1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_debug.h" 22 #include "sfc_log.h" 23 #include "sfc_kvargs.h" 24 #include "sfc_ev.h" 25 #include "sfc_rx.h" 26 #include "sfc_tx.h" 27 #include "sfc_flow.h" 28 #include "sfc_dp.h" 29 #include "sfc_dp_rx.h" 30 31 uint32_t sfc_logtype_driver; 32 33 static struct sfc_dp_list sfc_dp_head = 34 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 35 36 static int 37 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 38 { 39 struct sfc_adapter *sa = dev->data->dev_private; 40 efx_nic_fw_info_t enfi; 41 int ret; 42 int rc; 43 44 /* 45 * Return value of the callback is likely supposed to be 46 * equal to or greater than 0, nevertheless, if an error 47 * occurs, it will be desirable to pass it to the caller 48 */ 49 if ((fw_version == NULL) || (fw_size == 0)) 50 return -EINVAL; 51 52 rc = efx_nic_get_fw_version(sa->nic, &enfi); 53 if (rc != 0) 54 return -rc; 55 56 ret = snprintf(fw_version, fw_size, 57 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 58 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 59 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 60 if (ret < 0) 61 return ret; 62 63 if (enfi.enfi_dpcpu_fw_ids_valid) { 64 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 65 int ret_extra; 66 67 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 68 fw_size - dpcpu_fw_ids_offset, 69 " rx%" PRIx16 " tx%" PRIx16, 70 enfi.enfi_rx_dpcpu_fw_id, 71 enfi.enfi_tx_dpcpu_fw_id); 72 if (ret_extra < 0) 73 return ret_extra; 74 75 ret += ret_extra; 76 } 77 78 if (fw_size < (size_t)(++ret)) 79 return ret; 80 else 81 return 0; 82 } 83 84 static void 85 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 86 { 87 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 88 struct sfc_adapter *sa = dev->data->dev_private; 89 struct sfc_rss *rss = &sa->rss; 90 uint64_t txq_offloads_def = 0; 91 92 sfc_log_init(sa, "entry"); 93 94 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 95 96 /* Autonegotiation may be disabled */ 97 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 98 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 99 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 100 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 101 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 102 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX) 103 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 104 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 105 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 106 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX) 107 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 108 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX) 109 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 110 111 dev_info->max_rx_queues = sa->rxq_max; 112 dev_info->max_tx_queues = sa->txq_max; 113 114 /* By default packets are dropped if no descriptors are available */ 115 dev_info->default_rxconf.rx_drop_en = 1; 116 117 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 118 119 /* 120 * rx_offload_capa includes both device and queue offloads since 121 * the latter may be requested on a per device basis which makes 122 * sense when some offloads are needed to be set on all queues. 123 */ 124 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 125 dev_info->rx_queue_offload_capa; 126 127 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 128 129 /* 130 * tx_offload_capa includes both device and queue offloads since 131 * the latter may be requested on a per device basis which makes 132 * sense when some offloads are needed to be set on all queues. 133 */ 134 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 135 dev_info->tx_queue_offload_capa; 136 137 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 138 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 139 140 dev_info->default_txconf.offloads |= txq_offloads_def; 141 142 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 143 uint64_t rte_hf = 0; 144 unsigned int i; 145 146 for (i = 0; i < rss->hf_map_nb_entries; ++i) 147 rte_hf |= rss->hf_map[i].rte; 148 149 dev_info->reta_size = EFX_RSS_TBL_SIZE; 150 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 151 dev_info->flow_type_rss_offloads = rte_hf; 152 } 153 154 /* Initialize to hardware limits */ 155 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 156 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 157 /* The RXQ hardware requires that the descriptor count is a power 158 * of 2, but rx_desc_lim cannot properly describe that constraint. 159 */ 160 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 161 162 /* Initialize to hardware limits */ 163 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 164 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 165 /* 166 * The TXQ hardware requires that the descriptor count is a power 167 * of 2, but tx_desc_lim cannot properly describe that constraint 168 */ 169 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 170 171 if (sap->dp_rx->get_dev_info != NULL) 172 sap->dp_rx->get_dev_info(dev_info); 173 if (sap->dp_tx->get_dev_info != NULL) 174 sap->dp_tx->get_dev_info(dev_info); 175 176 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 177 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 178 } 179 180 static const uint32_t * 181 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 182 { 183 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 184 struct sfc_adapter *sa = dev->data->dev_private; 185 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 186 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 187 188 return sap->dp_rx->supported_ptypes_get(tunnel_encaps); 189 } 190 191 static int 192 sfc_dev_configure(struct rte_eth_dev *dev) 193 { 194 struct rte_eth_dev_data *dev_data = dev->data; 195 struct sfc_adapter *sa = dev_data->dev_private; 196 int rc; 197 198 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 199 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 200 201 sfc_adapter_lock(sa); 202 switch (sa->state) { 203 case SFC_ADAPTER_CONFIGURED: 204 /* FALLTHROUGH */ 205 case SFC_ADAPTER_INITIALIZED: 206 rc = sfc_configure(sa); 207 break; 208 default: 209 sfc_err(sa, "unexpected adapter state %u to configure", 210 sa->state); 211 rc = EINVAL; 212 break; 213 } 214 sfc_adapter_unlock(sa); 215 216 sfc_log_init(sa, "done %d", rc); 217 SFC_ASSERT(rc >= 0); 218 return -rc; 219 } 220 221 static int 222 sfc_dev_start(struct rte_eth_dev *dev) 223 { 224 struct sfc_adapter *sa = dev->data->dev_private; 225 int rc; 226 227 sfc_log_init(sa, "entry"); 228 229 sfc_adapter_lock(sa); 230 rc = sfc_start(sa); 231 sfc_adapter_unlock(sa); 232 233 sfc_log_init(sa, "done %d", rc); 234 SFC_ASSERT(rc >= 0); 235 return -rc; 236 } 237 238 static int 239 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 240 { 241 struct sfc_adapter *sa = dev->data->dev_private; 242 struct rte_eth_link current_link; 243 int ret; 244 245 sfc_log_init(sa, "entry"); 246 247 if (sa->state != SFC_ADAPTER_STARTED) { 248 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 249 } else if (wait_to_complete) { 250 efx_link_mode_t link_mode; 251 252 if (efx_port_poll(sa->nic, &link_mode) != 0) 253 link_mode = EFX_LINK_UNKNOWN; 254 sfc_port_link_mode_to_info(link_mode, ¤t_link); 255 256 } else { 257 sfc_ev_mgmt_qpoll(sa); 258 rte_eth_linkstatus_get(dev, ¤t_link); 259 } 260 261 ret = rte_eth_linkstatus_set(dev, ¤t_link); 262 if (ret == 0) 263 sfc_notice(sa, "Link status is %s", 264 current_link.link_status ? "UP" : "DOWN"); 265 266 return ret; 267 } 268 269 static void 270 sfc_dev_stop(struct rte_eth_dev *dev) 271 { 272 struct sfc_adapter *sa = dev->data->dev_private; 273 274 sfc_log_init(sa, "entry"); 275 276 sfc_adapter_lock(sa); 277 sfc_stop(sa); 278 sfc_adapter_unlock(sa); 279 280 sfc_log_init(sa, "done"); 281 } 282 283 static int 284 sfc_dev_set_link_up(struct rte_eth_dev *dev) 285 { 286 struct sfc_adapter *sa = dev->data->dev_private; 287 int rc; 288 289 sfc_log_init(sa, "entry"); 290 291 sfc_adapter_lock(sa); 292 rc = sfc_start(sa); 293 sfc_adapter_unlock(sa); 294 295 SFC_ASSERT(rc >= 0); 296 return -rc; 297 } 298 299 static int 300 sfc_dev_set_link_down(struct rte_eth_dev *dev) 301 { 302 struct sfc_adapter *sa = dev->data->dev_private; 303 304 sfc_log_init(sa, "entry"); 305 306 sfc_adapter_lock(sa); 307 sfc_stop(sa); 308 sfc_adapter_unlock(sa); 309 310 return 0; 311 } 312 313 static void 314 sfc_dev_close(struct rte_eth_dev *dev) 315 { 316 struct sfc_adapter *sa = dev->data->dev_private; 317 318 sfc_log_init(sa, "entry"); 319 320 sfc_adapter_lock(sa); 321 switch (sa->state) { 322 case SFC_ADAPTER_STARTED: 323 sfc_stop(sa); 324 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 325 /* FALLTHROUGH */ 326 case SFC_ADAPTER_CONFIGURED: 327 sfc_close(sa); 328 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 329 /* FALLTHROUGH */ 330 case SFC_ADAPTER_INITIALIZED: 331 break; 332 default: 333 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 334 break; 335 } 336 sfc_adapter_unlock(sa); 337 338 sfc_log_init(sa, "done"); 339 } 340 341 static void 342 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 343 boolean_t enabled) 344 { 345 struct sfc_port *port; 346 boolean_t *toggle; 347 struct sfc_adapter *sa = dev->data->dev_private; 348 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 349 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 350 351 sfc_adapter_lock(sa); 352 353 port = &sa->port; 354 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 355 356 if (*toggle != enabled) { 357 *toggle = enabled; 358 359 if (port->isolated) { 360 sfc_warn(sa, "isolated mode is active on the port"); 361 sfc_warn(sa, "the change is to be applied on the next " 362 "start provided that isolated mode is " 363 "disabled prior the next start"); 364 } else if ((sa->state == SFC_ADAPTER_STARTED) && 365 (sfc_set_rx_mode(sa) != 0)) { 366 *toggle = !(enabled); 367 sfc_warn(sa, "Failed to %s %s mode", 368 ((enabled) ? "enable" : "disable"), desc); 369 } 370 } 371 372 sfc_adapter_unlock(sa); 373 } 374 375 static void 376 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 377 { 378 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 379 } 380 381 static void 382 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 383 { 384 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 385 } 386 387 static void 388 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 389 { 390 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 391 } 392 393 static void 394 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 395 { 396 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 397 } 398 399 static int 400 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 401 uint16_t nb_rx_desc, unsigned int socket_id, 402 const struct rte_eth_rxconf *rx_conf, 403 struct rte_mempool *mb_pool) 404 { 405 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 406 struct sfc_adapter *sa = dev->data->dev_private; 407 int rc; 408 409 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 410 rx_queue_id, nb_rx_desc, socket_id); 411 412 sfc_adapter_lock(sa); 413 414 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 415 rx_conf, mb_pool); 416 if (rc != 0) 417 goto fail_rx_qinit; 418 419 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 420 421 sfc_adapter_unlock(sa); 422 423 return 0; 424 425 fail_rx_qinit: 426 sfc_adapter_unlock(sa); 427 SFC_ASSERT(rc > 0); 428 return -rc; 429 } 430 431 static void 432 sfc_rx_queue_release(void *queue) 433 { 434 struct sfc_dp_rxq *dp_rxq = queue; 435 struct sfc_rxq *rxq; 436 struct sfc_adapter *sa; 437 unsigned int sw_index; 438 439 if (dp_rxq == NULL) 440 return; 441 442 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 443 sa = rxq->evq->sa; 444 sfc_adapter_lock(sa); 445 446 sw_index = dp_rxq->dpq.queue_id; 447 448 sfc_log_init(sa, "RxQ=%u", sw_index); 449 450 sfc_rx_qfini(sa, sw_index); 451 452 sfc_adapter_unlock(sa); 453 } 454 455 static int 456 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 457 uint16_t nb_tx_desc, unsigned int socket_id, 458 const struct rte_eth_txconf *tx_conf) 459 { 460 struct sfc_adapter *sa = dev->data->dev_private; 461 int rc; 462 463 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 464 tx_queue_id, nb_tx_desc, socket_id); 465 466 sfc_adapter_lock(sa); 467 468 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 469 if (rc != 0) 470 goto fail_tx_qinit; 471 472 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].dp; 473 474 sfc_adapter_unlock(sa); 475 return 0; 476 477 fail_tx_qinit: 478 sfc_adapter_unlock(sa); 479 SFC_ASSERT(rc > 0); 480 return -rc; 481 } 482 483 static void 484 sfc_tx_queue_release(void *queue) 485 { 486 struct sfc_dp_txq *dp_txq = queue; 487 struct sfc_txq *txq; 488 unsigned int sw_index; 489 struct sfc_adapter *sa; 490 491 if (dp_txq == NULL) 492 return; 493 494 txq = sfc_txq_by_dp_txq(dp_txq); 495 sw_index = dp_txq->dpq.queue_id; 496 497 SFC_ASSERT(txq->evq != NULL); 498 sa = txq->evq->sa; 499 500 sfc_log_init(sa, "TxQ = %u", sw_index); 501 502 sfc_adapter_lock(sa); 503 504 sfc_tx_qfini(sa, sw_index); 505 506 sfc_adapter_unlock(sa); 507 } 508 509 /* 510 * Some statistics are computed as A - B where A and B each increase 511 * monotonically with some hardware counter(s) and the counters are read 512 * asynchronously. 513 * 514 * If packet X is counted in A, but not counted in B yet, computed value is 515 * greater than real. 516 * 517 * If packet X is not counted in A at the moment of reading the counter, 518 * but counted in B at the moment of reading the counter, computed value 519 * is less than real. 520 * 521 * However, counter which grows backward is worse evil than slightly wrong 522 * value. So, let's try to guarantee that it never happens except may be 523 * the case when the MAC stats are zeroed as a result of a NIC reset. 524 */ 525 static void 526 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 527 { 528 if ((int64_t)(newval - *stat) > 0 || newval == 0) 529 *stat = newval; 530 } 531 532 static int 533 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 534 { 535 struct sfc_adapter *sa = dev->data->dev_private; 536 struct sfc_port *port = &sa->port; 537 uint64_t *mac_stats; 538 int ret; 539 540 rte_spinlock_lock(&port->mac_stats_lock); 541 542 ret = sfc_port_update_mac_stats(sa); 543 if (ret != 0) 544 goto unlock; 545 546 mac_stats = port->mac_stats_buf; 547 548 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 549 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 550 stats->ipackets = 551 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 552 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 553 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 554 stats->opackets = 555 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 556 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 557 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 558 stats->ibytes = 559 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 560 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 561 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 562 stats->obytes = 563 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 564 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 565 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 566 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 567 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 568 } else { 569 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 570 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 571 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 572 /* 573 * Take into account stats which are whenever supported 574 * on EF10. If some stat is not supported by current 575 * firmware variant or HW revision, it is guaranteed 576 * to be zero in mac_stats. 