1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright(c) 2019-2021 Xilinx, Inc. 4 * Copyright(c) 2016-2019 Solarflare Communications Inc. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <ethdev_driver.h> 12 #include <ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 #include <rte_ether.h> 18 19 #include "efx.h" 20 21 #include "sfc.h" 22 #include "sfc_debug.h" 23 #include "sfc_log.h" 24 #include "sfc_kvargs.h" 25 #include "sfc_ev.h" 26 #include "sfc_rx.h" 27 #include "sfc_tx.h" 28 #include "sfc_flow.h" 29 #include "sfc_dp.h" 30 #include "sfc_dp_rx.h" 31 32 uint32_t sfc_logtype_driver; 33 34 static struct sfc_dp_list sfc_dp_head = 35 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 36 37 38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev); 39 40 41 static int 42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 43 { 44 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 45 efx_nic_fw_info_t enfi; 46 int ret; 47 int rc; 48 49 /* 50 * Return value of the callback is likely supposed to be 51 * equal to or greater than 0, nevertheless, if an error 52 * occurs, it will be desirable to pass it to the caller 53 */ 54 if ((fw_version == NULL) || (fw_size == 0)) 55 return -EINVAL; 56 57 rc = efx_nic_get_fw_version(sa->nic, &enfi); 58 if (rc != 0) 59 return -rc; 60 61 ret = snprintf(fw_version, fw_size, 62 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 63 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 64 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 65 if (ret < 0) 66 return ret; 67 68 if (enfi.enfi_dpcpu_fw_ids_valid) { 69 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 70 int ret_extra; 71 72 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 73 fw_size - dpcpu_fw_ids_offset, 74 " rx%" PRIx16 " tx%" PRIx16, 75 enfi.enfi_rx_dpcpu_fw_id, 76 enfi.enfi_tx_dpcpu_fw_id); 77 if (ret_extra < 0) 78 return ret_extra; 79 80 ret += ret_extra; 81 } 82 83 if (fw_size < (size_t)(++ret)) 84 return ret; 85 else 86 return 0; 87 } 88 89 static int 90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 91 { 92 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 93 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 94 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 95 struct sfc_rss *rss = &sas->rss; 96 struct sfc_mae *mae = &sa->mae; 97 uint64_t txq_offloads_def = 0; 98 99 sfc_log_init(sa, "entry"); 100 101 dev_info->min_mtu = RTE_ETHER_MIN_MTU; 102 dev_info->max_mtu = EFX_MAC_SDU_MAX; 103 104 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 105 106 dev_info->max_vfs = sa->sriov.num_vfs; 107 108 /* Autonegotiation may be disabled */ 109 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 110 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 111 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 112 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 113 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 114 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 115 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 116 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 117 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 118 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 119 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 120 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 121 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 122 123 dev_info->max_rx_queues = sa->rxq_max; 124 dev_info->max_tx_queues = sa->txq_max; 125 126 /* By default packets are dropped if no descriptors are available */ 127 dev_info->default_rxconf.rx_drop_en = 1; 128 129 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 130 131 /* 132 * rx_offload_capa includes both device and queue offloads since 133 * the latter may be requested on a per device basis which makes 134 * sense when some offloads are needed to be set on all queues. 135 */ 136 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 137 dev_info->rx_queue_offload_capa; 138 139 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 140 141 /* 142 * tx_offload_capa includes both device and queue offloads since 143 * the latter may be requested on a per device basis which makes 144 * sense when some offloads are needed to be set on all queues. 145 */ 146 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 147 dev_info->tx_queue_offload_capa; 148 149 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 150 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 151 152 dev_info->default_txconf.offloads |= txq_offloads_def; 153 154 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 155 uint64_t rte_hf = 0; 156 unsigned int i; 157 158 for (i = 0; i < rss->hf_map_nb_entries; ++i) 159 rte_hf |= rss->hf_map[i].rte; 160 161 dev_info->reta_size = EFX_RSS_TBL_SIZE; 162 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 163 dev_info->flow_type_rss_offloads = rte_hf; 164 } 165 166 /* Initialize to hardware limits */ 167 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 168 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 169 /* The RXQ hardware requires that the descriptor count is a power 170 * of 2, but rx_desc_lim cannot properly describe that constraint. 171 */ 172 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 173 174 /* Initialize to hardware limits */ 175 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 176 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 177 /* 178 * The TXQ hardware requires that the descriptor count is a power 179 * of 2, but tx_desc_lim cannot properly describe that constraint 180 */ 181 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 182 183 if (sap->dp_rx->get_dev_info != NULL) 184 sap->dp_rx->get_dev_info(dev_info); 185 if (sap->dp_tx->get_dev_info != NULL) 186 sap->dp_tx->get_dev_info(dev_info); 187 188 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 189 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 190 191 if (mae->status == SFC_MAE_STATUS_SUPPORTED) { 192 dev_info->switch_info.name = dev->device->driver->name; 193 dev_info->switch_info.domain_id = mae->switch_domain_id; 194 dev_info->switch_info.port_id = mae->switch_port_id; 195 } 196 197 return 0; 198 } 199 200 static const uint32_t * 201 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 202 { 203 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 204 205 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 206 } 207 208 static int 209 sfc_dev_configure(struct rte_eth_dev *dev) 210 { 211 struct rte_eth_dev_data *dev_data = dev->data; 212 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 213 int rc; 214 215 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 216 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 217 218 sfc_adapter_lock(sa); 219 switch (sa->state) { 220 case SFC_ADAPTER_CONFIGURED: 221 /* FALLTHROUGH */ 222 case SFC_ADAPTER_INITIALIZED: 223 rc = sfc_configure(sa); 224 break; 225 default: 226 sfc_err(sa, "unexpected adapter state %u to configure", 227 sa->state); 228 rc = EINVAL; 229 break; 230 } 231 sfc_adapter_unlock(sa); 232 233 sfc_log_init(sa, "done %d", rc); 234 SFC_ASSERT(rc >= 0); 235 return -rc; 236 } 237 238 static int 239 sfc_dev_start(struct rte_eth_dev *dev) 240 { 241 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 242 int rc; 243 244 sfc_log_init(sa, "entry"); 245 246 sfc_adapter_lock(sa); 247 rc = sfc_start(sa); 248 sfc_adapter_unlock(sa); 249 250 sfc_log_init(sa, "done %d", rc); 251 SFC_ASSERT(rc >= 0); 252 return -rc; 253 } 254 255 static int 256 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 257 { 258 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 259 struct rte_eth_link current_link; 260 int ret; 261 262 sfc_log_init(sa, "entry"); 263 264 if (sa->state != SFC_ADAPTER_STARTED) { 265 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 266 } else if (wait_to_complete) { 267 efx_link_mode_t link_mode; 268 269 if (efx_port_poll(sa->nic, &link_mode) != 0) 270 link_mode = EFX_LINK_UNKNOWN; 271 sfc_port_link_mode_to_info(link_mode, ¤t_link); 272 273 } else { 274 sfc_ev_mgmt_qpoll(sa); 275 rte_eth_linkstatus_get(dev, ¤t_link); 276 } 277 278 ret = rte_eth_linkstatus_set(dev, ¤t_link); 279 if (ret == 0) 280 sfc_notice(sa, "Link status is %s", 281 