1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 17 #include "efx.h" 18 19 #include "sfc.h" 20 #include "sfc_debug.h" 21 #include "sfc_log.h" 22 #include "sfc_kvargs.h" 23 #include "sfc_ev.h" 24 #include "sfc_rx.h" 25 #include "sfc_tx.h" 26 #include "sfc_flow.h" 27 #include "sfc_dp.h" 28 #include "sfc_dp_rx.h" 29 30 static struct sfc_dp_list sfc_dp_head = 31 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 32 33 static int 34 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 35 { 36 struct sfc_adapter *sa = dev->data->dev_private; 37 efx_nic_fw_info_t enfi; 38 int ret; 39 int rc; 40 41 /* 42 * Return value of the callback is likely supposed to be 43 * equal to or greater than 0, nevertheless, if an error 44 * occurs, it will be desirable to pass it to the caller 45 */ 46 if ((fw_version == NULL) || (fw_size == 0)) 47 return -EINVAL; 48 49 rc = efx_nic_get_fw_version(sa->nic, &enfi); 50 if (rc != 0) 51 return -rc; 52 53 ret = snprintf(fw_version, fw_size, 54 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 55 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 56 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 57 if (ret < 0) 58 return ret; 59 60 if (enfi.enfi_dpcpu_fw_ids_valid) { 61 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 62 int ret_extra; 63 64 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 65 fw_size - dpcpu_fw_ids_offset, 66 " rx%" PRIx16 " tx%" PRIx16, 67 enfi.enfi_rx_dpcpu_fw_id, 68 enfi.enfi_tx_dpcpu_fw_id); 69 if (ret_extra < 0) 70 return ret_extra; 71 72 ret += ret_extra; 73 } 74 75 if (fw_size < (size_t)(++ret)) 76 return ret; 77 else 78 return 0; 79 } 80 81 static void 82 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 83 { 84 struct sfc_adapter *sa = dev->data->dev_private; 85 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 86 87 sfc_log_init(sa, "entry"); 88 89 dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev); 90 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 91 92 /* Autonegotiation may be disabled */ 93 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 94 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 95 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 96 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 97 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 98 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 99 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 100 101 dev_info->max_rx_queues = sa->rxq_max; 102 dev_info->max_tx_queues = sa->txq_max; 103 104 /* By default packets are dropped if no descriptors are available */ 105 dev_info->default_rxconf.rx_drop_en = 1; 106 107 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa); 108 109 dev_info->tx_offload_capa = 110 DEV_TX_OFFLOAD_IPV4_CKSUM | 111 DEV_TX_OFFLOAD_UDP_CKSUM | 112 DEV_TX_OFFLOAD_TCP_CKSUM; 113 114 if (encp->enc_tunnel_encapsulations_supported != 0) 115 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM; 116 117 dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP; 118 if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) || 119 !encp->enc_hw_tx_insert_vlan_enabled) 120 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL; 121 else 122 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_VLAN_INSERT; 123 124 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG) 125 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS; 126 127 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL) 128 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP; 129 130 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT) 131 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT; 132 133 #if EFSYS_OPT_RX_SCALE 134 if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) { 135 dev_info->reta_size = EFX_RSS_TBL_SIZE; 136 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 137 dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS; 138 } 139 #endif 140 141 if (sa->tso) 142 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_TCP_TSO; 143 144 /* Initialize to hardware limits */ 145 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 146 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 147 /* The RXQ hardware requires that the descriptor count is a power 148 * of 2, but rx_desc_lim cannot properly describe that constraint. 149 */ 150 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 151 152 /* Initialize to hardware limits */ 153 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 154 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 155 /* 156 * The TXQ hardware requires that the descriptor count is a power 157 * of 2, but tx_desc_lim cannot properly describe that constraint 158 */ 159 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 160 161 if (sa->dp_rx->get_dev_info != NULL) 162 sa->dp_rx->get_dev_info(dev_info); 163 if (sa->dp_tx->get_dev_info != NULL) 164 sa->dp_tx->get_dev_info(dev_info); 165 } 166 167 static const uint32_t * 168 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 169 { 170 struct sfc_adapter *sa = dev->data->dev_private; 171 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 172 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 173 174 return sa->dp_rx->supported_ptypes_get(tunnel_encaps); 175 } 176 177 static int 178 sfc_dev_configure(struct rte_eth_dev *dev) 179 { 180 struct rte_eth_dev_data *dev_data = dev->data; 181 struct sfc_adapter *sa = dev_data->dev_private; 182 int rc; 183 184 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 185 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 186 187 sfc_adapter_lock(sa); 188 switch (sa->state) { 189 case SFC_ADAPTER_CONFIGURED: 190 /* FALLTHROUGH */ 191 case SFC_ADAPTER_INITIALIZED: 192 rc = sfc_configure(sa); 193 break; 194 default: 195 sfc_err(sa, "unexpected adapter state %u to configure", 196 sa->state); 197 rc = EINVAL; 198 break; 199 } 200 sfc_adapter_unlock(sa); 201 202 sfc_log_init(sa, "done %d", rc); 203 SFC_ASSERT(rc >= 0); 204 return -rc; 205 } 206 207 static int 208 sfc_dev_start(struct rte_eth_dev *dev) 209 { 210 struct sfc_adapter *sa = dev->data->dev_private; 211 int rc; 212 213 sfc_log_init(sa, "entry"); 214 215 sfc_adapter_lock(sa); 216 rc = sfc_start(sa); 217 sfc_adapter_unlock(sa); 218 219 sfc_log_init(sa, "done %d", rc); 220 SFC_ASSERT(rc >= 0); 221 return -rc; 222 } 223 224 static int 225 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 226 { 227 struct sfc_adapter *sa = dev->data->dev_private; 228 struct rte_eth_link *dev_link = &dev->data->dev_link; 229 struct rte_eth_link old_link; 230 struct rte_eth_link current_link; 231 232 sfc_log_init(sa, "entry"); 233 234 retry: 235 EFX_STATIC_ASSERT(sizeof(*dev_link) == sizeof(rte_atomic64_t)); 236 *(int64_t *)&old_link = rte_atomic64_read((rte_atomic64_t *)dev_link); 237 238 if (sa->state != SFC_ADAPTER_STARTED) { 239 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 240 if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link, 241 *(uint64_t *)&old_link, 242 *(uint64_t *)¤t_link)) 243 goto retry; 244 } else if (wait_to_complete) { 245 efx_link_mode_t link_mode; 246 247 if (efx_port_poll(sa->nic, &link_mode) != 0) 248 link_mode = EFX_LINK_UNKNOWN; 249 sfc_port_link_mode_to_info(link_mode, ¤t_link); 250 251 if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link, 252 *(uint64_t *)&old_link, 253 *(uint64_t *)¤t_link)) 254 goto retry; 255 } else { 256 sfc_ev_mgmt_qpoll(sa); 257 *(int64_t *)¤t_link = 258 rte_atomic64_read((rte_atomic64_t *)dev_link); 259 } 260 261 if (old_link.link_status != current_link.link_status) 262 sfc_info(sa, "Link status is %s", 263 current_link.link_status ? "UP" : "DOWN"); 264 265 return old_link.link_status == current_link.link_status ? 