1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 17 #include "efx.h" 18 19 #include "sfc.h" 20 #include "sfc_debug.h" 21 #include "sfc_log.h" 22 #include "sfc_kvargs.h" 23 #include "sfc_ev.h" 24 #include "sfc_rx.h" 25 #include "sfc_tx.h" 26 #include "sfc_flow.h" 27 #include "sfc_dp.h" 28 #include "sfc_dp_rx.h" 29 30 uint32_t sfc_logtype_driver; 31 32 static struct sfc_dp_list sfc_dp_head = 33 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 34 35 static int 36 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 37 { 38 struct sfc_adapter *sa = dev->data->dev_private; 39 efx_nic_fw_info_t enfi; 40 int ret; 41 int rc; 42 43 /* 44 * Return value of the callback is likely supposed to be 45 * equal to or greater than 0, nevertheless, if an error 46 * occurs, it will be desirable to pass it to the caller 47 */ 48 if ((fw_version == NULL) || (fw_size == 0)) 49 return -EINVAL; 50 51 rc = efx_nic_get_fw_version(sa->nic, &enfi); 52 if (rc != 0) 53 return -rc; 54 55 ret = snprintf(fw_version, fw_size, 56 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 57 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 58 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 59 if (ret < 0) 60 return ret; 61 62 if (enfi.enfi_dpcpu_fw_ids_valid) { 63 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 64 int ret_extra; 65 66 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 67 fw_size - dpcpu_fw_ids_offset, 68 " rx%" PRIx16 " tx%" PRIx16, 69 enfi.enfi_rx_dpcpu_fw_id, 70 enfi.enfi_tx_dpcpu_fw_id); 71 if (ret_extra < 0) 72 return ret_extra; 73 74 ret += ret_extra; 75 } 76 77 if (fw_size < (size_t)(++ret)) 78 return ret; 79 else 80 return 0; 81 } 82 83 static void 84 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 85 { 86 struct sfc_adapter *sa = dev->data->dev_private; 87 struct sfc_rss *rss = &sa->rss; 88 uint64_t txq_offloads_def = 0; 89 90 sfc_log_init(sa, "entry"); 91 92 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 93 94 /* Autonegotiation may be disabled */ 95 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 96 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 97 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 98 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 99 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 100 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX) 101 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 102 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 103 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 104 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX) 105 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 106 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX) 107 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 108 109 dev_info->max_rx_queues = sa->rxq_max; 110 dev_info->max_tx_queues = sa->txq_max; 111 112 /* By default packets are dropped if no descriptors are available */ 113 dev_info->default_rxconf.rx_drop_en = 1; 114 115 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 116 117 /* 118 * rx_offload_capa includes both device and queue offloads since 119 * the latter may be requested on a per device basis which makes 120 * sense when some offloads are needed to be set on all queues. 121 */ 122 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 123 dev_info->rx_queue_offload_capa; 124 125 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 126 127 /* 128 * tx_offload_capa includes both device and queue offloads since 129 * the latter may be requested on a per device basis which makes 130 * sense when some offloads are needed to be set on all queues. 131 */ 132 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 133 dev_info->tx_queue_offload_capa; 134 135 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 136 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 137 138 dev_info->default_txconf.offloads |= txq_offloads_def; 139 140 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 141 uint64_t rte_hf = 0; 142 unsigned int i; 143 144 for (i = 0; i < rss->hf_map_nb_entries; ++i) 145 rte_hf |= rss->hf_map[i].rte; 146 147 dev_info->reta_size = EFX_RSS_TBL_SIZE; 148 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 149 dev_info->flow_type_rss_offloads = rte_hf; 150 } 151 152 /* Initialize to hardware limits */ 153 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 154 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 155 /* The RXQ hardware requires that the descriptor count is a power 156 * of 2, but rx_desc_lim cannot properly describe that constraint. 157 */ 158 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 159 160 /* Initialize to hardware limits */ 161 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 162 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 163 /* 164 * The TXQ hardware requires that the descriptor count is a power 165 * of 2, but tx_desc_lim cannot properly describe that constraint 166 */ 167 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 168 169 if (sa->dp_rx->get_dev_info != NULL) 170 sa->dp_rx->get_dev_info(dev_info); 171 if (sa->dp_tx->get_dev_info != NULL) 172 sa->dp_tx->get_dev_info(dev_info); 173 } 174 175 static const uint32_t * 176 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 177 { 178 struct sfc_adapter *sa = dev->data->dev_private; 179 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 180 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 181 182 return sa->dp_rx->supported_ptypes_get(tunnel_encaps); 183 } 184 185 static int 186 sfc_dev_configure(struct rte_eth_dev *dev) 187 { 188 struct rte_eth_dev_data *dev_data = dev->data; 189 struct sfc_adapter *sa = dev_data->dev_private; 190 int rc; 191 192 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 193 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 194 195 sfc_adapter_lock(sa); 196 switch (sa->state) { 197 case SFC_ADAPTER_CONFIGURED: 198 /* FALLTHROUGH */ 199 case SFC_ADAPTER_INITIALIZED: 200 rc = sfc_configure(sa); 201 break; 202 default: 203 sfc_err(sa, "unexpected adapter state %u to configure", 204 sa->state); 205 rc = EINVAL; 206 break; 207 } 208 sfc_adapter_unlock(sa); 209 210 sfc_log_init(sa, "done %d", rc); 211 SFC_ASSERT(rc >= 0); 212 return -rc; 213 } 214 215 static int 216 sfc_dev_start(struct rte_eth_dev *dev) 217 { 218 struct sfc_adapter *sa = dev->data->dev_private; 219 int rc; 220 221 sfc_log_init(sa, "entry"); 222 223 sfc_adapter_lock(sa); 224 rc = sfc_start(sa); 225 sfc_adapter_unlock(sa); 226 227 sfc_log_init(sa, "done %d", rc); 228 SFC_ASSERT(rc >= 0); 229 return -rc; 230 } 231 232 static int 233 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 234 { 235 struct sfc_adapter *sa = dev->data->dev_private; 236 struct rte_eth_link current_link; 237 int ret; 238 239 sfc_log_init(sa, "entry"); 240 241 if (sa->state != SFC_ADAPTER_STARTED) { 242 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 243 } else if (wait_to_complete) { 244 efx_link_mode_t link_mode; 245 246 if (efx_port_poll(sa->nic, &link_mode) != 0) 247 link_mode = EFX_LINK_UNKNOWN; 248 sfc_port_link_mode_to_info(link_mode, ¤t_link); 249 250 } else { 251 