1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_debug.h" 22 #include "sfc_log.h" 23 #include "sfc_kvargs.h" 24 #include "sfc_ev.h" 25 #include "sfc_rx.h" 26 #include "sfc_tx.h" 27 #include "sfc_flow.h" 28 #include "sfc_dp.h" 29 #include "sfc_dp_rx.h" 30 31 uint32_t sfc_logtype_driver; 32 33 static struct sfc_dp_list sfc_dp_head = 34 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 35 36 static int 37 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 38 { 39 struct sfc_adapter *sa = dev->data->dev_private; 40 efx_nic_fw_info_t enfi; 41 int ret; 42 int rc; 43 44 /* 45 * Return value of the callback is likely supposed to be 46 * equal to or greater than 0, nevertheless, if an error 47 * occurs, it will be desirable to pass it to the caller 48 */ 49 if ((fw_version == NULL) || (fw_size == 0)) 50 return -EINVAL; 51 52 rc = efx_nic_get_fw_version(sa->nic, &enfi); 53 if (rc != 0) 54 return -rc; 55 56 ret = snprintf(fw_version, fw_size, 57 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 58 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 59 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 60 if (ret < 0) 61 return ret; 62 63 if (enfi.enfi_dpcpu_fw_ids_valid) { 64 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 65 int ret_extra; 66 67 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 68 fw_size - dpcpu_fw_ids_offset, 69 " rx%" PRIx16 " tx%" PRIx16, 70 enfi.enfi_rx_dpcpu_fw_id, 71 enfi.enfi_tx_dpcpu_fw_id); 72 if (ret_extra < 0) 73 return ret_extra; 74 75 ret += ret_extra; 76 } 77 78 if (fw_size < (size_t)(++ret)) 79 return ret; 80 else 81 return 0; 82 } 83 84 static void 85 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 86 { 87 struct sfc_adapter *sa = dev->data->dev_private; 88 struct sfc_rss *rss = &sa->rss; 89 uint64_t txq_offloads_def = 0; 90 91 sfc_log_init(sa, "entry"); 92 93 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 94 95 /* Autonegotiation may be disabled */ 96 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 97 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 98 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 99 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 100 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 101 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX) 102 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 103 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 104 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 105 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX) 106 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 107 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX) 108 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 109 110 dev_info->max_rx_queues = sa->rxq_max; 111 dev_info->max_tx_queues = sa->txq_max; 112 113 /* By default packets are dropped if no descriptors are available */ 114 dev_info->default_rxconf.rx_drop_en = 1; 115 116 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 117 118 /* 119 * rx_offload_capa includes both device and queue offloads since 120 * the latter may be requested on a per device basis which makes 121 * sense when some offloads are needed to be set on all queues. 122 */ 123 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 124 dev_info->rx_queue_offload_capa; 125 126 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 127 128 /* 129 * tx_offload_capa includes both device and queue offloads since 130 * the latter may be requested on a per device basis which makes 131 * sense when some offloads are needed to be set on all queues. 132 */ 133 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 134 dev_info->tx_queue_offload_capa; 135 136 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 137 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 138 139 dev_info->default_txconf.offloads |= txq_offloads_def; 140 141 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 142 uint64_t rte_hf = 0; 143 unsigned int i; 144 145 for (i = 0; i < rss->hf_map_nb_entries; ++i) 146 rte_hf |= rss->hf_map[i].rte; 147 148 dev_info->reta_size = EFX_RSS_TBL_SIZE; 149 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 150 dev_info->flow_type_rss_offloads = rte_hf; 151 } 152 153 /* Initialize to hardware limits */ 154 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 155 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 156 /* The RXQ hardware requires that the descriptor count is a power 157 * of 2, but rx_desc_lim cannot properly describe that constraint. 