0 : -1; 266 } 267 268 static void 269 sfc_dev_stop(struct rte_eth_dev *dev) 270 { 271 struct sfc_adapter *sa = dev->data->dev_private; 272 273 sfc_log_init(sa, "entry"); 274 275 sfc_adapter_lock(sa); 276 sfc_stop(sa); 277 sfc_adapter_unlock(sa); 278 279 sfc_log_init(sa, "done"); 280 } 281 282 static int 283 sfc_dev_set_link_up(struct rte_eth_dev *dev) 284 { 285 struct sfc_adapter *sa = dev->data->dev_private; 286 int rc; 287 288 sfc_log_init(sa, "entry"); 289 290 sfc_adapter_lock(sa); 291 rc = sfc_start(sa); 292 sfc_adapter_unlock(sa); 293 294 SFC_ASSERT(rc >= 0); 295 return -rc; 296 } 297 298 static int 299 sfc_dev_set_link_down(struct rte_eth_dev *dev) 300 { 301 struct sfc_adapter *sa = dev->data->dev_private; 302 303 sfc_log_init(sa, "entry"); 304 305 sfc_adapter_lock(sa); 306 sfc_stop(sa); 307 sfc_adapter_unlock(sa); 308 309 return 0; 310 } 311 312 static void 313 sfc_dev_close(struct rte_eth_dev *dev) 314 { 315 struct sfc_adapter *sa = dev->data->dev_private; 316 317 sfc_log_init(sa, "entry"); 318 319 sfc_adapter_lock(sa); 320 switch (sa->state) { 321 case SFC_ADAPTER_STARTED: 322 sfc_stop(sa); 323 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 324 /* FALLTHROUGH */ 325 case SFC_ADAPTER_CONFIGURED: 326 sfc_close(sa); 327 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 328 /* FALLTHROUGH */ 329 case SFC_ADAPTER_INITIALIZED: 330 break; 331 default: 332 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 333 break; 334 } 335 sfc_adapter_unlock(sa); 336 337 sfc_log_init(sa, "done"); 338 } 339 340 static void 341 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 342 boolean_t enabled) 343 { 344 struct sfc_port *port; 345 boolean_t *toggle; 346 struct sfc_adapter *sa = dev->data->dev_private; 347 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 348 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 349 350 sfc_adapter_lock(sa); 351 352 port = &sa->port; 353 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 354 355 if (*toggle != enabled) { 356 *toggle = enabled; 357 358 if (port->isolated) { 359 sfc_warn(sa, "isolated mode is active on the port"); 360 sfc_warn(sa, "the change is to be applied on the next " 361 "start provided that isolated mode is " 362 "disabled prior the next start"); 363 } else if ((sa->state == SFC_ADAPTER_STARTED) && 364 (sfc_set_rx_mode(sa) != 0)) { 365 *toggle = !(enabled); 366 sfc_warn(sa, "Failed to %s %s mode", 367 ((enabled) ? "enable" : "disable"), desc); 368 } 369 } 370 371 sfc_adapter_unlock(sa); 372 } 373 374 static void 375 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 376 { 377 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 378 } 379 380 static void 381 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 382 { 383 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 384 } 385 386 static void 387 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 388 { 389 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 390 } 391 392 static void 393 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 394 { 395 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 396 } 397 398 static int 399 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 400 uint16_t nb_rx_desc, unsigned int socket_id, 401 const struct rte_eth_rxconf *rx_conf, 402 struct rte_mempool *mb_pool) 403 { 404 struct sfc_adapter *sa = dev->data->dev_private; 405 int rc; 406 407 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 408 rx_queue_id, nb_rx_desc, socket_id); 409 410 sfc_adapter_lock(sa); 411 412 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 413 rx_conf, mb_pool); 414 if (rc != 0) 415 goto fail_rx_qinit; 416 417 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 418 419 sfc_adapter_unlock(sa); 420 421 return 0; 422 423 fail_rx_qinit: 424 sfc_adapter_unlock(sa); 425 SFC_ASSERT(rc > 0); 426 return -rc; 427 } 428 429 static void 430 sfc_rx_queue_release(void *queue) 431 { 432 struct sfc_dp_rxq *dp_rxq = queue; 433 struct sfc_rxq *rxq; 434 struct sfc_adapter *sa; 435 unsigned int sw_index; 436 437 if (dp_rxq == NULL) 438 return; 439 440 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 441 sa = rxq->evq->sa; 442 sfc_adapter_lock(sa); 443 444 sw_index = sfc_rxq_sw_index(rxq); 445 446 sfc_log_init(sa, "RxQ=%u", sw_index); 447 448 sa->eth_dev->data->rx_queues[sw_index] = NULL; 449 450 sfc_rx_qfini(sa, sw_index); 451 452 sfc_adapter_unlock(sa); 453 } 454 455 static int 456 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 457 uint16_t nb_tx_desc, unsigned int socket_id, 458 const struct rte_eth_txconf *tx_conf) 459 { 460 struct sfc_adapter *sa = dev->data->dev_private; 461 int rc; 462 463 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 464 tx_queue_id, nb_tx_desc, socket_id); 465 466 sfc_adapter_lock(sa); 467 468 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 469 if (rc != 0) 470 goto fail_tx_qinit; 471 472 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 473 474 sfc_adapter_unlock(sa); 475 return 0; 476 477 fail_tx_qinit: 478 sfc_adapter_unlock(sa); 479 SFC_ASSERT(rc > 0); 480 return -rc; 481 } 482 483 static void 484 sfc_tx_queue_release(void *queue) 485 { 486 struct sfc_dp_txq *dp_txq = queue; 487 struct sfc_txq *txq; 488 unsigned int sw_index; 489 struct sfc_adapter *sa; 490 491 if (dp_txq == NULL) 492 return; 493 494 txq = sfc_txq_by_dp_txq(dp_txq); 495 sw_index = sfc_txq_sw_index(txq); 496 497 SFC_ASSERT(txq->evq != NULL); 498 sa = txq->evq->sa; 499 500 sfc_log_init(sa, "TxQ = %u", sw_index); 501 502 sfc_adapter_lock(sa); 503 504 SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues); 505 sa->eth_dev->data->tx_queues[sw_index] = NULL; 506 507 sfc_tx_qfini(sa, sw_index); 508 509 sfc_adapter_unlock(sa); 510 } 511 512 static int 513 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 514 { 515 struct sfc_adapter *sa = dev->data->dev_private; 516 struct sfc_port *port = &sa->port; 517 uint64_t *mac_stats; 518 int ret; 519 520 rte_spinlock_lock(&port->mac_stats_lock); 521 522 ret = sfc_port_update_mac_stats(sa); 523 if (ret != 0) 524 goto unlock; 525 526 mac_stats = port->mac_stats_buf; 527 528 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 529 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 530 stats->ipackets = 531 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 