1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 17 #include "efx.h" 18 19 #include "sfc.h" 20 #include "sfc_debug.h" 21 #include "sfc_log.h" 22 #include "sfc_kvargs.h" 23 #include "sfc_ev.h" 24 #include "sfc_rx.h" 25 #include "sfc_tx.h" 26 #include "sfc_flow.h" 27 #include "sfc_dp.h" 28 #include "sfc_dp_rx.h" 29 30 uint32_t sfc_logtype_driver; 31 32 static struct sfc_dp_list sfc_dp_head = 33 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 34 35 static int 36 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 37 { 38 struct sfc_adapter *sa = dev->data->dev_private; 39 efx_nic_fw_info_t enfi; 40 int ret; 41 int rc; 42 43 /* 44 * Return value of the callback is likely supposed to be 45 * equal to or greater than 0, nevertheless, if an error 46 * occurs, it will be desirable to pass it to the caller 47 */ 48 if ((fw_version == NULL) || (fw_size == 0)) 49 return -EINVAL; 50 51 rc = efx_nic_get_fw_version(sa->nic, &enfi); 52 if (rc != 0) 53 return -rc; 54 55 ret = snprintf(fw_version, fw_size, 56 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 57 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 58 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 59 if (ret < 0) 60 return ret; 61 62 if (enfi.enfi_dpcpu_fw_ids_valid) { 63 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 64 int ret_extra; 65 66 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 67 fw_size - dpcpu_fw_ids_offset, 68 " rx%" PRIx16 " tx%" PRIx16, 69 enfi.enfi_rx_dpcpu_fw_id, 70 enfi.enfi_tx_dpcpu_fw_id); 71 if (ret_extra < 0) 72 return ret_extra; 73 74 ret += ret_extra; 75 } 76 77 if (fw_size < (size_t)(++ret)) 78 return ret; 79 else 80 return 0; 81 } 82 83 static void 84 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 85 { 86 struct sfc_adapter *sa = dev->data->dev_private; 87 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 88 struct sfc_rss *rss = &sa->rss; 89 uint64_t txq_offloads_def = 0; 90 91 sfc_log_init(sa, "entry"); 92 93 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 94 95 /* Autonegotiation may be disabled */ 96 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 97 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 98 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 99 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 100 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 101 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX) 102 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 103 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 104 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 105 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX) 106 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 107 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX) 108 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 109 110 dev_info->max_rx_queues = sa->rxq_max; 111 dev_info->max_tx_queues = sa->txq_max; 112 113 /* By default packets are dropped if no descriptors are available */ 114 dev_info->default_rxconf.rx_drop_en = 1; 115 116 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 117 118 /* 119 * rx_offload_capa includes both device and queue offloads since 120 * the latter may be requested on a per device basis which makes 121 * sense when some offloads are needed to be set on all queues. 122 */ 123 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 124 dev_info->rx_queue_offload_capa; 125 126 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 127 128 /* 129 * tx_offload_capa includes both device and queue offloads since 130 * the latter may be requested on a per device basis which makes 131 * sense when some offloads are needed to be set on all queues. 132 */ 133 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 134 dev_info->tx_queue_offload_capa; 135 136 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 137 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 138 139 dev_info->default_txconf.offloads |= txq_offloads_def; 140 141 dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP; 142 if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) || 143 !encp->enc_hw_tx_insert_vlan_enabled) 144 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL; 145 146 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG) 147 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS; 148 149 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL) 150 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP; 151 152 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT) 153 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT; 154 155 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 156 dev_info->reta_size = EFX_RSS_TBL_SIZE; 157 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 158 dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS; 159 } 160 161 /* Initialize to hardware limits */ 162 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 163 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 164 /* The RXQ hardware requires that the descriptor count is a power 165 * of 2, but rx_desc_lim cannot properly describe that constraint. 166 */ 167 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 168 169 /* Initialize to hardware limits */ 170 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 171 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 172 /* 173 * The TXQ hardware requires that the descriptor count is a power 174 * of 2, but tx_desc_lim cannot properly describe that constraint 175 */ 176 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 177 178 if (sa->dp_rx->get_dev_info != NULL) 179 sa->dp_rx->get_dev_info(dev_info); 180 if (sa->dp_tx->get_dev_info != NULL) 181 sa->dp_tx->get_dev_info(dev_info); 182 } 183 184 static const uint32_t * 185 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 186 { 187 struct sfc_adapter *sa = dev->data->dev_private; 188 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 189 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 190 191 return sa->dp_rx->supported_ptypes_get(tunnel_encaps); 192 } 193 194 static int 195 sfc_dev_configure(struct rte_eth_dev *dev) 196 { 197 struct rte_eth_dev_data *dev_data = dev->data; 198 struct sfc_adapter *sa = dev_data->dev_private; 199 int rc; 200 201 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 202 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 203 204 sfc_adapter_lock(sa); 205 switch (sa->state) { 206 case SFC_ADAPTER_CONFIGURED: 207 /* FALLTHROUGH */ 208 case SFC_ADAPTER_INITIALIZED: 209 rc = sfc_configure(sa); 210 break; 211 default: 212 sfc_err(sa, "unexpected adapter state %u to configure", 213 sa->state); 214 rc = EINVAL; 215 break; 216 } 217 sfc_adapter_unlock(sa); 218 219 sfc_log_init(sa, "done %d", rc); 220 SFC_ASSERT(rc >= 0); 221 return -rc; 222 } 223 224 static int 225 sfc_dev_start(struct rte_eth_dev *dev) 226 { 227 struct sfc_adapter *sa = dev->data->dev_private; 228 int rc; 229 230 sfc_log_init(sa, "entry"); 231 232 sfc_adapter_lock(sa); 233 rc = sfc_start(sa); 234 sfc_adapter_unlock(sa); 235 236 sfc_log_init(sa, "done %d", rc); 237 SFC_ASSERT(rc >= 0); 238 return -rc; 239 } 240 241 static