577 */ 578 stats->imissed = 579 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 580 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 581 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 582 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 583 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 584 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 585 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 586 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 587 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 588 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 589 stats->ierrors = 590 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 591 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 592 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 593 /* no oerrors counters supported on EF10 */ 594 595 /* Exclude missed, errors and pauses from Rx packets */ 596 sfc_update_diff_stat(&port->ipackets, 597 mac_stats[EFX_MAC_RX_PKTS] - 598 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 599 stats->imissed - stats->ierrors); 600 stats->ipackets = port->ipackets; 601 } 602 603 unlock: 604 rte_spinlock_unlock(&port->mac_stats_lock); 605 SFC_ASSERT(ret >= 0); 606 return -ret; 607 } 608 609 static void 610 sfc_stats_reset(struct rte_eth_dev *dev) 611 { 612 struct sfc_adapter *sa = dev->data->dev_private; 613 struct sfc_port *port = &sa->port; 614 int rc; 615 616 if (sa->state != SFC_ADAPTER_STARTED) { 617 /* 618 * The operation cannot be done if port is not started; it 619 * will be scheduled to be done during the next port start 620 */ 621 port->mac_stats_reset_pending = B_TRUE; 622 return; 623 } 624 625 rc = sfc_port_reset_mac_stats(sa); 626 if (rc != 0) 627 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 628 } 629 630 static int 631 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 632 unsigned int xstats_count) 633 { 634 struct sfc_adapter *sa = dev->data->dev_private; 635 struct sfc_port *port = &sa->port; 636 uint64_t *mac_stats; 637 int rc; 638 unsigned int i; 639 int nstats = 0; 640 641 rte_spinlock_lock(&port->mac_stats_lock); 642 643 rc = sfc_port_update_mac_stats(sa); 644 if (rc != 0) { 645 SFC_ASSERT(rc > 0); 646 nstats = -rc; 647 goto unlock; 648 } 649 650 mac_stats = port->mac_stats_buf; 651 652 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 653 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 654 if (xstats != NULL && nstats < (int)xstats_count) { 655 xstats[nstats].id = nstats; 656 xstats[nstats].value = mac_stats[i]; 657 } 658 nstats++; 659 } 660 } 661 662 unlock: 663 rte_spinlock_unlock(&port->mac_stats_lock); 664 665 return nstats; 666 } 667 668 static int 669 sfc_xstats_get_names(struct rte_eth_dev *dev, 670 struct rte_eth_xstat_name *xstats_names, 671 unsigned int xstats_count) 672 { 673 struct sfc_adapter *sa = dev->data->dev_private; 674 struct sfc_port *port = &sa->port; 675 unsigned int i; 676 unsigned int nstats = 0; 677 678 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 679 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 680 if (xstats_names != NULL && nstats < xstats_count) 681 strlcpy(xstats_names[nstats].name, 682 efx_mac_stat_name(sa->nic, i), 683 sizeof(xstats_names[0].name)); 684 nstats++; 685 } 686 } 687 688 return nstats; 689 } 690 691 static int 692 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 693 uint64_t *values, unsigned int n) 694 { 695 struct sfc_adapter *sa = dev->data->dev_private; 696 struct sfc_port *port = &sa->port; 697 uint64_t *mac_stats; 698 unsigned int nb_supported = 0; 699 unsigned int nb_written = 0; 700 unsigned int i; 701 int ret; 702 int rc; 703 704 if (unlikely(values == NULL) || 705 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 706 return port->mac_stats_nb_supported; 707 708 rte_spinlock_lock(&port->mac_stats_lock); 709 710 rc = sfc_port_update_mac_stats(sa); 711 if (rc != 0) { 712 SFC_ASSERT(rc > 0); 713 ret = -rc; 714 goto unlock; 715 } 716 717 mac_stats = port->mac_stats_buf; 718 719 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 720 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 721 continue; 722 723 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 724 values[nb_written++] = mac_stats[i]; 725 726 ++nb_supported; 727 } 728 729 ret = nb_written; 730 731 unlock: 732 rte_spinlock_unlock(&port->mac_stats_lock); 733 734 return ret; 735 } 736 737 static int 738 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 739 struct rte_eth_xstat_name *xstats_names, 740 const uint64_t *ids, unsigned int size) 741 { 742 struct sfc_adapter *sa = dev->data->dev_private; 743 struct sfc_port *port = &sa->port; 744 unsigned int nb_supported = 0; 745 unsigned int nb_written = 0; 746 unsigned int i; 747 748 if (unlikely(xstats_names == NULL) || 749 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 750 return port->mac_stats_nb_supported; 751 752 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 753 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 754 continue; 755 756 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 757 char *name = xstats_names[nb_written++].name; 758 759 strlcpy(name, efx_mac_stat_name(sa->nic, i), 760 sizeof(xstats_names[0].name)); 761 } 762 763 ++nb_supported; 764 } 765 766 return nb_written; 767 } 768 769 static int 770 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 771 { 772 struct sfc_adapter *sa = dev->data->dev_private; 773 unsigned int wanted_fc, link_fc; 774 775 memset(fc_conf, 0, sizeof(*fc_conf)); 776 777 sfc_adapter_lock(sa); 778 779 if (sa->state == SFC_ADAPTER_STARTED) 780 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 781 else 782 link_fc = sa->port.flow_ctrl; 783 784 switch (link_fc) { 785 case 0: 786 fc_conf->mode = RTE_FC_NONE; 787 break; 788 case EFX_FCNTL_RESPOND: 789 fc_conf->mode = RTE_FC_RX_PAUSE; 790 break; 791 case EFX_FCNTL_GENERATE: 792 fc_conf->mode = RTE_FC_TX_PAUSE; 793 break; 794 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 795 fc_conf->mode = RTE_FC_FULL; 796 break; 797 default: 798 sfc_err(sa, "%s: unexpected flow control value %#x", 799 __func__, link_fc); 800 } 801 802 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 803 804 sfc_adapter_unlock(sa); 805 806 return 0; 807 } 808 809 static int 810 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 811 { 812 struct sfc_adapter *sa = dev->data->dev_private; 813 struct sfc_port *port = &sa->port; 814 unsigned int fcntl; 815 int rc; 816 817 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 818 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 819 fc_conf->mac_ctrl_frame_fwd != 0) { 820 sfc_err(sa, "unsupported flow control settings specified"); 821 rc = EINVAL; 822 goto fail_inval; 823 } 824 825 switch (fc_conf->mode) { 826 case RTE_FC_NONE: 827 fcntl = 0; 828 break; 829 case RTE_FC_RX_PAUSE: 830 fcntl = EFX_FCNTL_RESPOND; 831 break; 832 case RTE_FC_TX_PAUSE: 833 fcntl = EFX_FCNTL_GENERATE; 834 break; 835 case RTE_FC_FULL: 836 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 837 break; 838 default: 839 rc = EINVAL; 840 goto fail_inval; 841 } 842 843 sfc_adapter_lock(sa); 844 845 if (sa->state == SFC_ADAPTER_STARTED) { 846 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 847 if (rc != 0) 848 goto fail_mac_fcntl_set; 849 } 850 851 port->flow_ctrl = fcntl; 852 port->flow_ctrl_autoneg = fc_conf->autoneg; 853 854 sfc_adapter_unlock(sa); 855 856 return 0; 857 858 fail_mac_fcntl_set: 859 sfc_adapter_unlock(sa); 860 fail_inval: 861 SFC_ASSERT(rc > 0); 862 return -rc; 863 } 864 865 static int 866 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 867 { 868 struct sfc_adapter *sa = dev->data->dev_private; 869 size_t pdu = EFX_MAC_PDU(mtu); 870 size_t old_pdu; 871 int rc; 872 873 sfc_log_init(sa, "mtu=%u", mtu); 874 875 rc = EINVAL; 876 if (pdu < EFX_MAC_PDU_MIN) { 877 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 878 (unsigned int)mtu, (unsigned int)pdu, 879 EFX_MAC_PDU_MIN); 880 goto fail_inval; 881 } 882 if (pdu > EFX_MAC_PDU_MAX) { 883 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 884 (unsigned int)mtu, (unsigned int)pdu, 885 EFX_MAC_PDU_MAX); 886 goto fail_inval; 887 } 888 889 sfc_adapter_lock(sa); 890 891 if (pdu != sa->port.pdu) { 892 if (sa->state == SFC_ADAPTER_STARTED) { 893 sfc_stop(sa); 894 895 old_pdu = sa->port.pdu; 896 sa->port.pdu = pdu; 897 rc = sfc_start(sa); 898 if (rc != 0) 899 goto fail_start; 900 } else { 901 sa->port.pdu = pdu; 902 } 903 } 904 905 /* 906 * The driver does not use it, but other PMDs update jumbo frame 907 * flag and max_rx_pkt_len when MTU is set. 908 */ 909 if (mtu > ETHER_MAX_LEN) { 910 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 911 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 912 } 913 914 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 915 916 sfc_adapter_unlock(sa); 917 918 sfc_log_init(sa, "done"); 919 return 0; 920 921 fail_start: 922 sa->port.pdu = old_pdu; 923 if (sfc_start(sa) != 0) 924 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 925 "PDU max size - port is stopped", 926 (unsigned int)pdu, (unsigned int)old_pdu); 927 sfc_adapter_unlock(sa); 928 929 fail_inval: 930 sfc_log_init(sa, "failed %d", rc); 931 SFC_ASSERT(rc > 0); 932 return -rc; 933 } 934 static int 935 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 936 { 937 struct sfc_adapter *sa = dev->data->dev_private; 938 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 939 struct sfc_port *port = &sa->port; 940 struct ether_addr *old_addr = &dev->data->mac_addrs[0]; 941 int rc = 0; 942 943 sfc_adapter_lock(sa); 944 945 /* 946 * Copy the address to the device private data so that 947 * it could be recalled in the case of adapter restart. 948 */ 949 ether_addr_copy(mac_addr, &port->default_mac_addr); 950 951 /* 952 * Neither of the two following checks can return 953 * an error. The new MAC address is preserved in 954 * the device private data and can be activated 955 * on the next port start if the user prevents 956 * isolated mode from being enabled. 957 */ 958 if (port->isolated) { 959 sfc_warn(sa, "isolated mode is active on the port"); 960 sfc_warn(sa, "will not set MAC address"); 961 goto unlock; 962 } 963 964 if (sa->state != SFC_ADAPTER_STARTED) { 965 sfc_notice(sa, "the port is not started"); 966 sfc_notice(sa, "the new MAC address will be set on port start"); 967 968 goto unlock; 969 } 970 971 if (encp->enc_allow_set_mac_with_installed_filters) { 972 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 973 if (rc != 0) { 974 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 975 goto unlock; 976 } 977 978 /* 979 * Changing the MAC address by means of MCDI request 980 * has no effect on received traffic, therefore 981 * we also need to update unicast filters 982 */ 983 rc = sfc_set_rx_mode(sa); 984 if (rc != 0) { 985 sfc_err(sa, "cannot set filter (rc = %u)", rc); 986 /* Rollback the old address */ 987 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 988 (void)sfc_set_rx_mode(sa); 989 } 990 } else { 991 sfc_warn(sa, "cannot set MAC address with filters installed"); 992 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 993 sfc_warn(sa, "(some traffic may be dropped)"); 994 995 /* 996 * Since setting MAC address with filters installed is not 997 * allowed on the adapter, the new MAC address will be set 998 * by means of adapter restart. sfc_start() shall retrieve 999 * the new address from the device private data and set it. 1000 */ 1001 sfc_stop(sa); 1002 rc = sfc_start(sa); 1003 if (rc != 0) 1004 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1005 } 1006 1007 unlock: 1008 if (rc != 0) 1009 ether_addr_copy(old_addr, &port->default_mac_addr); 1010 1011 sfc_adapter_unlock(sa); 1012 1013 SFC_ASSERT(rc >= 0); 1014 return -rc; 1015 } 1016 1017 1018 static int 1019 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 1020 uint32_t nb_mc_addr) 1021 { 1022 struct sfc_adapter *sa = dev->data->dev_private; 1023 struct sfc_port *port = &sa->port; 1024 uint8_t *mc_addrs = port->mcast_addrs; 1025 int rc; 1026 unsigned int i; 1027 1028 if (port->isolated) { 1029 sfc_err(sa, "isolated mode is active on the port"); 1030 sfc_err(sa, "will not set multicast address list"); 1031 return -ENOTSUP; 1032 } 1033 1034 if (mc_addrs == NULL) 1035 return -ENOBUFS; 1036 1037 if (nb_mc_addr > port->max_mcast_addrs) { 1038 sfc_err(sa, "too many multicast addresses: %u > %u", 1039 nb_mc_addr, port->max_mcast_addrs); 1040 return -EINVAL; 1041 } 1042 1043 for (i = 0; i < nb_mc_addr; ++i) { 1044 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1045 EFX_MAC_ADDR_LEN); 1046 mc_addrs += EFX_MAC_ADDR_LEN; 1047 } 1048 1049 port->nb_mcast_addrs = nb_mc_addr; 1050 1051 if (sa->state != SFC_ADAPTER_STARTED) 1052 return 0; 1053 1054 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1055 port->nb_mcast_addrs); 1056 if (rc != 0) 1057 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1058 1059 SFC_ASSERT(rc >= 0); 1060 return -rc; 1061 } 1062 1063 /* 1064 * The function is used by the secondary process as well. It must not 1065 * use any process-local pointers from the adapter data. 1066 */ 1067 static void 1068 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1069 struct rte_eth_rxq_info *qinfo) 1070 { 1071 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1072 struct sfc_adapter *sa = dev->data->dev_private; 1073 struct sfc_rxq_info *rxq_info; 1074 1075 sfc_adapter_lock(sa); 1076 1077 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1078 1079 rxq_info = &sas->rxq_info[rx_queue_id]; 1080 1081 qinfo->mp = rxq_info->refill_mb_pool; 1082 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1083 qinfo->conf.rx_drop_en = 1; 1084 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1085 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1086 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1087 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1088 qinfo->scattered_rx = 1; 1089 } 1090 qinfo->nb_desc = rxq_info->entries; 1091 1092 sfc_adapter_unlock(sa); 1093 } 1094 1095 /* 1096 * The function is used by the secondary process as well. It must not 1097 * use any process-local pointers from the adapter data. 1098 */ 1099 static void 1100 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1101 struct rte_eth_txq_info *qinfo) 1102 { 1103 struct sfc_adapter *sa = dev->data->dev_private; 1104 struct sfc_txq_info *txq_info; 1105 1106 sfc_adapter_lock(sa); 1107 1108 SFC_ASSERT(tx_queue_id < sa->txq_count); 1109 1110 txq_info = &sa->txq_info[tx_queue_id]; 1111 1112 memset(qinfo, 0, sizeof(*qinfo)); 1113 1114 qinfo->conf.offloads = txq_info->offloads; 1115 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1116 