158 */ 159 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 160 161 /* Initialize to hardware limits */ 162 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 163 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 164 /* 165 * The TXQ hardware requires that the descriptor count is a power 166 * of 2, but tx_desc_lim cannot properly describe that constraint 167 */ 168 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 169 170 if (sa->dp_rx->get_dev_info != NULL) 171 sa->dp_rx->get_dev_info(dev_info); 172 if (sa->dp_tx->get_dev_info != NULL) 173 sa->dp_tx->get_dev_info(dev_info); 174 175 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 176 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 177 } 178 179 static const uint32_t * 180 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 181 { 182 struct sfc_adapter *sa = dev->data->dev_private; 183 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 184 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 185 186 return sa->dp_rx->supported_ptypes_get(tunnel_encaps); 187 } 188 189 static int 190 sfc_dev_configure(struct rte_eth_dev *dev) 191 { 192 struct rte_eth_dev_data *dev_data = dev->data; 193 struct sfc_adapter *sa = dev_data->dev_private; 194 int rc; 195 196 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 197 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 198 199 sfc_adapter_lock(sa); 200 switch (sa->state) { 201 case SFC_ADAPTER_CONFIGURED: 202 /* FALLTHROUGH */ 203 case SFC_ADAPTER_INITIALIZED: 204 rc = sfc_configure(sa); 205 break; 206 default: 207 sfc_err(sa, "unexpected adapter state %u to configure", 208 sa->state); 209 rc = EINVAL; 210 break; 211 } 212 sfc_adapter_unlock(sa); 213 214 sfc_log_init(sa, "done %d", rc); 215 SFC_ASSERT(rc >= 0); 216 return -rc; 217 } 218 219 static int 220 sfc_dev_start(struct rte_eth_dev *dev) 221 { 222 struct sfc_adapter *sa = dev->data->dev_private; 223 int rc; 224 225 sfc_log_init(sa, "entry"); 226 227 sfc_adapter_lock(sa); 228 rc = sfc_start(sa); 229 sfc_adapter_unlock(sa); 230 231 sfc_log_init(sa, "done %d", rc); 232 SFC_ASSERT(rc >= 0); 233 return -rc; 234 } 235 236 static int 237 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 238 { 239 struct sfc_adapter *sa = dev->data->dev_private; 240 struct rte_eth_link current_link; 241 int ret; 242 243 sfc_log_init(sa, "entry"); 244 245 if (sa->state != SFC_ADAPTER_STARTED) { 246 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 247 } else if (wait_to_complete) { 248 efx_link_mode_t link_mode; 249 250 if (efx_port_poll(sa->nic, &link_mode) != 0) 251 link_mode = EFX_LINK_UNKNOWN; 252 sfc_port_link_mode_to_info(link_mode, ¤t_link); 253 254 } else { 255 sfc_ev_mgmt_qpoll(sa); 256 rte_eth_linkstatus_get(dev, ¤t_link); 257 } 258 259 ret = rte_eth_linkstatus_set(dev, ¤t_link); 260 if (ret == 0) 261 sfc_notice(sa, "Link status is %s", 262 current_link.link_status ? "UP" : "DOWN"); 263 264 return ret; 265 } 266 267 static void 268 sfc_dev_stop(struct rte_eth_dev *dev) 269 { 270 struct sfc_adapter *sa = dev->data->dev_private; 271 272 sfc_log_init(sa, "entry"); 273 274 sfc_adapter_lock(sa); 275 sfc_stop(sa); 276 sfc_adapter_unlock(sa); 277 278 sfc_log_init(sa, "done"); 279 } 280 281 static int 282 sfc_dev_set_link_up(struct rte_eth_dev *dev) 283 { 284 struct sfc_adapter *sa = dev->data->dev_private; 285 int rc; 286 287 sfc_log_init(sa, "entry"); 288 289 sfc_adapter_lock(sa); 290 rc = sfc_start(sa); 291 sfc_adapter_unlock(sa); 292 293 SFC_ASSERT(rc >= 0); 294 return -rc; 295 } 296 297 static int 298 sfc_dev_set_link_down(struct rte_eth_dev *dev) 299 { 300 struct sfc_adapter *sa = dev->data->dev_private; 301 302 sfc_log_init(sa, "entry"); 303 304 sfc_adapter_lock(sa); 305 sfc_stop(sa); 306 sfc_adapter_unlock(sa); 307 308 return 0; 309 } 310 311 static void 312 sfc_dev_close(struct rte_eth_dev *dev) 313 { 314 struct sfc_adapter *sa = dev->data->dev_private; 315 316 sfc_log_init(sa, "entry"); 317 318 sfc_adapter_lock(sa); 319 switch (sa->state) { 320 case SFC_ADAPTER_STARTED: 321 sfc_stop(sa); 322 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 323 /* FALLTHROUGH */ 324 case SFC_ADAPTER_CONFIGURED: 325 sfc_close(sa); 326 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 327 /* FALLTHROUGH */ 328 case SFC_ADAPTER_INITIALIZED: 329 break; 330 default: 331 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 332 break; 333 } 334 sfc_adapter_unlock(sa); 335 336 sfc_log_init(sa, "done"); 337 } 338 339 static void 340 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 341 boolean_t enabled) 342 { 343 struct sfc_port *port; 344 boolean_t *toggle; 345 struct sfc_adapter *sa = dev->data->dev_private; 346 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 347 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 348 349 sfc_adapter_lock(sa); 350 351 port = &sa->port; 352 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 353 354 if (*toggle != enabled) { 355 *toggle = enabled; 356 357 if (port->isolated) { 358 sfc_warn(sa, "isolated mode is active on the port"); 359 sfc_warn(sa, "the change is to be applied on the next " 360 "start provided that isolated mode is " 361 "disabled prior the next start"); 362 } else if ((sa->state == SFC_ADAPTER_STARTED) && 363 (sfc_set_rx_mode(sa) != 0)) { 364 *toggle = !