current_link.link_status ? "UP" : "DOWN"); 282 283 return ret; 284 } 285 286 static int 287 sfc_dev_stop(struct rte_eth_dev *dev) 288 { 289 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 290 291 sfc_log_init(sa, "entry"); 292 293 sfc_adapter_lock(sa); 294 sfc_stop(sa); 295 sfc_adapter_unlock(sa); 296 297 sfc_log_init(sa, "done"); 298 299 return 0; 300 } 301 302 static int 303 sfc_dev_set_link_up(struct rte_eth_dev *dev) 304 { 305 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 306 int rc; 307 308 sfc_log_init(sa, "entry"); 309 310 sfc_adapter_lock(sa); 311 rc = sfc_start(sa); 312 sfc_adapter_unlock(sa); 313 314 SFC_ASSERT(rc >= 0); 315 return -rc; 316 } 317 318 static int 319 sfc_dev_set_link_down(struct rte_eth_dev *dev) 320 { 321 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 322 323 sfc_log_init(sa, "entry"); 324 325 sfc_adapter_lock(sa); 326 sfc_stop(sa); 327 sfc_adapter_unlock(sa); 328 329 return 0; 330 } 331 332 static void 333 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 334 { 335 free(dev->process_private); 336 rte_eth_dev_release_port(dev); 337 } 338 339 static int 340 sfc_dev_close(struct rte_eth_dev *dev) 341 { 342 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 343 344 sfc_log_init(sa, "entry"); 345 346 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 347 sfc_eth_dev_secondary_clear_ops(dev); 348 return 0; 349 } 350 351 sfc_adapter_lock(sa); 352 switch (sa->state) { 353 case SFC_ADAPTER_STARTED: 354 sfc_stop(sa); 355 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 356 /* FALLTHROUGH */ 357 case SFC_ADAPTER_CONFIGURED: 358 sfc_close(sa); 359 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 360 /* FALLTHROUGH */ 361 case SFC_ADAPTER_INITIALIZED: 362 break; 363 default: 364 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 365 break; 366 } 367 368 /* 369 * Cleanup all resources. 370 * Rollback primary process sfc_eth_dev_init() below. 371 */ 372 373 sfc_eth_dev_clear_ops(dev); 374 375 sfc_detach(sa); 376 sfc_unprobe(sa); 377 378 sfc_kvargs_cleanup(sa); 379 380 sfc_adapter_unlock(sa); 381 sfc_adapter_lock_fini(sa); 382 383 sfc_log_init(sa, "done"); 384 385 /* Required for logging, so cleanup last */ 386 sa->eth_dev = NULL; 387 388 free(sa); 389 390 return 0; 391 } 392 393 static int 394 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 395 boolean_t enabled) 396 { 397 struct sfc_port *port; 398 boolean_t *toggle; 399 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 400 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 401 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 402 int rc = 0; 403 404 sfc_adapter_lock(sa); 405 406 port = &sa->port; 407 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 408 409 if (*toggle != enabled) { 410 *toggle = enabled; 411 412 if (sfc_sa2shared(sa)->isolated) { 413 sfc_warn(sa, "isolated mode is active on the port"); 414 sfc_warn(sa, "the change is to be applied on the next " 415 "start provided that isolated mode is " 416 "disabled prior the next start"); 417 } else if ((sa->state == SFC_ADAPTER_STARTED) && 418 ((rc = sfc_set_rx_mode(sa)) != 0)) { 419 *toggle = !(enabled); 420 sfc_warn(sa, "Failed to %s %s mode, rc = %d", 421 ((enabled) ? "enable" : "disable"), desc, rc); 422 423 /* 424 * For promiscuous and all-multicast filters a 425 * permission failure should be reported as an 426 * unsupported filter. 427 */ 428 if (rc == EPERM) 429 rc = ENOTSUP; 430 } 431 } 432 433 sfc_adapter_unlock(sa); 434 return rc; 435 } 436 437 static int 438 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 439 { 440 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 441 442 SFC_ASSERT(rc >= 0); 443 return -rc; 444 } 445 446 static int 447 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 448 { 449 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 450 451 SFC_ASSERT(rc >= 0); 452 return -rc; 453 } 454 455 static int 456 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 457 { 458 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 459 460 SFC_ASSERT(rc >= 0); 461 return -rc; 462 } 463 464 static int 465 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 466 { 467 int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 468 469 SFC_ASSERT(rc >= 0); 470 return -rc; 471 } 472 473 static int 474 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 475 uint16_t nb_rx_desc, unsigned int socket_id, 476 const struct rte_eth_rxconf *rx_conf, 477 struct rte_mempool *mb_pool) 478 { 479 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 480 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 481 int rc; 482 483 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 484 rx_queue_id, nb_rx_desc, socket_id); 485 486 sfc_adapter_lock(sa); 487 488 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 489 rx_conf, mb_pool); 490 if (rc != 0) 491 goto fail_rx_qinit; 492 493 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 494 495 sfc_adapter_unlock(sa); 496 497 return 0; 498 499 fail_rx_qinit: 500 sfc_adapter_unlock(sa); 501 SFC_ASSERT(rc > 0); 502 return -rc; 503 } 504 505 static void 506 sfc_rx_queue_release(void *queue) 507 { 508 struct sfc_dp_rxq *dp_rxq = queue; 509 struct sfc_rxq *rxq; 510 struct sfc_adapter *sa; 511 unsigned int sw_index; 512 513 if (dp_rxq == NULL) 514 return; 515 516 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 517 sa = rxq->evq->sa; 518 sfc_adapter_lock(sa); 519 520 sw_index = dp_rxq->dpq.queue_id; 521 522 sfc_log_init(sa, "RxQ=%u", sw_index); 523 524 sfc_rx_qfini(sa, sw_index); 525 526 sfc_adapter_unlock(sa); 527 } 528 529 static int 530 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 531 uint16_t nb_tx_desc, unsigned int socket_id, 532 const struct rte_eth_txconf *tx_conf) 533 { 534 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 535 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 536 int rc; 537 538 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 539 tx_queue_id, nb_tx_desc, socket_id); 540 541 sfc_adapter_lock(sa); 542 543 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 544 if (rc != 0) 545 goto fail_tx_qinit; 546 547 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; 548 549 sfc_adapter_unlock(sa); 550 return 0; 551 552 fail_tx_qinit: 553 sfc_adapter_unlock(sa); 554 SFC_ASSERT(rc > 0); 555 return -rc; 556 } 557 558 static void 559 sfc_tx_queue_release(void *queue) 560 { 561 struct sfc_dp_txq *dp_txq = queue; 562 struct sfc_txq *txq; 563 unsigned int sw_index; 564 struct sfc_adapter *sa; 565 566 if (dp_txq == NULL) 567 return; 568 569 txq = sfc_txq_by_dp_txq(dp_txq); 570 sw_index = dp_txq->dpq.queue_id; 571 572 SFC_ASSERT(txq->evq != NULL); 573 sa = txq->evq->sa; 574 575 sfc_log_init(sa, "TxQ = %u", sw_index); 576 577 sfc_adapter_lock(sa); 578 579 sfc_tx_qfini(sa, sw_index); 580 581 sfc_adapter_unlock(sa); 582 } 583 584 /* 585 * Some statistics are computed as A - B where A and B each increase 586 * monotonically with some hardware counter(s) and the counters are read 587 * asynchronously. 588 * 589 * If packet X is counted in A, but not counted in B yet, computed value is 590 * greater than real. 591 * 592 * If packet X is not counted in A at the moment of reading the counter, 593 * but counted in B at the moment of reading the counter, computed value 594 * is less than real. 595 * 596 * However, counter which grows backward is worse evil than slightly wrong 597 * value. So, let's try to guarantee that it never happens except may be 598 * the case when the MAC stats are zeroed as a result of a NIC reset. 