int 242 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 243 { 244 struct sfc_adapter *sa = dev->data->dev_private; 245 struct rte_eth_link current_link; 246 int ret; 247 248 sfc_log_init(sa, "entry"); 249 250 if (sa->state != SFC_ADAPTER_STARTED) { 251 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 252 } else if (wait_to_complete) { 253 efx_link_mode_t link_mode; 254 255 if (efx_port_poll(sa->nic, &link_mode) != 0) 256 link_mode = EFX_LINK_UNKNOWN; 257 sfc_port_link_mode_to_info(link_mode, ¤t_link); 258 259 } else { 260 sfc_ev_mgmt_qpoll(sa); 261 rte_eth_linkstatus_get(dev, ¤t_link); 262 } 263 264 ret = rte_eth_linkstatus_set(dev, ¤t_link); 265 if (ret == 0) 266 sfc_notice(sa, "Link status is %s", 267 current_link.link_status ? "UP" : "DOWN"); 268 269 return ret; 270 } 271 272 static void 273 sfc_dev_stop(struct rte_eth_dev *dev) 274 { 275 struct sfc_adapter *sa = dev->data->dev_private; 276 277 sfc_log_init(sa, "entry"); 278 279 sfc_adapter_lock(sa); 280 sfc_stop(sa); 281 sfc_adapter_unlock(sa); 282 283 sfc_log_init(sa, "done"); 284 } 285 286 static int 287 sfc_dev_set_link_up(struct rte_eth_dev *dev) 288 { 289 struct sfc_adapter *sa = dev->data->dev_private; 290 int rc; 291 292 sfc_log_init(sa, "entry"); 293 294 sfc_adapter_lock(sa); 295 rc = sfc_start(sa); 296 sfc_adapter_unlock(sa); 297 298 SFC_ASSERT(rc >= 0); 299 return -rc; 300 } 301 302 static int 303 sfc_dev_set_link_down(struct rte_eth_dev *dev) 304 { 305 struct sfc_adapter *sa = dev->data->dev_private; 306 307 sfc_log_init(sa, "entry"); 308 309 sfc_adapter_lock(sa); 310 sfc_stop(sa); 311 sfc_adapter_unlock(sa); 312 313 return 0; 314 } 315 316 static void 317 sfc_dev_close(struct rte_eth_dev *dev) 318 { 319 struct sfc_adapter *sa = dev->data->dev_private; 320 321 sfc_log_init(sa, "entry"); 322 323 sfc_adapter_lock(sa); 324 switch (sa->state) { 325 case SFC_ADAPTER_STARTED: 326 sfc_stop(sa); 327 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 328 /* FALLTHROUGH */ 329 case SFC_ADAPTER_CONFIGURED: 330 sfc_close(sa); 331 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 332 /* FALLTHROUGH */ 333 case SFC_ADAPTER_INITIALIZED: 334 break; 335 default: 336 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 337 break; 338 } 339 sfc_adapter_unlock(sa); 340 341 sfc_log_init(sa, "done"); 342 } 343 344 static void 345 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 346 boolean_t enabled) 347 { 348 struct sfc_port *port; 349 boolean_t *toggle; 350 struct sfc_adapter *sa = dev->data->dev_private; 351 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 352 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 353 354 sfc_adapter_lock(sa); 355 356 port = &sa->port; 357 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 358 359 if (*toggle != enabled) { 360 *toggle = enabled; 361 362 if (port->isolated) { 363 sfc_warn(sa, "isolated mode is active on the port"); 364 sfc_warn(sa, "the change is to be applied on the next " 365 "start provided that isolated mode is " 366 "disabled prior the next start"); 367 } else if ((sa->state == SFC_ADAPTER_STARTED) && 368 (sfc_set_rx_mode(sa) != 0)) { 369 *toggle = !(enabled); 370 sfc_warn(sa, "Failed to %s %s mode", 371 ((enabled) ? "enable" : "disable"), desc); 372 } 373 } 374 375 sfc_adapter_unlock(sa); 376 } 377 378 static void 379 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 380 { 381 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 382 } 383 384 static void 385 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 386 { 387 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 388 } 389 390 static void 391 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 392 { 393 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 394 } 395 396 static void 397 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 398 { 399 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 400 } 401 402 static int 403 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 404 uint16_t nb_rx_desc, unsigned int socket_id, 405 const struct rte_eth_rxconf *rx_conf, 406 struct rte_mempool *mb_pool) 407 { 408 struct sfc_adapter *sa = dev->data->dev_private; 409 int rc; 410 411 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 412 rx_queue_id, nb_rx_desc, socket_id); 413 414 sfc_adapter_lock(sa); 415 416 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 417 rx_conf, mb_pool); 418 if (rc != 0) 419 goto fail_rx_qinit; 420 421 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 422 423 sfc_adapter_unlock(sa); 424 425 return 0; 426 427 fail_rx_qinit: 428 sfc_adapter_unlock(sa); 429 SFC_ASSERT(rc > 0); 430 return -rc; 431 } 432 433 static void 434 sfc_rx_queue_release(void *queue) 435 { 436 struct sfc_dp_rxq *dp_rxq = queue; 437 struct sfc_rxq *rxq; 438 struct sfc_adapter *sa; 439 unsigned int sw_index; 440 441 if (dp_rxq == NULL) 442 return; 443 444 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 445 sa = rxq->evq->sa; 446 sfc_adapter_lock(sa); 447 448 sw_index = sfc_rxq_sw_index(rxq); 449 450 sfc_log_init(sa, "RxQ=%u", sw_index); 451 452 sa->eth_dev->data->rx_queues[sw_index] = NULL; 453 454 sfc_rx_qfini(sa, sw_index); 455 456 sfc_adapter_unlock(sa); 457 } 458 459 static int 460 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 461 uint16_t nb_tx_desc, unsigned int socket_id, 462 const struct rte_eth_txconf *tx_conf) 463 { 464 struct sfc_adapter *sa = dev->data->dev_private; 465 int rc; 466 467 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 468 tx_queue_id, nb_tx_desc, socket_id); 469 470 sfc_adapter_lock(sa); 471 472 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 473 if (rc != 0) 474 goto fail_tx_qinit; 475 476 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 477 478 sfc_adapter_unlock(sa); 479 return 0; 480 481 fail_tx_qinit: 482 sfc_adapter_unlock(sa); 483 SFC_ASSERT(rc > 0); 484 return -rc; 485 } 486 487 static void 488 sfc_tx_queue_release(void *queue) 489 { 490 struct sfc_dp_txq *dp_txq = queue; 491 struct sfc_txq *txq; 492 unsigned int sw_index; 493 struct sfc_adapter *sa; 494 495 if (dp_txq == NULL) 496 return; 497 498 txq = sfc_txq_by_dp_txq(dp_txq); 499 sw_index = sfc_txq_sw_index(txq); 500 501 SFC_ASSERT(txq->evq != NULL); 502 sa = txq->evq->sa; 503 504 sfc_log_init(sa, "TxQ = %u", sw_index); 505 506 sfc_adapter_lock(sa); 507 508 SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues); 509 sa->eth_dev->data->tx_queues[sw_index] = NULL; 510 511 sfc_tx_qfini(sa, sw_index); 512 513 sfc_adapter_unlock(sa); 514 } 515 516 static int 517 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 518 { 519 struct sfc_adapter *sa = dev->data->dev_private; 520 struct sfc_port *port = &sa->port; 521 uint64_t *mac_stats; 522 int ret; 523 524 rte_spinlock_lock(&port->mac_stats_lock); 525 526 ret = sfc_port_update_mac_stats(sa); 527 if (ret != 0) 528 goto unlock; 529 530 mac_stats = port->mac_stats_buf; 531 532 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 533 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 534 stats->ipackets = 535 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 536 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 537 