1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) 2016-2017 Solarflare Communications Inc. 5 * All rights reserved. 6 * 7 * This software was jointly developed between OKTET Labs (under contract 8 * for Solarflare) and Solarflare Communications, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright notice, 14 * this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 26 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 28 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 29 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <rte_dev.h> 33 #include <rte_ethdev.h> 34 #include <rte_ethdev_pci.h> 35 #include <rte_pci.h> 36 #include <rte_errno.h> 37 38 #include "efx.h" 39 40 #include "sfc.h" 41 #include "sfc_debug.h" 42 #include "sfc_log.h" 43 #include "sfc_kvargs.h" 44 #include "sfc_ev.h" 45 #include "sfc_rx.h" 46 #include "sfc_tx.h" 47 #include "sfc_flow.h" 48 #include "sfc_dp.h" 49 #include "sfc_dp_rx.h" 50 51 static struct sfc_dp_list sfc_dp_head = 52 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 53 54 static int 55 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 56 { 57 struct sfc_adapter *sa = dev->data->dev_private; 58 efx_nic_fw_info_t enfi; 59 int ret; 60 int rc; 61 62 /* 63 * Return value of the callback is likely supposed to be 64 * equal to or greater than 0, nevertheless, if an error 65 * occurs, it will be desirable to pass it to the caller 66 */ 67 if ((fw_version == NULL) || (fw_size == 0)) 68 return -EINVAL; 69 70 rc = efx_nic_get_fw_version(sa->nic, &enfi); 71 if (rc != 0) 72 return -rc; 73 74 ret = snprintf(fw_version, fw_size, 75 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 76 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 77 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 78 if (ret < 0) 79 return ret; 80 81 if (enfi.enfi_dpcpu_fw_ids_valid) { 82 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 83 int ret_extra; 84 85 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 86 fw_size - dpcpu_fw_ids_offset, 87 " rx%" PRIx16 " tx%" PRIx16, 88 enfi.enfi_rx_dpcpu_fw_id, 89 enfi.enfi_tx_dpcpu_fw_id); 90 if (ret_extra < 0) 91 return ret_extra; 92 93 ret += ret_extra; 94 } 95 96 if (fw_size < (size_t)(++ret)) 97 return ret; 98 else 99 return 0; 100 } 101 102 static void 103 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 104 { 105 struct sfc_adapter *sa = dev->data->dev_private; 106 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 107 108 sfc_log_init(sa, "entry"); 109 110 dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev); 111 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 112 113 /* Autonegotiation may be disabled */ 114 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 115 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 116 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 117 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 118 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 119 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 120 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 121 122 dev_info->max_rx_queues = sa->rxq_max; 123 dev_info->max_tx_queues = sa->txq_max; 124 125 /* By default packets are dropped if no descriptors are available */ 126 dev_info->default_rxconf.rx_drop_en = 1; 127 128 dev_info->rx_offload_capa = 129 DEV_RX_OFFLOAD_IPV4_CKSUM | 130 DEV_RX_OFFLOAD_UDP_CKSUM | 131 DEV_RX_OFFLOAD_TCP_CKSUM; 132 133 dev_info->tx_offload_capa = 134 DEV_TX_OFFLOAD_IPV4_CKSUM | 135 DEV_TX_OFFLOAD_UDP_CKSUM | 136 DEV_TX_OFFLOAD_TCP_CKSUM; 137 138 dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP; 139 if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) || 140 !encp->enc_hw_tx_insert_vlan_enabled) 141 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL; 142 else 143 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_VLAN_INSERT; 144 145 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG) 146 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS; 147 148 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL) 149 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP; 150 151 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT) 152 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT; 153 154 #if EFSYS_OPT_RX_SCALE 155 if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) { 156 dev_info->reta_size = EFX_RSS_TBL_SIZE; 157 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 158 dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS; 159 } 160 #endif 161 162 if (sa->tso) 163 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_TCP_TSO; 164 165 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 166 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 167 /* The RXQ hardware requires that the descriptor count is a power 168 * of 2, but rx_desc_lim cannot properly describe that constraint. 169 */ 170 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 171 172 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 173 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 174 /* 175 * The TXQ hardware requires that the descriptor count is a power 176 * of 2, but tx_desc_lim cannot properly describe that constraint 177 */ 178 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 179 } 180 181 static const uint32_t * 182 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 183 { 184 struct sfc_adapter *sa = dev->data->dev_private; 185 186 return sa->dp_rx->supported_ptypes_get(); 187 } 188 189 static int 190 sfc_dev_configure(struct rte_eth_dev *dev) 191 { 192 struct rte_eth_dev_data *dev_data = dev->data; 193 struct sfc_adapter *sa = dev_data->dev_private; 194 int rc; 195 196 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 197 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 198 199 sfc_adapter_lock(sa); 200 switch (sa->state) { 201 case SFC_ADAPTER_CONFIGURED: 202 /* FALLTHROUGH */ 203 case SFC_ADAPTER_INITIALIZED: 204 rc = sfc_configure(sa); 205 break; 206 default: 207 sfc_err(sa, "unexpected adapter state %u to configure", 208 sa->state); 209 rc = EINVAL; 210 break; 211 } 212 sfc_adapter_unlock(sa); 213 214 sfc_log_init(sa, "done %d", rc); 215 SFC_ASSERT(rc >= 0); 216 return -rc; 217 } 218 219 static int 220 sfc_dev_start(struct rte_eth_dev *dev) 221 { 222 struct sfc_adapter *sa = dev->data->dev_private; 223 int rc; 224 225 sfc_log_init(sa, "entry"); 226 227 sfc_adapter_lock(sa); 228 rc = sfc_start(sa); 229 sfc_adapter_unlock(sa); 230 231 sfc_log_init(sa, "done %d", rc); 232 SFC_ASSERT(rc >= 0); 233 return -rc; 234 } 235 236 static int 237 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 