599 */ 600 static void 601 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 602 { 603 if ((int64_t)(newval - *stat) > 0 || newval == 0) 604 *stat = newval; 605 } 606 607 static int 608 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 609 { 610 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 611 struct sfc_port *port = &sa->port; 612 uint64_t *mac_stats; 613 int ret; 614 615 rte_spinlock_lock(&port->mac_stats_lock); 616 617 ret = sfc_port_update_mac_stats(sa); 618 if (ret != 0) 619 goto unlock; 620 621 mac_stats = port->mac_stats_buf; 622 623 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 624 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 625 stats->ipackets = 626 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 627 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 628 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 629 stats->opackets = 630 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 631 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 632 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 633 stats->ibytes = 634 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 635 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 636 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 637 stats->obytes = 638 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 639 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 640 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 641 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 642 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 643 644 /* CRC is included in these stats, but shouldn't be */ 645 stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN; 646 stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN; 647 } else { 648 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 649 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 650 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 651 652 /* CRC is included in these stats, but shouldn't be */ 653 stats->ibytes -= mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN; 654 stats->obytes -= mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN; 655 656 /* 657 * Take into account stats which are whenever supported 658 * on EF10. If some stat is not supported by current 659 * firmware variant or HW revision, it is guaranteed 660 * to be zero in mac_stats. 661 */ 662 stats->imissed = 663 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 664 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 665 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 666 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 667 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 668 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 669 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 670 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 671 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 672 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 673 stats->ierrors = 674 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 675 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 676 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 677 /* no oerrors counters supported on EF10 */ 678 679 /* Exclude missed, errors and pauses from Rx packets */ 680 sfc_update_diff_stat(&port->ipackets, 681 mac_stats[EFX_MAC_RX_PKTS] - 682 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 683 stats->imissed - stats->ierrors); 684 stats->ipackets = port->ipackets; 685 } 686 687 unlock: 688 rte_spinlock_unlock(&port->mac_stats_lock); 689 SFC_ASSERT(ret >= 0); 690 return -ret; 691 } 692 693 static int 694 sfc_stats_reset(struct rte_eth_dev *dev) 695 { 696 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 697 struct sfc_port *port = &sa->port; 698 int rc; 699 700 if (sa->state != SFC_ADAPTER_STARTED) { 701 /* 702 * The operation cannot be done if port is not started; it 703 * will be scheduled to be done during the next port start 704 */ 705 port->mac_stats_reset_pending = B_TRUE; 706 return 0; 707 } 708 709 rc = sfc_port_reset_mac_stats(sa); 710 if (rc != 0) 711 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 712 713 SFC_ASSERT(rc >= 0); 714 return -rc; 715 } 716 717 static int 718 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 719 unsigned int xstats_count) 720 { 721 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 722 struct sfc_port *port = &sa->port; 723 uint64_t *mac_stats; 724 int rc; 725 unsigned int i; 726 int nstats = 0; 727 728 rte_spinlock_lock(&port->mac_stats_lock); 729 730 rc = sfc_port_update_mac_stats(sa); 731 if (rc != 0) { 732 SFC_ASSERT(rc > 0); 733 nstats = -rc; 734 goto unlock; 735 } 736 737 mac_stats = port->mac_stats_buf; 738 739 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 740 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 741 if (xstats != NULL && nstats < (int)xstats_count) { 742 xstats[nstats].id = nstats; 743 xstats[nstats].value = mac_stats[i]; 744 } 745 nstats++; 746 } 747 } 748 749 unlock: 750 rte_spinlock_unlock(&port->mac_stats_lock); 751 752 return nstats; 753 } 754 755 static int 756 sfc_xstats_get_names(struct rte_eth_dev *dev, 757 struct rte_eth_xstat_name *xstats_names, 758 unsigned int xstats_count) 759 { 760 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 761 struct sfc_port *port = &sa->port; 762 unsigned int i; 763 unsigned int nstats = 0; 764 765 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 766 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 767 if (xstats_names != NULL && nstats < xstats_count) 768 strlcpy(xstats_names[nstats].name, 769 efx_mac_stat_name(sa->nic, i), 770 sizeof(xstats_names[0].name)); 771 nstats++; 772 } 773 } 774 775 return nstats; 776 } 777 778 static int 779 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 780 uint64_t *values, unsigned int n) 781 { 782 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 783 struct sfc_port *port = &sa->port; 784 uint64_t *mac_stats; 785 unsigned int nb_supported = 0; 786 unsigned int nb_written = 0; 787 unsigned int i; 788 int ret; 789 int rc; 790 791 if (unlikely(values == NULL) || 792 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 793 return port->mac_stats_nb_supported; 794 795 rte_spinlock_lock(&port->mac_stats_lock); 796 797 rc = sfc_port_update_mac_stats(sa); 798 if (rc != 0) { 799 SFC_ASSERT(rc > 0); 800 ret = -rc; 801 goto unlock; 802 } 803 804 mac_stats = port->mac_stats_buf; 805 806 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 807 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 808 continue; 809 810 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 811 values[nb_written++] = mac_stats[i]; 812 813 ++nb_supported; 814 } 815 816 ret = nb_written; 817 818 unlock: 819 rte_spinlock_unlock(&port->mac_stats_lock); 820 821 return ret; 822 } 823 824 static int 825 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 826 struct rte_eth_xstat_name *xstats_names, 827 const uint64_t *ids, unsigned int size) 828 { 829 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 830 struct sfc_port *port = &sa->port; 831 unsigned int nb_supported = 0; 832 unsigned int nb_written = 0; 833 unsigned int i; 834 835 if (unlikely(xstats_names == NULL) || 836 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 837 return port->mac_stats_nb_supported; 838 839 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 840 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 841 continue; 842 843 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 844 char *name = xstats_names[nb_written++].name; 845 846 strlcpy(name, efx_mac_stat_name(sa->nic, i), 847 sizeof(xstats_names[0].name)); 848 } 849 850 ++nb_supported; 851 } 852 853 return nb_written; 854 } 855 856 static int 857 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 858 { 859 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 860 unsigned int wanted_fc, link_fc; 861 862 memset(fc_conf, 0, sizeof(*fc_conf)); 863 864 sfc_adapter_lock(sa); 865 866 if (sa->state == SFC_ADAPTER_STARTED) 867 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 868 else 869 link_fc = sa->port.flow_ctrl; 870 871 switch (link_fc) { 872 case 0: 873 fc_conf->mode = RTE_FC_NONE; 874 break; 875 case EFX_FCNTL_RESPOND: 876 fc_conf->mode = RTE_FC_RX_PAUSE; 877 break; 878 case EFX_FCNTL_GENERATE: 879 fc_conf->mode = RTE_FC_TX_PAUSE; 880 break; 881 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 882 fc_conf->mode = RTE_FC_FULL; 883 break; 884 default: 885 sfc_err(sa, "%s: unexpected flow control value %#x", 886 __func__, link_fc); 887 } 888 889 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 890 891 sfc_adapter_unlock(sa); 892 893 return 0; 894 } 895 896 static int 897 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 898 { 899 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 900 struct sfc_port *port = &sa->port; 901 unsigned int fcntl; 902 int rc; 903 904 