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 538 stats->opackets = 539 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 540 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 541 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 542 stats->ibytes = 543 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 544 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 545 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 546 stats->obytes = 547 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 548 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 549 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 550 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW]; 551 stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 552 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 553 } else { 554 stats->ipackets = mac_stats[EFX_MAC_RX_PKTS]; 555 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 556 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 557 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 558 /* 559 * Take into account stats which are whenever supported 560 * on EF10. If some stat is not supported by current 561 * firmware variant or HW revision, it is guaranteed 562 * to be zero in mac_stats. 563 */ 564 stats->imissed = 565 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 566 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 567 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 568 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 569 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 570 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 571 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 572 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 573 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 574 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 575 stats->ierrors = 576 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 577 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 578 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 579 /* no oerrors counters supported on EF10 */ 580 } 581 582 unlock: 583 rte_spinlock_unlock(&port->mac_stats_lock); 584 SFC_ASSERT(ret >= 0); 585 return -ret; 586 } 587 588 static void 589 sfc_stats_reset(struct rte_eth_dev *dev) 590 { 591 struct sfc_adapter *sa = dev->data->dev_private; 592 struct sfc_port *port = &sa->port; 593 int rc; 594 595 if (sa->state != SFC_ADAPTER_STARTED) { 596 /* 597 * The operation cannot be done if port is not started; it 598 * will be scheduled to be done during the next port start 599 */ 600 port->mac_stats_reset_pending = B_TRUE; 601 return; 602 } 603 604 rc = sfc_port_reset_mac_stats(sa); 605 if (rc != 0) 606 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 607 } 608 609 static int 610 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 611 unsigned int xstats_count) 612 { 613 struct sfc_adapter *sa = dev->data->dev_private; 614 struct sfc_port *port = &sa->port; 615 uint64_t *mac_stats; 616 int rc; 617 unsigned int i; 618 int nstats = 0; 619 620 rte_spinlock_lock(&port->mac_stats_lock); 621 622 rc = sfc_port_update_mac_stats(sa); 623 if (rc != 0) { 624 SFC_ASSERT(rc > 0); 625 nstats = -rc; 626 goto unlock; 627 } 628 629 mac_stats = port->mac_stats_buf; 630 631 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 632 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 633 if (xstats != NULL && nstats < (int)xstats_count) { 634 xstats[nstats].id = nstats; 635 xstats[nstats].value = mac_stats[i]; 636 } 637 nstats++; 638 } 639 } 640 641 unlock: 642 rte_spinlock_unlock(&port->mac_stats_lock); 643 644 return nstats; 645 } 646 647 static int 648 sfc_xstats_get_names(struct rte_eth_dev *dev, 649 struct rte_eth_xstat_name *xstats_names, 650 unsigned int xstats_count) 651 { 652 struct sfc_adapter *sa = dev->data->dev_private; 653 struct sfc_port *port = &sa->port; 654 unsigned int i; 655 unsigned int nstats = 0; 656 657 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 658 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 659 if (xstats_names != NULL && nstats < xstats_count) 660 strncpy(xstats_names[nstats].name, 661 efx_mac_stat_name(sa->nic, i), 662 sizeof(xstats_names[0].name)); 663 nstats++; 664 } 665 } 666 667 return nstats; 668 } 669 670 static int 671 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 672 uint64_t *values, unsigned int n) 673 { 674 struct sfc_adapter *sa = dev->data->dev_private; 675 struct sfc_port *port = &sa->port; 676 uint64_t *mac_stats; 677 unsigned int nb_supported = 0; 678 unsigned int nb_written = 0; 679 unsigned int i; 680 int ret; 681 int rc; 682 683 if (unlikely(values == NULL) || 684 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 685 return port->mac_stats_nb_supported; 686 687 rte_spinlock_lock(&port->mac_stats_lock); 688 689 rc = sfc_port_update_mac_stats(sa); 690 if (rc != 0) { 691 SFC_ASSERT(rc > 0); 692 ret = -rc; 693 goto unlock; 694 } 695 696 mac_stats = port->mac_stats_buf; 697 698 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 699 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 700 continue; 701 702 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 703 values[nb_written++] = mac_stats[i]; 704 705 ++nb_supported; 706 } 707 708 ret = nb_written; 709 710 unlock: 711 rte_spinlock_unlock(&port->mac_stats_lock); 712 713 return ret; 714 } 715 716 static int 717 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 718 struct rte_eth_xstat_name *xstats_names, 719 const uint64_t *ids, unsigned int size) 720 { 721 struct sfc_adapter *sa = dev->data->dev_private; 722 struct sfc_port *port = &sa->port; 723 unsigned int nb_supported = 0; 724 unsigned int nb_written = 0; 725 unsigned int i; 726 727 if (unlikely(xstats_names == NULL) || 728 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 729 return port->mac_stats_nb_supported; 730 731 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 732 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 733 continue; 734 735 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 736 char *name = xstats_names[nb_written++].name; 737 738 strncpy(name, efx_mac_stat_name(sa->nic, i), 739 sizeof(xstats_names[0].name)); 740 name[sizeof(xstats_names[0].name) - 1] = '\0'; 741 } 742 743 ++nb_supported; 744 } 745 746 return nb_written; 747 } 748 749 static int 750 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 751 { 752 struct sfc_adapter *sa = dev->data->dev_private; 753 unsigned int wanted_fc, link_fc; 754 755 memset(fc_conf, 0, sizeof(*fc_conf)); 756 757 sfc_adapter_lock(sa); 758 759 if (sa->state == SFC_ADAPTER_STARTED) 760 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 761 else 762 link_fc = sa->port.flow_ctrl; 763 764 switch (link_fc) { 765 case 0: 766 fc_conf->mode = RTE_FC_NONE; 767 break; 768 case EFX_FCNTL_RESPOND: 769 fc_conf->mode = RTE_FC_RX_PAUSE; 770 break; 771 case EFX_FCNTL_GENERATE: 772 fc_conf->mode = RTE_FC_TX_PAUSE; 773 break; 774 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 775 fc_conf->mode = RTE_FC_FULL; 776 break; 777 default: 778 sfc_err(sa, "%s: unexpected flow control value %#x", 