC_PDU_MIN); 862 goto fail_inval; 863 } 864 if (pdu > EFX_MAC_PDU_MAX) { 865 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 866 (unsigned int)mtu, (unsigned int)pdu, 867 EFX_MAC_PDU_MAX); 868 goto fail_inval; 869 } 870 871 sfc_adapter_lock(sa); 872 873 if (pdu != sa->port.pdu) { 874 if (sa->state == SFC_ADAPTER_STARTED) { 875 sfc_stop(sa); 876 877 old_pdu = sa->port.pdu; 878 sa->port.pdu = pdu; 879 rc = sfc_start(sa); 880 if (rc != 0) 881 goto fail_start; 882 } else { 883 sa->port.pdu = pdu; 884 } 885 } 886 887 /* 888 * The driver does not use it, but other PMDs update jumbo_frame 889 * flag and max_rx_pkt_len when MTU is set. 890 */ 891 if (mtu > ETHER_MAX_LEN) { 892 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 893 894 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 895 rxmode->jumbo_frame = 1; 896 } 897 898 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 899 900 sfc_adapter_unlock(sa); 901 902 sfc_log_init(sa, "done"); 903 return 0; 904 905 fail_start: 906 sa->port.pdu = old_pdu; 907 if (sfc_start(sa) != 0) 908 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 909 "PDU max size - port is stopped", 910 (unsigned int)pdu, (unsigned int)old_pdu); 911 sfc_adapter_unlock(sa); 912 913 fail_inval: 914 sfc_log_init(sa, "failed %d", rc); 915 SFC_ASSERT(rc > 0); 916 return -rc; 917 } 918 static void 919 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 920 { 921 struct sfc_adapter *sa = dev->data->dev_private; 922 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 923 struct sfc_port *port = &sa->port; 924 int rc; 925 926 sfc_adapter_lock(sa); 927 928 /* 929 * Copy the address to the device private data so that 930 * it could be recalled in the case of adapter restart. 931 */ 932 ether_addr_copy(mac_addr, &port->default_mac_addr); 933 934 if (port->isolated) { 935 sfc_err(sa, "isolated mode is active on the port"); 936 sfc_err(sa, "will not set MAC address"); 937 goto unlock; 938 } 939 940 if (sa->state != SFC_ADAPTER_STARTED) { 941 sfc_notice(sa, "the port is not started"); 942 sfc_notice(sa, "the new MAC address will be set on port start"); 943 944 goto unlock; 945 } 946 947 if (encp->enc_allow_set_mac_with_installed_filters) { 948 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 949 if (rc != 0) { 950 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 951 goto unlock; 952 } 953 954 /* 955 * Changing the MAC address by means of MCDI request 956 * has no effect on received traffic, therefore 957 * we also need to update unicast filters 958 */ 959 rc = sfc_set_rx_mode(sa); 960 if (rc != 0) 961 sfc_err(sa, "cannot set filter (rc = %u)", rc); 962 } else { 963 sfc_warn(sa, "cannot set MAC address with filters installed"); 964 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 965 sfc_warn(sa, "(some traffic may be dropped)"); 966 967 /* 968 * Since setting MAC address with filters installed is not 969 * allowed on the adapter, the new MAC address will be set 970 * by means of adapter restart. sfc_start() shall retrieve 971 * the new address from the device private data and set it. 972 */ 973 sfc_stop(sa); 974 rc = sfc_start(sa); 975 if (rc != 0) 976 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 977 } 978 979 unlock: 980 /* 981 * In the case of failure sa->port->default_mac_addr does not 982 * need rollback since no error code is returned, and the upper 983 * API will anyway update the external MAC address storage. 984 * To be consistent with that new value it is better to keep 985 * the device private value the same. 986 */ 987 sfc_adapter_unlock(sa); 988 } 989 990 991 static int 992 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 993 uint32_t nb_mc_addr) 994 { 995 struct sfc_adapter *sa = dev->data->dev_private; 996 struct sfc_port *port = &sa->port; 997 uint8_t *mc_addrs = port->mcast_addrs; 998 int rc; 999 unsigned int i; 1000 1001 if (port->isolated) { 1002 sfc_err(sa, "isolated mode is active on the port"); 1003 sfc_err(sa, "will not set multicast address list"); 1004 return -ENOTSUP; 1005 } 1006 1007 if (mc_addrs == NULL) 1008 return -ENOBUFS; 1009 1010 if (nb_mc_addr > port->max_mcast_addrs) { 1011 sfc_err(sa, "too many multicast addresses: %u > %u", 1012 