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 905 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 906 fc_conf->mac_ctrl_frame_fwd != 0) { 907 sfc_err(sa, "unsupported flow control settings specified"); 908 rc = EINVAL; 909 goto fail_inval; 910 } 911 912 switch (fc_conf->mode) { 913 case RTE_FC_NONE: 914 fcntl = 0; 915 break; 916 case RTE_FC_RX_PAUSE: 917 fcntl = EFX_FCNTL_RESPOND; 918 break; 919 case RTE_FC_TX_PAUSE: 920 fcntl = EFX_FCNTL_GENERATE; 921 break; 922 case RTE_FC_FULL: 923 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 924 break; 925 default: 926 rc = EINVAL; 927 goto fail_inval; 928 } 929 930 sfc_adapter_lock(sa); 931 932 if (sa->state == SFC_ADAPTER_STARTED) { 933 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 934 if (rc != 0) 935 goto fail_mac_fcntl_set; 936 } 937 938 port->flow_ctrl = fcntl; 939 port->flow_ctrl_autoneg = fc_conf->autoneg; 940 941 sfc_adapter_unlock(sa); 942 943 return 0; 944 945 fail_mac_fcntl_set: 946 sfc_adapter_unlock(sa); 947 fail_inval: 948 SFC_ASSERT(rc > 0); 949 return -rc; 950 } 951 952 static int 953 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu) 954 { 955 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa); 956 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 957 boolean_t scatter_enabled; 958 const char *error; 959 unsigned int i; 960 961 for (i = 0; i < sas->rxq_count; i++) { 962 if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0) 963 continue; 964 965 scatter_enabled = (sas->rxq_info[i].type_flags & 966 EFX_RXQ_FLAG_SCATTER); 967 968 if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size, 969 encp->enc_rx_prefix_size, 970 scatter_enabled, 971 encp->enc_rx_scatter_max, &error)) { 972 sfc_err(sa, "MTU check for RxQ %u failed: %s", i, 973 error); 974 return EINVAL; 975 } 976 } 977 978 return 0; 979 } 980 981 static int 982 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 983 { 984 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 985 size_t pdu = EFX_MAC_PDU(mtu); 986 size_t old_pdu; 987 int rc; 988 989 sfc_log_init(sa, "mtu=%u", mtu); 990 991 rc = EINVAL; 992 if (pdu < EFX_MAC_PDU_MIN) { 993 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 994 (unsigned int)mtu, (unsigned int)pdu, 995 EFX_MAC_PDU_MIN); 996 goto fail_inval; 997 } 998 if (pdu > EFX_MAC_PDU_MAX) { 999 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 1000 (unsigned int)mtu, (unsigned int)pdu, 1001 (unsigned int)EFX_MAC_PDU_MAX); 1002 goto fail_inval; 1003 } 1004 1005 sfc_adapter_lock(sa); 1006 1007 rc = sfc_check_scatter_on_all_rx_queues(sa, pdu); 1008 if (rc != 0) 1009 goto fail_check_scatter; 1010 1011 if (pdu != sa->port.pdu) { 1012 if (sa->state == SFC_ADAPTER_STARTED) { 1013 sfc_stop(sa); 1014 1015 old_pdu = sa->port.pdu; 1016 sa->port.pdu = pdu; 1017 rc = sfc_start(sa); 1018 if (rc != 0) 1019 goto fail_start; 1020 } else { 1021 sa->port.pdu = pdu; 1022 } 1023 } 1024 1025 /* 1026 * The driver does not use it, but other PMDs update jumbo frame 1027 * flag and max_rx_pkt_len when MTU is set. 1028 */ 1029 if (mtu > RTE_ETHER_MTU) { 1030 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 1031 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 1032 } 1033 1034 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 1035 1036 sfc_adapter_unlock(sa); 1037 1038 sfc_log_init(sa, "done"); 1039 return 0; 1040 1041 fail_start: 1042 sa->port.pdu = old_pdu; 1043 if (sfc_start(sa) != 0) 1044 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 1045 "PDU max size - port is stopped", 1046 (unsigned int)pdu, (unsigned int)old_pdu); 1047 1048 fail_check_scatter: 1049 sfc_adapter_unlock(sa); 1050 1051 fail_inval: 1052 sfc_log_init(sa, "failed %d", rc); 1053 SFC_ASSERT(rc > 0); 1054 return -rc; 1055 } 1056 static int 1057 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr) 1058 { 1059 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1060 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 1061 struct sfc_port *port = &sa->port; 1062 struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0]; 1063 int rc = 0; 1064 1065 sfc_adapter_lock(sa); 1066 1067 if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr)) 1068 goto unlock; 1069 1070 /* 1071 * Copy the address to the device private data so that 1072 * it could be recalled in the case of adapter restart. 1073 */ 1074 rte_ether_addr_copy(mac_addr, &port->default_mac_addr); 1075 1076 /* 1077 * Neither of the two following checks can return 1078 * an error. The new MAC address is preserved in 1079 * the device private data and can be activated 1080 * on the next port start if the user prevents 1081 * isolated mode from being enabled. 1082 */ 1083 if (sfc_sa2shared(sa)->isolated) { 1084 sfc_warn(sa, "isolated mode is active on the port"); 1085 sfc_warn(sa, "will not set MAC address"); 1086 goto unlock; 1087 } 1088 1089 if (sa->state != SFC_ADAPTER_STARTED) { 1090 sfc_notice(sa, "the port is not started"); 1091 sfc_notice(sa, "the new MAC address will be set on port start"); 1092 1093 goto unlock; 1094 } 1095 1096 if (encp->enc_allow_set_mac_with_installed_filters) { 1097 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 1098 if (rc != 0) { 1099 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 1100 goto unlock; 1101 } 1102 1103 /* 1104 * Changing the MAC address by means of MCDI request 1105 * has no effect on received traffic, therefore 1106 * we also need to update unicast filters 1107 */ 1108 rc = sfc_set_rx_mode_unchecked(sa); 1109 if (rc != 0) { 1110 sfc_err(sa, "cannot set filter (rc = %u)", rc); 1111 /* Rollback the old address */ 1112 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 1113 (void)sfc_set_rx_mode_unchecked(sa); 1114 } 1115 } else { 1116 sfc_warn(sa, "cannot set MAC address with filters installed"); 1117 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 1118 sfc_warn(sa, "(some traffic may be dropped)"); 1119 1120 /* 1121 * Since setting MAC address with filters installed is not 1122 * allowed on the adapter, the new MAC address will be set 1123 * by means of adapter restart. sfc_start() shall retrieve 1124 * the new address from the device private data and set it. 1125 */ 1126 sfc_stop(sa); 1127 rc = sfc_start(sa); 1128 if (rc != 0) 1129 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1130 } 1131 1132 unlock: 1133 if (rc != 0) 1134 rte_ether_addr_copy(old_addr, &port->default_mac_addr); 1135 1136 sfc_adapter_unlock(sa); 1137 1138 SFC_ASSERT(rc >= 0); 1139 return -rc; 1140 } 1141 1142 1143 static int 1144 sfc_set_mc_addr_list(struct rte_eth_dev *dev, 1145 struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr) 1146 { 1147 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1148 struct sfc_port *port = &sa->port; 1149 uint8_t *mc_addrs = port->mcast_addrs; 1150 int rc; 1151 unsigned int i; 1152 1153 if (sfc_sa2shared(sa)->isolated) { 1154 sfc_err(sa, "isolated mode is active on the port"); 1155 sfc_err(sa, "will not set multicast address list"); 1156 return -ENOTSUP; 1157 } 1158 1159 if (mc_addrs == NULL) 1160 return -ENOBUFS; 1161 1162 if (nb_mc_addr > port->max_mcast_addrs) { 1163 sfc_err(sa, "too many multicast addresses: %u > %u", 1164 nb_mc_addr, port->max_mcast_addrs); 1165 return -EINVAL; 1166 } 1167 1168 for (i = 0; i < nb_mc_addr; ++i) { 1169 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1170 EFX_MAC_ADDR_LEN); 1171 mc_addrs += EFX_MAC_ADDR_LEN; 1172 } 1173 1174 port->nb_mcast_addrs = nb_mc_addr; 1175 1176 if (sa->state != SFC_ADAPTER_STARTED) 1177 return 0; 1178 1179 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1180 port->nb_mcast_addrs); 1181 if (rc != 0) 1182 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1183 1184 SFC_ASSERT(rc >= 0); 1185 return -rc; 1186 } 1187 1188 /* 1189 * The function is used by the secondary process as well. It must not 1190 * use any process-local pointers from the adapter data. 1191 */ 1192 static void 1193 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1194 struct rte_eth_rxq_info *qinfo) 1195 { 1196 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1197 struct sfc_rxq_info *rxq_info; 1198 1199 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1200 1201 rxq_info = &sas->rxq_info[rx_queue_id]; 1202 1203 qinfo->mp = rxq_info->refill_mb_pool; 