sfc_ev_mgmt_qpoll(sa); 252 rte_eth_linkstatus_get(dev, ¤t_link); 253 } 254 255 ret = rte_eth_linkstatus_set(dev, ¤t_link); 256 if (ret == 0) 257 sfc_notice(sa, "Link status is %s", 258 current_link.link_status ? "UP" : "DOWN"); 259 260 return ret; 261 } 262 263 static void 264 sfc_dev_stop(struct rte_eth_dev *dev) 265 { 266 struct sfc_adapter *sa = dev->data->dev_private; 267 268 sfc_log_init(sa, "entry"); 269 270 sfc_adapter_lock(sa); 271 sfc_stop(sa); 272 sfc_adapter_unlock(sa); 273 274 sfc_log_init(sa, "done"); 275 } 276 277 static int 278 sfc_dev_set_link_up(struct rte_eth_dev *dev) 279 { 280 struct sfc_adapter *sa = dev->data->dev_private; 281 int rc; 282 283 sfc_log_init(sa, "entry"); 284 285 sfc_adapter_lock(sa); 286 rc = sfc_start(sa); 287 sfc_adapter_unlock(sa); 288 289 SFC_ASSERT(rc >= 0); 290 return -rc; 291 } 292 293 static int 294 sfc_dev_set_link_down(struct rte_eth_dev *dev) 295 { 296 struct sfc_adapter *sa = dev->data->dev_private; 297 298 sfc_log_init(sa, "entry"); 299 300 sfc_adapter_lock(sa); 301 sfc_stop(sa); 302 sfc_adapter_unlock(sa); 303 304 return 0; 305 } 306 307 static void 308 sfc_dev_close(struct rte_eth_dev *dev) 309 { 310 struct sfc_adapter *sa = dev->data->dev_private; 311 312 sfc_log_init(sa, "entry"); 313 314 sfc_adapter_lock(sa); 315 switch (sa->state) { 316 case SFC_ADAPTER_STARTED: 317 sfc_stop(sa); 318 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 319 /* FALLTHROUGH */ 320 case SFC_ADAPTER_CONFIGURED: 321 sfc_close(sa); 322 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 323 /* FALLTHROUGH */ 324 case SFC_ADAPTER_INITIALIZED: 325 break; 326 default: 327 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 328 break; 329 } 330 sfc_adapter_unlock(sa); 331 332 sfc_log_init(sa, "done"); 333 } 334 335 static void 336 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 337 boolean_t enabled) 338 { 339 struct sfc_port *port; 340 boolean_t *toggle; 341 struct sfc_adapter *sa = dev->data->dev_private; 342 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 343 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 344 345 sfc_adapter_lock(sa); 346 347 port = &sa->port; 348 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 349 350 if (*toggle != enabled) { 351 *toggle = enabled; 352 353 if (port->isolated) { 354 sfc_warn(sa, "isolated mode is active on the port"); 355 sfc_warn(sa, "the change is to be applied on the next " 356 "start provided that isolated mode is " 357 "disabled prior the next start"); 358 } else if ((sa->state == SFC_ADAPTER_STARTED) && 359 (sfc_set_rx_mode(sa) != 0)) { 360 *toggle = !(enabled); 361 sfc_warn(sa, "Failed to %s %s mode", 362 ((enabled) ? "enable" : "disable"), desc); 363 } 364 } 365 366 sfc_adapter_unlock(sa); 367 } 368 369 static void 370 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 371 { 372 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 373 } 374 375 static void 376 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 377 { 378 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 379 } 380 381 static void 382 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 383 { 384 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 385 } 386 387 static void 388 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 389 { 390 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 391 } 392 393 static int 394 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 395 uint16_t nb_rx_desc, unsigned int socket_id, 396 const struct rte_eth_rxconf *rx_conf, 397 struct rte_mempool *mb_pool) 398 { 399 struct sfc_adapter *sa = dev->data->dev_private; 400 int rc; 401 402 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 403 rx_queue_id, nb_rx_desc, socket_id); 404 405 sfc_adapter_lock(sa); 406 407 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 408 rx_conf, mb_pool); 409 if (rc != 0) 410 goto fail_rx_qinit; 411 412 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 413 414 sfc_adapter_unlock(sa); 415 416 return 0; 417 418 fail_rx_qinit: 419 sfc_adapter_unlock(sa); 420 SFC_ASSERT(rc > 0); 421 return -rc; 422 } 423 424 static void 425 sfc_rx_queue_release(void *queue) 426 { 427 struct sfc_dp_rxq *dp_rxq = queue; 428 struct sfc_rxq *rxq; 429 struct sfc_adapter *sa; 430 unsigned int sw_index; 431 432 if (dp_rxq == NULL) 433 return; 434 435 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 436 sa = rxq->evq->sa; 437 sfc_adapter_lock(sa); 438 439 sw_index = sfc_rxq_sw_index(rxq); 440 441 sfc_log_init(sa, "RxQ=%u", sw_index); 442 443 sa->eth_dev->data->rx_queues[sw_index] = NULL; 444 445 sfc_rx_qfini(sa, sw_index); 446 447 sfc_adapter_unlock(sa); 448 } 449 450 static int 451 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 452 uint16_t nb_tx_desc, unsigned int socket_id, 453 const struct rte_eth_txconf *tx_conf) 454 { 455 struct sfc_adapter *sa = dev->data->dev_private; 456 int rc; 457 458 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 459 tx_queue_id, nb_tx_desc, socket_id); 460 461 sfc_adapter_lock(sa); 462 463 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 464 if (rc != 0) 465 goto fail_tx_qinit; 466 467 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 468 469 sfc_adapter_unlock(sa); 470 return 0; 471 472 fail_tx_qinit: 473 sfc_adapter_unlock(sa); 474 SFC_ASSERT(rc > 0); 475 return -rc; 476 } 477 478 static void 479 sfc_tx_queue_release(void *queue) 480 { 481 struct sfc_dp_txq *dp_txq = queue; 482 struct sfc_txq *txq; 483 unsigned int sw_index; 484 struct sfc_adapter *sa; 485 486 if (dp_txq == NULL) 487 return; 488 489 txq = sfc_txq_by_dp_txq(dp_txq); 490 sw_index = sfc_txq_sw_index(txq); 491 492 SFC_ASSERT(txq->evq != NULL); 493 sa = txq->evq->sa; 494 495 sfc_log_init(sa, "TxQ = %u", sw_index); 496 497 sfc_adapter_lock(sa); 498 499 SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues); 500 sa->eth_dev->data->tx_queues[sw_index] = NULL; 501 502 sfc_tx_qfini(sa, sw_index); 503 504 sfc_adapter_unlock(sa); 505 } 506 507 static int 508 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 509 { 510 struct sfc_adapter *sa = dev->data->dev_private; 511 struct sfc_port *port = &sa->port; 512 uint64_t *mac_stats; 513 int ret; 514 515 rte_spinlock_lock(&port->mac_stats_lock); 516 517 ret = sfc_port_update_mac_stats(sa); 518 if (ret != 0) 519 goto unlock; 520 521 mac_stats = port->mac_stats_buf; 522 523 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 524 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 525 stats->ipackets = 526 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 527 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 528 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 529 stats->opackets = 530 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 531 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 532 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 533 stats->ibytes = 534 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 535 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 536 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 537 stats->obytes = 538 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 539 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 540 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 541 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW]; 542 stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 543 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 544 } else { 545 stats->ipackets = mac_stats[EFX_MAC_RX_PKTS]; 546 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 547 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 548 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 549 /* 550 * Take into account stats which are whenever supported 551 * on EF10. If some stat is not supported by current 552 * firmware variant or HW revision, it is guaranteed 553 * to be zero in mac_stats. 