779 __func__, link_fc); 780 } 781 782 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 783 784 sfc_adapter_unlock(sa); 785 786 return 0; 787 } 788 789 static int 790 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 791 { 792 struct sfc_adapter *sa = dev->data->dev_private; 793 struct sfc_port *port = &sa->port; 794 unsigned int fcntl; 795 int rc; 796 797 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 798 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 799 fc_conf->mac_ctrl_frame_fwd != 0) { 800 sfc_err(sa, "unsupported flow control settings specified"); 801 rc = EINVAL; 802 goto fail_inval; 803 } 804 805 switch (fc_conf->mode) { 806 case RTE_FC_NONE: 807 fcntl = 0; 808 break; 809 case RTE_FC_RX_PAUSE: 810 fcntl = EFX_FCNTL_RESPOND; 811 break; 812 case RTE_FC_TX_PAUSE: 813 fcntl = EFX_FCNTL_GENERATE; 814 break; 815 case RTE_FC_FULL: 816 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 817 break; 818 default: 819 rc = EINVAL; 820 goto fail_inval; 821 } 822 823 sfc_adapter_lock(sa); 824 825 if (sa->state == SFC_ADAPTER_STARTED) { 826 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 827 if (rc != 0) 828 goto fail_mac_fcntl_set; 829 } 830 831 port->flow_ctrl = fcntl; 832 port->flow_ctrl_autoneg = fc_conf->autoneg; 833 834 sfc_adapter_unlock(sa); 835 836 return 0; 837 838 fail_mac_fcntl_set: 839 sfc_adapter_unlock(sa); 840 fail_inval: 841 SFC_ASSERT(rc > 0); 842 return -rc; 843 } 844 845 static int 846 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 847 { 848 struct sfc_adapter *sa = dev->data->dev_private; 849 size_t pdu = EFX_MAC_PDU(mtu); 850 size_t old_pdu; 851 int rc; 852 853 sfc_log_init(sa, "mtu=%u", mtu); 854 855 rc = EINVAL; 856 if (pdu < EFX_MAC_PDU_MIN) { 857 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 858 (unsigned int)mtu, (unsigned int)pdu, 859 EFX_MAC_PDU_MIN); 860 goto fail_inval; 861 } 862 if (pdu > EFX_MAC_PDU_MAX) { 863 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 864 (unsigned int)mtu, (unsigned int)pdu, 865 EFX_MAC_PDU_MAX); 866 goto fail_inval; 867 } 868 869 sfc_adapter_lock(sa); 870 871 if (pdu != sa->port.pdu) { 872 if (sa->state == SFC_ADAPTER_STARTED) { 873 sfc_stop(sa); 874 875 old_pdu = sa->port.pdu; 876 sa->port.pdu = pdu; 877 rc = sfc_start(sa); 878 if (rc != 0) 879 goto fail_start; 880 } else { 881 sa->port.pdu = pdu; 882 } 883 } 884 885 /* 886 * The driver does not use it, but other PMDs update jumbo_frame 887 * flag and max_rx_pkt_len when MTU is set. 888 */ 889 if (mtu > ETHER_MAX_LEN) { 890 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 891 892 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 893 rxmode->jumbo_frame = 1; 894 } 895 896 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 897 898 sfc_adapter_unlock(sa); 899 900 sfc_log_init(sa, "done"); 901 return 0; 902 903 fail_start: 904 sa->port.pdu = old_pdu; 905 if (sfc_start(sa) != 0) 906 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 907 "PDU max size - port is stopped", 908 (unsigned int)pdu, (unsigned int)old_pdu); 909 sfc_adapter_unlock(sa); 910 911 fail_inval: 912 sfc_log_init(sa, "failed %d", rc); 913 SFC_ASSERT(rc > 0); 914 return -rc; 915 } 916 static int 917 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 918 { 919 struct sfc_adapter *sa = dev->data->dev_private; 920 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 921 struct sfc_port *port = &sa->port; 922 struct ether_addr *old_addr = &dev->data->mac_addrs[0]; 923 int rc = 0; 924 925 sfc_adapter_lock(sa); 926 927 /* 928 * Copy the address to the device private data so that 929 * it could be recalled in the case of adapter restart. 930 */ 931 ether_addr_copy(mac_addr, &port->default_mac_addr); 932 933 /* 934 * Neither of the two following checks can return 935 * an error. The new MAC address is preserved in 936 * the device private data and can be activated 937 * on the next port start if the user prevents 938 * isolated mode from being enabled. 939 */ 940 if (port->isolated) { 941 sfc_warn(sa, "isolated mode is active on the port"); 942 sfc_warn(sa, "will not set MAC address"); 943 goto unlock; 944 } 945 946 if (sa->state != SFC_ADAPTER_STARTED) { 947 sfc_notice(sa, "the port is not started"); 948 sfc_notice(sa, "the new MAC address will be set on port start"); 949 950 goto unlock; 951 } 952 953 if (encp->enc_allow_set_mac_with_installed_filters) { 954 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 955 if (rc != 0) { 956 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 957 goto unlock; 958 } 959 960 /* 961 * Changing the MAC address by means of MCDI request 962 * has no effect on received traffic, therefore 963 * we also need to update unicast filters 964 */ 965 rc = sfc_set_rx_mode(sa); 966 if (rc != 0) { 967 sfc_err(sa, "cannot set filter (rc = %u)", rc); 968 /* Rollback the old address */ 969 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 970 (void)sfc_set_rx_mode(sa); 971 } 972 } else { 973 sfc_warn(sa, "cannot set MAC address with filters installed"); 974 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 975 sfc_warn(sa, "(some traffic may be dropped)"); 976 977 /* 978 * Since setting MAC address with filters installed is not 979 * allowed on the adapter, the new MAC address will be set 980 * by means of adapter restart. sfc_start() shall retrieve 981 * the new address from the device private data and set it. 982 */ 983 sfc_stop(sa); 984 rc = sfc_start(sa); 985 if (rc != 0) 986 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 987 } 988 989 unlock: 990 if (rc != 0) 991 ether_addr_copy(old_addr, &port->default_mac_addr); 992 993 sfc_adapter_unlock(sa); 994 995 SFC_ASSERT(rc >= 0); 996 return -rc; 997 } 998 999 1000 static int 1001 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 1002 uint32_t nb_mc_addr) 1003 { 1004 struct sfc_adapter *sa = dev->data->dev_private; 1005 struct sfc_port *port = &sa->port; 1006 uint8_t *mc_addrs = port->mcast_addrs; 1007 int rc; 1008 unsigned int i; 1009 1010 if (port->isolated) { 1011 sfc_err(sa, "isolated mode is active on the port"); 1012 sfc_err(sa, "will not set multicast address list"); 1013 return -ENOTSUP; 1014 } 1015 1016 if (mc_addrs == NULL) 1017 return -ENOBUFS; 1018 1019 if (nb_mc_addr > port->max_mcast_addrs) { 1020 sfc_err(sa, "too many multicast addresses: %u > %u", 1021 nb_mc_addr, port->max_mcast_addrs); 1022 return -EINVAL; 1023 } 1024 1025 for (i = 0; i < nb_mc_addr; ++i) { 1026 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1027 EFX_MAC_ADDR_LEN); 1028 mc_addrs += EFX_MAC_ADDR_LEN; 1029 } 1030 1031 port->nb_mcast_addrs = nb_mc_addr; 1032 1033 if (sa->state != SFC_ADAPTER_STARTED) 1034 return 0; 1035 1036 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1037 port->nb_mcast_addrs); 1038 if (rc != 0) 1039 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1040 1041 SFC_ASSERT(rc > 0); 1042 return -rc; 1043 } 1044 1045 /* 1046 * The function is used by the secondary process as well. It must not 1047 * use any process-local pointers from the adapter data. 1048 */ 1049 static void 1050 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1051 struct rte_eth_rxq_info *qinfo) 