1204 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1205 qinfo->conf.rx_drop_en = 1; 1206 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1207 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1208 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1209 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1210 qinfo->scattered_rx = 1; 1211 } 1212 qinfo->nb_desc = rxq_info->entries; 1213 } 1214 1215 /* 1216 * The function is used by the secondary process as well. It must not 1217 * use any process-local pointers from the adapter data. 1218 */ 1219 static void 1220 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1221 struct rte_eth_txq_info *qinfo) 1222 { 1223 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1224 struct sfc_txq_info *txq_info; 1225 1226 SFC_ASSERT(tx_queue_id < sas->txq_count); 1227 1228 txq_info = &sas->txq_info[tx_queue_id]; 1229 1230 memset(qinfo, 0, sizeof(*qinfo)); 1231 1232 qinfo->conf.offloads = txq_info->offloads; 1233 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1234 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1235 qinfo->nb_desc = txq_info->entries; 1236 } 1237 1238 /* 1239 * The function is used by the secondary process as well. It must not 1240 * use any process-local pointers from the adapter data. 1241 */ 1242 static uint32_t 1243 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1244 { 1245 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1246 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1247 struct sfc_rxq_info *rxq_info; 1248 1249 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1250 rxq_info = &sas->rxq_info[rx_queue_id]; 1251 1252 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1253 return 0; 1254 1255 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1256 } 1257 1258 /* 1259 * The function is used by the secondary process as well. It must not 1260 * use any process-local pointers from the adapter data. 1261 */ 1262 static int 1263 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1264 { 1265 struct sfc_dp_rxq *dp_rxq = queue; 1266 const struct sfc_dp_rx *dp_rx; 1267 1268 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1269 1270 return offset < dp_rx->qdesc_npending(dp_rxq); 1271 } 1272 1273 /* 1274 * The function is used by the secondary process as well. It must not 1275 * use any process-local pointers from the adapter data. 1276 */ 1277 static int 1278 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1279 { 1280 struct sfc_dp_rxq *dp_rxq = queue; 1281 const struct sfc_dp_rx *dp_rx; 1282 1283 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1284 1285 return dp_rx->qdesc_status(dp_rxq, offset); 1286 } 1287 1288 /* 1289 * The function is used by the secondary process as well. It must not 1290 * use any process-local pointers from the adapter data. 1291 */ 1292 static int 1293 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1294 { 1295 struct sfc_dp_txq *dp_txq = queue; 1296 const struct sfc_dp_tx *dp_tx; 1297 1298 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1299 1300 return dp_tx->qdesc_status(dp_txq, offset); 1301 } 1302 1303 static int 1304 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1305 { 1306 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1307 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1308 int rc; 1309 1310 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1311 1312 sfc_adapter_lock(sa); 1313 1314 rc = EINVAL; 1315 if (sa->state != SFC_ADAPTER_STARTED) 1316 goto fail_not_started; 1317 1318 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1319 goto fail_not_setup; 1320 1321 rc = sfc_rx_qstart(sa, rx_queue_id); 1322 if (rc != 0) 1323 goto fail_rx_qstart; 1324 1325 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1326 1327 sfc_adapter_unlock(sa); 1328 1329 return 0; 1330 1331 fail_rx_qstart: 1332 fail_not_setup: 1333 fail_not_started: 1334 sfc_adapter_unlock(sa); 1335 SFC_ASSERT(rc > 0); 1336 return -rc; 1337 } 1338 1339 static int 1340 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1341 { 1342 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1343 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1344 1345 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1346 1347 sfc_adapter_lock(sa); 1348 sfc_rx_qstop(sa, rx_queue_id); 1349 1350 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1351 1352 sfc_adapter_unlock(sa); 1353 1354 return 0; 1355 } 1356 1357 static int 1358 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1359 { 1360 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1361 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1362 int rc; 1363 1364 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1365 1366 sfc_adapter_lock(sa); 1367 1368 rc = EINVAL; 1369 if (sa->state != SFC_ADAPTER_STARTED) 1370 goto fail_not_started; 1371 1372 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1373 goto fail_not_setup; 1374 1375 rc = sfc_tx_qstart(sa, tx_queue_id); 1376 if (rc != 0) 1377 goto fail_tx_qstart; 1378 1379 sas->txq_info[tx_queue_id].deferred_started = B_TRUE; 1380 1381 sfc_adapter_unlock(sa); 1382 return 0; 1383 1384 fail_tx_qstart: 1385 1386 fail_not_setup: 1387 fail_not_started: 1388 sfc_adapter_unlock(sa); 1389 SFC_ASSERT(rc > 0); 1390 return -rc; 1391 } 1392 1393 static int 1394 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1395 { 1396 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1397 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1398 1399 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1400 1401 sfc_adapter_lock(sa); 1402 1403 sfc_tx_qstop(sa, tx_queue_id); 1404 1405 sas->txq_info[tx_queue_id].deferred_started = B_FALSE; 1406 1407 sfc_adapter_unlock(sa); 1408 return 0; 1409 } 1410 1411 static efx_tunnel_protocol_t 1412 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1413 { 1414 switch (rte_type) { 1415 case RTE_TUNNEL_TYPE_VXLAN: 1416 return EFX_TUNNEL_PROTOCOL_VXLAN; 1417 case RTE_TUNNEL_TYPE_GENEVE: 1418 return EFX_TUNNEL_PROTOCOL_GENEVE; 1419 default: 1420 return EFX_TUNNEL_NPROTOS; 1421 } 1422 } 1423 1424 enum sfc_udp_tunnel_op_e { 1425 SFC_UDP_TUNNEL_ADD_PORT, 1426 SFC_UDP_TUNNEL_DEL_PORT, 1427 }; 1428 1429 static int 1430 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1431 struct rte_eth_udp_tunnel *tunnel_udp, 1432 enum sfc_udp_tunnel_op_e op) 1433 { 1434 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1435 efx_tunnel_protocol_t tunnel_proto; 1436 int rc; 1437 1438 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1439 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1440 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1441 tunnel_udp->udp_port, tunnel_udp->prot_type); 1442 1443 tunnel_proto = 1444 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1445 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1446 rc = ENOTSUP; 1447 goto fail_bad_proto; 1448 } 1449 1450 sfc_adapter_lock(sa); 1451 1452 switch (op) { 1453 case SFC_UDP_TUNNEL_ADD_PORT: 1454 rc = efx_tunnel_config_udp_add(sa->nic, 1455 tunnel_udp->udp_port, 1456 tunnel_proto); 1457 break; 1458 case SFC_UDP_TUNNEL_DEL_PORT: 1459 rc = efx_tunnel_config_udp_remove(sa->nic, 1460 tunnel_udp->udp_port, 1461 tunnel_proto); 1462 break; 1463 default: 1464 rc = EINVAL; 1465 goto fail_bad_op; 1466 } 1467 1468 if (rc != 0) 1469 goto fail_op; 1470 1471 if (sa->state == SFC_ADAPTER_STARTED) { 1472 rc = efx_tunnel_reconfigure(sa->nic); 1473 if (rc == EAGAIN) { 1474 /* 1475 * Configuration is accepted by FW and MC reboot 1476 * is initiated to apply the changes. MC reboot 1477 * will be handled in a usual way (MC reboot 1478 * event on management event queue and adapter 1479 * restart). 