238 { 239 struct sfc_adapter *sa = dev->data->dev_private; 240 struct rte_eth_link *dev_link = &dev->data->dev_link; 241 struct rte_eth_link old_link; 242 struct rte_eth_link current_link; 243 244 sfc_log_init(sa, "entry"); 245 246 retry: 247 EFX_STATIC_ASSERT(sizeof(*dev_link) == sizeof(rte_atomic64_t)); 248 *(int64_t *)&old_link = rte_atomic64_read((rte_atomic64_t *)dev_link); 249 250 if (sa->state != SFC_ADAPTER_STARTED) { 251 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 252 if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link, 253 *(uint64_t *)&old_link, 254 *(uint64_t *)¤t_link)) 255 goto retry; 256 } else if (wait_to_complete) { 257 efx_link_mode_t link_mode; 258 259 if (efx_port_poll(sa->nic, &link_mode) != 0) 260 link_mode = EFX_LINK_UNKNOWN; 261 sfc_port_link_mode_to_info(link_mode, ¤t_link); 262 263 if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link, 264 *(uint64_t *)&old_link, 265 *(uint64_t *)¤t_link)) 266 goto retry; 267 } else { 268 sfc_ev_mgmt_qpoll(sa); 269 *(int64_t *)¤t_link = 270 rte_atomic64_read((rte_atomic64_t *)dev_link); 271 } 272 273 if (old_link.link_status != current_link.link_status) 274 sfc_info(sa, "Link status is %s", 275 current_link.link_status ? "UP" : "DOWN"); 276 277 return old_link.link_status == current_link.link_status ? 0 : -1; 278 } 279 280 static void 281 sfc_dev_stop(struct rte_eth_dev *dev) 282 { 283 struct sfc_adapter *sa = dev->data->dev_private; 284 285 sfc_log_init(sa, "entry"); 286 287 sfc_adapter_lock(sa); 288 sfc_stop(sa); 289 sfc_adapter_unlock(sa); 290 291 sfc_log_init(sa, "done"); 292 } 293 294 static int 295 sfc_dev_set_link_up(struct rte_eth_dev *dev) 296 { 297 struct sfc_adapter *sa = dev->data->dev_private; 298 int rc; 299 300 sfc_log_init(sa, "entry"); 301 302 sfc_adapter_lock(sa); 303 rc = sfc_start(sa); 304 sfc_adapter_unlock(sa); 305 306 SFC_ASSERT(rc >= 0); 307 return -rc; 308 } 309 310 static int 311 sfc_dev_set_link_down(struct rte_eth_dev *dev) 312 { 313 struct sfc_adapter *sa = dev->data->dev_private; 314 315 sfc_log_init(sa, "entry"); 316 317 sfc_adapter_lock(sa); 318 sfc_stop(sa); 319 sfc_adapter_unlock(sa); 320 321 return 0; 322 } 323 324 static void 325 sfc_dev_close(struct rte_eth_dev *dev) 326 { 327 struct sfc_adapter *sa = dev->data->dev_private; 328 329 sfc_log_init(sa, "entry"); 330 331 sfc_adapter_lock(sa); 332 switch (sa->state) { 333 case SFC_ADAPTER_STARTED: 334 sfc_stop(sa); 335 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 336 /* FALLTHROUGH */ 337 case SFC_ADAPTER_CONFIGURED: 338 sfc_close(sa); 339 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 340 /* FALLTHROUGH */ 341 case SFC_ADAPTER_INITIALIZED: 342 break; 343 default: 344 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 345 break; 346 } 347 sfc_adapter_unlock(sa); 348 349 sfc_log_init(sa, "done"); 350 } 351 352 static void 353 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 354 boolean_t enabled) 355 { 356 struct sfc_port *port; 357 boolean_t *toggle; 358 struct sfc_adapter *sa = dev->data->dev_private; 359 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 360 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 361 362 sfc_adapter_lock(sa); 363 364 port = &sa->port; 365 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 366 367 if (*toggle != enabled) { 368 *toggle = enabled; 369 370 if (port->isolated) { 371 sfc_warn(sa, "isolated mode is active on the port"); 372 sfc_warn(sa, "the change is to be applied on the next " 373 "start provided that isolated mode is " 374 "disabled prior the next start"); 375 } else if ((sa->state == SFC_ADAPTER_STARTED) && 376 (sfc_set_rx_mode(sa) != 0)) { 377 *toggle = !(enabled); 378 sfc_warn(sa, "Failed to %s %s mode", 379 ((enabled) ? "enable" : "disable"), desc); 380 } 381 } 382 383 sfc_adapter_unlock(sa); 384 } 385 386 static void 387 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 388 { 389 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 390 } 391 392 static void 393 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 394 { 395 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 396 } 397 398 static void 399 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 400 { 401 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 402 } 403 404 static void 405 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 406 { 407 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 408 } 409 410 static int 411 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 412 uint16_t nb_rx_desc, unsigned int socket_id, 413 const struct rte_eth_rxconf *rx_conf, 414 struct rte_mempool *mb_pool) 415 { 416 struct sfc_adapter *sa = dev->data->dev_private; 417 int rc; 418 419 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 420 rx_queue_id, nb_rx_desc, socket_id); 421 422 sfc_adapter_lock(sa); 423 424 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 425 rx_conf, mb_pool); 426 if (rc != 0) 427 goto fail_rx_qinit; 428 429 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 430 431 sfc_adapter_unlock(sa); 432 433 return 0; 434 435 fail_rx_qinit: 436 sfc_adapter_unlock(sa); 437 SFC_ASSERT(rc > 0); 438 return -rc; 439 } 440 441 static void 442 sfc_rx_queue_release(void *queue) 443 { 444 struct sfc_dp_rxq *dp_rxq = queue; 445 struct sfc_rxq *rxq; 446 struct sfc_adapter *sa; 447 unsigned int sw_index; 448 449 if (dp_rxq == NULL) 450 return; 451 452 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 453 sa = rxq->evq->sa; 454 sfc_adapter_lock(sa); 455 456 sw_index = sfc_rxq_sw_index(rxq); 457 458 sfc_log_init(sa, "RxQ=%u", sw_index); 459 460 sa->eth_dev->data->rx_queues[sw_index] = NULL; 461 462 sfc_rx_qfini(sa, sw_index); 463 464 sfc_adapter_unlock(sa); 465 } 466 467 static int 468 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 469 uint16_t nb_tx_desc, unsigned int socket_id, 470 const struct rte_eth_txconf *tx_conf) 471 { 472 struct sfc_adapter *sa = dev->data->dev_private; 473 int rc; 474 475 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 476 tx_queue_id, nb_tx_desc, socket_id); 477 478 sfc_adapter_lock(sa); 479 480 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 481 if (rc != 0) 482 goto fail_tx_qinit; 483 484 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 485 486 sfc_adapter_unlock(sa); 487 return 0; 488 489 fail_tx_qinit: 490 sfc_adapter_unlock(sa); 491 SFC_ASSERT(rc > 0); 492 return -rc; 493 } 494 495 static void 496 sfc_tx_queue_release(void *queue) 497 { 498 struct sfc_dp_txq *dp_txq = queue; 499 struct sfc_txq *txq; 500 unsigned int sw_index; 501 struct