532 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 533 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 534 stats->opackets = 535 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 536 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 537 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 538 stats->ibytes = 539 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 540 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 541 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 542 stats->obytes = 543 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 544 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 545 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 546 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW]; 547 stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 548 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 549 } else { 550 stats->ipackets = mac_stats[EFX_MAC_RX_PKTS]; 551 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 552 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 553 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 554 /* 555 * Take into account stats which are whenever supported 556 * on EF10. If some stat is not supported by current 557 * firmware variant or HW revision, it is guaranteed 558 * to be zero in mac_stats. 559 */ 560 stats->imissed = 561 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 562 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 563 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 564 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 565 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 566 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 567 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 568 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 569 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 570 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 571 stats->ierrors = 572 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 573 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 574 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 575 /* no oerrors counters supported on EF10 */ 576 } 577 578 unlock: 579 rte_spinlock_unlock(&port->mac_stats_lock); 580 SFC_ASSERT(ret >= 0); 581 return -ret; 582 } 583 584 static void 585 sfc_stats_reset(struct rte_eth_dev *dev) 586 { 587 struct sfc_adapter *sa = dev->data->dev_private; 588 struct sfc_port *port = &sa->port; 589 int rc; 590 591 if (sa->state != SFC_ADAPTER_STARTED) { 592 /* 593 * The operation cannot be done if port is not started; it 594 * will be scheduled to be done during the next port start 595 */ 596 port->mac_stats_reset_pending = B_TRUE; 597 return; 598 } 599 600 rc = sfc_port_reset_mac_stats(sa); 601 if (rc != 0) 602 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 603 } 604 605 static int 606 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 607 unsigned int xstats_count) 608 { 609 struct sfc_adapter *sa = dev->data->dev_private; 610 struct sfc_port *port = &sa->port; 611 uint64_t *mac_stats; 612 int rc; 613 unsigned int i; 614 int nstats = 0; 615 616 rte_spinlock_lock(&port->mac_stats_lock); 617 618 rc = sfc_port_update_mac_stats(sa); 619 if (rc != 0) { 620 SFC_ASSERT(rc > 0); 621 nstats = -rc; 622 goto unlock; 623 } 624 625 mac_stats = port->mac_stats_buf; 626 627 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 628 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 629 if (xstats != NULL && nstats < (int)xstats_count) { 630 xstats[nstats].id = nstats; 631 xstats[nstats].value = mac_stats[i]; 632 } 633 nstats++; 634 } 635 } 636 637 unlock: 638 rte_spinlock_unlock(&port->mac_stats_lock); 639 640 return nstats; 641 } 642 643 static int 644 sfc_xstats_get_names(struct rte_eth_dev *dev, 645 struct rte_eth_xstat_name *xstats_names, 646 unsigned int xstats_count) 647 { 648 struct sfc_adapter *sa = dev->data->dev_private; 649 struct sfc_port *port = &sa->port; 650 unsigned int i; 651 unsigned int nstats = 0; 652 653 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 654 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 655 if (xstats_names != NULL && nstats < xstats_count) 656 strncpy(xstats_names[nstats].name, 657 efx_mac_stat_name(sa->nic, i), 658 sizeof(xstats_names[0].name)); 659 nstats++; 660 } 661 } 662 663 return nstats; 664 } 665 666 static int 667 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 668 uint64_t *values, unsigned int n) 669 { 670 struct sfc_adapter *sa = dev->data->dev_private; 671 struct sfc_port *port = &sa->port; 672 uint64_t *mac_stats; 673 unsigned int nb_supported = 0; 674 unsigned int nb_written = 0; 675 unsigned int i; 676 int ret; 677 int rc; 678 679 if (unlikely(values == NULL) || 680 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 681 return port->mac_stats_nb_supported; 682 683 rte_spinlock_lock(&port->mac_stats_lock); 684 685 rc = sfc_port_update_mac_stats(sa); 686 if (rc != 0) { 687 SFC_ASSERT(rc > 0); 688 ret = -rc; 689 goto unlock; 690 } 691 692 mac_stats = port->mac_stats_buf; 693 694 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 695 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 696 continue; 697 698 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 699 values[nb_written++] = mac_stats[i]; 700 701 ++nb_supported; 702 } 703 704 ret = nb_written; 705 706 unlock: 707 rte_spinlock_unlock(&port->mac_stats_lock); 708 709 return ret; 710 } 711 712 static int 713 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 714 struct rte_eth_xstat_name *xstats_names, 715 const uint64_t *ids, unsigned int size) 716 { 717 struct sfc_adapter *sa = dev->data->dev_private; 718 struct sfc_port *port = &sa->port; 719 unsigned int nb_supported = 0; 720 unsigned int nb_written = 0; 721 unsigned int i; 722 723 if (unlikely(xstats_names == NULL) || 724 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 725 return port->mac_stats_nb_supported; 726 727 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 728 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 729 continue; 730 731 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 732 char *name = xstats_names[nb_written++].name; 733 734 strncpy(name, efx_mac_stat_name(sa->nic, i), 735 sizeof(xstats_names[0].name)); 736 name[sizeof(xstats_names[0].name) - 1] = '\0'; 737 } 738 739 ++nb_supported; 740 } 741 742 return nb_written; 743 } 744 745 static int 746 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 747 { 748 struct sfc_adapter *sa = dev->data->dev_private; 749 unsigned int wanted_fc, link_fc; 750 751 memset(fc_conf, 0, sizeof(*fc_conf)); 752 753 sfc_adapter_lock(sa); 754 755 if (sa->state == SFC_ADAPTER_STARTED) 756 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 757 else 758 link_fc = sa->port.flow_ctrl; 759 760 switch (link_fc) { 761 case 0: 762 fc_conf->mode = RTE_FC_NONE; 763 break; 764 case EFX_FCNTL_RESPOND: 765 fc_conf->mode = RTE_FC_RX_PAUSE; 766 break; 767 case EFX_FCNTL_GENERATE: 768 fc_conf->mode = RTE_FC_TX_PAUSE; 769 break; 770 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 771 fc_conf->mode = RTE_FC_FULL; 772 break; 773 default: 774 sfc_err(sa, "%s: unexpected flow control value %#x", 775 __func__, link_fc); 776 } 777 778 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 779 780 sfc_adapter_unlock(sa); 781 782 return 0; 783 } 784 785 static int 786 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 787 { 788 struct sfc_adapter *sa = dev->data->dev_private; 789 struct sfc_port *port = &sa->port; 790 unsigned int fcntl; 791 int rc; 792 793 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 794 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 795 fc_conf->mac_ctrl_frame_fwd != 0) { 796 sfc_err(sa, "unsupported flow control settings specified"); 797 rc = EINVAL; 798 goto fail_inval; 799 } 800 801 switch (fc_conf->mode) { 802 case RTE_FC_NONE: 803 fcntl = 0; 804 break; 805 case RTE_FC_RX_PAUSE: 806 fcntl = EFX_FCNTL_RESPOND; 807 break; 808 case RTE_FC_TX_PAUSE: 809 fcntl = EFX_FCNTL_GENERATE; 810 break; 811 case RTE_FC_FULL: 812 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 813 break; 814 default: 815 rc = EINVAL; 816 goto fail_inval; 817 } 818 819 sfc_adapter_lock(sa); 820 821 if (sa->state == SFC_ADAPTER_STARTED) { 822 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 823 if (rc != 0) 824 goto fail_mac_fcntl_set; 825 } 826 827 port->flow_ctrl = fcntl; 828 port->flow_ctrl_autoneg = fc_conf->autoneg; 829 830 sfc_adapter_unlock(sa); 831 832 return 0; 833 834 fail_mac_fcntl_set: 835 sfc_adapter_unlock(sa); 836 fail_inval: 837 SFC_ASSERT(rc > 0); 838 return -rc; 839 } 840 841 static int 842 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 843 { 844 struct sfc_adapter *sa = dev->data->dev_private; 845 size_t pdu = EFX_MAC_PDU(mtu); 846 size_t old_pdu; 847 int rc; 848 849 sfc_log_init(sa, "mtu=%u", mtu); 850 851 rc = EINVAL; 852 if (pdu < EFX_MAC_PDU_MIN) { 853 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 854 (unsigned int)mtu, (unsigned int)pdu, 855 EFX_MAC_PDU_MIN); 856 goto fail_inval; 857 } 858 if (pdu > EFX_MAC_PDU_MAX) { 859 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 860 (unsigned int)mtu, (unsigned int)pdu, 861 EFX_MAC_PDU_MAX); 862 goto fail_inval; 863 } 864 865 sfc_adapter_lock(sa); 866 867 if (pdu != sa->port.pdu) { 868 if (sa->state == SFC_ADAPTER_STARTED) { 869 sfc_stop(sa); 870 871 old_pdu = sa->port.pdu; 872 sa->port.pdu = pdu; 873 rc = sfc_start(sa); 874 if (rc != 0) 875 goto fail_start; 876 } else { 877 sa->port.pdu = pdu; 878 } 879 } 880 881 /* 882 * The driver does not use it, but other PMDs update jumbo_frame 883 * flag and max_rx_pkt_len when MTU is set. 884 */ 885 dev->data->dev_conf.rxmode.jumbo_frame = (mtu > ETHER_MAX_LEN); 886 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 887 888 sfc_adapter_unlock(sa); 889 890 sfc_log_init(sa, "done"); 891 return 0; 892 893 fail_start: 894 sa->port.pdu = old_pdu; 895 if (sfc_start(sa) != 0) 896 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 897 "PDU max size - port is stopped", 898 (unsigned int)pdu, (unsigned int)old_pdu); 899 sfc_adapter_unlock(sa); 900 901 fail_inval: 902 sfc_log_init(sa, "failed %d", rc); 903 SFC_ASSERT(rc > 0); 904 return -rc; 905 } 906 static void 907 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 908 { 909 struct sfc_adapter *sa = dev->data->dev_private; 910 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 911 struct sfc_port *port = &sa->port; 912 int rc; 913 914 sfc_adapter_lock(sa); 915 916 /* 917 * Copy the address to the device private data so that 918 * it could be recalled in the case of adapter restart. 919 */ 920 ether_addr_copy(mac_addr, &port->default_mac_addr); 921 922 if (port->isolated) { 923 sfc_err(sa, "isolated mode is active on the port"); 924 sfc_err(sa, "will not set MAC address"); 925 goto unlock; 926 } 927 928 if (sa->state != SFC_ADAPTER_STARTED) { 929 sfc_info(sa, "the port is not started"); 930 sfc_info(sa, "the new MAC address will be set on port start"); 931 932 goto unlock; 933 } 934 935 if (encp->enc_allow_set_mac_with_installed_filters) { 936 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 937 if (rc != 0) { 938 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 939 goto unlock; 940 } 941 942 /* 943 * Changing the MAC address by means of MCDI request 944 * has no effect on received traffic, therefore 945 * we also need to update unicast filters 946 */ 947 rc = sfc_set_rx_mode(sa); 948 if (rc != 0) 949 sfc_err(sa, "cannot set filter (rc = %u)", rc); 950 } else { 951 sfc_warn(sa, "cannot set MAC address with filters installed"); 952 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 953 sfc_warn(sa, "(some traffic may be dropped)"); 954 955 /* 956 * Since setting MAC address with filters installed is not 957 * allowed on the adapter, the new MAC address will be set 958 * by means of adapter restart. sfc_start() shall retrieve 959 * the new address from the device private data and set it. 960 */ 961 sfc_stop(sa); 962 rc = sfc_start(sa); 963 if (rc != 0) 964 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 965 } 966 967 unlock: 968 /* 969 * In the case of failure sa->port->default_mac_addr does not 970 * need rollback since no error code is returned, and the upper 971 * API will anyway update the external MAC address storage. 972 * To be consistent with that new value it is better to keep 973 * the device private value the same. 974 */ 975 sfc_adapter_unlock(sa); 976 } 977 978 979 static int 980 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 981 uint32_t nb_mc_addr) 982 { 983 struct sfc_adapter *sa = dev->data->dev_private; 984 struct sfc_port *port = &sa->port; 985 uint8_t *mc_addrs = port->mcast_addrs; 986 int rc; 987 unsigned int i; 988 989 if (port->isolated) { 990 sfc_err(sa, "isolated mode is active on the port"); 991 sfc_err(sa, "will not set multicast address list"); 992 return -ENOTSUP; 993 } 994 995 if (mc_addrs == NULL) 996 return -ENOBUFS; 997 998 if (nb_mc_addr > port->max_mcast_addrs) { 999 sfc_err(sa, "too many multicast addresses: %u > %u", 1000 nb_mc_addr, port->max_mcast_addrs); 1001 return -EINVAL; 1002 } 1003 1004 for (i = 0; i < nb_mc_addr; ++i) { 1005 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1006 EFX_MAC_ADDR_LEN); 1007 mc_addrs += EFX_MAC_ADDR_LEN; 1008 } 1009 1010 port->nb_mcast_addrs = nb_mc_addr; 1011 1012 if (sa->state != SFC_ADAPTER_STARTED) 1013 return 0; 1014 1015 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1016 port->nb_mcast_addrs); 1017 if (rc != 0) 1018 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1019 1020 SFC_ASSERT(rc > 0); 1021 return -rc; 1022 } 1023 1024 /* 1025 * The function is used by the secondary process as well. It must not 1026 * use any process-local pointers from the adapter data. 1027 */ 1028 static void 1029 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1030 struct rte_eth_rxq_info *qinfo) 1031 { 1032 struct sfc_adapter *sa = dev->data->dev_private; 