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1117 qinfo->nb_desc = txq_info->entries; 1118 1119 sfc_adapter_unlock(sa); 1120 } 1121 1122 /* 1123 * The function is used by the secondary process as well. It must not 1124 * use any process-local pointers from the adapter data. 1125 */ 1126 static uint32_t 1127 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1128 { 1129 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1130 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1131 struct sfc_rxq_info *rxq_info; 1132 1133 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1134 rxq_info = &sas->rxq_info[rx_queue_id]; 1135 1136 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1137 return 0; 1138 1139 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1140 } 1141 1142 /* 1143 * The function is used by the secondary process as well. It must not 1144 * use any process-local pointers from the adapter data. 1145 */ 1146 static int 1147 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1148 { 1149 struct sfc_dp_rxq *dp_rxq = queue; 1150 const struct sfc_dp_rx *dp_rx; 1151 1152 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1153 1154 return offset < dp_rx->qdesc_npending(dp_rxq); 1155 } 1156 1157 /* 1158 * The function is used by the secondary process as well. It must not 1159 * use any process-local pointers from the adapter data. 1160 */ 1161 static int 1162 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1163 { 1164 struct sfc_dp_rxq *dp_rxq = queue; 1165 const struct sfc_dp_rx *dp_rx; 1166 1167 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1168 1169 return dp_rx->qdesc_status(dp_rxq, offset); 1170 } 1171 1172 /* 1173 * The function is used by the secondary process as well. It must not 1174 * use any process-local pointers from the adapter data. 1175 */ 1176 static int 1177 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1178 { 1179 struct sfc_dp_txq *dp_txq = queue; 1180 const struct sfc_dp_tx *dp_tx; 1181 1182 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1183 1184 return dp_tx->qdesc_status(dp_txq, offset); 1185 } 1186 1187 static int 1188 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1189 { 1190 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1191 struct sfc_adapter *sa = dev->data->dev_private; 1192 int rc; 1193 1194 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1195 1196 sfc_adapter_lock(sa); 1197 1198 rc = EINVAL; 1199 if (sa->state != SFC_ADAPTER_STARTED) 1200 goto fail_not_started; 1201 1202 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1203 goto fail_not_setup; 1204 1205 rc = sfc_rx_qstart(sa, rx_queue_id); 1206 if (rc != 0) 1207 goto fail_rx_qstart; 1208 1209 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1210 1211 sfc_adapter_unlock(sa); 1212 1213 return 0; 1214 1215 fail_rx_qstart: 1216 fail_not_setup: 1217 fail_not_started: 1218 sfc_adapter_unlock(sa); 1219 SFC_ASSERT(rc > 0); 1220 return -rc; 1221 } 1222 1223 static int 1224 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1225 { 1226 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1227 struct sfc_adapter *sa = dev->data->dev_private; 1228 1229 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1230 1231 sfc_adapter_lock(sa); 1232 sfc_rx_qstop(sa, rx_queue_id); 1233 1234 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1235 1236 sfc_adapter_unlock(sa); 1237 1238 return 0; 1239 } 1240 1241 static int 1242 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1243 { 1244 struct sfc_adapter *sa = dev->data->dev_private; 1245 int rc; 1246 1247 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1248 1249 sfc_adapter_lock(sa); 1250 1251 rc = EINVAL; 1252 if (sa->state != SFC_ADAPTER_STARTED) 1253 goto fail_not_started; 1254 1255 if (sa->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1256 goto fail_not_setup; 1257 1258 rc = sfc_tx_qstart(sa, tx_queue_id); 1259 if (rc != 0) 1260 goto fail_tx_qstart; 1261 1262 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1263 1264 sfc_adapter_unlock(sa); 1265 return 0; 1266 1267 fail_tx_qstart: 1268 1269 fail_not_setup: 1270 fail_not_started: 1271 sfc_adapter_unlock(sa); 1272 SFC_ASSERT(rc > 0); 1273 return -rc; 1274 } 1275 1276 static int 1277 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1278 { 1279 struct sfc_adapter *sa = dev->data->dev_private; 1280 1281 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1282 1283 sfc_adapter_lock(sa); 1284 1285 sfc_tx_qstop(sa, tx_queue_id); 1286 1287 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1288 1289 sfc_adapter_unlock(sa); 1290 return 0; 1291 } 1292 1293 static efx_tunnel_protocol_t 1294 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1295 { 1296 switch (rte_type) { 1297 case RTE_TUNNEL_TYPE_VXLAN: 1298 return EFX_TUNNEL_PROTOCOL_VXLAN; 1299 case RTE_TUNNEL_TYPE_GENEVE: 1300 return EFX_TUNNEL_PROTOCOL_GENEVE; 1301 default: 1302 return EFX_TUNNEL_NPROTOS; 1303 } 1304 } 1305 1306 enum sfc_udp_tunnel_op_e { 1307 SFC_UDP_TUNNEL_ADD_PORT, 1308 SFC_UDP_TUNNEL_DEL_PORT, 1309 }; 1310 1311 static int 1312 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1313 struct rte_eth_udp_tunnel *tunnel_udp, 1314 enum sfc_udp_tunnel_op_e op) 1315 { 1316 struct sfc_adapter *sa = dev->data->dev_private; 1317 efx_tunnel_protocol_t tunnel_proto; 1318 int rc; 1319 1320 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1321 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1322 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1323 tunnel_udp->udp_port, tunnel_udp->prot_type); 1324 1325 tunnel_proto = 1326 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1327 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1328 rc = ENOTSUP; 1329 goto fail_bad_proto; 1330 } 1331 1332 sfc_adapter_lock(sa); 1333 1334 switch (op) { 1335 case SFC_UDP_TUNNEL_ADD_PORT: 1336 rc = efx_tunnel_config_udp_add(sa->nic, 1337 tunnel_udp->udp_port, 1338 tunnel_proto); 1339 break; 1340 case SFC_UDP_TUNNEL_DEL_PORT: 1341 rc = efx_tunnel_config_udp_remove(sa->nic, 1342 tunnel_udp->udp_port, 1343 tunnel_proto); 1344 break; 1345 default: 1346 rc = EINVAL; 1347 goto fail_bad_op; 1348 } 1349 1350 if (rc != 0) 1351 goto fail_op; 1352 1353 if (sa->state == SFC_ADAPTER_STARTED) { 1354 rc = efx_tunnel_reconfigure(sa->nic); 1355 if (rc == EAGAIN) { 1356 /* 1357 * Configuration is accepted by FW and MC reboot 1358 * is initiated to apply the changes. MC reboot 1359 * will be handled in a usual way (MC reboot 1360 * event on management event queue and adapter 1361 * restart). 