nb_mc_addr, port->max_mcast_addrs); 1013 return -EINVAL; 1014 } 1015 1016 for (i = 0; i < nb_mc_addr; ++i) { 1017 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1018 EFX_MAC_ADDR_LEN); 1019 mc_addrs += EFX_MAC_ADDR_LEN; 1020 } 1021 1022 port->nb_mcast_addrs = nb_mc_addr; 1023 1024 if (sa->state != SFC_ADAPTER_STARTED) 1025 return 0; 1026 1027 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1028 port->nb_mcast_addrs); 1029 if (rc != 0) 1030 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1031 1032 SFC_ASSERT(rc > 0); 1033 return -rc; 1034 } 1035 1036 /* 1037 * The function is used by the secondary process as well. It must not 1038 * use any process-local pointers from the adapter data. 1039 */ 1040 static void 1041 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1042 struct rte_eth_rxq_info *qinfo) 1043 { 1044 struct sfc_adapter *sa = dev->data->dev_private; 1045 struct sfc_rxq_info *rxq_info; 1046 struct sfc_rxq *rxq; 1047 1048 sfc_adapter_lock(sa); 1049 1050 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1051 1052 rxq_info = &sa->rxq_info[rx_queue_id]; 1053 rxq = rxq_info->rxq; 1054 SFC_ASSERT(rxq != NULL); 1055 1056 qinfo->mp = rxq->refill_mb_pool; 1057 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1058 qinfo->conf.rx_drop_en = 1; 1059 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1060 qinfo->conf.offloads = DEV_RX_OFFLOAD_IPV4_CKSUM | 1061 DEV_RX_OFFLOAD_UDP_CKSUM | 1062 DEV_RX_OFFLOAD_TCP_CKSUM; 1063 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1064 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1065 qinfo->scattered_rx = 1; 1066 } 1067 qinfo->nb_desc = rxq_info->entries; 1068 1069 sfc_adapter_unlock(sa); 1070 } 1071 1072 /* 1073 * The function is used by the secondary process as well. It must not 1074 * use any process-local pointers from the adapter data. 1075 */ 1076 static void 1077 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1078 struct rte_eth_txq_info *qinfo) 1079 { 1080 struct sfc_adapter *sa = dev->data->dev_private; 1081 struct sfc_txq_info *txq_info; 1082 1083 sfc_adapter_lock(sa); 1084 1085 SFC_ASSERT(tx_queue_id < sa->txq_count); 1086 1087 txq_info = &sa->txq_info[tx_queue_id]; 1088 SFC_ASSERT(txq_info->txq != NULL); 1089 1090 memset(qinfo, 0, sizeof(*qinfo)); 1091 1092 qinfo->conf.txq_flags = txq_info->txq->flags; 1093 qinfo->conf.offloads = txq_info->txq->offloads; 1094 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1095 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1096 qinfo->nb_desc = txq_info->entries; 1097 1098 sfc_adapter_unlock(sa); 1099 } 1100 1101 static uint32_t 1102 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1103 { 1104 struct sfc_adapter *sa = dev->data->dev_private; 1105 1106 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1107 1108 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1109 } 1110 1111 static int 1112 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1113 { 1114 struct sfc_dp_rxq *dp_rxq = queue; 1115 1116 return sfc_rx_qdesc_done(dp_rxq, offset); 1117 } 1118 1119 static int 1120 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1121 { 1122 struct sfc_dp_rxq *dp_rxq = queue; 1123 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1124 1125 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1126 } 1127 1128 static int 1129 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1130 { 1131 struct sfc_dp_txq *dp_txq = queue; 1132 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1133 1134 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1135 } 1136 1137 static int 1138 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1139 { 1140 struct sfc_adapter *sa = dev->data->dev_private; 1141 int rc; 1142 1143 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1144 1145 sfc_adapter_lock(sa); 1146 1147 rc = EINVAL; 1148 if (sa->state != SFC_ADAPTER_STARTED) 1149 goto fail_not_started; 1150 1151 rc = sfc_rx_qstart(sa, rx_queue_id); 1152 if (rc != 0) 1153 goto fail_rx_qstart; 1154 1155 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1156 1157 sfc_adapter_unlock(sa); 1158 1159 return 0; 1160 1161 fail_rx_qstart: 1162 fail_not_started: 1163 sfc_adapter_unlock(sa); 1164 