1052 { 1053 struct sfc_adapter *sa = dev->data->dev_private; 1054 struct sfc_rxq_info *rxq_info; 1055 struct sfc_rxq *rxq; 1056 1057 sfc_adapter_lock(sa); 1058 1059 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1060 1061 rxq_info = &sa->rxq_info[rx_queue_id]; 1062 rxq = rxq_info->rxq; 1063 SFC_ASSERT(rxq != NULL); 1064 1065 qinfo->mp = rxq->refill_mb_pool; 1066 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1067 qinfo->conf.rx_drop_en = 1; 1068 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1069 qinfo->conf.offloads = DEV_RX_OFFLOAD_IPV4_CKSUM | 1070 DEV_RX_OFFLOAD_UDP_CKSUM | 1071 DEV_RX_OFFLOAD_TCP_CKSUM; 1072 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1073 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1074 qinfo->scattered_rx = 1; 1075 } 1076 qinfo->nb_desc = rxq_info->entries; 1077 1078 sfc_adapter_unlock(sa); 1079 } 1080 1081 /* 1082 * The function is used by the secondary process as well. It must not 1083 * use any process-local pointers from the adapter data. 1084 */ 1085 static void 1086 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1087 struct rte_eth_txq_info *qinfo) 1088 { 1089 struct sfc_adapter *sa = dev->data->dev_private; 1090 struct sfc_txq_info *txq_info; 1091 1092 sfc_adapter_lock(sa); 1093 1094 SFC_ASSERT(tx_queue_id < sa->txq_count); 1095 1096 txq_info = &sa->txq_info[tx_queue_id]; 1097 SFC_ASSERT(txq_info->txq != NULL); 1098 1099 memset(qinfo, 0, sizeof(*qinfo)); 1100 1101 qinfo->conf.txq_flags = txq_info->txq->flags; 1102 qinfo->conf.offloads = txq_info->txq->offloads; 1103 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1104 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1105 qinfo->nb_desc = txq_info->entries; 1106 1107 sfc_adapter_unlock(sa); 1108 } 1109 1110 static uint32_t 1111 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1112 { 1113 struct sfc_adapter *sa = dev->data->dev_private; 1114 1115 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1116 1117 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1118 } 1119 1120 static int 1121 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1122 { 1123 struct sfc_dp_rxq *dp_rxq = queue; 1124 1125 return sfc_rx_qdesc_done(dp_rxq, offset); 1126 } 1127 1128 static int 1129 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1130 { 1131 struct sfc_dp_rxq *dp_rxq = queue; 1132 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1133 1134 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1135 } 1136 1137 static int 1138 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1139 { 1140 struct sfc_dp_txq *dp_txq = queue; 1141 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1142 1143 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1144 } 1145 1146 static int 1147 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1148 { 1149 struct sfc_adapter *sa = dev->data->dev_private; 1150 int rc; 1151 1152 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1153 1154 sfc_adapter_lock(sa); 1155 1156 rc = EINVAL; 1157 if (sa->state != SFC_ADAPTER_STARTED) 1158 goto fail_not_started; 1159 1160 rc = sfc_rx_qstart(sa, rx_queue_id); 1161 if (rc != 0) 1162 goto fail_rx_qstart; 1163 1164 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1165 1166 sfc_adapter_unlock(sa); 1167 1168 return 0; 1169 1170 fail_rx_qstart: 1171 fail_not_started: 1172 sfc_adapter_unlock(sa); 1173 SFC_ASSERT(rc > 0); 1174 return -rc; 1175 } 1176 1177 static int 1178 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1179 { 1180 struct sfc_adapter *sa = dev->data->dev_private; 1181 1182 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1183 1184 sfc_adapter_lock(sa); 1185 sfc_rx_qstop(sa, rx_queue_id); 1186 1187 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1188 1189 sfc_adapter_unlock(sa); 1190 1191 return 0; 1192 } 1193 1194 static int 1195 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1196 { 1197 struct sfc_adapter *sa = dev->data->dev_private; 1198 int rc; 1199 1200 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1201 1202 sfc_adapter_lock(sa); 1203 1204 rc = EINVAL; 1205 if (sa->state != SFC_ADAPTER_STARTED) 1206 goto fail_not_started; 1207 1208 rc = sfc_tx_qstart(sa, tx_queue_id); 1209 if (rc != 0) 1210 goto fail_tx_qstart; 1211 1212 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1213 1214 sfc_adapter_unlock(sa); 1215 return 0; 1216 1217 fail_tx_qstart: 1218 1219 fail_not_started: 1220 sfc_adapter_unlock(sa); 1221 SFC_ASSERT(rc > 0); 1222 return -rc; 1223 } 1224 1225 static int 1226 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1227 { 1228 struct sfc_adapter *sa = dev->data->dev_private; 1229 1230 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1231 1232 sfc_adapter_lock(sa); 1233 1234 sfc_tx_qstop(sa, tx_queue_id); 1235 1236 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1237 1238 sfc_adapter_unlock(sa); 1239 return 0; 1240 } 1241 1242 static efx_tunnel_protocol_t 1243 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1244 { 1245 switch (rte_type) { 1246 case RTE_TUNNEL_TYPE_VXLAN: 1247 return EFX_TUNNEL_PROTOCOL_VXLAN; 1248 case RTE_TUNNEL_TYPE_GENEVE: 1249 return EFX_TUNNEL_PROTOCOL_GENEVE; 1250 default: 1251 return EFX_TUNNEL_NPROTOS; 1252 } 1253 } 1254 1255 enum sfc_udp_tunnel_op_e { 1256 SFC_UDP_TUNNEL_ADD_PORT, 1257 SFC_UDP_TUNNEL_DEL_PORT, 1258 }; 1259 1260 static int 1261 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1262 struct rte_eth_udp_tunnel *tunnel_udp, 1263 enum sfc_udp_tunnel_op_e op) 1264 { 1265 struct sfc_adapter *sa = dev->data->dev_private; 1266 efx_tunnel_protocol_t tunnel_proto; 1267 int rc; 1268 1269 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1270 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1271 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1272 tunnel_udp->udp_port, tunnel_udp->prot_type); 1273 1274 tunnel_proto = 1275 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1276 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1277 rc = ENOTSUP; 1278 goto fail_bad_proto; 1279 } 1280 1281 sfc_adapter_lock(sa); 1282 1283 switch (op) { 1284 case SFC_UDP_TUNNEL_ADD_PORT: 1285 rc = efx_tunnel_config_udp_add(sa->nic, 1286 tunnel_udp->udp_port, 1287 tunnel_proto); 1288 break; 1289 case SFC_UDP_TUNNEL_DEL_PORT: 1290 rc = efx_tunnel_config_udp_remove(sa->nic, 1291 tunnel_udp->udp_port, 1292 tunnel_proto); 1293 break; 1294 default: 1295 rc = EINVAL; 1296 goto fail_bad_op; 1297 } 1298 1299 if (rc != 0) 1300 goto fail_op; 1301 1302 if (sa->state == SFC_ADAPTER_STARTED) { 1303 rc = efx_tunnel_reconfigure(sa->nic); 1304 if (rc == EAGAIN) { 1305 /* 1306 * Configuration is accepted by FW and MC reboot 1307 * is initiated to apply the changes. MC reboot 1308 * will be handled in a usual way (MC reboot 1309 * event on management event queue and adapter 1310 * restart). 