1480 */ 1481 rc = 0; 1482 } else if (rc != 0) { 1483 goto fail_reconfigure; 1484 } 1485 } 1486 1487 sfc_adapter_unlock(sa); 1488 return 0; 1489 1490 fail_reconfigure: 1491 /* Remove/restore entry since the change makes the trouble */ 1492 switch (op) { 1493 case SFC_UDP_TUNNEL_ADD_PORT: 1494 (void)efx_tunnel_config_udp_remove(sa->nic, 1495 tunnel_udp->udp_port, 1496 tunnel_proto); 1497 break; 1498 case SFC_UDP_TUNNEL_DEL_PORT: 1499 (void)efx_tunnel_config_udp_add(sa->nic, 1500 tunnel_udp->udp_port, 1501 tunnel_proto); 1502 break; 1503 } 1504 1505 fail_op: 1506 fail_bad_op: 1507 sfc_adapter_unlock(sa); 1508 1509 fail_bad_proto: 1510 SFC_ASSERT(rc > 0); 1511 return -rc; 1512 } 1513 1514 static int 1515 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1516 struct rte_eth_udp_tunnel *tunnel_udp) 1517 { 1518 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1519 } 1520 1521 static int 1522 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1523 struct rte_eth_udp_tunnel *tunnel_udp) 1524 { 1525 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1526 } 1527 1528 /* 1529 * The function is used by the secondary process as well. It must not 1530 * use any process-local pointers from the adapter data. 1531 */ 1532 static int 1533 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1534 struct rte_eth_rss_conf *rss_conf) 1535 { 1536 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1537 struct sfc_rss *rss = &sas->rss; 1538 1539 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1540 return -ENOTSUP; 1541 1542 /* 1543 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1544 * hence, conversion is done here to derive a correct set of ETH_RSS 1545 * flags which corresponds to the active EFX configuration stored 1546 * locally in 'sfc_adapter' and kept up-to-date 1547 */ 1548 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1549 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1550 if (rss_conf->rss_key != NULL) 1551 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1552 1553 return 0; 1554 } 1555 1556 static int 1557 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1558 struct rte_eth_rss_conf *rss_conf) 1559 { 1560 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1561 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1562 unsigned int efx_hash_types; 1563 uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context}; 1564 unsigned int n_contexts; 1565 unsigned int mode_i = 0; 1566 unsigned int key_i = 0; 1567 unsigned int i = 0; 1568 int rc = 0; 1569 1570 n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2; 1571 1572 if (sfc_sa2shared(sa)->isolated) 1573 return -ENOTSUP; 1574 1575 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1576 sfc_err(sa, "RSS is not available"); 1577 return -ENOTSUP; 1578 } 1579 1580 if (rss->channels == 0) { 1581 sfc_err(sa, "RSS is not configured"); 1582 return -EINVAL; 1583 } 1584 1585 if ((rss_conf->rss_key != NULL) && 1586 (rss_conf->rss_key_len != sizeof(rss->key))) { 1587 sfc_err(sa, "RSS key size is wrong (should be %zu)", 1588 sizeof(rss->key)); 1589 return -EINVAL; 1590 } 1591 1592 sfc_adapter_lock(sa); 1593 1594 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1595 if (rc != 0) 1596 goto fail_rx_hf_rte_to_efx; 1597 1598 for (mode_i = 0; mode_i < n_contexts; mode_i++) { 1599 rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i], 1600 rss->hash_alg, efx_hash_types, 1601 B_TRUE); 1602 if (rc != 0) 1603 goto fail_scale_mode_set; 1604 } 1605 1606 if (rss_conf->rss_key != NULL) { 1607 if (sa->state == SFC_ADAPTER_STARTED) { 1608 for (key_i = 0; key_i < n_contexts; key_i++) { 1609 rc = efx_rx_scale_key_set(sa->nic, 1610 contexts[key_i], 1611 rss_conf->rss_key, 1612 sizeof(rss->key)); 1613 if (rc != 0) 1614 goto fail_scale_key_set; 1615 } 1616 } 1617 1618 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1619 } 1620 1621 rss->hash_types = efx_hash_types; 1622 1623 sfc_adapter_unlock(sa); 1624 1625 return 0; 1626 1627 fail_scale_key_set: 1628 for (i = 0; i < key_i; i++) { 1629 if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key, 1630 sizeof(rss->key)) != 0) 1631 sfc_err(sa, "failed to restore RSS key"); 1632 } 1633 1634 fail_scale_mode_set: 1635 for (i = 0; i < mode_i; i++) { 1636 if (efx_rx_scale_mode_set(sa->nic, contexts[i], 1637 EFX_RX_HASHALG_TOEPLITZ, 1638 rss->hash_types, B_TRUE) != 0) 1639 sfc_err(sa, "failed to restore RSS mode"); 1640 } 1641 1642 fail_rx_hf_rte_to_efx: 1643 sfc_adapter_unlock(sa); 1644 return -rc; 1645 } 1646 1647 /* 1648 * The function is used by the secondary process as well. It must not 1649 * use any process-local pointers from the adapter data. 1650 */ 1651 static int 1652 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1653 struct rte_eth_rss_reta_entry64 *reta_conf, 1654 uint16_t reta_size) 1655 { 1656 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1657 struct sfc_rss *rss = &sas->rss; 1658 int entry; 1659 1660 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1661 return -ENOTSUP; 1662 1663 if (rss->channels == 0) 1664 return -EINVAL; 1665 1666 if (reta_size != EFX_RSS_TBL_SIZE) 1667 return -EINVAL; 1668 1669 for (entry = 0; entry < reta_size; entry++) { 1670 int grp = entry / RTE_RETA_GROUP_SIZE; 1671 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1672 1673 if ((reta_conf[grp].mask >> grp_idx) & 1) 1674 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1675 } 1676 1677 return 0; 1678 } 1679 1680 static int 1681 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1682 struct rte_eth_rss_reta_entry64 *reta_conf, 1683 uint16_t reta_size) 1684 { 1685 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1686 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1687 unsigned int *rss_tbl_new; 1688 uint16_t entry; 1689 int rc = 0; 1690 1691 1692 if (sfc_sa2shared(sa)->isolated) 1693 return -ENOTSUP; 1694 1695 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1696 sfc_err(sa, "RSS is not available"); 1697 return -ENOTSUP; 1698 } 1699 1700 if (rss->channels == 0) { 1701 sfc_err(sa, "RSS is not configured"); 1702 return -EINVAL; 1703 } 1704 1705 if (reta_size != EFX_RSS_TBL_SIZE) { 1706 sfc_err(sa, "RETA size is wrong (should be %u)", 1707 EFX_RSS_TBL_SIZE); 1708 return -EINVAL; 1709 } 1710 1711 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1712 if (rss_tbl_new == NULL) 1713 return -ENOMEM; 1714 1715 sfc_adapter_lock(sa); 1716 1717 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1718 1719 for (entry = 0; entry < reta_size; entry++) { 1720 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1721 struct rte_eth_rss_reta_entry64 *grp; 1722 1723 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1724 1725 if (grp->mask & (1ull << grp_idx)) { 1726 if (grp->reta[grp_idx] >= rss->channels) { 1727 rc = EINVAL; 1728 goto bad_reta_entry; 1729 } 1730 rss_tbl_new[entry] = grp->reta[grp_idx]; 1731 } 1732 } 1733 1734 if (sa->state == SFC_ADAPTER_STARTED) { 1735 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1736 rss_tbl_new, EFX_RSS_TBL_SIZE); 1737 if (rc != 0) 1738 goto fail_scale_tbl_set; 1739 } 1740 1741 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1742 1743 fail_scale_tbl_set: 1744 bad_reta_entry: 1745 sfc_adapter_unlock(sa); 1746 1747 rte_free(rss_tbl_new); 1748 1749 SFC_ASSERT(rc >= 0); 1750 return -rc; 1751 } 1752 1753 static int 1754 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1755 enum rte_filter_op filter_op, 1756 void *arg) 1757 { 1758 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1759 int rc = ENOTSUP; 1760 1761 sfc_log_init(sa, "entry"); 1762 1763 switch (filter_type) { 1764 case RTE_ETH_FILTER_GENERIC: 1765 if (filter_op != RTE_ETH_FILTER_GET) { 1766 rc = EINVAL; 1767 } else { 1768 *(const void **)arg = &sfc_flow_ops; 1769 rc = 0; 1770 } 1771 break; 1772 default: 1773 sfc_err(sa, "Unknown filter type %u", filter_type); 1774 break; 1775 } 1776 1777 sfc_log_init(sa, "exit: %d", -rc); 1778 SFC_ASSERT(rc >= 0); 1779 return -rc; 1780 } 1781 1782 static int 1783 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1784 { 1785 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1786 1787 /* 1788 * If Rx datapath does not provide callback to check mempool, 1789 * all pools are supported. 