sfc_adapter *sa; 502 503 if (dp_txq == NULL) 504 return; 505 506 txq = sfc_txq_by_dp_txq(dp_txq); 507 sw_index = sfc_txq_sw_index(txq); 508 509 SFC_ASSERT(txq->evq != NULL); 510 sa = txq->evq->sa; 511 512 sfc_log_init(sa, "TxQ = %u", sw_index); 513 514 sfc_adapter_lock(sa); 515 516 SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues); 517 sa->eth_dev->data->tx_queues[sw_index] = NULL; 518 519 sfc_tx_qfini(sa, sw_index); 520 521 sfc_adapter_unlock(sa); 522 } 523 524 static int 525 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 526 { 527 struct sfc_adapter *sa = dev->data->dev_private; 528 struct sfc_port *port = &sa->port; 529 uint64_t *mac_stats; 530 int ret; 531 532 rte_spinlock_lock(&port->mac_stats_lock); 533 534 ret = sfc_port_update_mac_stats(sa); 535 if (ret != 0) 536 goto unlock; 537 538 mac_stats = port->mac_stats_buf; 539 540 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 541 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 542 stats->ipackets = 543 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 544 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 545 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 546 stats->opackets = 547 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 548 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 549 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 550 stats->ibytes = 551 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 552 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 553 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 554 stats->obytes = 555 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 556 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 557 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 558 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW]; 559 stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 560 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 561 } else { 562 stats->ipackets = mac_stats[EFX_MAC_RX_PKTS]; 563 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 564 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 565 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 566 /* 567 * Take into account stats which are whenever supported 568 * on EF10. If some stat is not supported by current 569 * firmware variant or HW revision, it is guaranteed 570 * to be zero in mac_stats. 571 */ 572 stats->imissed = 573 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 574 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 575 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 576 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 577 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 578 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 579 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 580 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 581 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 582 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 583 stats->ierrors = 584 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 585 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 586 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 587 /* no oerrors counters supported on EF10 */ 588 } 589 590 unlock: 591 rte_spinlock_unlock(&port->mac_stats_lock); 592 SFC_ASSERT(ret >= 0); 593 return -ret; 594 } 595 596 static void 597 sfc_stats_reset(struct rte_eth_dev *dev) 598 { 599 struct sfc_adapter *sa = dev->data->dev_private; 600 struct sfc_port *port = &sa->port; 601 int rc; 602 603 if (sa->state != SFC_ADAPTER_STARTED) { 604 /* 605 * The operation cannot be done if port is not started; it 606 * will be scheduled to be done during the next port start 607 */ 608 port->mac_stats_reset_pending = B_TRUE; 609 return; 610 } 611 612 rc = sfc_port_reset_mac_stats(sa); 613 if (rc != 0) 614 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 615 } 616 617 static int 618 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 619 unsigned int xstats_count) 620 { 621 struct sfc_adapter *sa = dev->data->dev_private; 622 struct sfc_port *port = &sa->port; 623 uint64_t *mac_stats; 624 int rc; 625 unsigned int i; 626 int nstats = 0; 627 628 rte_spinlock_lock(&port->mac_stats_lock); 629 630 rc = sfc_port_update_mac_stats(sa); 631 if (rc != 0) { 632 SFC_ASSERT(rc > 0); 633 nstats = -rc; 634 goto unlock; 635 } 636 637 mac_stats = port->mac_stats_buf; 638 639 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 640 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 641 if (xstats != NULL && nstats < (int)xstats_count) { 642 xstats[nstats].id = nstats; 643 xstats[nstats].value = mac_stats[i]; 644 } 645 nstats++; 646 } 647 } 648 649 unlock: 650 rte_spinlock_unlock(&port->mac_stats_lock); 651 652 return nstats; 653 } 654 655 static int 656 sfc_xstats_get_names(struct rte_eth_dev *dev, 657 struct rte_eth_xstat_name *xstats_names, 658 unsigned int xstats_count) 659 { 660 struct sfc_adapter *sa = dev->data->dev_private; 661 struct sfc_port *port = &sa->port; 662 unsigned int i; 663 unsigned int nstats = 0; 664 665 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 666 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 667 if (xstats_names != NULL && nstats < xstats_count) 668 strncpy(xstats_names[nstats].name, 669 efx_mac_stat_name(sa->nic, i), 670 sizeof(xstats_names[0].name)); 671 nstats++; 672 } 673 } 674 675 return nstats; 676 } 677 678 static int 679 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 680 uint64_t *values, unsigned int n) 681 { 682 struct sfc_adapter *sa = dev->data->dev_private; 683 struct sfc_port *port = &sa->port; 684 uint64_t *mac_stats; 685 unsigned int nb_supported = 0; 686 unsigned int nb_written = 0; 687 unsigned int i; 688 int ret; 689 int rc; 690 691 if (unlikely(values == NULL) || 692 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 693 return port->mac_stats_nb_supported; 694 695 rte_spinlock_lock(&port->mac_stats_lock); 696 697 rc = sfc_port_update_mac_stats(sa); 698 if (rc != 0) { 699 SFC_ASSERT(rc > 0); 700 ret = -rc; 701 goto unlock; 702 } 703 704 mac_stats = port->mac_stats_buf; 705 706 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 707 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 708 continue; 709 710 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 711 values[nb_written++] = mac_stats[i]; 712 713 ++nb_supported; 714 } 715 716 ret = nb_written; 717 718 unlock: 719 rte_spinlock_unlock(&port->mac_stats_lock); 720 721 return ret; 722 } 723 724 static int 725 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 