554 */ 555 stats->imissed = 556 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 557 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 558 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 559 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 560 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 561 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 562 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 563 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 564 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 565 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 566 stats->ierrors = 567 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 568 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 569 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 570 /* no oerrors counters supported on EF10 */ 571 } 572 573 unlock: 574 rte_spinlock_unlock(&port->mac_stats_lock); 575 SFC_ASSERT(ret >= 0); 576 return -ret; 577 } 578 579 static void 580 sfc_stats_reset(struct rte_eth_dev *dev) 581 { 582 struct sfc_adapter *sa = dev->data->dev_private; 583 struct sfc_port *port = &sa->port; 584 int rc; 585 586 if (sa->state != SFC_ADAPTER_STARTED) { 587 /* 588 * The operation cannot be done if port is not started; it 589 * will be scheduled to be done during the next port start 590 */ 591 port->mac_stats_reset_pending = B_TRUE; 592 return; 593 } 594 595 rc = sfc_port_reset_mac_stats(sa); 596 if (rc != 0) 597 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 598 } 599 600 static int 601 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 602 unsigned int xstats_count) 603 { 604 struct sfc_adapter *sa = dev->data->dev_private; 605 struct sfc_port *port = &sa->port; 606 uint64_t *mac_stats; 607 int rc; 608 unsigned int i; 609 int nstats = 0; 610 611 rte_spinlock_lock(&port->mac_stats_lock); 612 613 rc = sfc_port_update_mac_stats(sa); 614 if (rc != 0) { 615 SFC_ASSERT(rc > 0); 616 nstats = -rc; 617 goto unlock; 618 } 619 620 mac_stats = port->mac_stats_buf; 621 622 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 623 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 624 if (xstats != NULL && nstats < (int)xstats_count) { 625 xstats[nstats].id = nstats; 626 xstats[nstats].value = mac_stats[i]; 627 } 628 nstats++; 629 } 630 } 631 632 unlock: 633 rte_spinlock_unlock(&port->mac_stats_lock); 634 635 return nstats; 636 } 637 638 static int 639 sfc_xstats_get_names(struct rte_eth_dev *dev, 640 struct rte_eth_xstat_name *xstats_names, 641 unsigned int xstats_count) 642 { 643 struct sfc_adapter *sa = dev->data->dev_private; 644 struct sfc_port *port = &sa->port; 645 unsigned int i; 646 unsigned int nstats = 0; 647 648 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 649 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 650 if (xstats_names != NULL && nstats < xstats_count) 651 strncpy(xstats_names[nstats].name, 652 efx_mac_stat_name(sa->nic, i), 653 sizeof(xstats_names[0].name)); 654 nstats++; 655 } 656 } 657 658 return nstats; 659 } 660 661 static int 662 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 663 uint64_t *values, unsigned int n) 664 { 665 struct sfc_adapter *sa = dev->data->dev_private; 666 struct sfc_port *port = &sa->port; 667 uint64_t *mac_stats; 668 unsigned int nb_supported = 0; 669 unsigned int nb_written = 0; 670 unsigned int i; 671 int ret; 672 int rc; 673 674 if (unlikely(values == NULL) || 675 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 676 return port->mac_stats_nb_supported; 677 678 rte_spinlock_lock(&port->mac_stats_lock); 679 680 rc = sfc_port_update_mac_stats(sa); 681 if (rc != 0) { 682 SFC_ASSERT(rc > 0); 683 ret = -rc; 684 goto unlock; 685 } 686 687 mac_stats = port->mac_stats_buf; 688 689 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 690 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 691 continue; 692 693 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 694 values[nb_written++] = mac_stats[i]; 695 696 ++nb_supported; 697 } 698 699 ret = nb_written; 700 701 unlock: 702 rte_spinlock_unlock(&port->mac_stats_lock); 703 704 return ret; 705 } 706 707 static int 708 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 709 struct rte_eth_xstat_name *xstats_names, 710 const uint64_t *ids, unsigned int size) 711 { 712 struct sfc_adapter *sa = dev->data->dev_private; 713 struct sfc_port *port = &sa->port; 714 unsigned int nb_supported = 0; 715 unsigned int nb_written = 0; 716 unsigned int i; 717 718 if (unlikely(xstats_names == NULL) || 719 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 720 return port->mac_stats_nb_supported; 721 722 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 723 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 724 continue; 725 726 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 727 char *name = xstats_names[nb_written++].name; 728 729 strncpy(name, efx_mac_stat_name(sa->nic, i), 730 sizeof(xstats_names[0].name)); 731 name[sizeof(xstats_names[0].name) - 1] = '\0'; 732 } 733 734 ++nb_supported; 735 } 736 737 return nb_written; 738 } 739 740 static int 741 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 742 { 743 struct sfc_adapter *sa = dev->data->dev_private; 744 unsigned int wanted_fc, link_fc; 745 746 memset(fc_conf, 0, sizeof(*fc_conf)); 747 748 sfc_adapter_lock(sa); 749 750 if (sa->state == SFC_ADAPTER_STARTED) 751 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 752 else 753 link_fc = sa->port.flow_ctrl; 754 755 switch (link_fc) { 756 case 0: 757 fc_conf->mode = RTE_FC_NONE; 758 break; 759 case EFX_FCNTL_RESPOND: 760 fc_conf->mode = RTE_FC_RX_PAUSE; 761 break; 762 case EFX_FCNTL_GENERATE: 763 fc_conf->mode = RTE_FC_TX_PAUSE; 764 break; 765 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 766 fc_conf->mode = RTE_FC_FULL; 767 break; 768 default: 769 sfc_err(sa, "%s: unexpected flow control value %#x", 770 __func__, link_fc); 771 } 772 773 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 774 775 sfc_adapter_unlock(sa); 776 777 return 0; 778 } 779 780 static int 781 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 782 { 783 struct sfc_adapter *sa = dev->data->dev_private; 784 struct sfc_port *port = &sa->port; 785 unsigned int fcntl; 786 int rc; 787 788 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 789 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 790 fc_conf->mac_ctrl_frame_fwd != 0) { 791 sfc_err(sa, "unsupported flow control settings