SFC_ASSERT(rc > 0); 1165 return -rc; 1166 } 1167 1168 static int 1169 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1170 { 1171 struct sfc_adapter *sa = dev->data->dev_private; 1172 1173 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1174 1175 sfc_adapter_lock(sa); 1176 sfc_rx_qstop(sa, rx_queue_id); 1177 1178 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1179 1180 sfc_adapter_unlock(sa); 1181 1182 return 0; 1183 } 1184 1185 static int 1186 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1187 { 1188 struct sfc_adapter *sa = dev->data->dev_private; 1189 int rc; 1190 1191 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1192 1193 sfc_adapter_lock(sa); 1194 1195 rc = EINVAL; 1196 if (sa->state != SFC_ADAPTER_STARTED) 1197 goto fail_not_started; 1198 1199 rc = sfc_tx_qstart(sa, tx_queue_id); 1200 if (rc != 0) 1201 goto fail_tx_qstart; 1202 1203 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1204 1205 sfc_adapter_unlock(sa); 1206 return 0; 1207 1208 fail_tx_qstart: 1209 1210 fail_not_started: 1211 sfc_adapter_unlock(sa); 1212 SFC_ASSERT(rc > 0); 1213 return -rc; 1214 } 1215 1216 static int 1217 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1218 { 1219 struct sfc_adapter *sa = dev->data->dev_private; 1220 1221 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1222 1223 sfc_adapter_lock(sa); 1224 1225 sfc_tx_qstop(sa, tx_queue_id); 1226 1227 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1228 1229 sfc_adapter_unlock(sa); 1230 return 0; 1231 } 1232 1233 static efx_tunnel_protocol_t 1234 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1235 { 1236 switch (rte_type) { 1237 case RTE_TUNNEL_TYPE_VXLAN: 1238 return EFX_TUNNEL_PROTOCOL_VXLAN; 1239 case RTE_TUNNEL_TYPE_GENEVE: 1240 return EFX_TUNNEL_PROTOCOL_GENEVE; 1241 default: 1242 return EFX_TUNNEL_NPROTOS; 1243 } 1244 } 1245 1246 enum sfc_udp_tunnel_op_e { 1247 SFC_UDP_TUNNEL_ADD_PORT, 1248 SFC_UDP_TUNNEL_DEL_PORT, 1249 }; 1250 1251 static int 1252 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1253 struct rte_eth_udp_tunnel *tunnel_udp, 1254 enum sfc_udp_tunnel_op_e op) 1255 { 1256 struct sfc_adapter *sa = dev->data->dev_private; 1257 efx_tunnel_protocol_t tunnel_proto; 1258 int rc; 1259 1260 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1261 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1262 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1263 tunnel_udp->udp_port, tunnel_udp->prot_type); 1264 1265 tunnel_proto = 1266 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1267 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1268 rc = ENOTSUP; 1269 goto fail_bad_proto; 1270 } 1271 1272 sfc_adapter_lock(sa); 1273 1274 switch (op) { 1275 case SFC_UDP_TUNNEL_ADD_PORT: 1276 rc = efx_tunnel_config_udp_add(sa->nic, 1277 tunnel_udp->udp_port, 1278 tunnel_proto); 1279 break; 1280 case SFC_UDP_TUNNEL_DEL_PORT: 1281 rc = efx_tunnel_config_udp_remove(sa->nic, 1282 tunnel_udp->udp_port, 1283 tunnel_proto); 1284 break; 1285 default: 1286 rc = EINVAL; 1287 goto fail_bad_op; 1288 } 1289 1290 if (rc != 0) 1291 goto fail_op; 1292 1293 if (sa->state == SFC_ADAPTER_STARTED) { 1294 rc = efx_tunnel_reconfigure(sa->nic); 1295 if (rc == EAGAIN) { 1296 /* 1297 * Configuration is accepted by FW and MC reboot 1298 * is initiated to apply the changes. MC reboot 1299 * will be handled in a usual way (MC reboot 1300 * event on management event queue and adapter 1301 * restart). 1302 */ 1303 rc = 0; 1304 } else if (rc != 0) { 1305 goto fail_reconfigure; 1306 } 1307 } 1308 1309 sfc_adapter_unlock(sa); 1310 return 0; 1311 1312 fail_reconfigure: 1313 /* Remove/restore entry since the change makes the trouble */ 1314 switch (op) { 1315 case SFC_UDP_TUNNEL_ADD_PORT: 1316 (void)efx_tunnel_config_udp_remove(sa->nic, 1317 tunnel_udp->udp_port, 1318 tunnel_proto); 1319 break; 1320 case SFC_UDP_TUNNEL_DEL_PORT: 1321 (void)efx_tunnel_config_udp_add(sa->nic, 1322 tunnel_udp->udp_port, 1323 tunnel_proto); 1324 break; 1325 } 1326 1327 fail_op: 1328 fail_bad_op: 1329 sfc_adapter_unlock(sa); 1330 1331 fail_bad_proto: 1332 SFC_ASSERT(rc > 0); 1333 return -rc; 1334 } 1335 1336 static int 1337 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1338 