1362 */ 1363 rc = 0; 1364 } else if (rc != 0) { 1365 goto fail_reconfigure; 1366 } 1367 } 1368 1369 sfc_adapter_unlock(sa); 1370 return 0; 1371 1372 fail_reconfigure: 1373 /* Remove/restore entry since the change makes the trouble */ 1374 switch (op) { 1375 case SFC_UDP_TUNNEL_ADD_PORT: 1376 (void)efx_tunnel_config_udp_remove(sa->nic, 1377 tunnel_udp->udp_port, 1378 tunnel_proto); 1379 break; 1380 case SFC_UDP_TUNNEL_DEL_PORT: 1381 (void)efx_tunnel_config_udp_add(sa->nic, 1382 tunnel_udp->udp_port, 1383 tunnel_proto); 1384 break; 1385 } 1386 1387 fail_op: 1388 fail_bad_op: 1389 sfc_adapter_unlock(sa); 1390 1391 fail_bad_proto: 1392 SFC_ASSERT(rc > 0); 1393 return -rc; 1394 } 1395 1396 static int 1397 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1398 struct rte_eth_udp_tunnel *tunnel_udp) 1399 { 1400 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1401 } 1402 1403 static int 1404 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1405 struct rte_eth_udp_tunnel *tunnel_udp) 1406 { 1407 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1408 } 1409 1410 /* 1411 * The function is used by the secondary process as well. It must not 1412 * use any process-local pointers from the adapter data. 1413 */ 1414 static int 1415 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1416 struct rte_eth_rss_conf *rss_conf) 1417 { 1418 struct sfc_adapter *sa = dev->data->dev_private; 1419 struct sfc_rss *rss = &sa->rss; 1420 1421 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1422 return -ENOTSUP; 1423 1424 sfc_adapter_lock(sa); 1425 1426 /* 1427 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1428 * hence, conversion is done here to derive a correct set of ETH_RSS 1429 * flags which corresponds to the active EFX configuration stored 1430 * locally in 'sfc_adapter' and kept up-to-date 1431 */ 1432 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types); 1433 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1434 if (rss_conf->rss_key != NULL) 1435 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1436 1437 sfc_adapter_unlock(sa); 1438 1439 return 0; 1440 } 1441 1442 static int 1443 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1444 struct rte_eth_rss_conf *rss_conf) 1445 { 1446 struct sfc_adapter *sa = dev->data->dev_private; 1447 struct sfc_rss *rss = &sa->rss; 1448 struct sfc_port *port = &sa->port; 1449 unsigned int efx_hash_types; 1450 int rc = 0; 1451 1452 if (port->isolated) 1453 return -ENOTSUP; 1454 1455 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1456 sfc_err(sa, "RSS is not available"); 1457 return -ENOTSUP; 1458 } 1459 1460 if (rss->channels == 0) { 1461 sfc_err(sa, "RSS is not configured"); 1462 return -EINVAL; 1463 } 1464 1465 if ((rss_conf->rss_key != NULL) && 1466 (rss_conf->rss_key_len != sizeof(rss->key))) { 1467 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1468 sizeof(rss->key)); 1469 return -EINVAL; 1470 } 1471 1472 sfc_adapter_lock(sa); 1473 1474 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1475 if (rc != 0) 1476 goto fail_rx_hf_rte_to_efx; 1477 1478 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1479 rss->hash_alg, efx_hash_types, B_TRUE); 1480 if (rc != 0) 1481 goto fail_scale_mode_set; 1482 1483 if (rss_conf->rss_key != NULL) { 1484 if (sa->state == SFC_ADAPTER_STARTED) { 1485 rc = efx_rx_scale_key_set(sa->nic, 1486 EFX_RSS_CONTEXT_DEFAULT, 1487 rss_conf->rss_key, 1488 sizeof(rss->key)); 1489 if (rc != 0) 1490 goto fail_scale_key_set; 1491 } 1492 1493 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1494 } 1495 1496 rss->hash_types = efx_hash_types; 1497 1498 sfc_adapter_unlock(sa); 1499 1500 return 0; 1501 1502 fail_scale_key_set: 1503 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1504 EFX_RX_HASHALG_TOEPLITZ, 1505 rss->hash_types, B_TRUE) != 0) 1506 sfc_err(sa, "failed to restore RSS mode"); 1507 1508 fail_scale_mode_set: 1509 fail_rx_hf_rte_to_efx: 1510 sfc_adapter_unlock(sa); 1511 return -rc; 1512 } 1513 1514 /* 1515 * The function is used by the secondary process as well. It must not 1516 * use any process-local pointers from the adapter data. 1517 */ 1518 static int 1519 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1520 struct rte_eth_rss_reta_entry64 *reta_conf, 1521 uint16_t reta_size) 1522 { 1523 struct sfc_adapter *sa = dev->data->dev_private; 1524 struct sfc_rss *rss = &sa->rss; 1525 struct sfc_port *port = &sa->port; 1526 int entry; 1527 1528 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1529 return -ENOTSUP; 1530 1531 if (rss->channels == 0) 1532 return -EINVAL; 1533 1534 if (reta_size != EFX_RSS_TBL_SIZE) 1535 return -EINVAL; 1536 1537 sfc_adapter_lock(sa); 1538 1539 for (entry = 0; entry < reta_size; entry++) { 1540 int grp = entry / RTE_RETA_GROUP_SIZE; 1541 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1542 1543 if ((reta_conf[grp].mask >> grp_idx) & 1) 1544 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1545 } 1546 1547 sfc_adapter_unlock(sa); 1548 1549 return 0; 1550 } 1551 1552 static int 1553 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1554 struct rte_eth_rss_reta_entry64 *reta_conf, 1555 uint16_t reta_size) 1556 { 1557 struct sfc_adapter *sa = dev->data->dev_private; 1558 struct sfc_rss *rss = &sa->rss; 1559 struct sfc_port *port = &sa->port; 1560 unsigned int *rss_tbl_new; 1561 uint16_t entry; 1562 int rc = 0; 1563 1564 1565 if (port->isolated) 1566 return -ENOTSUP; 1567 1568 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1569 sfc_err(sa, "RSS is not available"); 1570 return -ENOTSUP; 1571 } 1572 1573 if (rss->channels == 0) { 1574 sfc_err(sa, "RSS is not configured"); 1575 return -EINVAL; 1576 } 1577 1578 if (reta_size != EFX_RSS_TBL_SIZE) { 1579 sfc_err(sa, "RETA size is wrong (should be %u)", 1580 EFX_RSS_TBL_SIZE); 1581 return -EINVAL; 1582 } 1583 1584 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1585 if (rss_tbl_new == NULL) 1586 return -ENOMEM; 1587 1588 sfc_adapter_lock(sa); 1589 1590 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1591 1592 for (entry = 0; entry < reta_size; entry++) { 1593 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1594 struct rte_eth_rss_reta_entry64 *grp; 1595 1596 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1597 1598 if (grp->mask & (1ull << grp_idx)) { 1599 if (grp->reta[grp_idx] >= rss->channels) { 1600 rc = EINVAL; 1601 goto bad_reta_entry; 1602 } 1603 rss_tbl_new[entry] = grp->reta[grp_idx]; 1604 } 1605 } 1606 1607 if (sa->state == SFC_ADAPTER_STARTED) { 1608 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1609 rss_tbl_new, EFX_RSS_TBL_SIZE); 1610 if (rc != 0) 1611 goto fail_scale_tbl_set; 1612 } 1613 1614 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1615 1616 fail_scale_tbl_set: 1617 bad_reta_entry: 1618 sfc_adapter_unlock(sa); 1619 1620 rte_free(rss_tbl_new); 1621 1622 SFC_ASSERT(rc >= 0); 1623 return -rc; 1624 } 1625 1626 static int 1627 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1628 enum rte_filter_op filter_op, 1629 void *arg) 1630 { 1631 struct sfc_adapter *sa = dev->data->dev_private; 1632 int rc = ENOTSUP; 1633 1634 sfc_log_init(sa, "entry"); 1635 1636 switch (filter_type) { 1637 case RTE_ETH_FILTER_NONE: 1638 sfc_err(sa, "Global filters configuration not supported"); 1639 break; 1640 case RTE_ETH_FILTER_MACVLAN: 1641 sfc_err(sa, "MACVLAN filters not supported"); 1642 break; 1643 case RTE_ETH_FILTER_ETHERTYPE: 1644 sfc_err(sa, "EtherType filters not supported"); 1645 break; 1646 case RTE_ETH_FILTER_FLEXIBLE: 1647 sfc_err(sa, "Flexible filters not supported"); 1648 break; 1649 case RTE_ETH_FILTER_SYN: 1650 sfc_err(sa, "SYN filters not supported"); 1651 break; 1652 case RTE_ETH_FILTER_NTUPLE: 1653 sfc_err(sa, "NTUPLE filters not supported"); 1654 break; 1655 case RTE_ETH_FILTER_TUNNEL: 1656 sfc_err(sa, "Tunnel filters not supported"); 1657 break; 1658 case RTE_ETH_FILTER_FDIR: 1659 sfc_err(sa, "Flow Director filters not supported"); 1660 break; 1661 case RTE_ETH_FILTER_HASH: 1662 sfc_err(sa, "Hash filters not supported"); 1663 break; 1664 case RTE_ETH_FILTER_GENERIC: 1665 if (filter_op != RTE_ETH_FILTER_GET) { 1666 rc = EINVAL; 1667 } else { 1668 *(const void **)arg = &sfc_flow_ops; 1669 rc = 0; 1670 } 1671 break; 1672 default: 1673 sfc_err(sa, "Unknown filter type %u", filter_type); 1674 break; 1675 } 1676 1677 sfc_log_init(sa, "exit: %d", -rc); 1678 SFC_ASSERT(rc >= 0); 1679 return -rc; 1680 } 1681 1682 static int 1683 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1684 { 1685 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1686 1687 /* 1688 * If Rx datapath does not provide callback to check mempool, 1689 * all pools are supported. 