specified"); 792 rc = EINVAL; 793 goto fail_inval; 794 } 795 796 switch (fc_conf->mode) { 797 case RTE_FC_NONE: 798 fcntl = 0; 799 break; 800 case RTE_FC_RX_PAUSE: 801 fcntl = EFX_FCNTL_RESPOND; 802 break; 803 case RTE_FC_TX_PAUSE: 804 fcntl = EFX_FCNTL_GENERATE; 805 break; 806 case RTE_FC_FULL: 807 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 808 break; 809 default: 810 rc = EINVAL; 811 goto fail_inval; 812 } 813 814 sfc_adapter_lock(sa); 815 816 if (sa->state == SFC_ADAPTER_STARTED) { 817 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 818 if (rc != 0) 819 goto fail_mac_fcntl_set; 820 } 821 822 port->flow_ctrl = fcntl; 823 port->flow_ctrl_autoneg = fc_conf->autoneg; 824 825 sfc_adapter_unlock(sa); 826 827 return 0; 828 829 fail_mac_fcntl_set: 830 sfc_adapter_unlock(sa); 831 fail_inval: 832 SFC_ASSERT(rc > 0); 833 return -rc; 834 } 835 836 static int 837 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 838 { 839 struct sfc_adapter *sa = dev->data->dev_private; 840 size_t pdu = EFX_MAC_PDU(mtu); 841 size_t old_pdu; 842 int rc; 843 844 sfc_log_init(sa, "mtu=%u", mtu); 845 846 rc = EINVAL; 847 if (pdu < EFX_MAC_PDU_MIN) { 848 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 849 (unsigned int)mtu, (unsigned int)pdu, 850 EFX_MAC_PDU_MIN); 851 goto fail_inval; 852 } 853 if (pdu > EFX_MAC_PDU_MAX) { 854 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 855 (unsigned int)mtu, (unsigned int)pdu, 856 EFX_MAC_PDU_MAX); 857 goto fail_inval; 858 } 859 860 sfc_adapter_lock(sa); 861 862 if (pdu != sa->port.pdu) { 863 if (sa->state == SFC_ADAPTER_STARTED) { 864 sfc_stop(sa); 865 866 old_pdu = sa->port.pdu; 867 sa->port.pdu = pdu; 868 rc = sfc_start(sa); 869 if (rc != 0) 870 goto fail_start; 871 } else { 872 sa->port.pdu = pdu; 873 } 874 } 875 876 /* 877 * The driver does not use it, but other PMDs update jumbo_frame 878 * flag and max_rx_pkt_len when MTU is set. 879 */ 880 if (mtu > ETHER_MAX_LEN) { 881 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 882 883 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 884 rxmode->jumbo_frame = 1; 885 } 886 887 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 888 889 sfc_adapter_unlock(sa); 890 891 sfc_log_init(sa, "done"); 892 return 0; 893 894 fail_start: 895 sa->port.pdu = old_pdu; 896 if (sfc_start(sa) != 0) 897 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 898 "PDU max size - port is stopped", 899 (unsigned int)pdu, (unsigned int)old_pdu); 900 sfc_adapter_unlock(sa); 901 902 fail_inval: 903 sfc_log_init(sa, "failed %d", rc); 904 SFC_ASSERT(rc > 0); 905 return -rc; 906 } 907 static int 908 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 909 { 910 struct sfc_adapter *sa = dev->data->dev_private; 911 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 912 struct sfc_port *port = &sa->port; 913 struct ether_addr *old_addr = &dev->data->mac_addrs[0]; 914 int rc = 0; 915 916 sfc_adapter_lock(sa); 917 918 /* 919 * Copy the address to the device private data so that 920 * it could be recalled in the case of adapter restart. 921 */ 922 ether_addr_copy(mac_addr, &port->default_mac_addr); 923 924 /* 925 * Neither of the two following checks can return 926 * an error. The new MAC address is preserved in 927 * the device private data and can be activated 928 * on the next port start if the user prevents 929 * isolated mode from being enabled. 930 */ 931 if (port->isolated) { 932 sfc_warn(sa, "isolated mode is active on the port"); 933 sfc_warn(sa, "will not set MAC address"); 934 goto unlock; 935 } 936 937 if (sa->state != SFC_ADAPTER_STARTED) { 938 sfc_notice(sa, "the port is not started"); 939 sfc_notice(sa, "the new MAC address will be set on port start"); 940 941 goto unlock; 942 } 943 944 if (encp->enc_allow_set_mac_with_installed_filters) { 945 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 946 if (rc != 0) { 947 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 948 goto unlock; 949 } 950 951 /* 952 * Changing the MAC address by means of MCDI request 953 * has no effect on received traffic, therefore 954 * we also need to update unicast filters 955 */ 956 rc = sfc_set_rx_mode(sa); 957 if (rc != 0) { 958 sfc_err(sa, "cannot set filter (rc = %u)", rc); 959 /* Rollback the old address */ 960 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 961 (void)sfc_set_rx_mode(sa); 962 } 963 } else { 964 sfc_warn(sa, "cannot set MAC address with filters installed"); 965 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 966 sfc_warn(sa, "(some traffic may be dropped)"); 967 968 /* 969 * Since setting MAC address with filters installed is not 970 * allowed on the adapter, the new MAC address will be set 971 * by means of adapter restart. sfc_start() shall retrieve 972 * the new address from the device private data and set it. 973 */ 974 sfc_stop(sa); 975 rc = sfc_start(sa); 976 if (rc != 0) 977 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 978 } 979 980 unlock: 981 if (rc != 0) 982 ether_addr_copy(old_addr, &port->default_mac_addr); 983 984 sfc_adapter_unlock(sa); 985 986 SFC_ASSERT(rc >= 0); 987 return -rc; 988 } 989 990 991 static int 992 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 993 uint32_t nb_mc_addr) 994 { 995 struct sfc_adapter *sa = dev->data->dev_private; 996 struct sfc_port *port = &sa->port; 997 uint8_t *mc_addrs = port->mcast_addrs; 998 int rc; 999 unsigned int i; 1000 1001 if (port->isolated) { 1002 sfc_err(sa, "isolated mode is active on the port"); 1003 sfc_err(sa, "will not set multicast address list"); 1004 return -ENOTSUP; 1005 } 1006 1007 if (mc_addrs == NULL) 1008 return -ENOBUFS; 1009 1010 if (nb_mc_addr > port->max_mcast_addrs) { 1011 sfc_err(sa, "too many multicast addresses: %u > %u", 1012 nb_mc_addr, port->max_mcast_addrs); 1013 return -EINVAL; 1014 } 1015 1016 for (i = 0; i < nb_mc_addr; ++i) { 1017 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1018 EFX_MAC_ADDR_LEN); 1019 mc_addrs += EFX_MAC_ADDR_LEN; 1020 } 1021 1022 port->nb_mcast_addrs = nb_mc_addr; 1023 1024 if (sa->state != SFC_ADAPTER_STARTED) 1025 return 0; 1026 1027 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1028 port->nb_mcast_addrs); 1029 if (rc != 0) 1030 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1031 1032 SFC_ASSERT(rc > 0); 1033 return -rc; 1034 } 1035 1036 /* 1037 * The function is used by the secondary process as well. It must not 1038 * use any process-local pointers from the adapter data. 1039 */ 1040 static void 1041 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1042 struct rte_eth_rxq_info *qinfo) 1043 { 1044 struct sfc_adapter *sa = dev->data->dev_private; 1045 struct sfc_rxq_info *rxq_info; 1046 struct sfc_rxq *rxq; 1047 1048 sfc_adapter_lock(sa); 1049 1050 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1051 1052 rxq_info = &sa->rxq_info[rx_queue_id]; 1053 rxq = rxq_info->rxq; 1054 SFC_ASSERT(rxq != NULL); 1055 1056 qinfo->mp = rxq->refill_mb_pool; 1057 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1058 qinfo->conf.rx_drop_en = 1; 1059 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1060 qinfo->conf.offloads = DEV_RX_OFFLOAD_IPV4_CKSUM | 1061 DEV_RX_OFFLOAD_UDP_CKSUM | 1062 DEV_RX_OFFLOAD_TCP_CKSUM; 1063 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1064 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1065 qinfo->scattered_rx = 1; 1066 } 1067 qinfo->nb_desc = rxq_info->entries; 1068 1069 sfc_adapter_unlock(sa); 1070 } 1071 1072 /* 1073 * The function is used by the secondary process as well. It must not 1074 * use any process-local pointers from the adapter data. 1075 */ 1076 static void 1077 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1078 struct rte_eth_txq_info *qinfo) 1079 { 1080 struct sfc_adapter *sa = dev->data->dev_private; 1081 struct sfc_txq_info *txq_info; 1082 1083 sfc_adapter_lock(sa); 1084 1085 SFC_ASSERT(tx_queue_id < sa->txq_count); 1086 1087 txq_info = &sa->txq_info[tx_queue_id]; 1088 SFC_ASSERT(txq_info->txq != NULL); 1089 1090 memset(qinfo, 0, sizeof(*qinfo)); 1091 1092 qinfo->conf.txq_flags = txq_info->txq->flags; 1093 qinfo->conf.offloads = txq_info->txq->offloads; 1094 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1095 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1096 qinfo->nb_desc = txq_info->entries; 1097 1098 sfc_adapter_unlock(sa); 1099 } 1100 1101 static uint32_t 1102 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1103 { 1104 struct sfc_adapter *sa = dev->data->dev_private; 1105 1106 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1107 1108 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1109 } 1110 1111 static int 1112 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1113 { 1114 struct sfc_dp_rxq *dp_rxq = queue; 1115 1116 return sfc_rx_qdesc_done(dp_rxq, offset); 1117 } 1118 1119 static int 1120 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1121 { 1122 struct sfc_dp_rxq *dp_rxq = queue; 1123 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1124 1125 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1126 } 1127 1128 static int 1129 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1130 { 1131 struct sfc_dp_txq *dp_txq = queue; 1132 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1133 1134 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1135 } 1136 1137 static int 1138 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1139 { 1140 struct sfc_adapter *sa = dev->data->dev_private; 1141 int rc; 1142 1143 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1144 1145 sfc_adapter_lock(sa); 1146 1147 rc = EINVAL; 1148 if (sa->state != SFC_ADAPTER_STARTED) 1149 goto fail_not_started; 1150 1151 rc = sfc_rx_qstart(sa, rx_queue_id); 1152 if (rc != 0) 1153 goto fail_rx_qstart; 1154 1155 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1156 1157 sfc_adapter_unlock(sa); 1158 1159 return 0; 1160 1161 fail_rx_qstart: 1162 fail_not_started: 1163 sfc_adapter_unlock(sa); 1164 SFC_ASSERT(rc > 0); 1165 return -rc; 1166 } 1167 1168 static int 1169 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1170 { 1171 struct sfc_adapter *sa = dev->data->dev_private; 1172 1173 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1174 1175 sfc_adapter_lock(sa); 1176 sfc_rx_qstop(sa, rx_queue_id); 1177 1178 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1179 1180 sfc_adapter_unlock(sa); 1181 1182 return 0; 1183 } 1184 1185 static int 1186 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1187 { 1188 struct sfc_adapter *sa = dev->data->dev_private; 1189 int rc; 1190 1191 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1192 1193 sfc_adapter_lock(sa); 1194 1195 rc = EINVAL; 1196 if (sa->state != SFC_ADAPTER_STARTED) 1197 goto fail_not_started; 1198 1199 rc = sfc_tx_qstart(sa, tx_queue_id); 1200 if (rc != 0) 1201 goto fail_tx_qstart; 1202 1203 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1204 1205 sfc_adapter_unlock(sa); 1206 return 0; 1207 1208 fail_tx_qstart: 1209 1210 fail_not_started: 1211 sfc_adapter_unlock(sa); 1212 SFC_ASSERT(rc > 0); 1213 return -rc; 1214 } 1215 1216 static int 1217 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1218 { 1219 struct sfc_adapter *sa = dev->data->dev_private; 1220 1221 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1222 1223 sfc_adapter_lock(sa); 1224 1225 sfc_tx_qstop(sa, tx_queue_id); 1226 1227 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1228 1229 sfc_adapter_unlock(sa); 1230 return 0; 1231 } 1232 1233 static efx_tunnel_protocol_t 1234 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1235 { 1236 switch (rte_type) { 1237 case RTE_TUNNEL_TYPE_VXLAN: 1238 return EFX_TUNNEL_PROTOCOL_VXLAN; 1239 case RTE_TUNNEL_TYPE_GENEVE: 1240 return EFX_TUNNEL_PROTOCOL_GENEVE; 1241 default: 1242 return EFX_TUNNEL_NPROTOS; 1243 } 1244 } 1245 1246 enum sfc_udp_tunnel_op_e { 1247 SFC_UDP_TUNNEL_ADD_PORT, 1248 SFC_UDP_TUNNEL_DEL_PORT, 1249 }; 1250 1251 static int 1252 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1253 struct rte_eth_udp_tunnel *tunnel_udp, 1254 enum sfc_udp_tunnel_op_e op) 1255 { 1256 struct sfc_adapter *sa = dev->data->dev_private; 1257 efx_tunnel_protocol_t tunnel_proto; 1258 int rc; 1259 1260 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1261 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1262 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1263 tunnel_udp->udp_port, tunnel_udp->prot_type); 1264 1265 tunnel_proto = 1266 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1267 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1268 rc = ENOTSUP; 1269 goto fail_bad_proto; 1270 } 1271 1272 sfc_adapter_lock(sa); 1273 1274 switch (op) { 1275 case SFC_UDP_TUNNEL_ADD_PORT: 1276 rc = efx_tunnel_config_udp_add(sa->nic, 1277 tunnel_udp->udp_port, 1278 tunnel_proto); 1279 break; 1280 case SFC_UDP_TUNNEL_DEL_PORT: 1281 rc = efx_tunnel_config_udp_remove(sa->nic, 1282 tunnel_udp->udp_port, 1283 tunnel_proto); 1284 break; 1285 default: 1286 rc = EINVAL; 1287 goto fail_bad_op; 1288 } 1289 1290 if (rc != 0) 1291 goto fail_op; 1292 1293 if (sa->state == SFC_ADAPTER_STARTED) { 1294 rc = efx_tunnel_reconfigure(sa->nic); 1295 if (rc == EAGAIN) { 1296 /* 1297 * Configuration is accepted by FW and MC reboot 1298 * is initiated to apply the changes. MC reboot 1299 * will be handled in a usual way (MC reboot 1300 * event on management event queue and adapter 1301 * restart). 