struct rte_eth_udp_tunnel *tunnel_udp) 1339 { 1340 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1341 } 1342 1343 static int 1344 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1345 struct rte_eth_udp_tunnel *tunnel_udp) 1346 { 1347 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1348 } 1349 1350 #if EFSYS_OPT_RX_SCALE 1351 static int 1352 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1353 struct rte_eth_rss_conf *rss_conf) 1354 { 1355 struct sfc_adapter *sa = dev->data->dev_private; 1356 struct sfc_port *port = &sa->port; 1357 1358 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1359 return -ENOTSUP; 1360 1361 if (sa->rss_channels == 0) 1362 return -EINVAL; 1363 1364 sfc_adapter_lock(sa); 1365 1366 /* 1367 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1368 * hence, conversion is done here to derive a correct set of ETH_RSS 1369 * flags which corresponds to the active EFX configuration stored 1370 * locally in 'sfc_adapter' and kept up-to-date 1371 */ 1372 rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types); 1373 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1374 if (rss_conf->rss_key != NULL) 1375 rte_memcpy(rss_conf->rss_key, sa->rss_key, EFX_RSS_KEY_SIZE); 1376 1377 sfc_adapter_unlock(sa); 1378 1379 return 0; 1380 } 1381 1382 static int 1383 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1384 struct rte_eth_rss_conf *rss_conf) 1385 { 1386 struct sfc_adapter *sa = dev->data->dev_private; 1387 struct sfc_port *port = &sa->port; 1388 unsigned int efx_hash_types; 1389 int rc = 0; 1390 1391 if (port->isolated) 1392 return -ENOTSUP; 1393 1394 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1395 sfc_err(sa, "RSS is not available"); 1396 return -ENOTSUP; 1397 } 1398 1399 if (sa->rss_channels == 0) { 1400 sfc_err(sa, "RSS is not configured"); 1401 return -EINVAL; 1402 } 1403 1404 if ((rss_conf->rss_key != NULL) && 1405 (rss_conf->rss_key_len != sizeof(sa->rss_key))) { 1406 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1407 sizeof(sa->rss_key)); 1408 return -EINVAL; 1409 } 1410 1411 if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) { 1412 sfc_err(sa, "unsupported hash functions requested"); 1413 return -EINVAL; 1414 } 1415 1416 sfc_adapter_lock(sa); 1417 1418 efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf); 1419 1420 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1421 EFX_RX_HASHALG_TOEPLITZ, 1422 efx_hash_types, B_TRUE); 1423 if (rc != 0) 1424 goto fail_scale_mode_set; 1425 1426 if (rss_conf->rss_key != NULL) { 1427 if (sa->state == SFC_ADAPTER_STARTED) { 1428 rc = efx_rx_scale_key_set(sa->nic, 1429 EFX_RSS_CONTEXT_DEFAULT, 1430 rss_conf->rss_key, 1431 sizeof(sa->rss_key)); 1432 if (rc != 0) 1433 goto fail_scale_key_set; 1434 } 1435 1436 rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key)); 1437 } 1438 1439 sa->rss_hash_types = efx_hash_types; 1440 1441 sfc_adapter_unlock(sa); 1442 1443 return 0; 1444 1445 fail_scale_key_set: 1446 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1447 EFX_RX_HASHALG_TOEPLITZ, 1448 sa->rss_hash_types, B_TRUE) != 0) 1449 sfc_err(sa, "failed to restore RSS mode"); 1450 1451 fail_scale_mode_set: 1452 sfc_adapter_unlock(sa); 1453 return -rc; 1454 } 1455 1456 static int 1457 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1458 struct rte_eth_rss_reta_entry64 *reta_conf, 1459 uint16_t reta_size) 1460 { 1461 struct sfc_adapter *sa = dev->data->dev_private; 1462 struct sfc_port *port = &sa->port; 1463 int entry; 1464 1465 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1466 return -ENOTSUP; 1467 1468 if (sa->rss_channels == 0) 1469 return -EINVAL; 1470 1471 if (reta_size != EFX_RSS_TBL_SIZE) 1472 return -EINVAL; 1473 1474 sfc_adapter_lock(sa); 1475 1476 for (entry = 0; entry < reta_size; entry++) { 1477 int grp = entry / RTE_RETA_GROUP_SIZE; 1478 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1479 1480 if ((reta_conf[grp].mask >> grp_idx) & 1) 1481 reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry]; 1482 } 1483 1484 sfc_adapter_unlock(sa); 1485 1486 return 0; 1487 } 1488 1489 static int 1490 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1491 struct