1790 */ 1791 if (sap->dp_rx->pool_ops_supported == NULL) 1792 return 1; 1793 1794 return sap->dp_rx->pool_ops_supported(pool); 1795 } 1796 1797 static int 1798 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id) 1799 { 1800 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1801 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1802 struct sfc_rxq_info *rxq_info; 1803 1804 SFC_ASSERT(queue_id < sas->rxq_count); 1805 rxq_info = &sas->rxq_info[queue_id]; 1806 1807 return sap->dp_rx->intr_enable(rxq_info->dp); 1808 } 1809 1810 static int 1811 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id) 1812 { 1813 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1814 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1815 struct sfc_rxq_info *rxq_info; 1816 1817 SFC_ASSERT(queue_id < sas->rxq_count); 1818 rxq_info = &sas->rxq_info[queue_id]; 1819 1820 return sap->dp_rx->intr_disable(rxq_info->dp); 1821 } 1822 1823 static const struct eth_dev_ops sfc_eth_dev_ops = { 1824 .dev_configure = sfc_dev_configure, 1825 .dev_start = sfc_dev_start, 1826 .dev_stop = sfc_dev_stop, 1827 .dev_set_link_up = sfc_dev_set_link_up, 1828 .dev_set_link_down = sfc_dev_set_link_down, 1829 .dev_close = sfc_dev_close, 1830 .promiscuous_enable = sfc_dev_promisc_enable, 1831 .promiscuous_disable = sfc_dev_promisc_disable, 1832 .allmulticast_enable = sfc_dev_allmulti_enable, 1833 .allmulticast_disable = sfc_dev_allmulti_disable, 1834 .link_update = sfc_dev_link_update, 1835 .stats_get = sfc_stats_get, 1836 .stats_reset = sfc_stats_reset, 1837 .xstats_get = sfc_xstats_get, 1838 .xstats_reset = sfc_stats_reset, 1839 .xstats_get_names = sfc_xstats_get_names, 1840 .dev_infos_get = sfc_dev_infos_get, 1841 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1842 .mtu_set = sfc_dev_set_mtu, 1843 .rx_queue_start = sfc_rx_queue_start, 1844 .rx_queue_stop = sfc_rx_queue_stop, 1845 .tx_queue_start = sfc_tx_queue_start, 1846 .tx_queue_stop = sfc_tx_queue_stop, 1847 .rx_queue_setup = sfc_rx_queue_setup, 1848 .rx_queue_release = sfc_rx_queue_release, 1849 .rx_queue_intr_enable = sfc_rx_queue_intr_enable, 1850 .rx_queue_intr_disable = sfc_rx_queue_intr_disable, 1851 .tx_queue_setup = sfc_tx_queue_setup, 1852 .tx_queue_release = sfc_tx_queue_release, 1853 .flow_ctrl_get = sfc_flow_ctrl_get, 1854 .flow_ctrl_set = sfc_flow_ctrl_set, 1855 .mac_addr_set = sfc_mac_addr_set, 1856 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1857 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1858 .reta_update = sfc_dev_rss_reta_update, 1859 .reta_query = sfc_dev_rss_reta_query, 1860 .rss_hash_update = sfc_dev_rss_hash_update, 1861 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1862 .filter_ctrl = sfc_dev_filter_ctrl, 1863 .set_mc_addr_list = sfc_set_mc_addr_list, 1864 .rxq_info_get = sfc_rx_queue_info_get, 1865 .txq_info_get = sfc_tx_queue_info_get, 1866 .fw_version_get = sfc_fw_version_get, 1867 .xstats_get_by_id = sfc_xstats_get_by_id, 1868 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1869 .pool_ops_supported = sfc_pool_ops_supported, 1870 }; 1871 1872 /** 1873 * Duplicate a string in potentially shared memory required for 1874 * multi-process support. 1875 * 1876 * strdup() allocates from process-local heap/memory. 1877 */ 1878 static char * 1879 sfc_strdup(const char *str) 1880 { 1881 size_t size; 1882 char *copy; 1883 1884 if (str == NULL) 1885 return NULL; 1886 1887 size = strlen(str) + 1; 1888 copy = rte_malloc(__func__, size, 0); 1889 if (copy != NULL) 1890 rte_memcpy(copy, str, size); 1891 1892 return copy; 1893 } 1894 1895 static int 1896 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1897 { 1898 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1899 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1900 const struct sfc_dp_rx *dp_rx; 1901 const struct sfc_dp_tx *dp_tx; 1902 const efx_nic_cfg_t *encp; 1903 unsigned int avail_caps = 0; 1904 const char *rx_name = NULL; 1905 const char *tx_name = NULL; 1906 int rc; 1907 1908 switch (sa->family) { 1909 case EFX_FAMILY_HUNTINGTON: 1910 case EFX_FAMILY_MEDFORD: 1911 case EFX_FAMILY_MEDFORD2: 1912 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1913 avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX; 1914 avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX; 1915 break; 1916 case EFX_FAMILY_RIVERHEAD: 1917 avail_caps |= SFC_DP_HW_FW_CAP_EF100; 1918 break; 1919 default: 1920 break; 1921 } 1922 1923 encp = efx_nic_cfg_get(sa->nic); 1924 if (encp->enc_rx_es_super_buffer_supported) 1925 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1926 1927 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1928 sfc_kvarg_string_handler, &rx_name); 1929 if (rc != 0) 1930 goto fail_kvarg_rx_datapath; 1931 1932 if (rx_name != NULL) { 1933 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1934 if (dp_rx == NULL) { 1935 sfc_err(sa, "Rx datapath %s not found", rx_name); 1936 rc = ENOENT; 1937 goto fail_dp_rx; 1938 } 1939 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1940 sfc_err(sa, 1941 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1942 rx_name); 1943 rc = EINVAL; 1944 goto fail_dp_rx_caps; 1945 } 1946 } else { 1947 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1948 if (dp_rx == NULL) { 1949 sfc_err(sa, "Rx datapath by caps %#x not found", 1950 avail_caps); 1951 rc = ENOENT; 1952 goto fail_dp_rx; 1953 } 1954 } 1955 1956 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1957 if (sas->dp_rx_name == NULL) { 1958 rc = ENOMEM; 1959 goto fail_dp_rx_name; 1960 } 1961 1962 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1963 1964 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1965 sfc_kvarg_string_handler, &tx_name); 1966 if (rc != 0) 1967 goto fail_kvarg_tx_datapath; 1968 1969 if (tx_name != NULL) { 1970 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1971 if (dp_tx == NULL) { 1972 sfc_err(sa, "Tx datapath %s not found", tx_name); 1973 rc = ENOENT; 1974 goto fail_dp_tx; 1975 } 1976 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1977 sfc_err(sa, 1978 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1979 tx_name); 1980 rc = EINVAL; 1981 goto fail_dp_tx_caps; 1982 } 1983 } else { 1984 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1985 if (dp_tx == NULL) { 1986 sfc_err(sa, "Tx datapath by caps %#x not found", 1987 avail_caps); 1988 rc = ENOENT; 1989 goto fail_dp_tx; 1990 } 1991 } 1992 1993 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 1994 if (sas->dp_tx_name == NULL) { 1995 rc = ENOMEM; 1996 goto fail_dp_tx_name; 1997 } 1998 1999 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 2000 2001 sa->priv.dp_rx = dp_rx; 2002 sa->priv.dp_tx = dp_tx; 2003 2004 dev->rx_pkt_burst = dp_rx->pkt_burst; 2005 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2006 dev->tx_pkt_burst = dp_tx->pkt_burst; 2007 2008 dev->rx_queue_count = sfc_rx_queue_count; 2009 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2010 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2011 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2012 dev->dev_ops = &sfc_eth_dev_ops; 2013 2014 return 0; 2015 2016 fail_dp_tx_name: 2017 fail_dp_tx_caps: 2018 fail_dp_tx: 2019 fail_kvarg_tx_datapath: 2020 rte_free(sas->dp_rx_name); 2021 sas->dp_rx_name = NULL; 2022 2023 fail_dp_rx_name: 2024 fail_dp_rx_caps: 2025 fail_dp_rx: 2026 fail_kvarg_rx_datapath: 2027 return rc; 2028 } 2029 2030 static void 2031 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 2032 { 2033 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 2034 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2035 2036 dev->dev_ops = NULL; 2037 dev->tx_pkt_prepare = NULL; 2038 dev->rx_pkt_burst = NULL; 2039 dev->tx_pkt_burst = NULL; 2040 2041 rte_free(sas->dp_tx_name); 2042 sas->dp_tx_name = NULL; 2043 sa->priv.dp_tx = NULL; 2044 2045 rte_free(sas->dp_rx_name); 2046 sas->dp_rx_name = NULL; 2047 sa->priv.dp_rx = NULL; 2048 } 2049 2050 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 2051 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 2052 .reta_query = sfc_dev_rss_reta_query, 2053 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 2054 .rxq_info_get = sfc_rx_queue_info_get, 2055 .txq_info_get = sfc_tx_queue_info_get, 2056 }; 2057 2058 static int 2059 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 2060 { 2061 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2062 struct sfc_adapter_priv *sap; 2063 const struct sfc_dp_rx *dp_rx; 2064 const struct sfc_dp_tx *dp_tx; 2065 int rc; 2066 2067 /* 2068 * Allocate process private data from heap, since it should not 2069 * be located in shared memory allocated using rte_malloc() API. 2070 */ 2071 sap = calloc(1, sizeof(*sap)); 2072 if (sap == NULL) { 2073 rc = ENOMEM; 2074 goto fail_alloc_priv; 2075 } 2076 2077 sap->logtype_main = logtype_main; 2078 2079 