1302 */ 1303 rc = 0; 1304 } else if (rc != 0) { 1305 goto fail_reconfigure; 1306 } 1307 } 1308 1309 sfc_adapter_unlock(sa); 1310 return 0; 1311 1312 fail_reconfigure: 1313 /* Remove/restore entry since the change makes the trouble */ 1314 switch (op) { 1315 case SFC_UDP_TUNNEL_ADD_PORT: 1316 (void)efx_tunnel_config_udp_remove(sa->nic, 1317 tunnel_udp->udp_port, 1318 tunnel_proto); 1319 break; 1320 case SFC_UDP_TUNNEL_DEL_PORT: 1321 (void)efx_tunnel_config_udp_add(sa->nic, 1322 tunnel_udp->udp_port, 1323 tunnel_proto); 1324 break; 1325 } 1326 1327 fail_op: 1328 fail_bad_op: 1329 sfc_adapter_unlock(sa); 1330 1331 fail_bad_proto: 1332 SFC_ASSERT(rc > 0); 1333 return -rc; 1334 } 1335 1336 static int 1337 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1338 struct rte_eth_udp_tunnel *tunnel_udp) 1339 { 1340 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1341 } 1342 1343 static int 1344 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1345 struct rte_eth_udp_tunnel *tunnel_udp) 1346 { 1347 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1348 } 1349 1350 static int 1351 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1352 struct rte_eth_rss_conf *rss_conf) 1353 { 1354 struct sfc_adapter *sa = dev->data->dev_private; 1355 struct sfc_rss *rss = &sa->rss; 1356 struct sfc_port *port = &sa->port; 1357 1358 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1359 return -ENOTSUP; 1360 1361 if (rss->channels == 0) 1362 return -EINVAL; 1363 1364 sfc_adapter_lock(sa); 1365 1366 /* 1367 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1368 * hence, conversion is done here to derive a correct set of ETH_RSS 1369 * flags which corresponds to the active EFX configuration stored 1370 * locally in 'sfc_adapter' and kept up-to-date 1371 */ 1372 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types); 1373 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1374 if (rss_conf->rss_key != NULL) 1375 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1376 1377 sfc_adapter_unlock(sa); 1378 1379 return 0; 1380 } 1381 1382 static int 1383 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1384 struct rte_eth_rss_conf *rss_conf) 1385 { 1386 struct sfc_adapter *sa = dev->data->dev_private; 1387 struct sfc_rss *rss = &sa->rss; 1388 struct sfc_port *port = &sa->port; 1389 unsigned int efx_hash_types; 1390 int rc = 0; 1391 1392 if (port->isolated) 1393 return -ENOTSUP; 1394 1395 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1396 sfc_err(sa, "RSS is not available"); 1397 return -ENOTSUP; 1398 } 1399 1400 if (rss->channels == 0) { 1401 sfc_err(sa, "RSS is not configured"); 1402 return -EINVAL; 1403 } 1404 1405 if ((rss_conf->rss_key != NULL) && 1406 (rss_conf->rss_key_len != sizeof(rss->key))) { 1407 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1408 sizeof(rss->key)); 1409 return -EINVAL; 1410 } 1411 1412 sfc_adapter_lock(sa); 1413 1414 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1415 if (rc != 0) 1416 goto fail_rx_hf_rte_to_efx; 1417 1418 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1419 rss->hash_alg, efx_hash_types, B_TRUE); 1420 if (rc != 0) 1421 goto fail_scale_mode_set; 1422 1423 if (rss_conf->rss_key != NULL) { 1424 if (sa->state == SFC_ADAPTER_STARTED) { 1425 rc = efx_rx_scale_key_set(sa->nic, 1426 EFX_RSS_CONTEXT_DEFAULT, 1427 rss_conf->rss_key, 1428 sizeof(rss->key)); 1429 if (rc != 0) 1430 goto fail_scale_key_set; 1431 } 1432 1433 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1434 } 1435 1436 rss->hash_types = efx_hash_types; 1437 1438 sfc_adapter_unlock(sa); 1439 1440 return 0; 1441 1442 fail_scale_key_set: 1443 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1444 EFX_RX_HASHALG_TOEPLITZ, 1445 rss->hash_types, B_TRUE) != 0) 1446 sfc_err(sa, "failed to restore RSS mode"); 1447 1448 fail_scale_mode_set: 1449 fail_rx_hf_rte_to_efx: 1450 sfc_adapter_unlock(sa); 1451 return -rc; 1452 } 1453 1454 static int 1455 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1456 struct rte_eth_rss_reta_entry64 *reta_conf, 1457 uint16_t reta_size) 1458 { 1459 struct sfc_adapter *sa = dev->data->dev_private; 1460 struct sfc_rss *rss = &sa->rss; 1461 struct sfc_port *port = &sa->port; 1462 int entry; 1463 1464 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1465 return -ENOTSUP; 1466 1467 if (rss->channels == 0) 1468 return -EINVAL; 1469 1470 if (reta_size != EFX_RSS_TBL_SIZE) 1471 return -EINVAL; 1472 1473 sfc_adapter_lock(sa); 1474 1475 for (entry = 0; entry < reta_size; entry++) { 1476 int grp = entry / RTE_RETA_GROUP_SIZE; 1477 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1478 1479 if ((reta_conf[grp].mask >> grp_idx) & 1) 1480 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1481 } 1482 1483 sfc_adapter_unlock(sa); 1484 1485 return 0; 1486 } 1487 1488 static int 1489 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1490 struct rte_eth_rss_reta_entry64 *reta_conf, 1491 uint16_t reta_size) 1492 { 1493 struct sfc_adapter *sa = dev->data->dev_private; 1494 struct sfc_rss *rss = &sa->rss; 1495 struct sfc_port *port = &sa->port; 1496 unsigned int *rss_tbl_new; 1497 uint16_t entry; 1498 int rc = 0; 1499 1500 1501 if (port->isolated) 1502 return -ENOTSUP; 1503 1504 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1505 sfc_err(sa, "RSS is not available"); 1506 return -ENOTSUP; 1507 } 1508 1509 if (rss->channels == 0) { 1510 sfc_err(sa, "RSS is not configured"); 1511 return -EINVAL; 1512 } 1513 1514 if (reta_size != EFX_RSS_TBL_SIZE) { 1515 sfc_err(sa, "RETA size is wrong (should be %u)", 1516 EFX_RSS_TBL_SIZE); 1517 return -EINVAL; 1518 } 1519 1520 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1521 if (rss_tbl_new == NULL) 1522 return -ENOMEM; 1523 1524 sfc_adapter_lock(sa); 1525 1526 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1527 1528 for (entry = 0; entry < reta_size; entry++) { 1529 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1530 struct rte_eth_rss_reta_entry64 *grp; 1531 1532 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1533 1534 if (grp->mask & (1ull << grp_idx)) { 1535 if (grp->reta[grp_idx] >= rss->channels) { 1536 rc = EINVAL; 1537 goto bad_reta_entry; 1538 } 1539 rss_tbl_new[entry] = grp->reta[grp_idx]; 1540 } 1541 } 1542 1543 if (sa->state == SFC_ADAPTER_STARTED) { 1544 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1545 rss_tbl_new, EFX_RSS_TBL_SIZE); 1546 if (rc != 0) 1547 goto fail_scale_tbl_set; 1548 } 1549 1550 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1551 1552 fail_scale_tbl_set: 1553 bad_reta_entry: 1554 sfc_adapter_unlock(sa); 1555 1556 rte_free(rss_tbl_new); 1557 1558 SFC_ASSERT(rc >= 0); 1559 return -rc; 1560 } 1561 1562 static int 1563 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1564 enum rte_filter_op filter_op, 1565 void *arg) 1566 { 1567 struct sfc_adapter *sa = dev->data->dev_private; 1568 int rc = ENOTSUP; 1569 1570 sfc_log_init(sa, "entry"); 1571 1572 switch (filter_type) { 1573 case RTE_ETH_FILTER_NONE: 1574 sfc_err(sa, "Global filters configuration not supported"); 1575 break; 1576 case RTE_ETH_FILTER_MACVLAN: 1577 sfc_err(sa, "MACVLAN filters not supported"); 1578 break; 1579 case RTE_ETH_FILTER_ETHERTYPE: 1580 sfc_err(sa, "EtherType filters not supported"); 1581 break; 1582 case RTE_ETH_FILTER_FLEXIBLE: 1583 sfc_err(sa, "Flexible filters not supported"); 1584 break; 1585 case RTE_ETH_FILTER_SYN: 1586 sfc_err(sa, "SYN filters not supported"); 1587 break; 1588 case RTE_ETH_FILTER_NTUPLE: 1589 sfc_err(sa, "NTUPLE filters not supported"); 1590 break; 1591 case RTE_ETH_FILTER_TUNNEL: 1592 sfc_err(sa, "Tunnel filters not supported"); 1593 break; 1594 case RTE_ETH_FILTER_FDIR: 1595 sfc_err(sa, "Flow Director filters not supported"); 1596 break; 1597 case RTE_ETH_FILTER_HASH: 1598 sfc_err(sa, "Hash filters not supported"); 1599 break; 1600 case RTE_ETH_FILTER_GENERIC: 1601 if (filter_op != RTE_ETH_FILTER_GET) { 1602 rc = EINVAL; 1603 } else { 1604 *(const void **)arg = &sfc_flow_ops; 1605 rc = 0; 1606 } 1607 break; 1608 default: 1609 sfc_err(sa, "Unknown filter type %u", filter_type); 1610 break; 1611 } 1612 1613 sfc_log_init(sa, "exit: %d", -rc); 1614 SFC_ASSERT(rc >= 0); 1615 return -rc; 1616 } 1617 1618 static int 1619 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1620 { 1621 struct sfc_adapter *sa = dev->data->dev_private; 1622 1623 /* 1624 * If Rx datapath does not provide callback to check mempool, 1625 * all pools are supported. 