rte_eth_rss_reta_entry64 *reta_conf, 1492 uint16_t reta_size) 1493 { 1494 struct sfc_adapter *sa = dev->data->dev_private; 1495 struct sfc_port *port = &sa->port; 1496 unsigned int *rss_tbl_new; 1497 uint16_t entry; 1498 int rc = 0; 1499 1500 1501 if (port->isolated) 1502 return -ENOTSUP; 1503 1504 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1505 sfc_err(sa, "RSS is not available"); 1506 return -ENOTSUP; 1507 } 1508 1509 if (sa->rss_channels == 0) { 1510 sfc_err(sa, "RSS is not configured"); 1511 return -EINVAL; 1512 } 1513 1514 if (reta_size != EFX_RSS_TBL_SIZE) { 1515 sfc_err(sa, "RETA size is wrong (should be %u)", 1516 EFX_RSS_TBL_SIZE); 1517 return -EINVAL; 1518 } 1519 1520 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0); 1521 if (rss_tbl_new == NULL) 1522 return -ENOMEM; 1523 1524 sfc_adapter_lock(sa); 1525 1526 rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl)); 1527 1528 for (entry = 0; entry < reta_size; entry++) { 1529 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1530 struct rte_eth_rss_reta_entry64 *grp; 1531 1532 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1533 1534 if (grp->mask & (1ull << grp_idx)) { 1535 if (grp->reta[grp_idx] >= sa->rss_channels) { 1536 rc = EINVAL; 1537 goto bad_reta_entry; 1538 } 1539 rss_tbl_new[entry] = grp->reta[grp_idx]; 1540 } 1541 } 1542 1543 if (sa->state == SFC_ADAPTER_STARTED) { 1544 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1545 rss_tbl_new, EFX_RSS_TBL_SIZE); 1546 if (rc != 0) 1547 goto fail_scale_tbl_set; 1548 } 1549 1550 rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl)); 1551 1552 fail_scale_tbl_set: 1553 bad_reta_entry: 1554 sfc_adapter_unlock(sa); 1555 1556 rte_free(rss_tbl_new); 1557 1558 SFC_ASSERT(rc >= 0); 1559 return -rc; 1560 } 1561 #endif 1562 1563 static int 1564 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1565 enum rte_filter_op filter_op, 1566 void *arg) 1567 { 1568 struct sfc_adapter *sa = dev->data->dev_private; 1569 int rc = ENOTSUP; 1570 1571 sfc_log_init(sa, "entry"); 1572 1573 switch (filter_type) { 1574 case RTE_ETH_FILTER_NONE: 1575 sfc_err(sa, "Global filters configuration not supported"); 1576 break; 1577 case RTE_ETH_FILTER_MACVLAN: 1578 sfc_err(sa, "MACVLAN filters not supported"); 1579 break; 1580 case RTE_ETH_FILTER_ETHERTYPE: 1581 sfc_err(sa, "EtherType filters not supported"); 1582 break; 1583 case RTE_ETH_FILTER_FLEXIBLE: 1584 sfc_err(sa, "Flexible filters not supported"); 1585 break; 1586 case RTE_ETH_FILTER_SYN: 1587 sfc_err(sa, "SYN filters not supported"); 1588 break; 1589 case RTE_ETH_FILTER_NTUPLE: 1590 sfc_err(sa, "NTUPLE filters not supported"); 1591 break; 1592 case RTE_ETH_FILTER_TUNNEL: 1593 sfc_err(sa, "Tunnel filters not supported"); 1594 break; 1595 case RTE_ETH_FILTER_FDIR: 1596 sfc_err(sa, "Flow Director filters not supported"); 1597 break; 1598 case RTE_ETH_FILTER_HASH: 1599 sfc_err(sa, "Hash filters not supported"); 1600 break; 1601 case RTE_ETH_FILTER_GENERIC: 1602 if (filter_op != RTE_ETH_FILTER_GET) { 1603 rc = EINVAL; 1604 } else { 1605 *(const void **)arg = &sfc_flow_ops; 1606 rc = 0; 1607 } 1608 break; 1609 default: 1610 sfc_err(sa, "Unknown filter type %u", filter_type); 1611 break; 1612 } 1613 1614 sfc_log_init(sa, "exit: %d", -rc); 1615 SFC_ASSERT(rc >= 0); 1616 return -rc; 1617 } 1618 1619 static const struct eth_dev_ops sfc_eth_dev_ops = { 1620 .dev_configure = sfc_dev_configure, 1621 .dev_start = sfc_dev_start, 1622 .dev_stop = sfc_dev_stop, 1623 .dev_set_link_up = sfc_dev_set_link_up, 1624 .dev_set_link_down = sfc_dev_set_link_down, 1625 .dev_close = sfc_dev_close, 1626 .promiscuous_enable = sfc_dev_promisc_enable, 1627 .promiscuous_disable = sfc_dev_promisc_disable, 1628 .allmulticast_enable = sfc_dev_allmulti_enable, 1629 .allmulticast_disable = sfc_dev_allmulti_disable, 1630 .link_update = sfc_dev_link_update, 1631 .stats_get = sfc_stats_get, 1632 .stats_reset = sfc_stats_reset, 1633 .xstats_get = sfc_xstats_get, 1634 .xstats_reset = sfc_stats_reset, 1635 .xstats_get_names = sfc_xstats_get_names, 1636 .dev_infos_get = sfc_dev_infos_get, 1637 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1638 .mtu_set = sfc_dev_set_mtu, 1639 .rx_queue_start = sfc_rx_queue_start, 1640 .rx_queue_stop = sfc_rx_queue_stop, 1641 .tx_queue_start = sfc_tx_queue_start, 1642 .tx_queue_stop = sfc_tx_queue_stop, 1643 .rx_queue_setup = sfc_rx_queue_setup, 1644 .rx_queue_release = sfc_rx_queue_release, 1645 .rx_queue_count = sfc_rx_queue_count, 1646 .rx_descriptor_done = sfc_rx_descriptor_done, 1647 .rx_descriptor_status = sfc_rx_descriptor_status, 1648 .tx_descriptor_status = sfc_tx_descriptor_status, 1649 .tx_queue_setup = sfc_tx_queue_setup, 1650 .tx_queue_release = sfc_tx_queue_release, 1651 .flow_ctrl_get = sfc_flow_ctrl_get, 1652 .flow_ctrl_set = sfc_flow_ctrl_set, 1653 .mac_addr_set = sfc_mac_addr_set, 1654 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1655 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1656 #if EFSYS_OPT_RX_SCALE 1657 .reta_update = sfc_dev_rss_reta_update, 1658 .reta_query = sfc_dev_rss_reta_query, 1659 .rss_hash_update = sfc_dev_rss_hash_update, 1660 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1661 #endif 1662 .filter_ctrl = sfc_dev_filter_ctrl, 1663 .set_mc_addr_list = sfc_set_mc_addr_list, 1664 .rxq_info_get = sfc_rx_queue_info_get, 1665 .txq_info_get = sfc_tx_queue_info_get, 1666 .fw_version_get = sfc_fw_version_get, 1667 .xstats_get_by_id = sfc_xstats_get_by_id, 1668 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1669 }; 1670 1671 /** 1672 * Duplicate a string in potentially shared memory required for 1673 * multi-process support. 1674 * 1675 * strdup() allocates from process-local heap/memory. 1676 */ 1677 static char * 1678 sfc_strdup(const char *str) 1679 { 1680 size_t size; 1681 char *copy; 1682 1683 if (str == NULL) 1684 return NULL; 1685 1686 size = strlen(str) + 1; 1687 copy = rte_malloc(__func__, size, 0); 1688 if (copy != NULL) 1689 rte_memcpy(copy, str, size); 1690 1691 return copy; 1692 } 1693 1694 static int 1695 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1696 { 1697 struct sfc_adapter *sa = dev->data->dev_private; 1698 unsigned int avail_caps = 0; 1699 const char *rx_name = NULL; 1700 const char *tx_name = NULL; 1701 int rc; 1702 1703 switch (sa->family) { 1704 case EFX_FAMILY_HUNTINGTON: 1705 case EFX_FAMILY_MEDFORD: 1706 case EFX_FAMILY_MEDFORD2: 1707 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1708 break; 1709 default: 1710 break; 1711 } 1712 1713 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1714 sfc_kvarg_string_handler, &rx_name); 1715 if (rc != 0) 1716 goto fail_kvarg_rx_datapath; 1717 1718 if (rx_name != NULL) { 1719 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1720 if (sa->dp_rx == NULL) { 1721 sfc_err(sa, "Rx datapath %s not found", rx_name); 1722 rc = ENOENT; 1723 goto fail_dp_rx; 1724 } 1725 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1726 sfc_err(sa, 1727 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1728 rx_name); 1729 rc = EINVAL; 1730 goto fail_dp_rx_caps; 1731 } 1732 } else { 1733 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1734 if (sa->dp_rx == NULL) { 1735 sfc_err(sa, "Rx datapath by caps %#x not found", 1736 avail_caps); 1737 rc = ENOENT; 1738 goto fail_dp_rx; 1739 } 1740 } 1741 1742 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1743 if (sa->dp_rx_name == NULL) { 1744 rc = ENOMEM; 1745 goto fail_dp_rx_name; 1746 } 1747 1748 sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name); 1749 1750 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1751 1752 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1753 sfc_kvarg_string_handler, &tx_name); 1754 if (rc != 0) 1755 goto fail_kvarg_tx_datapath; 1756 1757 if (tx_name != NULL) { 1758 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1759 if (sa->dp_tx == NULL) { 1760 sfc_err(sa, "Tx datapath %s not found", tx_name); 1761 rc = ENOENT; 1762 goto fail_dp_tx; 1763 } 1764 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1765 sfc_err(sa, 1766 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1767 tx_name); 1768 rc = EINVAL; 1769 goto fail_dp_tx_caps; 1770 } 1771 } else { 1772 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1773 if (sa->dp_tx == NULL) { 1774 sfc_err(sa, "Tx datapath by caps %#x not found", 1775 avail_caps); 1776 rc = ENOENT; 1777 goto fail_dp_tx; 1778 } 1779 } 1780 1781 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1782 if (sa->dp_tx_name == NULL) { 1783 rc = ENOMEM; 1784 goto fail_dp_tx_name; 1785 } 1786 1787 sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name); 1788 1789 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1790 1791 dev->dev_ops = &sfc_eth_dev_ops; 1792 1793 return 0; 1794 1795 fail_dp_tx_name: 1796 fail_dp_tx_caps: 1797 sa->dp_tx = NULL; 1798 1799 fail_dp_tx: 1800 fail_kvarg_tx_datapath: 1801 rte_free(sa->dp_rx_name); 1802 sa->dp_rx_name = NULL; 1803 1804 fail_dp_rx_name: 1805 fail_dp_rx_caps: 1806 sa->dp_rx = NULL; 1807 1808 fail_dp_rx: 1809 fail_kvarg_rx_datapath: 1810 return rc; 1811 } 1812 1813 static void 1814 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1815 { 1816 struct sfc_adapter *sa = dev->data->dev_private; 1817 1818 dev->dev_ops = NULL; 1819 dev->rx_pkt_burst = NULL; 1820 dev->tx_pkt_burst = NULL; 1821 1822 rte_free(sa->dp_tx_name); 1823 sa->dp_tx_name = NULL; 1824 sa->dp_tx = NULL; 1825 1826 rte_free(sa->dp_rx_name); 1827 sa->dp_rx_name = NULL; 1828 sa->dp_rx = NULL; 1829 } 1830 1831 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1832 .rxq_info_get = sfc_rx_queue_info_get, 1833 .txq_info_get = sfc_tx_queue_info_get, 1834 }; 1835 1836 static int 1837 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1838 { 1839 /* 1840 * Device private data has really many process-local pointers. 1841 * Below code should be extremely careful to use data located 1842 * in shared memory only. 1843 */ 1844 struct sfc_adapter *sa = dev->data->dev_private; 1845 const struct sfc_dp_rx *dp_rx; 1846 const struct sfc_dp_tx *dp_tx; 1847 int rc; 1848 1849 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1850 if (dp_rx == NULL) { 1851 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name); 1852 rc = ENOENT; 1853 goto fail_dp_rx; 1854 } 1855 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1856 sfc_err(sa, "%s Rx datapath does not support multi-process", 1857 sa->dp_tx_name); 1858 rc = EINVAL; 1859 goto fail_dp_rx_multi_process; 1860 } 1861 1862 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1863 if (dp_tx == NULL) { 1864 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1865 rc = ENOENT; 1866 goto fail_dp_tx; 1867 } 1868 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1869 sfc_err(sa, "%s Tx datapath does not support multi-process", 1870 sa->dp_tx_name); 1871 rc = EINVAL; 1872 goto fail_dp_tx_multi_process; 1873 } 1874 1875 dev->rx_pkt_burst = dp_rx->pkt_burst; 1876 dev->tx_pkt_burst = dp_tx->pkt_burst; 1877 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1878 1879 return 0; 1880 1881 fail_dp_tx_multi_process: 1882 fail_dp_tx: 1883 fail_dp_rx_multi_process: 1884 fail_dp_rx: 1885 return rc; 1886 } 1887 1888 static void 1889 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1890 { 1891 dev->dev_ops = NULL; 1892 dev->tx_pkt_burst = NULL; 1893 dev->rx_pkt_burst = NULL; 1894 } 1895 1896 static void 1897 sfc_register_dp(void) 1898 { 1899 /* Register once */ 1900 if (TAILQ_EMPTY(&sfc_dp_head)) { 1901 /* Prefer EF10 datapath */ 1902 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1903 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1904 1905 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1906 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1907 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1908 } 1909 } 1910 1911 static int 1912 sfc_eth_dev_init(struct rte_eth_dev *dev) 1913 { 1914 struct sfc_adapter *sa = dev->data->dev_private; 1915 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1916 int rc; 1917 const efx_nic_cfg_t *encp; 1918 const struct ether_addr *from; 1919 1920 sfc_register_dp(); 1921 1922 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1923 return -sfc_eth_dev_secondary_set_ops(dev); 1924 1925 /* Required for logging */ 1926 sa->pci_addr = pci_dev->addr; 1927 sa->port_id = dev->data->port_id; 1928 1929 sa->eth_dev = dev; 1930 1931 /* Copy PCI device info to the dev->data */ 1932 rte_eth_copy_pci_info(dev, pci_dev); 1933 1934 sa->logtype_main = sfc_register_logtype(sa, SFC_LOGTYPE_MAIN_STR, 1935 RTE_LOG_NOTICE); 1936 1937 rc = sfc_kvargs_parse(sa); 1938 