726 struct rte_eth_xstat_name *xstats_names, 727 const uint64_t *ids, unsigned int size) 728 { 729 struct sfc_adapter *sa = dev->data->dev_private; 730 struct sfc_port *port = &sa->port; 731 unsigned int nb_supported = 0; 732 unsigned int nb_written = 0; 733 unsigned int i; 734 735 if (unlikely(xstats_names == NULL) || 736 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 737 return port->mac_stats_nb_supported; 738 739 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 740 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 741 continue; 742 743 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 744 char *name = xstats_names[nb_written++].name; 745 746 strncpy(name, efx_mac_stat_name(sa->nic, i), 747 sizeof(xstats_names[0].name)); 748 name[sizeof(xstats_names[0].name) - 1] = '\0'; 749 } 750 751 ++nb_supported; 752 } 753 754 return nb_written; 755 } 756 757 static int 758 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 759 { 760 struct sfc_adapter *sa = dev->data->dev_private; 761 unsigned int wanted_fc, link_fc; 762 763 memset(fc_conf, 0, sizeof(*fc_conf)); 764 765 sfc_adapter_lock(sa); 766 767 if (sa->state == SFC_ADAPTER_STARTED) 768 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 769 else 770 link_fc = sa->port.flow_ctrl; 771 772 switch (link_fc) { 773 case 0: 774 fc_conf->mode = RTE_FC_NONE; 775 break; 776 case EFX_FCNTL_RESPOND: 777 fc_conf->mode = RTE_FC_RX_PAUSE; 778 break; 779 case EFX_FCNTL_GENERATE: 780 fc_conf->mode = RTE_FC_TX_PAUSE; 781 break; 782 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 783 fc_conf->mode = RTE_FC_FULL; 784 break; 785 default: 786 sfc_err(sa, "%s: unexpected flow control value %#x", 787 __func__, link_fc); 788 } 789 790 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 791 792 sfc_adapter_unlock(sa); 793 794 return 0; 795 } 796 797 static int 798 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 799 { 800 struct sfc_adapter *sa = dev->data->dev_private; 801 struct sfc_port *port = &sa->port; 802 unsigned int fcntl; 803 int rc; 804 805 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 806 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 807 fc_conf->mac_ctrl_frame_fwd != 0) { 808 sfc_err(sa, "unsupported flow control settings specified"); 809 rc = EINVAL; 810 goto fail_inval; 811 } 812 813 switch (fc_conf->mode) { 814 case RTE_FC_NONE: 815 fcntl = 0; 816 break; 817 case RTE_FC_RX_PAUSE: 818 fcntl = EFX_FCNTL_RESPOND; 819 break; 820 case RTE_FC_TX_PAUSE: 821 fcntl = EFX_FCNTL_GENERATE; 822 break; 823 case RTE_FC_FULL: 824 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 825 break; 826 default: 827 rc = EINVAL; 828 goto fail_inval; 829 } 830 831 sfc_adapter_lock(sa); 832 833 if (sa->state == SFC_ADAPTER_STARTED) { 834 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 835 if (rc != 0) 836 goto fail_mac_fcntl_set; 837 } 838 839 port->flow_ctrl = fcntl; 840 port->flow_ctrl_autoneg = fc_conf->autoneg; 841 842 sfc_adapter_unlock(sa); 843 844 return 0; 845 846 fail_mac_fcntl_set: 847 sfc_adapter_unlock(sa); 848 fail_inval: 849 SFC_ASSERT(rc > 0); 850 return -rc; 851 } 852 853 static int 854 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 855 { 856 struct sfc_adapter *sa = dev->data->dev_private; 857 size_t pdu = EFX_MAC_PDU(mtu); 858 size_t old_pdu; 859 int rc; 860 861 sfc_log_init(sa, "mtu=%u", mtu); 862 863 rc = EINVAL; 864 if (pdu < EFX_MAC_PDU_MIN) { 865 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 866 (unsigned int)mtu, (unsigned int)pdu, 867 EFX_MAC_PDU_MIN); 868 goto fail_inval; 869 } 870 if (pdu > EFX_MAC_PDU_MAX) { 871 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 872 (unsigned int)mtu, (unsigned int)pdu, 873 EFX_MAC_PDU_MAX); 874 goto fail_inval; 875 } 876 877 sfc_adapter_lock(sa); 878 879 if (pdu != sa->port.pdu) { 880 if (sa->state == SFC_ADAPTER_STARTED) { 881 sfc_stop(sa); 882 883 old_pdu = sa->port.pdu; 884 sa->port.pdu = pdu; 885 rc = sfc_start(sa); 886 if (rc != 0) 887 goto fail_start; 888 } else { 889 sa->port.pdu = pdu; 890 } 891 } 892 893 /* 894 * The driver does not use it, but other PMDs update jumbo_frame 895 * flag and max_rx_pkt_len when MTU is set. 896 */ 897 dev->data->dev_conf.rxmode.jumbo_frame = (mtu > ETHER_MAX_LEN); 898 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 899 900 sfc_adapter_unlock(sa); 901 902 sfc_log_init(sa, "done"); 903 return 0; 904 905 fail_start: 906 sa->port.pdu = old_pdu; 907 if (sfc_start(sa) != 0) 908 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 909 "PDU max size - port is stopped", 910 (unsigned int)pdu, (unsigned int)old_pdu); 911 sfc_adapter_unlock(sa); 912 913 fail_inval: 914 sfc_log_init(sa, "failed %d", rc); 915 SFC_ASSERT(rc > 0); 916 return -rc; 917 } 918 static void 919 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 920 { 921 struct sfc_adapter *sa = dev->data->dev_private; 922 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 923 struct sfc_port *port = &sa->port; 924 int rc; 925 926 sfc_adapter_lock(sa); 927 928 if (port->isolated) { 929 sfc_err(sa, "isolated mode is active on the port"); 930 sfc_err(sa, "will not set MAC address"); 931 goto unlock; 932 } 933 934 if (sa->state != SFC_ADAPTER_STARTED) { 935 sfc_info(sa, "the port is not started"); 936 sfc_info(sa, "the new MAC address will be set on port start"); 937 938 goto unlock; 939 } 940 941 if (encp->enc_allow_set_mac_with_installed_filters) { 942 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 943 if (rc != 0) { 944 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 945 goto unlock; 946 } 947 948 /* 949 * Changing the MAC address by means of MCDI request 950 * has no effect on received traffic, therefore 951 * we also need to update unicast filters 952 */ 953 rc = sfc_set_rx_mode(sa); 954 if (rc != 0) 955 sfc_err(sa, "cannot set filter (rc = %u)", rc); 956 } else { 957 sfc_warn(sa, "cannot set MAC address with filters installed"); 958 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 959 sfc_warn(sa, "(some traffic may be dropped)"); 960 961 /* 962 * Since setting MAC address with filters installed is not 963 * allowed on the adapter, one needs to simply restart adapter 964 * so that the new MAC address will be taken from an outer 965 * storage and set flawlessly by means of sfc_start() call 966 */ 967 sfc_stop(sa); 968 rc = sfc_start(sa); 969 if (rc != 0) 970 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 971 } 972 973 unlock: 974 sfc_adapter_unlock(sa); 975 } 976 977 978 static int 979 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 980 uint32_t nb_mc_addr) 981 { 982 struct sfc_adapter *sa = dev->data->dev_private; 983 struct sfc_port *port = &sa->port; 984 uint8_t *mc_addrs = port->mcast_addrs; 985 int rc; 986 unsigned int i; 987 988 if (port->isolated) { 989 sfc_err(sa, "isolated mode is active on the port"); 990 sfc_err(sa, "will not set multicast address list"); 991 return -ENOTSUP; 992 } 993 994 if (mc_addrs == NULL) 995 return -ENOBUFS; 996 997 if (nb_mc_addr > port->max_mcast_addrs) { 998 sfc_err(sa, "too many multicast addresses: %u > %u", 999 nb_mc_addr, port->max_mcast_addrs); 1000 return -EINVAL; 1001 } 1002 1003 for (i = 0; i < nb_mc_addr; ++i) { 1004 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1005 EFX_MAC_ADDR_LEN); 1006 mc_addrs += EFX_MAC_ADDR_LEN; 1007 } 1008 1009 port->nb_mcast_addrs = nb_mc_addr; 1010 1011 if (sa->state != SFC_ADAPTER_STARTED) 1012 return 0; 1013 1014 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1015 port->nb_mcast_addrs); 1016 if (rc != 0) 1017 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1018 1019 SFC_ASSERT(rc > 0); 1020 return -rc; 1021 } 1022 1023 /* 1024 * The function is used by the secondary process as well. It must not 1025 * use any process-local pointers from the adapter data. 1026 */ 1027 static void 1028 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1029 struct rte_eth_rxq_info *qinfo) 1030 { 1031 struct sfc_adapter *sa = dev->data->dev_private; 1032 struct sfc_rxq_info *rxq_info; 1033 struct sfc_rxq *rxq; 1034 1035 sfc_adapter_lock(sa); 1036 1037 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1038 1039 rxq_info = &sa->rxq_info[rx_queue_id]; 1040 rxq = rxq_info->rxq; 1041 SFC_ASSERT(rxq != NULL); 1042 1043 qinfo->mp = rxq->refill_mb_pool; 1044 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1045 qinfo->conf.rx_drop_en = 1; 1046 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1047 qinfo->scattered_rx = (rxq_info->type == EFX_RXQ_TYPE_SCATTER); 1048 qinfo->nb_desc = rxq_info->entries; 1049 1050 sfc_adapter_unlock(sa); 1051 } 1052 1053 /* 1054 * The function is used by the secondary process as well. It must not 1055 * use any process-local pointers from the adapter data. 1056 */ 1057 static void 1058 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1059 struct rte_eth_txq_info *qinfo) 1060 { 1061 struct sfc_adapter *sa = dev->data->dev_private; 1062 struct sfc_txq_info *txq_info; 1063 1064 sfc_adapter_lock(sa); 1065 1066 SFC_ASSERT(tx_queue_id < sa->txq_count); 1067 1068 txq_info = &sa->txq_info[tx_queue_id]; 1069 SFC_ASSERT(txq_info->txq != NULL); 1070 1071 memset(qinfo, 0, sizeof(*qinfo)); 1072 1073 qinfo->conf.txq_flags = txq_info->txq->flags; 1074 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1075 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1076 qinfo->nb_desc = txq_info->entries; 1077 1078 sfc_adapter_unlock(sa); 1079 } 1080 1081 static uint32_t 1082 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1083 { 1084 struct sfc_adapter *sa = dev->data->dev_private; 1085 1086 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1087 1088 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1089 } 1090 1091 static int 1092 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1093 { 1094 struct sfc_dp_rxq *dp_rxq = queue; 1095 1096 return sfc_rx_qdesc_done(dp_rxq, offset); 1097 } 1098 1099 static int 1100 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1101 { 1102 struct sfc_dp_rxq *dp_rxq = queue; 1103 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1104 1105 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1106 } 1107 1108 static int 1109 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1110 { 1111 struct sfc_dp_txq *dp_txq = queue; 1112 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1113 1114 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1115 } 1116 1117 static int 1118 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1119 { 1120 struct sfc_adapter *sa = dev->data->dev_private; 1121 int rc; 1122 1123 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1124 1125 sfc_adapter_lock(sa); 1126 1127 rc = EINVAL; 1128 if (sa->state != SFC_ADAPTER_STARTED) 1129 goto fail_not_started; 1130 1131 rc = sfc_rx_qstart(sa, rx_queue_id); 1132 if (rc != 0) 1133 goto fail_rx_qstart; 1134 1135 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1136 1137 sfc_adapter_unlock(sa); 1138 1139 return 0; 1140 1141 fail_rx_qstart: 1142 fail_not_started: 1143 sfc_adapter_unlock(sa); 1144 SFC_ASSERT(rc > 0); 1145 return -rc; 1146 } 1147 1148 static int 1149 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1150 { 1151 struct sfc_adapter *sa = dev->data->dev_private; 1152 1153 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1154 1155 sfc_adapter_lock(sa); 1156 sfc_rx_qstop(sa, rx_queue_id); 1157 1158 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1159 1160 sfc_adapter_unlock(sa); 1161 1162 return 0; 1163 } 1164 1165 static int 1166 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1167 { 1168 struct sfc_adapter *sa = dev->data->dev_private; 1169 int rc; 1170 1171 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1172 1173 sfc_adapter_lock(sa); 1174 1175 rc = EINVAL; 1176 if (sa->state != SFC_ADAPTER_STARTED) 1177 goto fail_not_started; 1178 1179 rc = sfc_tx_qstart(sa, tx_queue_id); 1180 if (rc != 0) 1181 goto fail_tx_qstart; 1182 1183 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1184 1185 sfc_adapter_unlock(sa); 1186 return 0; 1187 1188 fail_tx_qstart: 1189 1190 fail_not_started: 1191 sfc_adapter_unlock(sa); 1192 SFC_ASSERT(rc > 0); 1193 return -rc; 1194 } 1195 1196 static int 1197 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1198 { 1199 struct sfc_adapter *sa = dev->data->dev_private; 1200 1201 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1202 1203 sfc_adapter_lock(sa); 1204 1205 sfc_tx_qstop(sa, tx_queue_id); 1206 1207 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1208 1209 sfc_adapter_unlock(sa); 1210 return 0; 1211 } 1212 1213 #if EFSYS_OPT_RX_SCALE 1214 static int 1215 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1216 struct rte_eth_rss_conf *rss_conf) 1217 { 1218 struct sfc_adapter *sa = dev->data->dev_private; 1219 struct sfc_port *port = &sa->port; 1220 1221 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1222 return -ENOTSUP; 1223 1224 if (sa->rss_channels == 0) 1225 return -EINVAL; 1226 1227 sfc_adapter_lock(sa); 1228 1229 /* 1230 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1231 * hence, conversion is done here to derive a correct set of ETH_RSS 1232 * flags which corresponds to the active EFX