(enabled); 365 sfc_warn(sa, "Failed to %s %s mode", 366 ((enabled) ? "enable" : "disable"), desc); 367 } 368 } 369 370 sfc_adapter_unlock(sa); 371 } 372 373 static void 374 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 375 { 376 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 377 } 378 379 static void 380 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 381 { 382 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 383 } 384 385 static void 386 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 387 { 388 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 389 } 390 391 static void 392 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 393 { 394 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 395 } 396 397 static int 398 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 399 uint16_t nb_rx_desc, unsigned int socket_id, 400 const struct rte_eth_rxconf *rx_conf, 401 struct rte_mempool *mb_pool) 402 { 403 struct sfc_adapter *sa = dev->data->dev_private; 404 int rc; 405 406 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 407 rx_queue_id, nb_rx_desc, socket_id); 408 409 sfc_adapter_lock(sa); 410 411 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 412 rx_conf, mb_pool); 413 if (rc != 0) 414 goto fail_rx_qinit; 415 416 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 417 418 sfc_adapter_unlock(sa); 419 420 return 0; 421 422 fail_rx_qinit: 423 sfc_adapter_unlock(sa); 424 SFC_ASSERT(rc > 0); 425 return -rc; 426 } 427 428 static void 429 sfc_rx_queue_release(void *queue) 430 { 431 struct sfc_dp_rxq *dp_rxq = queue; 432 struct sfc_rxq *rxq; 433 struct sfc_adapter *sa; 434 unsigned int sw_index; 435 436 if (dp_rxq == NULL) 437 return; 438 439 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 440 sa = rxq->evq->sa; 441 sfc_adapter_lock(sa); 442 443 sw_index = sfc_rxq_sw_index(rxq); 444 445 sfc_log_init(sa, "RxQ=%u", sw_index); 446 447 sfc_rx_qfini(sa, sw_index); 448 449 sfc_adapter_unlock(sa); 450 } 451 452 static int 453 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 454 uint16_t nb_tx_desc, unsigned int socket_id, 455 const struct rte_eth_txconf *tx_conf) 456 { 457 struct sfc_adapter *sa = dev->data->dev_private; 458 int rc; 459 460 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 461 tx_queue_id, nb_tx_desc, socket_id); 462 463 sfc_adapter_lock(sa); 464 465 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 466 if (rc != 0) 467 goto fail_tx_qinit; 468 469 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 470 471 sfc_adapter_unlock(sa); 472 return 0; 473 474 fail_tx_qinit: 475 sfc_adapter_unlock(sa); 476 SFC_ASSERT(rc > 0); 477 return -rc; 478 } 479 480 static void 481 sfc_tx_queue_release(void *queue) 482 { 483 struct sfc_dp_txq *dp_txq = queue; 484 struct sfc_txq *txq; 485 unsigned int sw_index; 486 struct sfc_adapter *sa; 487 488 if (dp_txq == NULL) 489 return; 490 491 txq = sfc_txq_by_dp_txq(dp_txq); 492 sw_index = sfc_txq_sw_index(txq); 493 494 SFC_ASSERT(txq->evq != NULL); 495 sa = txq->evq->sa; 496 497 sfc_log_init(sa, "TxQ = %u", sw_index); 498 499 sfc_adapter_lock(sa); 500 501 sfc_tx_qfini(sa, sw_index); 502 503 sfc_adapter_unlock(sa); 504 } 505 506 static int 507 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 508 { 509 struct sfc_adapter *sa = dev->data->dev_private; 510 struct sfc_port *port = &sa->port; 511 uint64_t *mac_stats; 512 int ret; 513 514 rte_spinlock_lock(&port->mac_stats_lock); 515 516 ret = sfc_port_update_mac_stats(sa); 517 if (ret != 0) 518 goto unlock; 519 520 mac_stats = port->mac_stats_buf; 521 522 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 523 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 524 stats->ipackets = 525 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 526 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 527 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 528 stats->opackets = 529 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 530 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 531 