1690 */ 1691 if (sap->dp_rx->pool_ops_supported == NULL) 1692 return 1; 1693 1694 return sap->dp_rx->pool_ops_supported(pool); 1695 } 1696 1697 static const struct eth_dev_ops sfc_eth_dev_ops = { 1698 .dev_configure = sfc_dev_configure, 1699 .dev_start = sfc_dev_start, 1700 .dev_stop = sfc_dev_stop, 1701 .dev_set_link_up = sfc_dev_set_link_up, 1702 .dev_set_link_down = sfc_dev_set_link_down, 1703 .dev_close = sfc_dev_close, 1704 .promiscuous_enable = sfc_dev_promisc_enable, 1705 .promiscuous_disable = sfc_dev_promisc_disable, 1706 .allmulticast_enable = sfc_dev_allmulti_enable, 1707 .allmulticast_disable = sfc_dev_allmulti_disable, 1708 .link_update = sfc_dev_link_update, 1709 .stats_get = sfc_stats_get, 1710 .stats_reset = sfc_stats_reset, 1711 .xstats_get = sfc_xstats_get, 1712 .xstats_reset = sfc_stats_reset, 1713 .xstats_get_names = sfc_xstats_get_names, 1714 .dev_infos_get = sfc_dev_infos_get, 1715 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1716 .mtu_set = sfc_dev_set_mtu, 1717 .rx_queue_start = sfc_rx_queue_start, 1718 .rx_queue_stop = sfc_rx_queue_stop, 1719 .tx_queue_start = sfc_tx_queue_start, 1720 .tx_queue_stop = sfc_tx_queue_stop, 1721 .rx_queue_setup = sfc_rx_queue_setup, 1722 .rx_queue_release = sfc_rx_queue_release, 1723 .rx_queue_count = sfc_rx_queue_count, 1724 .rx_descriptor_done = sfc_rx_descriptor_done, 1725 .rx_descriptor_status = sfc_rx_descriptor_status, 1726 .tx_descriptor_status = sfc_tx_descriptor_status, 1727 .tx_queue_setup = sfc_tx_queue_setup, 1728 .tx_queue_release = sfc_tx_queue_release, 1729 .flow_ctrl_get = sfc_flow_ctrl_get, 1730 .flow_ctrl_set = sfc_flow_ctrl_set, 1731 .mac_addr_set = sfc_mac_addr_set, 1732 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1733 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1734 .reta_update = sfc_dev_rss_reta_update, 1735 .reta_query = sfc_dev_rss_reta_query, 1736 .rss_hash_update = sfc_dev_rss_hash_update, 1737 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1738 .filter_ctrl = sfc_dev_filter_ctrl, 1739 .set_mc_addr_list = sfc_set_mc_addr_list, 1740 .rxq_info_get = sfc_rx_queue_info_get, 1741 .txq_info_get = sfc_tx_queue_info_get, 1742 .fw_version_get = sfc_fw_version_get, 1743 .xstats_get_by_id = sfc_xstats_get_by_id, 1744 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1745 .pool_ops_supported = sfc_pool_ops_supported, 1746 }; 1747 1748 /** 1749 * Duplicate a string in potentially shared memory required for 1750 * multi-process support. 1751 * 1752 * strdup() allocates from process-local heap/memory. 1753 */ 1754 static char * 1755 sfc_strdup(const char *str) 1756 { 1757 size_t size; 1758 char *copy; 1759 1760 if (str == NULL) 1761 return NULL; 1762 1763 size = strlen(str) + 1; 1764 copy = rte_malloc(__func__, size, 0); 1765 if (copy != NULL) 1766 rte_memcpy(copy, str, size); 1767 1768 return copy; 1769 } 1770 1771 static int 1772 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1773 { 1774 struct sfc_adapter *sa = dev->data->dev_private; 1775 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1776 const struct sfc_dp_rx *dp_rx; 1777 const struct sfc_dp_tx *dp_tx; 1778 const efx_nic_cfg_t *encp; 1779 unsigned int avail_caps = 0; 1780 const char *rx_name = NULL; 1781 const char *tx_name = NULL; 1782 int rc; 1783 1784 switch (sa->family) { 1785 case EFX_FAMILY_HUNTINGTON: 1786 case EFX_FAMILY_MEDFORD: 1787 case EFX_FAMILY_MEDFORD2: 1788 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1789 break; 1790 default: 1791 break; 1792 } 1793 1794 encp = efx_nic_cfg_get(sa->nic); 1795 if (encp->enc_rx_es_super_buffer_supported) 1796 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1797 1798 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1799 sfc_kvarg_string_handler, &rx_name); 1800 if (rc != 0) 1801 goto fail_kvarg_rx_datapath; 1802 1803 if (rx_name != NULL) { 1804 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1805 if (dp_rx == NULL) { 1806 sfc_err(sa, "Rx datapath %s not found", rx_name); 1807 rc = ENOENT; 1808 goto fail_dp_rx; 1809 } 1810 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1811 sfc_err(sa, 1812 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1813 rx_name); 1814 rc = EINVAL; 1815 goto fail_dp_rx_caps; 1816 } 1817 } else { 1818 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1819 if (dp_rx == NULL) { 1820 sfc_err(sa, "Rx datapath by caps %#x not found", 1821 avail_caps); 1822 rc = ENOENT; 1823 goto fail_dp_rx; 1824 } 1825 } 1826 1827 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1828 if (sas->dp_rx_name == NULL) { 1829 rc = ENOMEM; 1830 goto fail_dp_rx_name; 1831 } 1832 1833 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1834 1835 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1836 sfc_kvarg_string_handler, &tx_name); 1837 if (rc != 0) 1838 goto fail_kvarg_tx_datapath; 1839 1840 if (tx_name != NULL) { 1841 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1842 if (dp_tx == NULL) { 1843 sfc_err(sa, "Tx datapath %s not found", tx_name); 1844 rc = ENOENT; 1845 goto fail_dp_tx; 1846 } 1847 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1848 sfc_err(sa, 1849 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1850 tx_name); 1851 rc = EINVAL; 1852 goto fail_dp_tx_caps; 1853 } 1854 } else { 1855 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1856 if (dp_tx == NULL) { 1857 sfc_err(sa, "Tx datapath by caps %#x not found", 1858 avail_caps); 1859 rc = ENOENT; 1860 goto fail_dp_tx; 1861 } 1862 } 1863 1864 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 1865 if (sas->dp_tx_name == NULL) { 1866 rc = ENOMEM; 1867 goto fail_dp_tx_name; 1868 } 1869 1870 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 1871 1872 sa->priv.dp_rx = dp_rx; 1873 sa->priv.dp_tx = dp_tx; 1874 1875 dev->rx_pkt_burst = dp_rx->pkt_burst; 1876 dev->tx_pkt_burst = dp_tx->pkt_burst; 1877 1878 dev->dev_ops = &sfc_eth_dev_ops; 1879 1880 return 0; 1881 1882 fail_dp_tx_name: 1883 fail_dp_tx_caps: 1884 fail_dp_tx: 1885 fail_kvarg_tx_datapath: 1886 rte_free(sas->dp_rx_name); 1887 sas->dp_rx_name = NULL; 1888 1889 fail_dp_rx_name: 1890 fail_dp_rx_caps: 1891 fail_dp_rx: 1892 fail_kvarg_rx_datapath: 1893 return rc; 1894 } 1895 1896 static void 1897 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1898 { 1899 struct sfc_adapter *sa = dev->data->dev_private; 1900 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1901 1902 dev->dev_ops = NULL; 1903 dev->rx_pkt_burst = NULL; 1904 dev->tx_pkt_burst = NULL; 1905 1906 rte_free(sas->dp_tx_name); 1907 sas->dp_tx_name = NULL; 1908 sa->priv.dp_tx = NULL; 1909 1910 rte_free(sas->dp_rx_name); 1911 sas->dp_rx_name = NULL; 1912 sa->priv.dp_rx = NULL; 1913 } 1914 1915 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1916 .rx_queue_count = sfc_rx_queue_count, 1917 .rx_descriptor_done = sfc_rx_descriptor_done, 1918 .rx_descriptor_status = sfc_rx_descriptor_status, 1919 .tx_descriptor_status = sfc_tx_descriptor_status, 1920 .reta_query = sfc_dev_rss_reta_query, 1921 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1922 .rxq_info_get = sfc_rx_queue_info_get, 1923 .txq_info_get = sfc_tx_queue_info_get, 1924 }; 1925 1926 static int 1927 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 1928 { 1929 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1930 struct sfc_adapter_priv *sap; 1931 const struct sfc_dp_rx *dp_rx; 1932 const struct sfc_dp_tx *dp_tx; 1933 int rc; 1934 1935 /* 1936 * Allocate process private data from heap, since it should not 1937 * be located in shared memory allocated using rte_malloc() API. 1938 */ 1939 sap = calloc(1, sizeof(*sap)); 1940 if (sap == NULL) { 1941 rc = ENOMEM; 1942 goto fail_alloc_priv; 1943 } 1944 1945 sap->logtype_main = logtype_main; 1946 