1033 struct sfc_rxq_info *rxq_info; 1034 struct sfc_rxq *rxq; 1035 1036 sfc_adapter_lock(sa); 1037 1038 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1039 1040 rxq_info = &sa->rxq_info[rx_queue_id]; 1041 rxq = rxq_info->rxq; 1042 SFC_ASSERT(rxq != NULL); 1043 1044 qinfo->mp = rxq->refill_mb_pool; 1045 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1046 qinfo->conf.rx_drop_en = 1; 1047 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1048 qinfo->scattered_rx = 1049 ((rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) != 0); 1050 qinfo->nb_desc = rxq_info->entries; 1051 1052 sfc_adapter_unlock(sa); 1053 } 1054 1055 /* 1056 * The function is used by the secondary process as well. It must not 1057 * use any process-local pointers from the adapter data. 1058 */ 1059 static void 1060 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1061 struct rte_eth_txq_info *qinfo) 1062 { 1063 struct sfc_adapter *sa = dev->data->dev_private; 1064 struct sfc_txq_info *txq_info; 1065 1066 sfc_adapter_lock(sa); 1067 1068 SFC_ASSERT(tx_queue_id < sa->txq_count); 1069 1070 txq_info = &sa->txq_info[tx_queue_id]; 1071 SFC_ASSERT(txq_info->txq != NULL); 1072 1073 memset(qinfo, 0, sizeof(*qinfo)); 1074 1075 qinfo->conf.txq_flags = txq_info->txq->flags; 1076 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1077 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1078 qinfo->nb_desc = txq_info->entries; 1079 1080 sfc_adapter_unlock(sa); 1081 } 1082 1083 static uint32_t 1084 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1085 { 1086 struct sfc_adapter *sa = dev->data->dev_private; 1087 1088 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1089 1090 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1091 } 1092 1093 static int 1094 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1095 { 1096 struct sfc_dp_rxq *dp_rxq = queue; 1097 1098 return sfc_rx_qdesc_done(dp_rxq, offset); 1099 } 1100 1101 static int 1102 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1103 { 1104 struct sfc_dp_rxq *dp_rxq = queue; 1105 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1106 1107 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1108 } 1109 1110 static int 1111 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1112 { 1113 struct sfc_dp_txq *dp_txq = queue; 1114 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1115 1116 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1117 } 1118 1119 static int 1120 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1121 { 1122 struct sfc_adapter *sa = dev->data->dev_private; 1123 int rc; 1124 1125 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1126 1127 sfc_adapter_lock(sa); 1128 1129 rc = EINVAL; 1130 if (sa->state != SFC_ADAPTER_STARTED) 1131 goto fail_not_started; 1132 1133 rc = sfc_rx_qstart(sa, rx_queue_id); 1134 if (rc != 0) 1135 goto fail_rx_qstart; 1136 1137 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1138 1139 sfc_adapter_unlock(sa); 1140 1141 return 0; 1142 1143 fail_rx_qstart: 1144 fail_not_started: 1145 sfc_adapter_unlock(sa); 1146 SFC_ASSERT(rc > 0); 1147 return -rc; 1148 } 1149 1150 static int 1151 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1152 { 1153 struct sfc_adapter *sa = dev->data->dev_private; 1154 1155 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1156 1157 sfc_adapter_lock(sa); 1158 sfc_rx_qstop(sa, rx_queue_id); 1159 1160 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1161 1162 sfc_adapter_unlock(sa); 1163 1164 return 0; 1165 } 1166 1167 static int 1168 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1169 { 1170 struct sfc_adapter *sa = dev->data->dev_private; 1171 int rc; 1172 1173 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1174 1175 sfc_adapter_lock(sa); 1176 1177 rc = EINVAL; 1178 if (sa->state != SFC_ADAPTER_STARTED) 1179 goto fail_not_started; 1180 1181 rc = sfc_tx_qstart(sa, tx_queue_id); 1182 if (rc != 0) 1183 goto fail_tx_qstart; 1184 1185 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1186 1187 sfc_adapter_unlock(sa); 1188 return 0; 1189 1190 fail_tx_qstart: 1191 1192 fail_not_started: 1193 sfc_adapter_unlock(sa); 1194 SFC_ASSERT(rc > 0); 1195 return -rc; 1196 } 1197 1198 static int 1199 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1200 { 1201 struct sfc_adapter *sa = dev->data->dev_private; 1202 1203 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1204 1205 sfc_adapter_lock(sa); 1206 1207 sfc_tx_qstop(sa, tx_queue_id); 1208 1209 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1210 1211 sfc_adapter_unlock(sa); 1212 return 0; 1213 } 1214 1215 static efx_tunnel_protocol_t 1216 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1217 { 1218 switch (rte_type) { 1219 case RTE_TUNNEL_TYPE_VXLAN: 1220 return EFX_TUNNEL_PROTOCOL_VXLAN; 1221 case RTE_TUNNEL_TYPE_GENEVE: 1222 return EFX_TUNNEL_PROTOCOL_GENEVE; 1223 default: 1224 return EFX_TUNNEL_NPROTOS; 1225 } 1226 } 1227 1228 enum sfc_udp_tunnel_op_e { 1229 SFC_UDP_TUNNEL_ADD_PORT, 1230 SFC_UDP_TUNNEL_DEL_PORT, 1231 }; 1232 1233 static int 1234 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1235 struct rte_eth_udp_tunnel *tunnel_udp, 1236 enum sfc_udp_tunnel_op_e op) 1237 { 1238 struct sfc_adapter *sa = dev->data->dev_private; 1239 efx_tunnel_protocol_t tunnel_proto; 1240 int rc; 1241 1242 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1243 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1244 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1245 tunnel_udp->udp_port, tunnel_udp->prot_type); 1246 1247 tunnel_proto = 1248 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1249 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1250 rc = ENOTSUP; 1251 goto fail_bad_proto; 1252 } 1253 1254 sfc_adapter_lock(sa); 1255 1256 switch (op) { 1257 case SFC_UDP_TUNNEL_ADD_PORT: 1258 rc = efx_tunnel_config_udp_add(sa->nic, 1259 tunnel_udp->udp_port, 1260 tunnel_proto); 1261 break; 1262 case SFC_UDP_TUNNEL_DEL_PORT: 1263 rc = efx_tunnel_config_udp_remove(sa->nic, 1264 tunnel_udp->udp_port, 1265 tunnel_proto); 1266 break; 1267 default: 1268 rc = EINVAL; 1269 goto fail_bad_op; 1270 } 1271 1272 if (rc != 0) 1273 goto fail_op; 1274 1275 if (sa->state == SFC_ADAPTER_STARTED) { 1276 rc = efx_tunnel_reconfigure(sa->nic); 1277 if (rc == EAGAIN) { 1278 /* 1279 * Configuration is accepted by FW and MC reboot 1280 * is initiated to apply the changes. MC reboot 1281 * will be handled in a usual way (MC reboot 1282 * event on management event queue and adapter 1283 * restart). 