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 532 stats->ibytes = 533 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 534 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 535 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 536 stats->obytes = 537 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 538 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 539 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 540 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW]; 541 stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 542 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 543 } else { 544 stats->ipackets = mac_stats[EFX_MAC_RX_PKTS]; 545 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 546 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 547 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 548 /* 549 * Take into account stats which are whenever supported 550 * on EF10. If some stat is not supported by current 551 * firmware variant or HW revision, it is guaranteed 552 * to be zero in mac_stats. 553 */ 554 stats->imissed = 555 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 556 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 557 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 558 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 559 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 560 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 561 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 562 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 563 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 564 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 565 stats->ierrors = 566 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 567 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 568 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 569 /* no oerrors counters supported on EF10 */ 570 } 571 572 unlock: 573 rte_spinlock_unlock(&port->mac_stats_lock); 574 SFC_ASSERT(ret >= 0); 575 return -ret; 576 } 577 578 static void 579 sfc_stats_reset(struct rte_eth_dev *dev) 580 { 581 struct sfc_adapter *sa = dev->data->dev_private; 582 struct sfc_port *port = &sa->port; 583 int rc; 584 585 if (sa->state != SFC_ADAPTER_STARTED) { 586 /* 587 * The operation cannot be done if port is not started; it 588 * will be scheduled to be done during the next port start 589 */ 590 port->mac_stats_reset_pending = B_TRUE; 591 return; 592 } 593 594 rc = sfc_port_reset_mac_stats(sa); 595 if (rc != 0) 596 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 597 } 598 599 static int 600 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 601 unsigned int xstats_count) 602 { 603 struct sfc_adapter *sa = dev->data->dev_private; 604 struct sfc_port *port = &sa->port; 605 uint64_t *mac_stats; 606 int rc; 607 unsigned int i; 608 int nstats = 0; 609 610 rte_spinlock_lock(&port->mac_stats_lock); 611 612 rc = sfc_port_update_mac_stats(sa); 613 if (rc != 0) { 614 SFC_ASSERT(rc > 0); 615 nstats = -rc; 616 goto unlock; 617 } 618 619 mac_stats = port->mac_stats_buf; 620 621 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 622 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 623 if (xstats != NULL && nstats < (int)xstats_count) { 624 xstats[nstats].id = nstats; 625 xstats[nstats].value = mac_stats[i]; 626 } 627 nstats++; 628 } 629 } 630 631 unlock: 632 rte_spinlock_unlock(&port->mac_stats_lock); 633 634 return nstats; 635 } 636 637 static int 638 sfc_xstats_get_names(struct rte_eth_dev *dev, 639 struct rte_eth_xstat_name *xstats_names, 640 unsigned int xstats_count) 641 { 642 struct sfc_adapter *sa = dev->data->dev_private; 643 struct sfc_port *port = &sa->port; 644 unsigned int i; 645 unsigned int nstats = 0; 646 647 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 648 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 649 if (xstats_names != NULL && nstats < xstats_count) 650 strlcpy(xstats_names[nstats].name, 651 efx_mac_stat_name(sa->nic, i), 652 sizeof(xstats_names[0].name)); 653 nstats++; 654 } 655 } 656 657 return nstats; 658 } 659 660 static int 661 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 662 uint64_t *values, unsigned int n) 663 { 664 struct sfc_adapter *sa = dev->data->dev_private; 665 struct sfc_port *port = &sa->port; 666 uint64_t *mac_stats; 667 unsigned int nb_supported = 0; 668 unsigned int nb_written = 0; 669 unsigned int i; 670 int ret; 671 int rc; 672 673 if (unlikely(values == NULL) || 674 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 675 return port->mac_stats_nb_supported; 676 677 