1626 */ 1627 if (sa->dp_rx->pool_ops_supported == NULL) 1628 return 1; 1629 1630 return sa->dp_rx->pool_ops_supported(pool); 1631 } 1632 1633 static const struct eth_dev_ops sfc_eth_dev_ops = { 1634 .dev_configure = sfc_dev_configure, 1635 .dev_start = sfc_dev_start, 1636 .dev_stop = sfc_dev_stop, 1637 .dev_set_link_up = sfc_dev_set_link_up, 1638 .dev_set_link_down = sfc_dev_set_link_down, 1639 .dev_close = sfc_dev_close, 1640 .promiscuous_enable = sfc_dev_promisc_enable, 1641 .promiscuous_disable = sfc_dev_promisc_disable, 1642 .allmulticast_enable = sfc_dev_allmulti_enable, 1643 .allmulticast_disable = sfc_dev_allmulti_disable, 1644 .link_update = sfc_dev_link_update, 1645 .stats_get = sfc_stats_get, 1646 .stats_reset = sfc_stats_reset, 1647 .xstats_get = sfc_xstats_get, 1648 .xstats_reset = sfc_stats_reset, 1649 .xstats_get_names = sfc_xstats_get_names, 1650 .dev_infos_get = sfc_dev_infos_get, 1651 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1652 .mtu_set = sfc_dev_set_mtu, 1653 .rx_queue_start = sfc_rx_queue_start, 1654 .rx_queue_stop = sfc_rx_queue_stop, 1655 .tx_queue_start = sfc_tx_queue_start, 1656 .tx_queue_stop = sfc_tx_queue_stop, 1657 .rx_queue_setup = sfc_rx_queue_setup, 1658 .rx_queue_release = sfc_rx_queue_release, 1659 .rx_queue_count = sfc_rx_queue_count, 1660 .rx_descriptor_done = sfc_rx_descriptor_done, 1661 .rx_descriptor_status = sfc_rx_descriptor_status, 1662 .tx_descriptor_status = sfc_tx_descriptor_status, 1663 .tx_queue_setup = sfc_tx_queue_setup, 1664 .tx_queue_release = sfc_tx_queue_release, 1665 .flow_ctrl_get = sfc_flow_ctrl_get, 1666 .flow_ctrl_set = sfc_flow_ctrl_set, 1667 .mac_addr_set = sfc_mac_addr_set, 1668 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1669 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1670 .reta_update = sfc_dev_rss_reta_update, 1671 .reta_query = sfc_dev_rss_reta_query, 1672 .rss_hash_update = sfc_dev_rss_hash_update, 1673 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1674 .filter_ctrl = sfc_dev_filter_ctrl, 1675 .set_mc_addr_list = sfc_set_mc_addr_list, 1676 .rxq_info_get = sfc_rx_queue_info_get, 1677 .txq_info_get = sfc_tx_queue_info_get, 1678 .fw_version_get = sfc_fw_version_get, 1679 .xstats_get_by_id = sfc_xstats_get_by_id, 1680 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1681 .pool_ops_supported = sfc_pool_ops_supported, 1682 }; 1683 1684 /** 1685 * Duplicate a string in potentially shared memory required for 1686 * multi-process support. 1687 * 1688 * strdup() allocates from process-local heap/memory. 1689 */ 1690 static char * 1691 sfc_strdup(const char *str) 1692 { 1693 size_t size; 1694 char *copy; 1695 1696 if (str == NULL) 1697 return NULL; 1698 1699 size = strlen(str) + 1; 1700 copy = rte_malloc(__func__, size, 0); 1701 if (copy != NULL) 1702 rte_memcpy(copy, str, size); 1703 1704 return copy; 1705 } 1706 1707 static int 1708 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1709 { 1710 struct sfc_adapter *sa = dev->data->dev_private; 1711 const efx_nic_cfg_t *encp; 1712 unsigned int avail_caps = 0; 1713 const char *rx_name = NULL; 1714 const char *tx_name = NULL; 1715 int rc; 1716 1717 switch (sa->family) { 1718 case EFX_FAMILY_HUNTINGTON: 1719 case EFX_FAMILY_MEDFORD: 1720 case EFX_FAMILY_MEDFORD2: 1721 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1722 break; 1723 default: 1724 break; 1725 } 1726 1727 encp = efx_nic_cfg_get(sa->nic); 1728 if (encp->enc_rx_es_super_buffer_supported) 1729 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1730 1731 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1732 sfc_kvarg_string_handler, &rx_name); 1733 if (rc != 0) 1734 goto fail_kvarg_rx_datapath; 1735 1736 if (rx_name != NULL) { 1737 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1738 if (sa->dp_rx == NULL) { 1739 sfc_err(sa, "Rx datapath %s not found", rx_name); 1740 rc = ENOENT; 1741 goto fail_dp_rx; 1742 } 1743 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1744 sfc_err(sa, 1745 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1746 rx_name); 1747 rc = EINVAL; 1748 goto fail_dp_rx_caps; 1749 } 1750 } else { 1751 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1752 if (sa->dp_rx == NULL) { 1753 sfc_err(sa, "Rx datapath by caps %#x not found", 1754 avail_caps); 1755 rc = ENOENT; 1756 goto fail_dp_rx; 1757 } 1758 } 1759 1760 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1761 if (sa->dp_rx_name == NULL) { 1762 rc = ENOMEM; 1763 goto fail_dp_rx_name; 1764 } 1765 1766 sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name); 1767 1768 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1769 1770 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1771 sfc_kvarg_string_handler, &tx_name); 1772 if (rc != 0) 1773 goto fail_kvarg_tx_datapath; 1774 1775 if (tx_name != NULL) { 1776 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1777 if (sa->dp_tx == NULL) { 1778 sfc_err(sa, "Tx datapath %s not found", tx_name); 1779 rc = ENOENT; 1780 goto fail_dp_tx; 1781 } 1782 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1783 sfc_err(sa, 1784 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1785 tx_name); 1786 rc = EINVAL; 1787 goto fail_dp_tx_caps; 1788 } 1789 } else { 1790 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1791 if (sa->dp_tx == NULL) { 1792 sfc_err(sa, "Tx datapath by caps %#x not found", 1793 avail_caps); 1794 rc = ENOENT; 1795 goto fail_dp_tx; 1796 } 1797 } 1798 1799 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1800 if (sa->dp_tx_name == NULL) { 1801 rc = ENOMEM; 1802 goto fail_dp_tx_name; 1803 } 1804 1805 sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name); 1806 1807 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1808 1809 dev->dev_ops = &sfc_eth_dev_ops; 1810 1811 return 0; 1812 1813 fail_dp_tx_name: 1814 fail_dp_tx_caps: 1815 sa->dp_tx = NULL; 1816 1817 fail_dp_tx: 1818 fail_kvarg_tx_datapath: 1819 rte_free(sa->dp_rx_name); 1820 sa->dp_rx_name = NULL; 1821 1822 fail_dp_rx_name: 1823 fail_dp_rx_caps: 1824 sa->dp_rx = NULL; 1825 1826 fail_dp_rx: 1827 fail_kvarg_rx_datapath: 1828 return rc; 1829 } 1830 1831 static void 1832 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1833 { 1834 struct sfc_adapter *sa = dev->data->dev_private; 1835 1836 dev->dev_ops = NULL; 1837 dev->rx_pkt_burst = NULL; 1838 dev->tx_pkt_burst = NULL; 1839 1840 rte_free(sa->dp_tx_name); 1841 sa->dp_tx_name = NULL; 1842 sa->dp_tx = NULL; 1843 1844 rte_free(sa->dp_rx_name); 1845 sa->dp_rx_name = NULL; 1846 sa->dp_rx = NULL; 1847 } 1848 1849 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1850 .rxq_info_get = sfc_rx_queue_info_get, 1851 .txq_info_get = sfc_tx_queue_info_get, 1852 }; 1853 1854 static int 1855 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1856 { 1857 /* 1858 * Device private data has really many process-local pointers. 