1284 */ 1285 rc = 0; 1286 } else if (rc != 0) { 1287 goto fail_reconfigure; 1288 } 1289 } 1290 1291 sfc_adapter_unlock(sa); 1292 return 0; 1293 1294 fail_reconfigure: 1295 /* Remove/restore entry since the change makes the trouble */ 1296 switch (op) { 1297 case SFC_UDP_TUNNEL_ADD_PORT: 1298 (void)efx_tunnel_config_udp_remove(sa->nic, 1299 tunnel_udp->udp_port, 1300 tunnel_proto); 1301 break; 1302 case SFC_UDP_TUNNEL_DEL_PORT: 1303 (void)efx_tunnel_config_udp_add(sa->nic, 1304 tunnel_udp->udp_port, 1305 tunnel_proto); 1306 break; 1307 } 1308 1309 fail_op: 1310 fail_bad_op: 1311 sfc_adapter_unlock(sa); 1312 1313 fail_bad_proto: 1314 SFC_ASSERT(rc > 0); 1315 return -rc; 1316 } 1317 1318 static int 1319 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1320 struct rte_eth_udp_tunnel *tunnel_udp) 1321 { 1322 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1323 } 1324 1325 static int 1326 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1327 struct rte_eth_udp_tunnel *tunnel_udp) 1328 { 1329 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1330 } 1331 1332 #if EFSYS_OPT_RX_SCALE 1333 static int 1334 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1335 struct rte_eth_rss_conf *rss_conf) 1336 { 1337 struct sfc_adapter *sa = dev->data->dev_private; 1338 struct sfc_port *port = &sa->port; 1339 1340 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1341 return -ENOTSUP; 1342 1343 if (sa->rss_channels == 0) 1344 return -EINVAL; 1345 1346 sfc_adapter_lock(sa); 1347 1348 /* 1349 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1350 * hence, conversion is done here to derive a correct set of ETH_RSS 1351 * flags which corresponds to the active EFX configuration stored 1352 * locally in 'sfc_adapter' and kept up-to-date 1353 */ 1354 rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types); 1355 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1356 if (rss_conf->rss_key != NULL) 1357 rte_memcpy(rss_conf->rss_key, sa->rss_key, EFX_RSS_KEY_SIZE); 1358 1359 sfc_adapter_unlock(sa); 1360 1361 return 0; 1362 } 1363 1364 static int 1365 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1366 struct rte_eth_rss_conf *rss_conf) 1367 { 1368 struct sfc_adapter *sa = dev->data->dev_private; 1369 struct sfc_port *port = &sa->port; 1370 unsigned int efx_hash_types; 1371 int rc = 0; 1372 1373 if (port->isolated) 1374 return -ENOTSUP; 1375 1376 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1377 sfc_err(sa, "RSS is not available"); 1378 return -ENOTSUP; 1379 } 1380 1381 if (sa->rss_channels == 0) { 1382 sfc_err(sa, "RSS is not configured"); 1383 return -EINVAL; 1384 } 1385 1386 if ((rss_conf->rss_key != NULL) && 1387 (rss_conf->rss_key_len != sizeof(sa->rss_key))) { 1388 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1389 sizeof(sa->rss_key)); 1390 return -EINVAL; 1391 } 1392 1393 if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) { 1394 sfc_err(sa, "unsupported hash functions requested"); 1395 return -EINVAL; 1396 } 1397 1398 sfc_adapter_lock(sa); 1399 1400 efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf); 1401 1402 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1403 EFX_RX_HASHALG_TOEPLITZ, 1404 efx_hash_types, B_TRUE); 1405 if (rc != 0) 1406 goto fail_scale_mode_set; 1407 1408 if (rss_conf->rss_key != NULL) { 1409 if (sa->state == SFC_ADAPTER_STARTED) { 1410 rc = efx_rx_scale_key_set(sa->nic, 1411 EFX_RSS_CONTEXT_DEFAULT, 1412 rss_conf->rss_key, 1413 sizeof(sa->rss_key)); 1414 if (rc != 0) 1415 goto fail_scale_key_set; 1416 } 1417 1418 rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key)); 1419 } 1420 1421 sa->rss_hash_types = efx_hash_types; 1422 1423 sfc_adapter_unlock(sa); 1424 1425 return 0; 1426 1427 fail_scale_key_set: 1428 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1429 EFX_RX_HASHALG_TOEPLITZ, 1430 sa->rss_hash_types, B_TRUE) != 0) 1431 sfc_err(sa, "failed to restore RSS mode"); 1432 1433 fail_scale_mode_set: 1434 sfc_adapter_unlock(sa); 1435 return -rc; 1436 } 1437 1438 static int 1439 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1440 struct rte_eth_rss_reta_entry64 *reta_conf, 1441 uint16_t reta_size) 1442 { 1443 struct sfc_adapter *sa = dev->data->dev_private; 1444 struct sfc_port *port = &sa->port; 1445 int entry; 1446 1447 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1448 return -ENOTSUP; 1449 1450 if (sa->rss_channels == 0) 1451 return -EINVAL; 1452 1453 if (reta_size != EFX_RSS_TBL_SIZE) 1454 return -EINVAL; 1455 1456 sfc_adapter_lock(sa); 1457 1458 for (entry = 0; entry < reta_size; entry++) { 1459 int grp = entry / RTE_RETA_GROUP_SIZE; 1460 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1461 1462 if ((reta_conf[grp].mask >> grp_idx) & 1) 1463 reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry]; 1464 } 1465 1466 sfc_adapter_unlock(sa); 1467 1468 return 0; 1469 } 1470 1471 static int 1472 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1473 struct rte_eth_rss_reta_entry64 *reta_conf, 1474 uint16_t reta_size) 1475 { 1476 struct sfc_adapter *sa = dev->data->dev_private; 1477 struct sfc_port *port = &sa->port; 1478 unsigned int *rss_tbl_new; 1479 uint16_t entry; 1480 int rc = 0; 1481 1482 1483 if (port->isolated) 1484 return -ENOTSUP; 1485 1486 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1487 sfc_err(sa, "RSS is not available"); 1488 return -ENOTSUP; 1489 } 1490 1491 if (sa->rss_channels == 0) { 1492 sfc_err(sa, "RSS is not configured"); 1493 return -EINVAL; 1494 } 1495 1496 if (reta_size != EFX_RSS_TBL_SIZE) { 1497 sfc_err(sa, "RETA size is wrong (should be %u)", 1498 EFX_RSS_TBL_SIZE); 1499 return -EINVAL; 1500 } 1501 1502 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0); 1503 if (rss_tbl_new == NULL) 1504 return -ENOMEM; 1505 1506 sfc_adapter_lock(sa); 1507 1508 rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl)); 1509 1510 for (entry = 0; entry < reta_size; entry++) { 1511 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1512 struct rte_eth_rss_reta_entry64 *grp; 1513 1514 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1515 1516 if (grp->mask & (1ull << grp_idx)) { 1517 if (grp->reta[grp_idx] >= sa->rss_channels) { 1518 rc = EINVAL; 1519 goto bad_reta_entry; 1520 } 1521 rss_tbl_new[entry] = grp->reta[grp_idx]; 1522 } 1523 } 1524 1525 if (sa->state == SFC_ADAPTER_STARTED) { 1526 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1527 rss_tbl_new, EFX_RSS_TBL_SIZE); 1528 if (rc != 0) 1529 goto fail_scale_tbl_set; 1530 } 1531 1532 rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl)); 1533 1534 fail_scale_tbl_set: 1535 bad_reta_entry: 1536 sfc_adapter_unlock(sa); 1537 1538 rte_free(rss_tbl_new); 1539 1540 SFC_ASSERT(rc >= 0); 1541 return -rc; 1542 } 1543 #endif 1544 1545 static int 1546 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1547 enum rte_filter_op filter_op, 1548 void *arg) 1549 { 1550 struct sfc_adapter *sa = dev->data->dev_private; 1551 int rc = ENOTSUP; 1552 1553 sfc_log_init(sa, "entry"); 1554 1555 switch (filter_type) { 1556 case RTE_ETH_FILTER_NONE: 1557 sfc_err(sa, "Global filters configuration not supported"); 1558 break; 1559 case RTE_ETH_FILTER_MACVLAN: 1560 sfc_err(sa, "MACVLAN filters not supported"); 1561 break; 1562 case RTE_ETH_FILTER_ETHERTYPE: 1563 sfc_err(sa, "EtherType filters not supported"); 1564 break; 1565 case RTE_ETH_FILTER_FLEXIBLE: 1566 sfc_err(sa, "Flexible filters not supported"); 1567 break; 1568 case RTE_ETH_FILTER_SYN: 1569 sfc_err(sa, "SYN