configuration stored 1233 * locally in 'sfc_adapter' and kept up-to-date 1234 */ 1235 rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types); 1236 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1237 if (rss_conf->rss_key != NULL) 1238 rte_memcpy(rss_conf->rss_key, sa->rss_key, EFX_RSS_KEY_SIZE); 1239 1240 sfc_adapter_unlock(sa); 1241 1242 return 0; 1243 } 1244 1245 static int 1246 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1247 struct rte_eth_rss_conf *rss_conf) 1248 { 1249 struct sfc_adapter *sa = dev->data->dev_private; 1250 struct sfc_port *port = &sa->port; 1251 unsigned int efx_hash_types; 1252 int rc = 0; 1253 1254 if (port->isolated) 1255 return -ENOTSUP; 1256 1257 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1258 sfc_err(sa, "RSS is not available"); 1259 return -ENOTSUP; 1260 } 1261 1262 if (sa->rss_channels == 0) { 1263 sfc_err(sa, "RSS is not configured"); 1264 return -EINVAL; 1265 } 1266 1267 if ((rss_conf->rss_key != NULL) && 1268 (rss_conf->rss_key_len != sizeof(sa->rss_key))) { 1269 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1270 sizeof(sa->rss_key)); 1271 return -EINVAL; 1272 } 1273 1274 if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) { 1275 sfc_err(sa, "unsupported hash functions requested"); 1276 return -EINVAL; 1277 } 1278 1279 sfc_adapter_lock(sa); 1280 1281 efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf); 1282 1283 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1284 EFX_RX_HASHALG_TOEPLITZ, 1285 efx_hash_types, B_TRUE); 1286 if (rc != 0) 1287 goto fail_scale_mode_set; 1288 1289 if (rss_conf->rss_key != NULL) { 1290 if (sa->state == SFC_ADAPTER_STARTED) { 1291 rc = efx_rx_scale_key_set(sa->nic, 1292 EFX_RSS_CONTEXT_DEFAULT, 1293 rss_conf->rss_key, 1294 sizeof(sa->rss_key)); 1295 if (rc != 0) 1296 goto fail_scale_key_set; 1297 } 1298 1299 rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key)); 1300 } 1301 1302 sa->rss_hash_types = efx_hash_types; 1303 1304 sfc_adapter_unlock(sa); 1305 1306 return 0; 1307 1308 fail_scale_key_set: 1309 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1310 EFX_RX_HASHALG_TOEPLITZ, 1311 sa->rss_hash_types, B_TRUE) != 0) 1312 sfc_err(sa, "failed to restore RSS mode"); 1313 1314 fail_scale_mode_set: 1315 sfc_adapter_unlock(sa); 1316 return -rc; 1317 } 1318 1319 static int 1320 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1321 struct rte_eth_rss_reta_entry64 *reta_conf, 1322 uint16_t reta_size) 1323 { 1324 struct sfc_adapter *sa = dev->data->dev_private; 1325 struct sfc_port *port = &sa->port; 1326 int entry; 1327 1328 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1329 return -ENOTSUP; 1330 1331 if (sa->rss_channels == 0) 1332 return -EINVAL; 1333 1334 if (reta_size != EFX_RSS_TBL_SIZE) 1335 return -EINVAL; 1336 1337 sfc_adapter_lock(sa); 1338 1339 for (entry = 0; entry < reta_size; entry++) { 1340 int grp = entry / RTE_RETA_GROUP_SIZE; 1341 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1342 1343 if ((reta_conf[grp].mask >> grp_idx) & 1) 1344 reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry]; 1345 } 1346 1347 sfc_adapter_unlock(sa); 1348 1349 return 0; 1350 } 1351 1352 static int 1353 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1354 struct rte_eth_rss_reta_entry64 *reta_conf, 1355 uint16_t reta_size) 1356 { 1357 struct sfc_adapter *sa = dev->data->dev_private; 1358 struct sfc_port *port = &sa->port; 1359 unsigned int *rss_tbl_new; 1360 uint16_t entry; 1361 int rc = 0; 1362 1363 1364 if (port->isolated) 1365 return -ENOTSUP; 1366 1367 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1368 sfc_err(sa, "RSS is not available"); 1369 return -ENOTSUP; 1370 } 1371 1372 if (sa->rss_channels == 0) { 1373 sfc_err(sa, "RSS is not configured"); 1374 return -EINVAL; 1375 } 1376 1377 if (reta_size != EFX_RSS_TBL_SIZE) { 1378 sfc_err(sa, "RETA size is wrong (should be %u)", 1379 EFX_RSS_TBL_SIZE); 1380 return -EINVAL; 1381 } 1382 1383 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0); 1384 if (rss_tbl_new == NULL) 1385 return -ENOMEM; 1386 1387 sfc_adapter_lock(sa); 1388 1389 rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl)); 1390 1391 for (entry = 0; entry < reta_size; entry++) { 1392 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1393 struct rte_eth_rss_reta_entry64 *grp; 1394 1395 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1396 1397 if (grp->mask & (1ull << grp_idx)) { 1398 if (grp->reta[grp_idx] >= sa->rss_channels) { 1399 rc = EINVAL; 1400 goto bad_reta_entry; 1401 } 1402 rss_tbl_new[entry] = grp->reta[grp_idx]; 1403 } 1404 } 1405 1406 if (sa->state == SFC_ADAPTER_STARTED) { 1407 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1408 rss_tbl_new, EFX_RSS_TBL_SIZE); 1409 if (rc != 0) 1410 goto fail_scale_tbl_set; 1411 } 1412 1413 rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl)); 1414 1415 fail_scale_tbl_set: 1416 bad_reta_entry: 1417 sfc_adapter_unlock(sa); 1418 1419 rte_free(rss_tbl_new); 1420 1421 SFC_ASSERT(rc >= 0); 1422 return -rc; 1423 } 1424 #endif 1425 1426 static int 1427 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1428 enum rte_filter_op filter_op, 1429 void *arg) 1430 { 1431 struct sfc_adapter *sa = dev->data->dev_private; 1432 int rc = ENOTSUP; 1433 1434 sfc_log_init(sa, "entry"); 1435 1436 switch (filter_type) { 1437 case RTE_ETH_FILTER_NONE: 1438 sfc_err(sa, "Global filters configuration not supported"); 1439 break; 1440 case RTE_ETH_FILTER_MACVLAN: 1441 sfc_err(sa, "MACVLAN filters not supported"); 1442 break; 1443 case RTE_ETH_FILTER_ETHERTYPE: 1444 sfc_err(sa, "EtherType filters not supported"); 1445 break; 1446 case RTE_ETH_FILTER_FLEXIBLE: 1447 sfc_err(sa, "Flexible filters not supported"); 1448 break; 1449 case RTE_ETH_FILTER_SYN: 1450 sfc_err(sa, "SYN filters not supported"); 1451 break; 1452 case RTE_ETH_FILTER_NTUPLE: 1453 sfc_err(sa, "NTUPLE filters not supported"); 1454 break; 1455 case RTE_ETH_FILTER_TUNNEL: 1456 sfc_err(sa, "Tunnel filters not supported"); 1457 break; 1458 case RTE_ETH_FILTER_FDIR: 1459 sfc_err(sa, "Flow Director filters not supported"); 1460 break; 1461 case RTE_ETH_FILTER_HASH: 1462 sfc_err(sa, "Hash filters not supported"); 1463 break; 1464 case RTE_ETH_FILTER_GENERIC: 1465 if (filter_op != RTE_ETH_FILTER_GET) { 1466 rc = EINVAL; 1467 } else { 1468 *(const void **)arg = &sfc_flow_ops; 1469 rc = 0; 1470 } 1471 break; 1472 default: 1473 sfc_err(sa, "Unknown filter type %u", filter_type); 1474 break; 1475 } 1476 1477 sfc_log_init(sa, "exit: %d", -rc); 1478 SFC_ASSERT(rc >= 0); 1479 return -rc; 1480 } 1481 