rte_spinlock_lock(&port->mac_stats_lock); 678 679 rc = sfc_port_update_mac_stats(sa); 680 if (rc != 0) { 681 SFC_ASSERT(rc > 0); 682 ret = -rc; 683 goto unlock; 684 } 685 686 mac_stats = port->mac_stats_buf; 687 688 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 689 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 690 continue; 691 692 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 693 values[nb_written++] = mac_stats[i]; 694 695 ++nb_supported; 696 } 697 698 ret = nb_written; 699 700 unlock: 701 rte_spinlock_unlock(&port->mac_stats_lock); 702 703 return ret; 704 } 705 706 static int 707 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 708 struct rte_eth_xstat_name *xstats_names, 709 const uint64_t *ids, unsigned int size) 710 { 711 struct sfc_adapter *sa = dev->data->dev_private; 712 struct sfc_port *port = &sa->port; 713 unsigned int nb_supported = 0; 714 unsigned int nb_written = 0; 715 unsigned int i; 716 717 if (unlikely(xstats_names == NULL) || 718 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 719 return port->mac_stats_nb_supported; 720 721 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 722 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 723 continue; 724 725 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 726 char *name = xstats_names[nb_written++].name; 727 728 strlcpy(name, efx_mac_stat_name(sa->nic, i), 729 sizeof(xstats_names[0].name)); 730 } 731 732 ++nb_supported; 733 } 734 735 return nb_written; 736 } 737 738 static int 739 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 740 { 741 struct sfc_adapter *sa = dev->data->dev_private; 742 unsigned int wanted_fc, link_fc; 743 744 memset(fc_conf, 0, sizeof(*fc_conf)); 745 746 sfc_adapter_lock(sa); 747 748 if (sa->state == SFC_ADAPTER_STARTED) 749 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 750 else 751 link_fc = sa->port.flow_ctrl; 752 753 switch (link_fc) { 754 case 0: 755 fc_conf->mode = RTE_FC_NONE; 756 break; 757 case EFX_FCNTL_RESPOND: 758 fc_conf->mode = RTE_FC_RX_PAUSE; 759 break; 760 case EFX_FCNTL_GENERATE: 761 fc_conf->mode = RTE_FC_TX_PAUSE; 762 break; 763 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 764 fc_conf->mode = RTE_FC_FULL; 765 break; 766 default: 767 sfc_err(sa, "%s: unexpected flow control value %#x", 768 __func__, link_fc); 769 } 770 771 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 772 773 sfc_adapter_unlock(sa); 774 775 return 0; 776 } 777 778 static int 779 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 780 { 781 struct sfc_adapter *sa = dev->data->dev_private; 782 struct sfc_port *port = &sa->port; 783 unsigned int fcntl; 784 int rc; 785 786 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 787 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 788 fc_conf->mac_ctrl_frame_fwd != 0) { 789 sfc_err(sa, "unsupported flow control settings specified"); 790 rc = EINVAL; 791 goto fail_inval; 792 } 793 794 switch (fc_conf->mode) { 795 case RTE_FC_NONE: 796 fcntl = 0; 797 break; 798 case RTE_FC_RX_PAUSE: 799 fcntl = EFX_FCNTL_RESPOND; 800 break; 801 case RTE_FC_TX_PAUSE: 802 fcntl = EFX_FCNTL_GENERATE; 803 break; 804 case RTE_FC_FULL: 805 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 806 break; 807 default: 808 rc = EINVAL; 809 goto fail_inval; 810 } 811 812 sfc_adapter_lock(sa); 813 814 if (sa->state == SFC_ADAPTER_STARTED) { 815 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 816 if (rc != 0) 817 goto fail_mac_fcntl_set; 818 } 819 820 port->flow_ctrl = fcntl; 821 port->flow_ctrl_autoneg = fc_conf->autoneg; 822 823 sfc_adapter_unlock(sa); 824 825 return 0; 826 827 fail_mac_fcntl_set: 828 sfc_adapter_unlock(sa); 829 fail_inval: 830 SFC_ASSERT(rc > 0); 831 return -rc; 832 } 833 834 static int 835 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 836 { 837 struct sfc_adapter *sa = dev->data->dev_private; 838 size_t pdu = EFX_MAC_PDU(mtu); 839 size_t old_pdu; 840 int rc; 841 842 sfc_log_init(sa, "mtu=%u", mtu); 843 844 rc = EINVAL; 845 if (pdu < EFX_MAC_PDU_MIN) { 846 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 847 (unsigned int)mtu, (unsigned int)pdu, 848 EFX_MAC_PDU_MIN); 849 goto fail_inval; 850 } 851 if (pdu > EFX_MAC_PDU_MAX) { 852 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 853 (unsigned int)mtu, (unsigned int)pdu, 854 EFX_MAC_PDU_MAX); 855 goto fail_inval; 856 } 857 858 sfc_adapter_lock(sa); 859 860 if (pdu != sa->port.pdu) { 861 if (sa->state == SFC_ADAPTER_STARTED) { 862 sfc_stop(sa); 863 864 old_pdu = sa->port.pdu; 865 sa->port.pdu = pdu; 866 rc = sfc_start(sa); 867 if (rc != 0) 868 goto fail_start; 869 } else { 870 