filters not supported"); 1570 break; 1571 case RTE_ETH_FILTER_NTUPLE: 1572 sfc_err(sa, "NTUPLE filters not supported"); 1573 break; 1574 case RTE_ETH_FILTER_TUNNEL: 1575 sfc_err(sa, "Tunnel filters not supported"); 1576 break; 1577 case RTE_ETH_FILTER_FDIR: 1578 sfc_err(sa, "Flow Director filters not supported"); 1579 break; 1580 case RTE_ETH_FILTER_HASH: 1581 sfc_err(sa, "Hash filters not supported"); 1582 break; 1583 case RTE_ETH_FILTER_GENERIC: 1584 if (filter_op != RTE_ETH_FILTER_GET) { 1585 rc = EINVAL; 1586 } else { 1587 *(const void **)arg = &sfc_flow_ops; 1588 rc = 0; 1589 } 1590 break; 1591 default: 1592 sfc_err(sa, "Unknown filter type %u", filter_type); 1593 break; 1594 } 1595 1596 sfc_log_init(sa, "exit: %d", -rc); 1597 SFC_ASSERT(rc >= 0); 1598 return -rc; 1599 } 1600 1601 static const struct eth_dev_ops sfc_eth_dev_ops = { 1602 .dev_configure = sfc_dev_configure, 1603 .dev_start = sfc_dev_start, 1604 .dev_stop = sfc_dev_stop, 1605 .dev_set_link_up = sfc_dev_set_link_up, 1606 .dev_set_link_down = sfc_dev_set_link_down, 1607 .dev_close = sfc_dev_close, 1608 .promiscuous_enable = sfc_dev_promisc_enable, 1609 .promiscuous_disable = sfc_dev_promisc_disable, 1610 .allmulticast_enable = sfc_dev_allmulti_enable, 1611 .allmulticast_disable = sfc_dev_allmulti_disable, 1612 .link_update = sfc_dev_link_update, 1613 .stats_get = sfc_stats_get, 1614 .stats_reset = sfc_stats_reset, 1615 .xstats_get = sfc_xstats_get, 1616 .xstats_reset = sfc_stats_reset, 1617 .xstats_get_names = sfc_xstats_get_names, 1618 .dev_infos_get = sfc_dev_infos_get, 1619 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1620 .mtu_set = sfc_dev_set_mtu, 1621 .rx_queue_start = sfc_rx_queue_start, 1622 .rx_queue_stop = sfc_rx_queue_stop, 1623 .tx_queue_start = sfc_tx_queue_start, 1624 .tx_queue_stop = sfc_tx_queue_stop, 1625 .rx_queue_setup = sfc_rx_queue_setup, 1626 .rx_queue_release = sfc_rx_queue_release, 1627 .rx_queue_count = sfc_rx_queue_count, 1628 .rx_descriptor_done = sfc_rx_descriptor_done, 1629 .rx_descriptor_status = sfc_rx_descriptor_status, 1630 .tx_descriptor_status = sfc_tx_descriptor_status, 1631 .tx_queue_setup = sfc_tx_queue_setup, 1632 .tx_queue_release = sfc_tx_queue_release, 1633 .flow_ctrl_get = sfc_flow_ctrl_get, 1634 .flow_ctrl_set = sfc_flow_ctrl_set, 1635 .mac_addr_set = sfc_mac_addr_set, 1636 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1637 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1638 #if EFSYS_OPT_RX_SCALE 1639 .reta_update = sfc_dev_rss_reta_update, 1640 .reta_query = sfc_dev_rss_reta_query, 1641 .rss_hash_update = sfc_dev_rss_hash_update, 1642 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1643 #endif 1644 .filter_ctrl = sfc_dev_filter_ctrl, 1645 .set_mc_addr_list = sfc_set_mc_addr_list, 1646 .rxq_info_get = sfc_rx_queue_info_get, 1647 .txq_info_get = sfc_tx_queue_info_get, 1648 .fw_version_get = sfc_fw_version_get, 1649 .xstats_get_by_id = sfc_xstats_get_by_id, 1650 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1651 }; 1652 1653 /** 1654 * Duplicate a string in potentially shared memory required for 1655 * multi-process support. 1656 * 1657 * strdup() allocates from process-local heap/memory. 1658 */ 1659 static char * 1660 sfc_strdup(const char *str) 1661 { 1662 size_t size; 1663 char *copy; 1664 1665 if (str == NULL) 1666 return NULL; 1667 1668 size = strlen(str) + 1; 1669 copy = rte_malloc(__func__, size, 0); 1670 if (copy != NULL) 1671 rte_memcpy(copy, str, size); 1672 1673 return copy; 1674 } 1675 1676 static int 1677 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1678 { 1679 struct sfc_adapter *sa = dev->data->dev_private; 1680 unsigned int avail_caps = 0; 1681 const char *rx_name = NULL; 1682 const char *tx_name = NULL; 1683 int rc; 1684 1685 switch (sa->family) { 1686 case EFX_FAMILY_HUNTINGTON: 1687 case EFX_FAMILY_MEDFORD: 1688 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1689 break; 1690 default: 1691 break; 1692 } 1693 1694 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1695 sfc_kvarg_string_handler, &rx_name); 1696 if (rc != 0) 1697 goto fail_kvarg_rx_datapath; 1698 1699 if (rx_name != NULL) { 1700 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1701 if (sa->dp_rx == NULL) { 1702 sfc_err(sa, "Rx datapath %s not found", rx_name); 1703 rc = ENOENT; 1704 goto fail_dp_rx; 1705 } 1706 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1707 sfc_err(sa, 1708 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1709 rx_name); 1710 rc = EINVAL; 1711 goto fail_dp_rx_caps; 1712 } 1713 } else { 1714 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1715 if (sa->dp_rx == NULL) { 1716 sfc_err(sa, "Rx datapath by caps %#x not found", 1717 avail_caps); 1718 rc = ENOENT; 1719 goto fail_dp_rx; 1720 } 1721 } 1722 1723 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1724 if (sa->dp_rx_name == NULL) { 1725 rc = ENOMEM; 1726 goto fail_dp_rx_name; 1727 } 1728 1729 sfc_info(sa, "use %s Rx datapath", sa->dp_rx_name); 1730 1731 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1732 1733 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1734 sfc_kvarg_string_handler, &tx_name); 1735 if (rc != 0) 1736 goto fail_kvarg_tx_datapath; 1737 1738 if (tx_name != NULL) { 1739 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1740 if (sa->dp_tx == NULL) { 1741 sfc_err(sa, "Tx datapath %s not found", tx_name); 1742 rc = ENOENT; 1743 goto fail_dp_tx; 1744 } 1745 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1746 sfc_err(sa, 1747 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1748 tx_name); 1749 rc = EINVAL; 1750 goto fail_dp_tx_caps; 1751 } 1752 } else { 1753 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1754 if (sa->dp_tx == NULL) { 1755 sfc_err(sa, "Tx datapath by caps %#x not found", 1756 avail_caps); 1757 rc = ENOENT; 1758 goto fail_dp_tx; 1759 } 1760 } 1761 1762 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1763 if (sa->dp_tx_name == NULL) { 1764 rc = ENOMEM; 1765 goto fail_dp_tx_name; 1766 } 1767 1768 sfc_info(sa, "use %s Tx datapath", sa->dp_tx_name); 1769 1770 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1771 1772 dev->dev_ops = &sfc_eth_dev_ops; 1773 1774 return 0; 1775 1776 fail_dp_tx_name: 1777 fail_dp_tx_caps: 1778 sa->dp_tx = NULL; 1779 1780 fail_dp_tx: 1781 fail_kvarg_tx_datapath: 1782 rte_free(sa->dp_rx_name); 1783 sa->dp_rx_name = NULL; 1784 1785 fail_dp_rx_name: 1786 fail_dp_rx_caps: 1787 sa->dp_rx = NULL; 1788 1789 fail_dp_rx: 1790 fail_kvarg_rx_datapath: 1791 return rc; 1792 } 1793 1794 static void 1795 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1796 { 1797 struct sfc_adapter *sa = dev->data->dev_private; 1798 1799 dev->dev_ops = NULL; 1800 dev->rx_pkt_burst = NULL; 1801 dev->tx_pkt_burst = NULL; 1802 1803 rte_free(sa->dp_tx_name); 1804 sa->dp_tx_name = NULL; 1805 sa->dp_tx = NULL; 1806 1807 rte_free(sa->dp_rx_name); 1808 sa->dp_rx_name = NULL; 1809 sa->dp_rx = NULL; 1810 } 1811 1812 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1813 .rxq_info_get = sfc_rx_queue_info_get, 1814 .txq_info_get = sfc_tx_queue_info_get, 1815 }; 1816 1817 static int 1818 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1819 { 1820 /* 1821 * Device private data has really many process-local pointers. 