1482 static const struct eth_dev_ops sfc_eth_dev_ops = { 1483 .dev_configure = sfc_dev_configure, 1484 .dev_start = sfc_dev_start, 1485 .dev_stop = sfc_dev_stop, 1486 .dev_set_link_up = sfc_dev_set_link_up, 1487 .dev_set_link_down = sfc_dev_set_link_down, 1488 .dev_close = sfc_dev_close, 1489 .promiscuous_enable = sfc_dev_promisc_enable, 1490 .promiscuous_disable = sfc_dev_promisc_disable, 1491 .allmulticast_enable = sfc_dev_allmulti_enable, 1492 .allmulticast_disable = sfc_dev_allmulti_disable, 1493 .link_update = sfc_dev_link_update, 1494 .stats_get = sfc_stats_get, 1495 .stats_reset = sfc_stats_reset, 1496 .xstats_get = sfc_xstats_get, 1497 .xstats_reset = sfc_stats_reset, 1498 .xstats_get_names = sfc_xstats_get_names, 1499 .dev_infos_get = sfc_dev_infos_get, 1500 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1501 .mtu_set = sfc_dev_set_mtu, 1502 .rx_queue_start = sfc_rx_queue_start, 1503 .rx_queue_stop = sfc_rx_queue_stop, 1504 .tx_queue_start = sfc_tx_queue_start, 1505 .tx_queue_stop = sfc_tx_queue_stop, 1506 .rx_queue_setup = sfc_rx_queue_setup, 1507 .rx_queue_release = sfc_rx_queue_release, 1508 .rx_queue_count = sfc_rx_queue_count, 1509 .rx_descriptor_done = sfc_rx_descriptor_done, 1510 .rx_descriptor_status = sfc_rx_descriptor_status, 1511 .tx_descriptor_status = sfc_tx_descriptor_status, 1512 .tx_queue_setup = sfc_tx_queue_setup, 1513 .tx_queue_release = sfc_tx_queue_release, 1514 .flow_ctrl_get = sfc_flow_ctrl_get, 1515 .flow_ctrl_set = sfc_flow_ctrl_set, 1516 .mac_addr_set = sfc_mac_addr_set, 1517 #if EFSYS_OPT_RX_SCALE 1518 .reta_update = sfc_dev_rss_reta_update, 1519 .reta_query = sfc_dev_rss_reta_query, 1520 .rss_hash_update = sfc_dev_rss_hash_update, 1521 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1522 #endif 1523 .filter_ctrl = sfc_dev_filter_ctrl, 1524 .set_mc_addr_list = sfc_set_mc_addr_list, 1525 .rxq_info_get = sfc_rx_queue_info_get, 1526 .txq_info_get = sfc_tx_queue_info_get, 1527 .fw_version_get = sfc_fw_version_get, 1528 .xstats_get_by_id = sfc_xstats_get_by_id, 1529 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1530 }; 1531 1532 /** 1533 * Duplicate a string in potentially shared memory required for 1534 * multi-process support. 1535 * 1536 * strdup() allocates from process-local heap/memory. 1537 */ 1538 static char * 1539 sfc_strdup(const char *str) 1540 { 1541 size_t size; 1542 char *copy; 1543 1544 if (str == NULL) 1545 return NULL; 1546 1547 size = strlen(str) + 1; 1548 copy = rte_malloc(__func__, size, 0); 1549 if (copy != NULL) 1550 rte_memcpy(copy, str, size); 1551 1552 return copy; 1553 } 1554 1555 static int 1556 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1557 { 1558 struct sfc_adapter *sa = dev->data->dev_private; 1559 unsigned int avail_caps = 0; 1560 const char *rx_name = NULL; 1561 const char *tx_name = NULL; 1562 int rc; 1563 1564 switch (sa->family) { 1565 case EFX_FAMILY_HUNTINGTON: 1566 case EFX_FAMILY_MEDFORD: 1567 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1568 break; 1569 default: 1570 break; 1571 } 1572 1573 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1574 sfc_kvarg_string_handler, &rx_name); 1575 if (rc != 0) 1576 goto fail_kvarg_rx_datapath; 1577 1578 if (rx_name != NULL) { 1579 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1580 if (sa->dp_rx == NULL) { 1581 sfc_err(sa, "Rx datapath %s not found", rx_name); 1582 rc = ENOENT; 1583 goto fail_dp_rx; 1584 } 1585 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1586 sfc_err(sa, 1587 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1588 rx_name); 1589 rc = EINVAL; 1590 goto fail_dp_rx_caps; 1591 } 1592 } else { 1593 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1594 if (sa->dp_rx == NULL) { 1595 sfc_err(sa, "Rx datapath by caps %#x not found", 1596 avail_caps); 1597 rc = ENOENT; 1598 goto fail_dp_rx; 1599 } 1600 } 1601 1602 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1603 if (sa->dp_rx_name == NULL) { 1604 rc = ENOMEM; 1605 goto fail_dp_rx_name; 1606 } 1607 1608 sfc_info(sa, "use %s Rx datapath", sa->dp_rx_name); 1609 1610 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1611 1612 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1613 sfc_kvarg_string_handler, &tx_name); 1614 if (rc != 0) 1615 goto fail_kvarg_tx_datapath; 1616 1617 if (tx_name != NULL) { 1618 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1619 if (sa->dp_tx == NULL) { 1620 sfc_err(sa, "Tx datapath %s not found", tx_name); 1621 rc = ENOENT; 1622 goto fail_dp_tx; 1623 } 1624 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1625 sfc_err(sa, 1626 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1627 tx_name); 1628 rc = EINVAL; 1629 goto fail_dp_tx_caps; 1630 } 1631 } else { 1632 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1633 if (sa->dp_tx == NULL) { 1634 sfc_err(sa, "Tx datapath by caps %#x not found", 1635 avail_caps); 1636 rc = ENOENT; 1637 goto fail_dp_tx; 1638 } 1639 } 1640 1641 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1642 if (sa->dp_tx_name == NULL) { 1643 rc = ENOMEM; 1644 goto fail_dp_tx_name; 1645 } 1646 1647 sfc_info(sa, "use %s Tx datapath", sa->dp_tx_name); 1648 1649 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1650 1651 dev->dev_ops = &sfc_eth_dev_ops; 1652 1653 return 0; 1654 1655 fail_dp_tx_name: 1656 fail_dp_tx_caps: 1657 sa->dp_tx = NULL; 1658 1659 fail_dp_tx: 1660 fail_kvarg_tx_datapath: 1661 rte_free(sa->dp_rx_name); 1662 sa->dp_rx_name = NULL; 1663 1664 fail_dp_rx_name: 1665 fail_dp_rx_caps: 1666 sa->dp_rx = NULL; 1667 1668 fail_dp_rx: 1669 fail_kvarg_rx_datapath: 1670 return rc; 1671 } 1672 1673 static void 1674 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1675 { 1676 struct sfc_adapter *sa = dev->data->dev_private; 1677 1678 dev->dev_ops = NULL; 1679 dev->rx_pkt_burst = NULL; 1680 dev->tx_pkt_burst = NULL; 1681 1682 rte_free(sa->dp_tx_name); 1683 sa->dp_tx_name = NULL; 1684 sa->dp_tx = NULL; 1685 1686 rte_free(sa->dp_rx_name); 1687 sa->dp_rx_name = NULL; 1688 sa->dp_rx = NULL; 1689 } 1690 1691 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1692 .rxq_info_get = sfc_rx_queue_info_get, 1693 .txq_info_get = sfc_tx_queue_info_get, 1694 }; 1695 1696 static int 1697 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1698 { 1699 /* 1700 * Device private data has really many process-local pointers. 