1311 */ 1312 rc = 0; 1313 } else if (rc != 0) { 1314 goto fail_reconfigure; 1315 } 1316 } 1317 1318 sfc_adapter_unlock(sa); 1319 return 0; 1320 1321 fail_reconfigure: 1322 /* Remove/restore entry since the change makes the trouble */ 1323 switch (op) { 1324 case SFC_UDP_TUNNEL_ADD_PORT: 1325 (void)efx_tunnel_config_udp_remove(sa->nic, 1326 tunnel_udp->udp_port, 1327 tunnel_proto); 1328 break; 1329 case SFC_UDP_TUNNEL_DEL_PORT: 1330 (void)efx_tunnel_config_udp_add(sa->nic, 1331 tunnel_udp->udp_port, 1332 tunnel_proto); 1333 break; 1334 } 1335 1336 fail_op: 1337 fail_bad_op: 1338 sfc_adapter_unlock(sa); 1339 1340 fail_bad_proto: 1341 SFC_ASSERT(rc > 0); 1342 return -rc; 1343 } 1344 1345 static int 1346 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1347 struct rte_eth_udp_tunnel *tunnel_udp) 1348 { 1349 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1350 } 1351 1352 static int 1353 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1354 struct rte_eth_udp_tunnel *tunnel_udp) 1355 { 1356 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1357 } 1358 1359 static int 1360 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1361 struct rte_eth_rss_conf *rss_conf) 1362 { 1363 struct sfc_adapter *sa = dev->data->dev_private; 1364 struct sfc_rss *rss = &sa->rss; 1365 struct sfc_port *port = &sa->port; 1366 1367 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1368 return -ENOTSUP; 1369 1370 if (rss->channels == 0) 1371 return -EINVAL; 1372 1373 sfc_adapter_lock(sa); 1374 1375 /* 1376 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1377 * hence, conversion is done here to derive a correct set of ETH_RSS 1378 * flags which corresponds to the active EFX configuration stored 1379 * locally in 'sfc_adapter' and kept up-to-date 1380 */ 1381 rss_conf->rss_hf = sfc_efx_to_rte_hash_type(rss->hash_types); 1382 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1383 if (rss_conf->rss_key != NULL) 1384 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1385 1386 sfc_adapter_unlock(sa); 1387 1388 return 0; 1389 } 1390 1391 static int 1392 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1393 struct rte_eth_rss_conf *rss_conf) 1394 { 1395 struct sfc_adapter *sa = dev->data->dev_private; 1396 struct sfc_rss *rss = &sa->rss; 1397 struct sfc_port *port = &sa->port; 1398 unsigned int efx_hash_types; 1399 int rc = 0; 1400 1401 if (port->isolated) 1402 return -ENOTSUP; 1403 1404 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1405 sfc_err(sa, "RSS is not available"); 1406 return -ENOTSUP; 1407 } 1408 1409 if (rss->channels == 0) { 1410 sfc_err(sa, "RSS is not configured"); 1411 return -EINVAL; 1412 } 1413 1414 if ((rss_conf->rss_key != NULL) && 1415 (rss_conf->rss_key_len != sizeof(rss->key))) { 1416 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1417 sizeof(rss->key)); 1418 return -EINVAL; 1419 } 1420 1421 if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) { 1422 sfc_err(sa, "unsupported hash functions requested"); 1423 return -EINVAL; 1424 } 1425 1426 sfc_adapter_lock(sa); 1427 1428 efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf); 1429 1430 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1431 EFX_RX_HASHALG_TOEPLITZ, 1432 efx_hash_types, B_TRUE); 1433 if (rc != 0) 1434 goto fail_scale_mode_set; 1435 1436 if (rss_conf->rss_key != NULL) { 1437 if (sa->state == SFC_ADAPTER_STARTED) { 1438 rc = efx_rx_scale_key_set(sa->nic, 1439 EFX_RSS_CONTEXT_DEFAULT, 1440 rss_conf->rss_key, 1441 sizeof(rss->key)); 1442 if (rc != 0) 1443 goto fail_scale_key_set; 1444 } 1445 1446 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1447 } 1448 1449 rss->hash_types = efx_hash_types; 1450 1451 sfc_adapter_unlock(sa); 1452 1453 return 0; 1454 1455 fail_scale_key_set: 1456 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1457 EFX_RX_HASHALG_TOEPLITZ, 1458 rss->hash_types, B_TRUE) != 0) 1459 sfc_err(sa, "failed to restore RSS mode"); 1460 1461 fail_scale_mode_set: 1462 sfc_adapter_unlock(sa); 1463 return -rc; 1464 } 1465 1466 static int 1467 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1468 struct rte_eth_rss_reta_entry64 *reta_conf, 1469 uint16_t reta_size) 1470 { 1471 struct sfc_adapter *sa = dev->data->dev_private; 1472 struct sfc_rss *rss = &sa->rss; 1473 struct sfc_port *port = &sa->port; 1474 int entry; 1475 1476 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1477 return -ENOTSUP; 1478 1479 if (rss->channels == 0) 1480 return -EINVAL; 1481 1482 if (reta_size != EFX_RSS_TBL_SIZE) 1483 return -EINVAL; 1484 1485 sfc_adapter_lock(sa); 1486 1487 for (entry = 0; entry < reta_size; entry++) { 1488 int grp = entry / RTE_RETA_GROUP_SIZE; 1489 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1490 1491 if ((reta_conf[grp].mask >> grp_idx) & 1) 1492 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1493 } 1494 1495 sfc_adapter_unlock(sa); 1496 1497 return 0; 1498 } 1499 1500 static int 1501 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1502 struct rte_eth_rss_reta_entry64 *reta_conf, 1503 uint16_t reta_size) 1504 { 1505 struct sfc_adapter *sa = dev->data->dev_private; 1506 struct sfc_rss *rss = &sa->rss; 1507 struct sfc_port *port = &sa->port; 1508 unsigned int *rss_tbl_new; 1509 uint16_t entry; 1510 int rc = 0; 1511 1512 1513 if (port->isolated) 1514 return -ENOTSUP; 1515 1516 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1517 sfc_err(sa, "RSS is not available"); 1518 return -ENOTSUP; 1519 } 1520 1521 if (rss->channels == 0) { 1522 sfc_err(sa, "RSS is not configured"); 1523 return -EINVAL; 1524 } 1525 1526 if (reta_size != EFX_RSS_TBL_SIZE) { 1527 sfc_err(sa, "RETA size is wrong (should be %u)", 1528 EFX_RSS_TBL_SIZE); 1529 return -EINVAL; 1530 } 1531 1532 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1533 if (rss_tbl_new == NULL) 1534 return -ENOMEM; 1535 1536 sfc_adapter_lock(sa); 1537 1538 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1539 1540 for (entry = 0; entry < reta_size; entry++) { 1541 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1542 struct rte_eth_rss_reta_entry64 *grp; 1543 1544 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1545 1546 if (grp->mask & (1ull << grp_idx)) { 1547 if (grp->reta[grp_idx] >= rss->channels) { 1548 rc = EINVAL; 1549 goto bad_reta_entry; 1550 } 1551 rss_tbl_new[entry] = grp->reta[grp_idx]; 1552 } 1553 } 1554 1555 if (sa->state == SFC_ADAPTER_STARTED) { 1556 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1557 rss_tbl_new, EFX_RSS_TBL_SIZE); 1558 if (rc != 0) 1559 goto fail_scale_tbl_set; 1560 } 1561 1562 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1563 1564 fail_scale_tbl_set: 1565 bad_reta_entry: 1566 sfc_adapter_unlock(sa); 1567 1568 rte_free(rss_tbl_new); 1569 1570 SFC_ASSERT(rc >= 0); 1571 return -rc; 1572 } 1573 1574 static int 1575 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1576 enum rte_filter_op filter_op, 1577 void *arg) 1578 { 1579 struct sfc_adapter *sa = dev->data->dev_private; 1580 int rc = ENOTSUP; 1581 1582 sfc_log_init(sa, "entry"); 1583 1584 switch (filter_type) { 1585 case RTE_ETH_FILTER_NONE: 1586 sfc_err(sa, "Global filters configuration not supported"); 1587 break; 1588 case RTE_ETH_FILTER_MACVLAN: 1589 sfc_err(sa, "MACVLAN filters not supported"); 1590 break; 1591 case RTE_ETH_FILTER_ETHERTYPE: 1592 sfc_err(sa, "EtherType filters not supported"); 1593 break; 1594 case RTE_ETH_FILTER_FLEXIBLE: 1595 sfc_err(sa, "Flexible filters not supported"); 1596 break; 1597 case