sa->port.pdu = pdu; 871 } 872 } 873 874 /* 875 * The driver does not use it, but other PMDs update jumbo frame 876 * flag and max_rx_pkt_len when MTU is set. 877 */ 878 if (mtu > ETHER_MAX_LEN) { 879 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 880 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 881 } 882 883 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 884 885 sfc_adapter_unlock(sa); 886 887 sfc_log_init(sa, "done"); 888 return 0; 889 890 fail_start: 891 sa->port.pdu = old_pdu; 892 if (sfc_start(sa) != 0) 893 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 894 "PDU max size - port is stopped", 895 (unsigned int)pdu, (unsigned int)old_pdu); 896 sfc_adapter_unlock(sa); 897 898 fail_inval: 899 sfc_log_init(sa, "failed %d", rc); 900 SFC_ASSERT(rc > 0); 901 return -rc; 902 } 903 static int 904 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 905 { 906 struct sfc_adapter *sa = dev->data->dev_private; 907 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 908 struct sfc_port *port = &sa->port; 909 struct ether_addr *old_addr = &dev->data->mac_addrs[0]; 910 int rc = 0; 911 912 sfc_adapter_lock(sa); 913 914 /* 915 * Copy the address to the device private data so that 916 * it could be recalled in the case of adapter restart. 917 */ 918 ether_addr_copy(mac_addr, &port->default_mac_addr); 919 920 /* 921 * Neither of the two following checks can return 922 * an error. The new MAC address is preserved in 923 * the device private data and can be activated 924 * on the next port start if the user prevents 925 * isolated mode from being enabled. 926 */ 927 if (port->isolated) { 928 sfc_warn(sa, "isolated mode is active on the port"); 929 sfc_warn(sa, "will not set MAC address"); 930 goto unlock; 931 } 932 933 if (sa->state != SFC_ADAPTER_STARTED) { 934 sfc_notice(sa, "the port is not started"); 935 sfc_notice(sa, "the new MAC address will be set on port start"); 936 937 goto unlock; 938 } 939 940 if (encp->enc_allow_set_mac_with_installed_filters) { 941 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 942 if (rc != 0) { 943 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 944 goto unlock; 945 } 946 947 /* 948 * Changing the MAC address by means of MCDI request 949 * has no effect on received traffic, therefore 950 * we also need to update unicast filters 951 */ 952 rc = sfc_set_rx_mode(sa); 953 if (rc != 0) { 954 sfc_err(sa, "cannot set filter (rc = %u)", rc); 955 /* Rollback the old address */ 956 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 957 (void)sfc_set_rx_mode(sa); 958 } 959 } else { 960 sfc_warn(sa, "cannot set MAC address with filters installed"); 961 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 962 sfc_warn(sa, "(some traffic may be dropped)"); 963 964 /* 965 * Since setting MAC address with filters installed is not 966 * allowed on the adapter, the new MAC address will be set 967 * by means of adapter restart. sfc_start() shall retrieve 968 * the new address from the device private data and set it. 969 */ 970 sfc_stop(sa); 971 rc = sfc_start(sa); 972 if (rc != 0) 973 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 974 } 975 976 unlock: 977 if (rc != 0) 978 ether_addr_copy(old_addr, &port->default_mac_addr); 979 980 sfc_adapter_unlock(sa); 981 982 SFC_ASSERT(rc >= 0); 983 return -rc; 984 } 985 986 987 static int 988 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 989 uint32_t nb_mc_addr) 990 { 991 struct sfc_adapter *sa = dev->data->dev_private; 992 struct sfc_port *port = &sa->port; 993 uint8_t *mc_addrs = port->mcast_addrs; 994 int rc; 995 unsigned int i; 996 997 if (port->isolated) { 998 sfc_err(sa, "isolated mode is active on the port"); 999 sfc_err(sa, "will not set multicast address list"); 1000 return -ENOTSUP; 1001 } 1002 1003 if (mc_addrs == NULL) 1004 return -ENOBUFS; 1005 1006 if (nb_mc_addr > port->max_mcast_addrs) { 1007 sfc_err(sa, "too many multicast addresses: %u > %u", 1008 nb_mc_addr, port->max_mcast_addrs); 1009 return -EINVAL; 1010 } 1011 1012 for (i = 0; i < nb_mc_addr; ++i) { 1013 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1014 EFX_MAC_ADDR_LEN); 1015 mc_addrs += EFX_MAC_ADDR_LEN; 1016 } 1017 1018 port->nb_mcast_addrs = nb_mc_addr; 1019 1020 if (sa->state != SFC_ADAPTER_STARTED) 1021 return 0; 1022 1023 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1024 port->nb_mcast_addrs); 1025 if (rc != 0) 1026 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1027 1028 SFC_ASSERT(rc >= 0); 1029 return -rc; 1030 } 1031 1032 /* 1033 * The function is used by the secondary process as well. It must not 1034 * use any