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 2080 if (dp_rx == NULL) { 2081 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2082 "cannot find %s Rx datapath", sas->dp_rx_name); 2083 rc = ENOENT; 2084 goto fail_dp_rx; 2085 } 2086 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 2087 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2088 "%s Rx datapath does not support multi-process", 2089 sas->dp_rx_name); 2090 rc = EINVAL; 2091 goto fail_dp_rx_multi_process; 2092 } 2093 2094 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 2095 if (dp_tx == NULL) { 2096 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2097 "cannot find %s Tx datapath", sas->dp_tx_name); 2098 rc = ENOENT; 2099 goto fail_dp_tx; 2100 } 2101 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 2102 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 2103 "%s Tx datapath does not support multi-process", 2104 sas->dp_tx_name); 2105 rc = EINVAL; 2106 goto fail_dp_tx_multi_process; 2107 } 2108 2109 sap->dp_rx = dp_rx; 2110 sap->dp_tx = dp_tx; 2111 2112 dev->process_private = sap; 2113 dev->rx_pkt_burst = dp_rx->pkt_burst; 2114 dev->tx_pkt_prepare = dp_tx->pkt_prepare; 2115 dev->tx_pkt_burst = dp_tx->pkt_burst; 2116 dev->rx_queue_count = sfc_rx_queue_count; 2117 dev->rx_descriptor_done = sfc_rx_descriptor_done; 2118 dev->rx_descriptor_status = sfc_rx_descriptor_status; 2119 dev->tx_descriptor_status = sfc_tx_descriptor_status; 2120 dev->dev_ops = &sfc_eth_dev_secondary_ops; 2121 2122 return 0; 2123 2124 fail_dp_tx_multi_process: 2125 fail_dp_tx: 2126 fail_dp_rx_multi_process: 2127 fail_dp_rx: 2128 free(sap); 2129 2130 fail_alloc_priv: 2131 return rc; 2132 } 2133 2134 static void 2135 sfc_register_dp(void) 2136 { 2137 /* Register once */ 2138 if (TAILQ_EMPTY(&sfc_dp_head)) { 2139 /* Prefer EF10 datapath */ 2140 sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp); 2141 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2142 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2143 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2144 2145 sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp); 2146 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2147 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2148 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2149 } 2150 } 2151 2152 static int 2153 sfc_eth_dev_init(struct rte_eth_dev *dev) 2154 { 2155 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2156 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2157 uint32_t logtype_main; 2158 struct sfc_adapter *sa; 2159 int rc; 2160 const efx_nic_cfg_t *encp; 2161 const struct rte_ether_addr *from; 2162 int ret; 2163 2164 if (sfc_efx_dev_class_get(pci_dev->device.devargs) != 2165 SFC_EFX_DEV_CLASS_NET) { 2166 SFC_GENERIC_LOG(DEBUG, 2167 "Incompatible device class: skip probing, should be probed by other sfc driver."); 2168 return 1; 2169 } 2170 2171 sfc_register_dp(); 2172 2173 logtype_main = sfc_register_logtype(&pci_dev->addr, 2174 SFC_LOGTYPE_MAIN_STR, 2175 RTE_LOG_NOTICE); 2176 2177 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2178 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2179 2180 /* Required for logging */ 2181 ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix), 2182 "PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ", 2183 pci_dev->addr.domain, pci_dev->addr.bus, 2184 pci_dev->addr.devid, pci_dev->addr.function, 2185 dev->data->port_id); 2186 if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) { 2187 SFC_GENERIC_LOG(ERR, 2188 "reserved log prefix is too short for " PCI_PRI_FMT, 2189 pci_dev->addr.domain, pci_dev->addr.bus, 2190 pci_dev->addr.devid, pci_dev->addr.function); 2191 return -EINVAL; 2192 } 2193 sas->pci_addr = pci_dev->addr; 2194 sas->port_id = dev->data->port_id; 2195 2196 /* 2197 * Allocate process private data from heap, since it should not 2198 * be located in shared memory allocated using rte_malloc() API. 2199 */ 2200 sa = calloc(1, sizeof(*sa)); 2201 if (sa == NULL) { 2202 rc = ENOMEM; 2203 goto fail_alloc_sa; 2204 } 2205 2206 dev->process_private = sa; 2207 2208 /* Required for logging */ 2209 sa->priv.shared = sas; 2210 sa->priv.logtype_main = logtype_main; 2211 2212 sa->eth_dev = dev; 2213 2214 /* Copy PCI device info to the dev->data */ 2215 rte_eth_copy_pci_info(dev, pci_dev); 2216 dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS; 2217 dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE; 2218 2219 rc = sfc_kvargs_parse(sa); 2220 if (rc != 0) 2221 goto fail_kvargs_parse; 2222 2223 sfc_log_init(sa, "entry"); 2224 2225 dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0); 2226 if (dev->data->mac_addrs == NULL) { 2227 rc = ENOMEM; 2228 goto fail_mac_addrs; 2229 } 2230 2231 sfc_adapter_lock_init(sa); 2232 sfc_adapter_lock(sa); 2233 2234 sfc_log_init(sa, "probing"); 2235 rc = sfc_probe(sa); 2236 if (rc != 0) 2237 goto fail_probe; 2238 2239 sfc_log_init(sa, "set device ops"); 2240 rc = sfc_eth_dev_set_ops(dev); 2241 if (rc != 0) 2242 goto fail_set_ops; 2243 2244 sfc_log_init(sa, "attaching"); 2245 rc = sfc_attach(sa); 2246 if (rc != 0) 2247 goto fail_attach; 2248 2249 encp = efx_nic_cfg_get(sa->nic); 2250 2251 /* 2252 * The arguments are really reverse order in comparison to 2253 * Linux kernel. Copy from NIC config to Ethernet device data. 2254 */ 2255 from = (const struct rte_ether_addr *)(encp->enc_mac_addr); 2256 rte_ether_addr_copy(from, &dev->data->mac_addrs[0]); 2257 2258 sfc_adapter_unlock(sa); 2259 2260 sfc_log_init(sa, "done"); 2261 return 0; 2262 2263 fail_attach: 2264 sfc_eth_dev_clear_ops(dev); 2265 2266 fail_set_ops: 2267 sfc_unprobe(sa); 2268 2269 fail_probe: 2270 sfc_adapter_unlock(sa); 2271 sfc_adapter_lock_fini(sa); 2272 rte_free(dev->data->mac_addrs); 2273 dev->data->mac_addrs = NULL; 2274 2275 fail_mac_addrs: 2276 sfc_kvargs_cleanup(sa); 2277 2278 fail_kvargs_parse: 2279 sfc_log_init(sa, "failed %d", rc); 2280 dev->process_private = NULL; 2281 free(sa); 2282 2283 fail_alloc_sa: 2284 SFC_ASSERT(rc > 0); 2285 return -rc; 2286 } 2287 2288 static int 2289 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2290 { 2291 sfc_dev_close(dev); 2292 2293 return 0; 2294 } 2295 2296 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2297 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2298 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2299 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2300 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2301 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2302 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2303 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2304 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2305 { RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) }, 2306 { .vendor_id = 0 /* sentinel */ } 2307 }; 2308 2309 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2310 struct rte_pci_device *pci_dev) 2311 { 2312 return rte_eth_dev_pci_generic_probe(pci_dev, 2313 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2314 } 2315 2316 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2317 { 2318 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2319 } 2320 2321 static struct rte_pci_driver sfc_efx_pmd = { 2322 .id_table = pci_id_sfc_efx_map, 2323 .drv_flags = 2324 RTE_PCI_DRV_INTR_LSC | 2325 RTE_PCI_DRV_NEED_MAPPING, 2326 .probe = sfc_eth_dev_pci_probe, 2327 .remove = sfc_eth_dev_pci_remove, 2328 }; 2329 2330 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2331 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2332 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2333 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2334 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2335 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2336 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2337 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2338 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2339 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2340 2341 RTE_INIT(sfc_driver_register_logtype) 2342 { 2343 int ret; 2344 2345 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2346 RTE_LOG_NOTICE); 2347 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2348 } 2349