RTE_ETH_FILTER_SYN: 1598 sfc_err(sa, "SYN filters not supported"); 1599 break; 1600 case RTE_ETH_FILTER_NTUPLE: 1601 sfc_err(sa, "NTUPLE filters not supported"); 1602 break; 1603 case RTE_ETH_FILTER_TUNNEL: 1604 sfc_err(sa, "Tunnel filters not supported"); 1605 break; 1606 case RTE_ETH_FILTER_FDIR: 1607 sfc_err(sa, "Flow Director filters not supported"); 1608 break; 1609 case RTE_ETH_FILTER_HASH: 1610 sfc_err(sa, "Hash filters not supported"); 1611 break; 1612 case RTE_ETH_FILTER_GENERIC: 1613 if (filter_op != RTE_ETH_FILTER_GET) { 1614 rc = EINVAL; 1615 } else { 1616 *(const void **)arg = &sfc_flow_ops; 1617 rc = 0; 1618 } 1619 break; 1620 default: 1621 sfc_err(sa, "Unknown filter type %u", filter_type); 1622 break; 1623 } 1624 1625 sfc_log_init(sa, "exit: %d", -rc); 1626 SFC_ASSERT(rc >= 0); 1627 return -rc; 1628 } 1629 1630 static const struct eth_dev_ops sfc_eth_dev_ops = { 1631 .dev_configure = sfc_dev_configure, 1632 .dev_start = sfc_dev_start, 1633 .dev_stop = sfc_dev_stop, 1634 .dev_set_link_up = sfc_dev_set_link_up, 1635 .dev_set_link_down = sfc_dev_set_link_down, 1636 .dev_close = sfc_dev_close, 1637 .promiscuous_enable = sfc_dev_promisc_enable, 1638 .promiscuous_disable = sfc_dev_promisc_disable, 1639 .allmulticast_enable = sfc_dev_allmulti_enable, 1640 .allmulticast_disable = sfc_dev_allmulti_disable, 1641 .link_update = sfc_dev_link_update, 1642 .stats_get = sfc_stats_get, 1643 .stats_reset = sfc_stats_reset, 1644 .xstats_get = sfc_xstats_get, 1645 .xstats_reset = sfc_stats_reset, 1646 .xstats_get_names = sfc_xstats_get_names, 1647 .dev_infos_get = sfc_dev_infos_get, 1648 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1649 .mtu_set = sfc_dev_set_mtu, 1650 .rx_queue_start = sfc_rx_queue_start, 1651 .rx_queue_stop = sfc_rx_queue_stop, 1652 .tx_queue_start = sfc_tx_queue_start, 1653 .tx_queue_stop = sfc_tx_queue_stop, 1654 .rx_queue_setup = sfc_rx_queue_setup, 1655 .rx_queue_release = sfc_rx_queue_release, 1656 .rx_queue_count = sfc_rx_queue_count, 1657 .rx_descriptor_done = sfc_rx_descriptor_done, 1658 .rx_descriptor_status = sfc_rx_descriptor_status, 1659 .tx_descriptor_status = sfc_tx_descriptor_status, 1660 .tx_queue_setup = sfc_tx_queue_setup, 1661 .tx_queue_release = sfc_tx_queue_release, 1662 .flow_ctrl_get = sfc_flow_ctrl_get, 1663 .flow_ctrl_set = sfc_flow_ctrl_set, 1664 .mac_addr_set = sfc_mac_addr_set, 1665 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1666 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1667 .reta_update = sfc_dev_rss_reta_update, 1668 .reta_query = sfc_dev_rss_reta_query, 1669 .rss_hash_update = sfc_dev_rss_hash_update, 1670 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1671 .filter_ctrl = sfc_dev_filter_ctrl, 1672 .set_mc_addr_list = sfc_set_mc_addr_list, 1673 .rxq_info_get = sfc_rx_queue_info_get, 1674 .txq_info_get = sfc_tx_queue_info_get, 1675 .fw_version_get = sfc_fw_version_get, 1676 .xstats_get_by_id = sfc_xstats_get_by_id, 1677 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1678 }; 1679 1680 /** 1681 * Duplicate a string in potentially shared memory required for 1682 * multi-process support. 1683 * 1684 * strdup() allocates from process-local heap/memory. 1685 */ 1686 static char * 1687 sfc_strdup(const char *str) 1688 { 1689 size_t size; 1690 char *copy; 1691 1692 if (str == NULL) 1693 return NULL; 1694 1695 size = strlen(str) + 1; 1696 copy = rte_malloc(__func__, size, 0); 1697 if (copy != NULL) 1698 rte_memcpy(copy, str, size); 1699 1700 return copy; 1701 } 1702 1703 static int 1704 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1705 { 1706 struct sfc_adapter *sa = dev->data->dev_private; 1707 unsigned int avail_caps = 0; 1708 const char *rx_name = NULL; 1709 const char *tx_name = NULL; 1710 int rc; 1711 1712 switch (sa->family) { 1713 case EFX_FAMILY_HUNTINGTON: 1714 case EFX_FAMILY_MEDFORD: 1715 case EFX_FAMILY_MEDFORD2: 1716 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1717 break; 1718 default: 1719 break; 1720 } 1721 1722 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1723 sfc_kvarg_string_handler, &rx_name); 1724 if (rc != 0) 1725 goto fail_kvarg_rx_datapath; 1726 1727 if (rx_name != NULL) { 1728 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1729 if (sa->dp_rx == NULL) { 1730 sfc_err(sa, "Rx datapath %s not found", rx_name); 1731 rc = ENOENT; 1732 goto fail_dp_rx; 1733 } 1734 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1735 sfc_err(sa, 1736 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1737 rx_name); 1738 rc = EINVAL; 1739 goto fail_dp_rx_caps; 1740 } 1741 } else { 1742 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1743 if (sa->dp_rx == NULL) { 1744 sfc_err(sa, "Rx datapath by caps %#x not found", 1745 avail_caps); 1746 rc = ENOENT; 1747 goto fail_dp_rx; 1748 } 1749 } 1750 1751 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1752 if (sa->dp_rx_name == NULL) { 1753 rc = ENOMEM; 1754 goto fail_dp_rx_name; 1755 } 1756 1757 sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name); 1758 1759 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1760 1761 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1762 sfc_kvarg_string_handler, &tx_name); 1763 if (rc != 0) 1764 goto fail_kvarg_tx_datapath; 1765 1766 if (tx_name != NULL) { 1767 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1768 if (sa->dp_tx == NULL) { 1769 sfc_err(sa, "Tx datapath %s not found", tx_name); 1770 rc = ENOENT; 1771 goto fail_dp_tx; 1772 } 1773 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1774 sfc_err(sa, 1775 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1776 tx_name); 1777 rc = EINVAL; 1778 goto fail_dp_tx_caps; 1779 } 1780 } else { 1781 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1782 if (sa->dp_tx == NULL) { 1783 sfc_err(sa, "Tx datapath by caps %#x not found", 1784 avail_caps); 1785 rc = ENOENT; 1786 goto fail_dp_tx; 1787 } 1788 } 1789 1790 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1791 if (sa->dp_tx_name == NULL) { 1792 rc = ENOMEM; 1793 goto fail_dp_tx_name; 1794 } 1795 1796 sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name); 1797 1798 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1799 1800 dev->dev_ops = &sfc_eth_dev_ops; 1801 1802 return 0; 1803 1804 fail_dp_tx_name: 1805 fail_dp_tx_caps: 1806 sa->dp_tx = NULL; 1807 1808 fail_dp_tx: 1809 fail_kvarg_tx_datapath: 1810 rte_free(sa->dp_rx_name); 1811 sa->dp_rx_name = NULL; 1812 1813 fail_dp_rx_name: 1814 fail_dp_rx_caps: 1815 sa->dp_rx = NULL; 1816 1817 fail_dp_rx: 1818 fail_kvarg_rx_datapath: 1819 return rc; 1820 } 1821 1822 static void 1823 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1824 { 1825 struct sfc_adapter *sa = dev->data->dev_private; 1826 1827 dev->dev_ops = NULL; 1828 dev->rx_pkt_burst = NULL; 1829 dev->tx_pkt_burst = NULL; 1830 1831 rte_free(sa->dp_tx_name); 1832 sa->dp_tx_name = NULL; 1833 sa->dp_tx = NULL; 1834 1835 rte_free(sa->dp_rx_name); 1836 sa->dp_rx_name = NULL; 1837 sa->dp_rx = NULL; 1838 } 1839 1840 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1841 .rxq_info_get = sfc_rx_queue_info_get, 1842 .txq_info_get = sfc_tx_queue_info_get, 1843 }; 1844 1845 static int 1846 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1847 { 1848 /* 1849 * Device private data has really many process-local pointers. 