1822 * Below code should be extremely careful to use data located 1823 * in shared memory only. 1824 */ 1825 struct sfc_adapter *sa = dev->data->dev_private; 1826 const struct sfc_dp_rx *dp_rx; 1827 const struct sfc_dp_tx *dp_tx; 1828 int rc; 1829 1830 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1831 if (dp_rx == NULL) { 1832 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name); 1833 rc = ENOENT; 1834 goto fail_dp_rx; 1835 } 1836 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1837 sfc_err(sa, "%s Rx datapath does not support multi-process", 1838 sa->dp_tx_name); 1839 rc = EINVAL; 1840 goto fail_dp_rx_multi_process; 1841 } 1842 1843 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1844 if (dp_tx == NULL) { 1845 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1846 rc = ENOENT; 1847 goto fail_dp_tx; 1848 } 1849 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1850 sfc_err(sa, "%s Tx datapath does not support multi-process", 1851 sa->dp_tx_name); 1852 rc = EINVAL; 1853 goto fail_dp_tx_multi_process; 1854 } 1855 1856 dev->rx_pkt_burst = dp_rx->pkt_burst; 1857 dev->tx_pkt_burst = dp_tx->pkt_burst; 1858 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1859 1860 return 0; 1861 1862 fail_dp_tx_multi_process: 1863 fail_dp_tx: 1864 fail_dp_rx_multi_process: 1865 fail_dp_rx: 1866 return rc; 1867 } 1868 1869 static void 1870 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1871 { 1872 dev->dev_ops = NULL; 1873 dev->tx_pkt_burst = NULL; 1874 dev->rx_pkt_burst = NULL; 1875 } 1876 1877 static void 1878 sfc_register_dp(void) 1879 { 1880 /* Register once */ 1881 if (TAILQ_EMPTY(&sfc_dp_head)) { 1882 /* Prefer EF10 datapath */ 1883 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1884 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1885 1886 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1887 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1888 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1889 } 1890 } 1891 1892 static int 1893 sfc_eth_dev_init(struct rte_eth_dev *dev) 1894 { 1895 struct sfc_adapter *sa = dev->data->dev_private; 1896 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1897 int rc; 1898 const efx_nic_cfg_t *encp; 1899 const struct ether_addr *from; 1900 1901 sfc_register_dp(); 1902 1903 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1904 return -sfc_eth_dev_secondary_set_ops(dev); 1905 1906 /* Required for logging */ 1907 sa->pci_addr = pci_dev->addr; 1908 sa->port_id = dev->data->port_id; 1909 1910 sa->eth_dev = dev; 1911 1912 /* Copy PCI device info to the dev->data */ 1913 rte_eth_copy_pci_info(dev, pci_dev); 1914 1915 rc = sfc_kvargs_parse(sa); 1916 if (rc != 0) 1917 goto fail_kvargs_parse; 1918 1919 rc = sfc_kvargs_process(sa, SFC_KVARG_DEBUG_INIT, 1920 sfc_kvarg_bool_handler, &sa->debug_init); 1921 if (rc != 0) 1922 goto fail_kvarg_debug_init; 1923 1924 sfc_log_init(sa, "entry"); 1925 1926 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1927 if (dev->data->mac_addrs == NULL) { 1928 rc = ENOMEM; 1929 goto fail_mac_addrs; 1930 } 1931 1932 sfc_adapter_lock_init(sa); 1933 sfc_adapter_lock(sa); 1934 1935 sfc_log_init(sa, "probing"); 1936 rc = sfc_probe(sa); 1937 if (rc != 0) 1938 goto fail_probe; 1939 1940 sfc_log_init(sa, "set device ops"); 1941 rc = sfc_eth_dev_set_ops(dev); 1942 if (rc != 0) 1943 goto fail_set_ops; 1944 1945 sfc_log_init(sa, "attaching"); 1946 rc = sfc_attach(sa); 1947 if (rc != 0) 1948 goto fail_attach; 1949 1950 encp = efx_nic_cfg_get(sa->nic); 1951 1952 /* 1953 * The arguments are really reverse order in comparison to 1954 * Linux kernel. Copy from NIC config to Ethernet device data. 1955 */ 1956 from = (const struct ether_addr *)(encp->enc_mac_addr); 1957 ether_addr_copy(from, &dev->data->mac_addrs[0]); 1958 1959 sfc_adapter_unlock(sa); 1960 1961 sfc_log_init(sa, "done"); 1962 return 0; 1963 1964 fail_attach: 1965 sfc_eth_dev_clear_ops(dev); 1966 1967 fail_set_ops: 1968 sfc_unprobe(sa); 1969 1970 fail_probe: 1971 sfc_adapter_unlock(sa); 1972 sfc_adapter_lock_fini(sa); 1973 rte_free(dev->data->mac_addrs); 1974 dev->data->mac_addrs = NULL; 1975 1976 fail_mac_addrs: 1977 fail_kvarg_debug_init: 1978 sfc_kvargs_cleanup(sa); 1979 1980 fail_kvargs_parse: 1981 sfc_log_init(sa, "failed %d", rc); 1982 SFC_ASSERT(rc > 0); 1983 return -rc; 1984 } 1985 1986 static int 1987 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 1988 { 1989 struct sfc_adapter *sa; 1990 1991 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 1992 sfc_eth_dev_secondary_clear_ops(dev); 1993 return 0; 1994 } 1995 1996 sa = dev->data->dev_private; 1997 sfc_log_init(sa, "entry"); 1998 1999 sfc_adapter_lock(sa); 2000 2001 sfc_eth_dev_clear_ops(dev); 2002 2003 sfc_detach(sa); 2004 sfc_unprobe(sa); 2005 2006 rte_free(dev->data->mac_addrs); 2007 dev->data->mac_addrs = NULL; 2008 2009 sfc_kvargs_cleanup(sa); 2010 2011 sfc_adapter_unlock(sa); 2012 sfc_adapter_lock_fini(sa); 2013 2014 sfc_log_init(sa, "done"); 2015 2016 /* Required for logging, so cleanup last */ 2017 sa->eth_dev = NULL; 2018 return 0; 2019 } 2020 2021 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2022 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2023 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2024 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2025 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2026 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2027 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2028 { .vendor_id = 0 /* sentinel */ } 2029 }; 2030 2031 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2032 struct rte_pci_device *pci_dev) 2033 { 2034 return rte_eth_dev_pci_generic_probe(pci_dev, 2035 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2036 } 2037 2038 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2039 { 2040 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2041 } 2042 2043 static struct rte_pci_driver sfc_efx_pmd = { 2044 .id_table = pci_id_sfc_efx_map, 2045 .drv_flags = 2046 RTE_PCI_DRV_INTR_LSC | 2047 RTE_PCI_DRV_NEED_MAPPING, 2048 .probe = sfc_eth_dev_pci_probe, 2049 .remove = sfc_eth_dev_pci_remove, 2050 }; 2051 2052 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2053 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2054 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2055 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2056 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2057 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2058 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2059 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long> " 2060 SFC_KVARG_MCDI_LOGGING "=" SFC_KVARG_VALUES_BOOL " " 2061 SFC_KVARG_DEBUG_INIT "=" SFC_KVARG_VALUES_BOOL); 2062