1947 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 1948 if (dp_rx == NULL) { 1949 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1950 "cannot find %s Rx datapath", sas->dp_rx_name); 1951 rc = ENOENT; 1952 goto fail_dp_rx; 1953 } 1954 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1955 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1956 "%s Rx datapath does not support multi-process", 1957 sas->dp_rx_name); 1958 rc = EINVAL; 1959 goto fail_dp_rx_multi_process; 1960 } 1961 1962 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 1963 if (dp_tx == NULL) { 1964 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1965 "cannot find %s Tx datapath", sas->dp_tx_name); 1966 rc = ENOENT; 1967 goto fail_dp_tx; 1968 } 1969 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1970 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1971 "%s Tx datapath does not support multi-process", 1972 sas->dp_tx_name); 1973 rc = EINVAL; 1974 goto fail_dp_tx_multi_process; 1975 } 1976 1977 sap->dp_rx = dp_rx; 1978 sap->dp_tx = dp_tx; 1979 1980 dev->process_private = sap; 1981 dev->rx_pkt_burst = dp_rx->pkt_burst; 1982 dev->tx_pkt_burst = dp_tx->pkt_burst; 1983 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1984 1985 return 0; 1986 1987 fail_dp_tx_multi_process: 1988 fail_dp_tx: 1989 fail_dp_rx_multi_process: 1990 fail_dp_rx: 1991 free(sap); 1992 1993 fail_alloc_priv: 1994 return rc; 1995 } 1996 1997 static void 1998 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1999 { 2000 free(dev->process_private); 2001 dev->process_private = NULL; 2002 dev->dev_ops = NULL; 2003 dev->tx_pkt_burst = NULL; 2004 dev->rx_pkt_burst = NULL; 2005 } 2006 2007 static void 2008 sfc_register_dp(void) 2009 { 2010 /* Register once */ 2011 if (TAILQ_EMPTY(&sfc_dp_head)) { 2012 /* Prefer EF10 datapath */ 2013 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2014 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2015 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2016 2017 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2018 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2019 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2020 } 2021 } 2022 2023 static int 2024 sfc_eth_dev_init(struct rte_eth_dev *dev) 2025 { 2026 struct sfc_adapter *sa = dev->data->dev_private; 2027 struct sfc_adapter_shared *sas; 2028 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2029 uint32_t logtype_main; 2030 int rc; 2031 const efx_nic_cfg_t *encp; 2032 const struct ether_addr *from; 2033 2034 sfc_register_dp(); 2035 2036 logtype_main = sfc_register_logtype(&pci_dev->addr, 2037 SFC_LOGTYPE_MAIN_STR, 2038 RTE_LOG_NOTICE); 2039 2040 sa->priv.shared = &sa->_shared; 2041 sas = sa->priv.shared; 2042 2043 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2044 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2045 2046 /* 2047 * sfc_adapter is a mixture of shared and process private data. 2048 * During transition period use it in both kinds. When the 2049 * driver becomes ready to separate it, sfc_adapter will become 2050 * primary process private only. 2051 */ 2052 dev->process_private = sa; 2053 2054 /* Required for logging */ 2055 sas->pci_addr = pci_dev->addr; 2056 sas->port_id = dev->data->port_id; 2057 sa->priv.logtype_main = logtype_main; 2058 2059 sa->eth_dev = dev; 2060 2061 /* Copy PCI device info to the dev->data */ 2062 rte_eth_copy_pci_info(dev, pci_dev); 2063 2064 rc = sfc_kvargs_parse(sa); 2065 if (rc != 0) 2066 goto fail_kvargs_parse; 2067 2068 sfc_log_init(sa, "entry"); 2069 2070 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 2071 if (dev->data->mac_addrs == NULL) { 2072 rc = ENOMEM; 2073 goto fail_mac_addrs; 2074 } 2075 2076 sfc_adapter_lock_init(sa); 2077 sfc_adapter_lock(sa); 2078 2079 sfc_log_init(sa, "probing"); 2080 rc = sfc_probe(sa); 2081 if (rc != 0) 2082 goto fail_probe; 2083 2084 sfc_log_init(sa, "set device ops"); 2085 rc = sfc_eth_dev_set_ops(dev); 2086 if (rc != 0) 2087 goto fail_set_ops; 2088 2089 sfc_log_init(sa, "attaching"); 2090 rc = sfc_attach(sa); 2091 if (rc != 0) 2092 goto fail_attach; 2093 2094 encp = efx_nic_cfg_get(sa->nic); 2095 2096 /* 2097 * The arguments are really reverse order in comparison to 2098 * Linux kernel. Copy from NIC config to Ethernet device data. 2099 */ 2100 from = (const struct ether_addr *)(encp->enc_mac_addr); 2101 ether_addr_copy(from, &dev->data->mac_addrs[0]); 2102 2103 sfc_adapter_unlock(sa); 2104 2105 sfc_log_init(sa, "done"); 2106 return 0; 2107 2108 fail_attach: 2109 sfc_eth_dev_clear_ops(dev); 2110 2111 fail_set_ops: 2112 sfc_unprobe(sa); 2113 2114 fail_probe: 2115 sfc_adapter_unlock(sa); 2116 sfc_adapter_lock_fini(sa); 2117 rte_free(dev->data->mac_addrs); 2118 dev->data->mac_addrs = NULL; 2119 2120 fail_mac_addrs: 2121 sfc_kvargs_cleanup(sa); 2122 2123 fail_kvargs_parse: 2124 sfc_log_init(sa, "failed %d", rc); 2125 dev->process_private = NULL; 2126 SFC_ASSERT(rc > 0); 2127 return -rc; 2128 } 2129 2130 static int 2131 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2132 { 2133 struct sfc_adapter *sa; 2134 2135 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2136 sfc_eth_dev_secondary_clear_ops(dev); 2137 return 0; 2138 } 2139 2140 sa = dev->data->dev_private; 2141 sfc_log_init(sa, "entry"); 2142 2143 sfc_adapter_lock(sa); 2144 2145 sfc_eth_dev_clear_ops(dev); 2146 2147 sfc_detach(sa); 2148 sfc_unprobe(sa); 2149 2150 sfc_kvargs_cleanup(sa); 2151 2152 sfc_adapter_unlock(sa); 2153 sfc_adapter_lock_fini(sa); 2154 2155 sfc_log_init(sa, "done"); 2156 2157 /* Required for logging, so cleanup last */ 2158 sa->eth_dev = NULL; 2159 return 0; 2160 } 2161 2162 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2163 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2164 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2165 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2166 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2167 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2168 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2169 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2170 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2171 { .vendor_id = 0 /* sentinel */ } 2172 }; 2173 2174 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2175 struct rte_pci_device *pci_dev) 2176 { 2177 return rte_eth_dev_pci_generic_probe(pci_dev, 2178 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2179 } 2180 2181 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2182 { 2183 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2184 } 2185 2186 static struct rte_pci_driver sfc_efx_pmd = { 2187 .id_table = pci_id_sfc_efx_map, 2188 .drv_flags = 2189 RTE_PCI_DRV_INTR_LSC | 2190 RTE_PCI_DRV_NEED_MAPPING, 2191 .probe = sfc_eth_dev_pci_probe, 2192 .remove = sfc_eth_dev_pci_remove, 2193 }; 2194 2195 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2196 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2197 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2198 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2199 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2200 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2201 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2202 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2203 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2204 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2205 2206 RTE_INIT(sfc_driver_register_logtype) 2207 { 2208 int ret; 2209 2210 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2211 RTE_LOG_NOTICE); 2212 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2213 } 2214