1701 * Below code should be extremely careful to use data located 1702 * in shared memory only. 1703 */ 1704 struct sfc_adapter *sa = dev->data->dev_private; 1705 const struct sfc_dp_rx *dp_rx; 1706 const struct sfc_dp_tx *dp_tx; 1707 int rc; 1708 1709 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1710 if (dp_rx == NULL) { 1711 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name); 1712 rc = ENOENT; 1713 goto fail_dp_rx; 1714 } 1715 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1716 sfc_err(sa, "%s Rx datapath does not support multi-process", 1717 sa->dp_tx_name); 1718 rc = EINVAL; 1719 goto fail_dp_rx_multi_process; 1720 } 1721 1722 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1723 if (dp_tx == NULL) { 1724 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1725 rc = ENOENT; 1726 goto fail_dp_tx; 1727 } 1728 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1729 sfc_err(sa, "%s Tx datapath does not support multi-process", 1730 sa->dp_tx_name); 1731 rc = EINVAL; 1732 goto fail_dp_tx_multi_process; 1733 } 1734 1735 dev->rx_pkt_burst = dp_rx->pkt_burst; 1736 dev->tx_pkt_burst = dp_tx->pkt_burst; 1737 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1738 1739 return 0; 1740 1741 fail_dp_tx_multi_process: 1742 fail_dp_tx: 1743 fail_dp_rx_multi_process: 1744 fail_dp_rx: 1745 return rc; 1746 } 1747 1748 static void 1749 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1750 { 1751 dev->dev_ops = NULL; 1752 dev->tx_pkt_burst = NULL; 1753 dev->rx_pkt_burst = NULL; 1754 } 1755 1756 static void 1757 sfc_register_dp(void) 1758 { 1759 /* Register once */ 1760 if (TAILQ_EMPTY(&sfc_dp_head)) { 1761 /* Prefer EF10 datapath */ 1762 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1763 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1764 1765 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1766 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1767 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1768 } 1769 } 1770 1771 static int 1772 sfc_eth_dev_init(struct rte_eth_dev *dev) 1773 { 1774 struct sfc_adapter *sa = dev->data->dev_private; 1775 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1776 int rc; 1777 const efx_nic_cfg_t *encp; 1778 const struct ether_addr *from; 1779 1780 sfc_register_dp(); 1781 1782 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1783 return -sfc_eth_dev_secondary_set_ops(dev); 1784 1785 /* Required for logging */ 1786 sa->pci_addr = pci_dev->addr; 1787 sa->port_id = dev->data->port_id; 1788 1789 sa->eth_dev = dev; 1790 1791 /* Copy PCI device info to the dev->data */ 1792 rte_eth_copy_pci_info(dev, pci_dev); 1793 1794 dev->data->dev_flags |= RTE_ETH_DEV_DETACHABLE; 1795 1796 rc = sfc_kvargs_parse(sa); 1797 if (rc != 0) 1798 goto fail_kvargs_parse; 1799 1800 rc = sfc_kvargs_process(sa, SFC_KVARG_DEBUG_INIT, 1801 sfc_kvarg_bool_handler, &sa->debug_init); 1802 if (rc != 0) 1803 goto fail_kvarg_debug_init; 1804 1805 sfc_log_init(sa, "entry"); 1806 1807 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1808 if (dev->data->mac_addrs == NULL) { 1809 rc = ENOMEM; 1810 goto fail_mac_addrs; 1811 } 1812 1813 sfc_adapter_lock_init(sa); 1814 sfc_adapter_lock(sa); 1815 1816 sfc_log_init(sa, "probing"); 1817 rc = sfc_probe(sa); 1818 if (rc != 0) 1819 goto fail_probe; 1820 1821 sfc_log_init(sa, "set device ops"); 1822 rc = sfc_eth_dev_set_ops(dev); 1823 if (rc != 0) 1824 goto fail_set_ops; 1825 1826 sfc_log_init(sa, "attaching"); 1827 rc = sfc_attach(sa); 1828 if (rc != 0) 1829 goto fail_attach; 1830 1831 encp = efx_nic_cfg_get(sa->nic); 1832 1833 /* 1834 * The arguments are really reverse order in comparison to 1835 * Linux kernel. Copy from NIC config to Ethernet device data. 1836 */ 1837 from = (const struct ether_addr *)(encp->enc_mac_addr); 1838 ether_addr_copy(from, &dev->data->mac_addrs[0]); 1839 1840 sfc_adapter_unlock(sa); 1841 1842 sfc_log_init(sa, "done"); 1843 return 0; 1844 1845 fail_attach: 1846 sfc_eth_dev_clear_ops(dev); 1847 1848 fail_set_ops: 1849 sfc_unprobe(sa); 1850 1851 fail_probe: 1852 sfc_adapter_unlock(sa); 1853 sfc_adapter_lock_fini(sa); 1854 rte_free(dev->data->mac_addrs); 1855 dev->data->mac_addrs = NULL; 1856 1857 fail_mac_addrs: 1858 fail_kvarg_debug_init: 1859 sfc_kvargs_cleanup(sa); 1860 1861 fail_kvargs_parse: 1862 sfc_log_init(sa, "failed %d", rc); 1863 SFC_ASSERT(rc > 0); 1864 return -rc; 1865 } 1866 1867 static int 1868 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 1869 { 1870 struct sfc_adapter *sa; 1871 1872 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 1873 sfc_eth_dev_secondary_clear_ops(dev); 1874 return 0; 1875 } 1876 1877 sa = dev->data->dev_private; 1878 sfc_log_init(sa, "entry"); 1879 1880 sfc_adapter_lock(sa); 1881 1882 sfc_eth_dev_clear_ops(dev); 1883 1884 sfc_detach(sa); 1885 sfc_unprobe(sa); 1886 1887 rte_free(dev->data->mac_addrs); 1888 dev->data->mac_addrs = NULL; 1889 1890 sfc_kvargs_cleanup(sa); 1891 1892 sfc_adapter_unlock(sa); 1893 sfc_adapter_lock_fini(sa); 1894 1895 sfc_log_init(sa, "done"); 1896 1897 /* Required for logging, so cleanup last */ 1898 sa->eth_dev = NULL; 1899 return 0; 1900 } 1901 1902 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 1903 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 1904 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 1905 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 1906 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 1907 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 1908 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 1909 { .vendor_id = 0 /* sentinel */ } 1910 }; 1911 1912 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 1913 struct rte_pci_device *pci_dev) 1914 { 1915 return rte_eth_dev_pci_generic_probe(pci_dev, 1916 sizeof(struct sfc_adapter), sfc_eth_dev_init); 1917 } 1918 1919 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 1920 { 1921 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 1922 } 1923 1924 static struct rte_pci_driver sfc_efx_pmd = { 1925 .id_table = pci_id_sfc_efx_map, 1926 .drv_flags = 1927 RTE_PCI_DRV_INTR_LSC | 1928 RTE_PCI_DRV_NEED_MAPPING, 1929 .probe = sfc_eth_dev_pci_probe, 1930 .remove = sfc_eth_dev_pci_remove, 1931 }; 1932 1933 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 1934 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 1935 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 1936 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 1937 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 1938 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 1939 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 1940 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long> " 1941 SFC_KVARG_MCDI_LOGGING "=" SFC_KVARG_VALUES_BOOL " " 1942 SFC_KVARG_DEBUG_INIT "=" SFC_KVARG_VALUES_BOOL); 1943