if (rc != 0) 1939 goto fail_kvargs_parse; 1940 1941 sfc_log_init(sa, "entry"); 1942 1943 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1944 if (dev->data->mac_addrs == NULL) { 1945 rc = ENOMEM; 1946 goto fail_mac_addrs; 1947 } 1948 1949 sfc_adapter_lock_init(sa); 1950 sfc_adapter_lock(sa); 1951 1952 sfc_log_init(sa, "probing"); 1953 rc = sfc_probe(sa); 1954 if (rc != 0) 1955 goto fail_probe; 1956 1957 sfc_log_init(sa, "set device ops"); 1958 rc = sfc_eth_dev_set_ops(dev); 1959 if (rc != 0) 1960 goto fail_set_ops; 1961 1962 sfc_log_init(sa, "attaching"); 1963 rc = sfc_attach(sa); 1964 if (rc != 0) 1965 goto fail_attach; 1966 1967 encp = efx_nic_cfg_get(sa->nic); 1968 1969 /* 1970 * The arguments are really reverse order in comparison to 1971 * Linux kernel. Copy from NIC config to Ethernet device data. 1972 */ 1973 from = (const struct ether_addr *)(encp->enc_mac_addr); 1974 ether_addr_copy(from, &dev->data->mac_addrs[0]); 1975 1976 sfc_adapter_unlock(sa); 1977 1978 sfc_log_init(sa, "done"); 1979 return 0; 1980 1981 fail_attach: 1982 sfc_eth_dev_clear_ops(dev); 1983 1984 fail_set_ops: 1985 sfc_unprobe(sa); 1986 1987 fail_probe: 1988 sfc_adapter_unlock(sa); 1989 sfc_adapter_lock_fini(sa); 1990 rte_free(dev->data->mac_addrs); 1991 dev->data->mac_addrs = NULL; 1992 1993 fail_mac_addrs: 1994 sfc_kvargs_cleanup(sa); 1995 1996 fail_kvargs_parse: 1997 sfc_log_init(sa, "failed %d", rc); 1998 SFC_ASSERT(rc > 0); 1999 return -rc; 2000 } 2001 2002 static int 2003 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2004 { 2005 struct sfc_adapter *sa; 2006 2007 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2008 sfc_eth_dev_secondary_clear_ops(dev); 2009 return 0; 2010 } 2011 2012 sa = dev->data->dev_private; 2013 sfc_log_init(sa, "entry"); 2014 2015 sfc_adapter_lock(sa); 2016 2017 sfc_eth_dev_clear_ops(dev); 2018 2019 sfc_detach(sa); 2020 sfc_unprobe(sa); 2021 2022 rte_free(dev->data->mac_addrs); 2023 dev->data->mac_addrs = NULL; 2024 2025 sfc_kvargs_cleanup(sa); 2026 2027 sfc_adapter_unlock(sa); 2028 sfc_adapter_lock_fini(sa); 2029 2030 sfc_log_init(sa, "done"); 2031 2032 /* Required for logging, so cleanup last */ 2033 sa->eth_dev = NULL; 2034 return 0; 2035 } 2036 2037 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2038 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2039 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2040 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2041 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2042 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2043 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2044 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2045 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2046 { .vendor_id = 0 /* sentinel */ } 2047 }; 2048 2049 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2050 struct rte_pci_device *pci_dev) 2051 { 2052 return rte_eth_dev_pci_generic_probe(pci_dev, 2053 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2054 } 2055 2056 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2057 { 2058 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2059 } 2060 2061 static struct rte_pci_driver sfc_efx_pmd = { 2062 .id_table = pci_id_sfc_efx_map, 2063 .drv_flags = 2064 RTE_PCI_DRV_INTR_LSC | 2065 RTE_PCI_DRV_NEED_MAPPING, 2066 .probe = sfc_eth_dev_pci_probe, 2067 .remove = sfc_eth_dev_pci_remove, 2068 }; 2069 2070 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2071 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2072 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2073 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2074 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2075 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2076 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2077 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2078 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2079 2080 RTE_INIT(sfc_driver_register_logtype); 2081 static void 2082 sfc_driver_register_logtype(void) 2083 { 2084 int ret; 2085 2086 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2087 RTE_LOG_NOTICE); 2088 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2089 } 2090