1850 * Below code should be extremely careful to use data located 1851 * in shared memory only. 1852 */ 1853 struct sfc_adapter *sa = dev->data->dev_private; 1854 const struct sfc_dp_rx *dp_rx; 1855 const struct sfc_dp_tx *dp_tx; 1856 int rc; 1857 1858 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1859 if (dp_rx == NULL) { 1860 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name); 1861 rc = ENOENT; 1862 goto fail_dp_rx; 1863 } 1864 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1865 sfc_err(sa, "%s Rx datapath does not support multi-process", 1866 sa->dp_tx_name); 1867 rc = EINVAL; 1868 goto fail_dp_rx_multi_process; 1869 } 1870 1871 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1872 if (dp_tx == NULL) { 1873 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1874 rc = ENOENT; 1875 goto fail_dp_tx; 1876 } 1877 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1878 sfc_err(sa, "%s Tx datapath does not support multi-process", 1879 sa->dp_tx_name); 1880 rc = EINVAL; 1881 goto fail_dp_tx_multi_process; 1882 } 1883 1884 dev->rx_pkt_burst = dp_rx->pkt_burst; 1885 dev->tx_pkt_burst = dp_tx->pkt_burst; 1886 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1887 1888 return 0; 1889 1890 fail_dp_tx_multi_process: 1891 fail_dp_tx: 1892 fail_dp_rx_multi_process: 1893 fail_dp_rx: 1894 return rc; 1895 } 1896 1897 static void 1898 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1899 { 1900 dev->dev_ops = NULL; 1901 dev->tx_pkt_burst = NULL; 1902 dev->rx_pkt_burst = NULL; 1903 } 1904 1905 static void 1906 sfc_register_dp(void) 1907 { 1908 /* Register once */ 1909 if (TAILQ_EMPTY(&sfc_dp_head)) { 1910 /* Prefer EF10 datapath */ 1911 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1912 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1913 1914 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1915 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1916 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1917 } 1918 } 1919 1920 static int 1921 sfc_eth_dev_init(struct rte_eth_dev *dev) 1922 { 1923 struct sfc_adapter *sa = dev->data->dev_private; 1924 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1925 int rc; 1926 const efx_nic_cfg_t *encp; 1927 const struct ether_addr *from; 1928 1929 sfc_register_dp(); 1930 1931 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1932 return -sfc_eth_dev_secondary_set_ops(dev); 1933 1934 /* Required for logging */ 1935 sa->pci_addr = pci_dev->addr; 1936 sa->port_id = dev->data->port_id; 1937 1938 sa->eth_dev = dev; 1939 1940 /* Copy PCI device info to the dev->data */ 1941 rte_eth_copy_pci_info(dev, pci_dev); 1942 1943 sa->logtype_main = sfc_register_logtype(sa, SFC_LOGTYPE_MAIN_STR, 1944 RTE_LOG_NOTICE); 1945 1946 rc = sfc_kvargs_parse(sa); 1947 if (rc != 0) 1948 goto fail_kvargs_parse; 1949 1950 sfc_log_init(sa, "entry"); 1951 1952 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1953 if (dev->data->mac_addrs == NULL) { 1954 rc = ENOMEM; 1955 goto fail_mac_addrs; 1956 } 1957 1958 sfc_adapter_lock_init(sa); 1959 sfc_adapter_lock(sa); 1960 1961 sfc_log_init(sa, "probing"); 1962 rc = sfc_probe(sa); 1963 if (rc != 0) 1964 goto fail_probe; 1965 1966 sfc_log_init(sa, "set device ops"); 1967 rc = sfc_eth_dev_set_ops(dev); 1968 if (rc != 0) 1969 goto fail_set_ops; 1970 1971 sfc_log_init(sa, "attaching"); 1972 rc = sfc_attach(sa); 1973 if (rc != 0) 1974 goto fail_attach; 1975 1976 encp = efx_nic_cfg_get(sa->nic); 1977 1978 /* 1979 * The arguments are really reverse order in comparison to 1980 * Linux kernel. Copy from NIC config to Ethernet device data. 1981 */ 1982 from = (const struct ether_addr *)(encp->enc_mac_addr); 1983 ether_addr_copy(from, &dev->data->mac_addrs[0]); 1984 1985 sfc_adapter_unlock(sa); 1986 1987 sfc_log_init(sa, "done"); 1988 return 0; 1989 1990 fail_attach: 1991 sfc_eth_dev_clear_ops(dev); 1992 1993 fail_set_ops: 1994 sfc_unprobe(sa); 1995 1996 fail_probe: 1997 sfc_adapter_unlock(sa); 1998 sfc_adapter_lock_fini(sa); 1999 rte_free(dev->data->mac_addrs); 2000 dev->data->mac_addrs = NULL; 2001 2002 fail_mac_addrs: 2003 sfc_kvargs_cleanup(sa); 2004 2005 fail_kvargs_parse: 2006 sfc_log_init(sa, "failed %d", rc); 2007 SFC_ASSERT(rc > 0); 2008 return -rc; 2009 } 2010 2011 static int 2012 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2013 { 2014 struct sfc_adapter *sa; 2015 2016 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2017 sfc_eth_dev_secondary_clear_ops(dev); 2018 return 0; 2019 } 2020 2021 sa = dev->data->dev_private; 2022 sfc_log_init(sa, "entry"); 2023 2024 sfc_adapter_lock(sa); 2025 2026 sfc_eth_dev_clear_ops(dev); 2027 2028 sfc_detach(sa); 2029 sfc_unprobe(sa); 2030 2031 rte_free(dev->data->mac_addrs); 2032 dev->data->mac_addrs = NULL; 2033 2034 sfc_kvargs_cleanup(sa); 2035 2036 sfc_adapter_unlock(sa); 2037 sfc_adapter_lock_fini(sa); 2038 2039 sfc_log_init(sa, "done"); 2040 2041 /* Required for logging, so cleanup last */ 2042 sa->eth_dev = NULL; 2043 return 0; 2044 } 2045 2046 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2047 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2048 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2049 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2050 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2051 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2052 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2053 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2054 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2055 { .vendor_id = 0 /* sentinel */ } 2056 }; 2057 2058 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2059 struct rte_pci_device *pci_dev) 2060 { 2061 return rte_eth_dev_pci_generic_probe(pci_dev, 2062 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2063 } 2064 2065 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2066 { 2067 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2068 } 2069 2070 static struct rte_pci_driver sfc_efx_pmd = { 2071 .id_table = pci_id_sfc_efx_map, 2072 .drv_flags = 2073 RTE_PCI_DRV_INTR_LSC | 2074 RTE_PCI_DRV_NEED_MAPPING, 2075 .probe = sfc_eth_dev_pci_probe, 2076 .remove = sfc_eth_dev_pci_remove, 2077 }; 2078 2079 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2080 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2081 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2082 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2083 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2084 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2085 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2086 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2087 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2088 2089 RTE_INIT(sfc_driver_register_logtype); 2090 static void 2091 sfc_driver_register_logtype(void) 2092 { 2093 int ret; 2094 2095 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2096 RTE_LOG_NOTICE); 2097 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2098 } 2099