process-local pointers from the adapter data. 1035 */ 1036 static void 1037 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1038 struct rte_eth_rxq_info *qinfo) 1039 { 1040 struct sfc_adapter *sa = dev->data->dev_private; 1041 struct sfc_rxq_info *rxq_info; 1042 struct sfc_rxq *rxq; 1043 1044 sfc_adapter_lock(sa); 1045 1046 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1047 1048 rxq_info = &sa->rxq_info[rx_queue_id]; 1049 rxq = rxq_info->rxq; 1050 SFC_ASSERT(rxq != NULL); 1051 1052 qinfo->mp = rxq->refill_mb_pool; 1053 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1054 qinfo->conf.rx_drop_en = 1; 1055 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1056 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1057 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1058 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1059 qinfo->scattered_rx = 1; 1060 } 1061 qinfo->nb_desc = rxq_info->entries; 1062 1063 sfc_adapter_unlock(sa); 1064 } 1065 1066 /* 1067 * The function is used by the secondary process as well. It must not 1068 * use any process-local pointers from the adapter data. 1069 */ 1070 static void 1071 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1072 struct rte_eth_txq_info *qinfo) 1073 { 1074 struct sfc_adapter *sa = dev->data->dev_private; 1075 struct sfc_txq_info *txq_info; 1076 1077 sfc_adapter_lock(sa); 1078 1079 SFC_ASSERT(tx_queue_id < sa->txq_count); 1080 1081 txq_info = &sa->txq_info[tx_queue_id]; 1082 SFC_ASSERT(txq_info->txq != NULL); 1083 1084 memset(qinfo, 0, sizeof(*qinfo)); 1085 1086 qinfo->conf.offloads = txq_info->txq->offloads; 1087 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1088 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1089 qinfo->nb_desc = txq_info->entries; 1090 1091 sfc_adapter_unlock(sa); 1092 } 1093 1094 static uint32_t 1095 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1096 { 1097 struct sfc_adapter *sa = dev->data->dev_private; 1098 1099 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1100 1101 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1102 } 1103 1104 static int 1105 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1106 { 1107 struct sfc_dp_rxq *dp_rxq = queue; 1108 1109 return sfc_rx_qdesc_done(dp_rxq, offset); 1110 } 1111 1112 static int 1113 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1114 { 1115 struct sfc_dp_rxq *dp_rxq = queue; 1116 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1117 1118 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1119 } 1120 1121 static int 1122 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1123 { 1124 struct sfc_dp_txq *dp_txq = queue; 1125 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1126 1127 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1128 } 1129 1130 static int 1131 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1132 { 1133 struct sfc_adapter *sa = dev->data->dev_private; 1134 int rc; 1135 1136 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1137 1138 sfc_adapter_lock(sa); 1139 1140 rc = EINVAL; 1141 if (sa->state != SFC_ADAPTER_STARTED) 1142 goto fail_not_started; 1143 1144 if (sa->rxq_info[rx_queue_id].rxq == NULL) 1145 goto fail_not_setup; 1146 1147 rc = sfc_rx_qstart(sa, rx_queue_id); 1148 if (rc != 0) 1149 goto fail_rx_qstart; 1150 1151 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1152 1153 sfc_adapter_unlock(sa); 1154 1155 return 0; 1156 1157 fail_rx_qstart: 1158 fail_not_setup: 1159 fail_not_started: 1160 sfc_adapter_unlock(sa); 1161 SFC_ASSERT(rc > 0); 1162 return -rc; 1163 } 1164 1165 static int 1166 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1167 { 1168 struct sfc_adapter *sa = dev->data->dev_private; 1169 1170 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1171 1172 sfc_adapter_lock(sa); 1173 sfc_rx_qstop(sa, rx_queue_id); 1174 1175 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1176 1177 sfc_adapter_unlock(sa); 1178 1179 return 0; 1180 } 1181 1182 static int 1183 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1184 { 1185 struct sfc_adapter *sa = dev->data->dev_private; 1186 int rc; 1187 1188 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1189 1190 sfc_adapter_lock(sa); 1191 1192 rc = EINVAL; 1193 if (sa->state != SFC_ADAPTER_STARTED) 1194 goto fail_not_started; 1195 1196 if (sa->txq_info[tx_queue_id].txq == NULL) 1197 goto fail_not_setup; 1198 1199 rc = sfc_tx_qstart(sa, tx_queue_id); 1200 if (rc != 0) 1201 goto fail_tx_qstart; 1202 1203 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1204 1205 sfc_adapter_unlock(sa); 1206 return 0; 1207 1208 fail_tx_qstart: 