1859 * Below code should be extremely careful to use data located 1860 * in shared memory only. 1861 */ 1862 struct sfc_adapter *sa = dev->data->dev_private; 1863 const struct sfc_dp_rx *dp_rx; 1864 const struct sfc_dp_tx *dp_tx; 1865 int rc; 1866 1867 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1868 if (dp_rx == NULL) { 1869 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name); 1870 rc = ENOENT; 1871 goto fail_dp_rx; 1872 } 1873 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1874 sfc_err(sa, "%s Rx datapath does not support multi-process", 1875 sa->dp_tx_name); 1876 rc = EINVAL; 1877 goto fail_dp_rx_multi_process; 1878 } 1879 1880 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1881 if (dp_tx == NULL) { 1882 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1883 rc = ENOENT; 1884 goto fail_dp_tx; 1885 } 1886 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1887 sfc_err(sa, "%s Tx datapath does not support multi-process", 1888 sa->dp_tx_name); 1889 rc = EINVAL; 1890 goto fail_dp_tx_multi_process; 1891 } 1892 1893 dev->rx_pkt_burst = dp_rx->pkt_burst; 1894 dev->tx_pkt_burst = dp_tx->pkt_burst; 1895 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1896 1897 return 0; 1898 1899 fail_dp_tx_multi_process: 1900 fail_dp_tx: 1901 fail_dp_rx_multi_process: 1902 fail_dp_rx: 1903 return rc; 1904 } 1905 1906 static void 1907 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1908 { 1909 dev->dev_ops = NULL; 1910 dev->tx_pkt_burst = NULL; 1911 dev->rx_pkt_burst = NULL; 1912 } 1913 1914 static void 1915 sfc_register_dp(void) 1916 { 1917 /* Register once */ 1918 if (TAILQ_EMPTY(&sfc_dp_head)) { 1919 /* Prefer EF10 datapath */ 1920 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 1921 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1922 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1923 1924 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1925 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1926 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1927 } 1928 } 1929 1930 static int 1931 sfc_eth_dev_init(struct rte_eth_dev *dev) 1932 { 1933 struct sfc_adapter *sa = dev->data->dev_private; 1934 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1935 int rc; 1936 const efx_nic_cfg_t *encp; 1937 const struct ether_addr *from; 1938 1939 sfc_register_dp(); 1940 1941 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1942 return -sfc_eth_dev_secondary_set_ops(dev); 1943 1944 /* Required for logging */ 1945 sa->pci_addr = pci_dev->addr; 1946 sa->port_id = dev->data->port_id; 1947 1948 sa->eth_dev = dev; 1949 1950 /* Copy PCI device info to the dev->data */ 1951 rte_eth_copy_pci_info(dev, pci_dev); 1952 1953 sa->logtype_main = sfc_register_logtype(sa, SFC_LOGTYPE_MAIN_STR, 1954 RTE_LOG_NOTICE); 1955 1956 rc = sfc_kvargs_parse(sa); 1957 if (rc != 0) 1958 goto fail_kvargs_parse; 1959 1960 sfc_log_init(sa, "entry"); 1961 1962 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1963 if (dev->data->mac_addrs == NULL) { 1964 rc = ENOMEM; 1965 goto fail_mac_addrs; 1966 } 1967 1968 sfc_adapter_lock_init(sa); 1969 sfc_adapter_lock(sa); 1970 1971 sfc_log_init(sa, "probing"); 1972 rc = sfc_probe(sa); 1973 if (rc != 0) 1974 goto fail_probe; 1975 1976 sfc_log_init(sa, "set device ops"); 1977 rc = sfc_eth_dev_set_ops(dev); 1978 if (rc != 0) 1979 goto fail_set_ops; 1980 1981 sfc_log_init(sa, "attaching"); 1982 rc = sfc_attach(sa); 1983 if (rc != 0) 1984 goto fail_attach; 1985 1986 encp = efx_nic_cfg_get(sa->nic); 1987 1988 /* 1989 * The arguments are really reverse order in comparison to 1990 * Linux kernel. Copy from NIC config to Ethernet device data. 1991 */ 1992 from = (const struct ether_addr *)(encp->enc_mac_addr); 1993 ether_addr_copy(from, &dev->data->mac_addrs[0]); 1994 1995 sfc_adapter_unlock(sa); 1996 1997 sfc_log_init(sa, "done"); 1998 return 0; 1999 2000 fail_attach: 2001 sfc_eth_dev_clear_ops(dev); 2002 2003 fail_set_ops: 2004 sfc_unprobe(sa); 2005 2006 fail_probe: 2007 sfc_adapter_unlock(sa); 2008 sfc_adapter_lock_fini(sa); 2009 rte_free(dev->data->mac_addrs); 2010 dev->data->mac_addrs = NULL; 2011 2012 fail_mac_addrs: 2013 sfc_kvargs_cleanup(sa); 2014 2015 fail_kvargs_parse: 2016 sfc_log_init(sa, "failed %d", rc); 2017 SFC_ASSERT(rc > 0); 2018 return -rc; 2019 } 2020 2021 static int 2022 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2023 { 2024 struct sfc_adapter *sa; 2025 2026 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2027 sfc_eth_dev_secondary_clear_ops(dev); 2028 return 0; 2029 } 2030 2031 sa = dev->data->dev_private; 2032 sfc_log_init(sa, "entry"); 2033 2034 sfc_adapter_lock(sa); 2035 2036 sfc_eth_dev_clear_ops(dev); 2037 2038 sfc_detach(sa); 2039 sfc_unprobe(sa); 2040 2041 rte_free(dev->data->mac_addrs); 2042 dev->data->mac_addrs = NULL; 2043 2044 sfc_kvargs_cleanup(sa); 2045 2046 sfc_adapter_unlock(sa); 2047 sfc_adapter_lock_fini(sa); 2048 2049 sfc_log_init(sa, "done"); 2050 2051 /* Required for logging, so cleanup last */ 2052 sa->eth_dev = NULL; 2053 return 0; 2054 } 2055 2056 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2057 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2058 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2059 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2060 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2061 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2062 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2063 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2064 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2065 { .vendor_id = 0 /* sentinel */ } 2066 }; 2067 2068 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2069 struct rte_pci_device *pci_dev) 2070 { 2071 return rte_eth_dev_pci_generic_probe(pci_dev, 2072 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2073 } 2074 2075 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2076 { 2077 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2078 } 2079 2080 static struct rte_pci_driver sfc_efx_pmd = { 2081 .id_table = pci_id_sfc_efx_map, 2082 .drv_flags = 2083 RTE_PCI_DRV_INTR_LSC | 2084 RTE_PCI_DRV_NEED_MAPPING, 2085 .probe = sfc_eth_dev_pci_probe, 2086 .remove = sfc_eth_dev_pci_remove, 2087 }; 2088 2089 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2090 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2091 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2092 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2093 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2094 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2095 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2096 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2097 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2098 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2099 2100 RTE_INIT(sfc_driver_register_logtype); 2101 static void 2102 sfc_driver_register_logtype(void) 2103 { 2104 int ret; 2105 2106 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2107 RTE_LOG_NOTICE); 2108 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2109 } 2110