1209 1210 fail_not_setup: 1211 fail_not_started: 1212 sfc_adapter_unlock(sa); 1213 SFC_ASSERT(rc > 0); 1214 return -rc; 1215 } 1216 1217 static int 1218 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1219 { 1220 struct sfc_adapter *sa = dev->data->dev_private; 1221 1222 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1223 1224 sfc_adapter_lock(sa); 1225 1226 sfc_tx_qstop(sa, tx_queue_id); 1227 1228 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1229 1230 sfc_adapter_unlock(sa); 1231 return 0; 1232 } 1233 1234 static efx_tunnel_protocol_t 1235 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1236 { 1237 switch (rte_type) { 1238 case RTE_TUNNEL_TYPE_VXLAN: 1239 return EFX_TUNNEL_PROTOCOL_VXLAN; 1240 case RTE_TUNNEL_TYPE_GENEVE: 1241 return EFX_TUNNEL_PROTOCOL_GENEVE; 1242 default: 1243 return EFX_TUNNEL_NPROTOS; 1244 } 1245 } 1246 1247 enum sfc_udp_tunnel_op_e { 1248 SFC_UDP_TUNNEL_ADD_PORT, 1249 SFC_UDP_TUNNEL_DEL_PORT, 1250 }; 1251 1252 static int 1253 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1254 struct rte_eth_udp_tunnel *tunnel_udp, 1255 enum sfc_udp_tunnel_op_e op) 1256 { 1257 struct sfc_adapter *sa = dev->data->dev_private; 1258 efx_tunnel_protocol_t tunnel_proto; 1259 int rc; 1260 1261 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1262 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1263 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1264 tunnel_udp->udp_port, tunnel_udp->prot_type); 1265 1266 tunnel_proto = 1267 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1268 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1269 rc = ENOTSUP; 1270 goto fail_bad_proto; 1271 } 1272 1273 sfc_adapter_lock(sa); 1274 1275 switch (op) { 1276 case SFC_UDP_TUNNEL_ADD_PORT: 1277 rc = efx_tunnel_config_udp_add(sa->nic, 1278 tunnel_udp->udp_port, 1279 tunnel_proto); 1280 break; 1281 case SFC_UDP_TUNNEL_DEL_PORT: 1282 rc = efx_tunnel_config_udp_remove(sa->nic, 1283 tunnel_udp->udp_port, 1284 tunnel_proto); 1285 break; 1286 default: 1287 rc = EINVAL; 1288 goto fail_bad_op; 1289 } 1290 1291 if (rc != 0) 1292 goto fail_op; 1293 1294 if (sa->state == SFC_ADAPTER_STARTED) { 1295 rc = efx_tunnel_reconfigure(sa->nic); 1296 if (rc == EAGAIN) { 1297 /* 1298 * Configuration is accepted by FW and MC reboot 1299 * is initiated to apply the changes. MC reboot 1300 * will be handled in a usual way (MC reboot 1301 * event on management event queue and adapter 1302 * restart). 1303 */ 1304 rc = 0; 1305 } else if (rc != 0) { 1306 goto fail_reconfigure; 1307 } 1308 } 1309 1310 sfc_adapter_unlock(sa); 1311 return 0; 1312 1313 fail_reconfigure: 1314 /* Remove/restore entry since the change makes the trouble */ 1315 switch (op) { 1316 case SFC_UDP_TUNNEL_ADD_PORT: 1317 (void)efx_tunnel_config_udp_remove(sa->nic, 1318 tunnel_udp->udp_port, 1319 tunnel_proto); 1320 break; 1321 case SFC_UDP_TUNNEL_DEL_PORT: 1322 (void)efx_tunnel_config_udp_add(sa->nic, 1323 tunnel_udp->udp_port, 1324 tunnel_proto); 1325 break; 1326 } 1327 1328 fail_op: 1329 fail_bad_op: 1330 sfc_adapter_unlock(sa); 1331 1332 fail_bad_proto: 1333 SFC_ASSERT(rc > 0); 1334 return -rc; 1335 } 1336 1337 static int 1338 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1339 struct rte_eth_udp_tunnel *tunnel_udp) 1340 { 1341 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1342 } 1343 1344 static int 1345 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1346 struct rte_eth_udp_tunnel *tunnel_udp) 1347 { 1348 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1349 } 1350 1351 static int 1352 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1353 struct rte_eth_rss_conf *rss_conf) 1354 { 1355 struct sfc_adapter *sa = dev->data->dev_private; 1356 struct sfc_rss *rss = &sa->rss; 1357 struct sfc_port *port = &sa->port; 1358 1359 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1360 return -ENOTSUP; 1361 1362 if (rss->channels == 0) 1363 return -EINVAL; 1364 1365 sfc_adapter_lock(sa); 1366 1367 /* 1368 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1369 * hence, conversion is done here to derive a correct set of ETH_RSS 1370 * flags which corresponds to the active EFX configuration stored 1371 * locally in 'sfc_adapter' and kept up-to-date 1372 */ 1373 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types); 1374 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1375 if (rss_conf->rss_key != NULL) 1376 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1377 1378 sfc_adapter_unlock(sa); 1379 1380 return 0; 1381 } 1382 1383 static int 1384 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1385 struct rte_eth_rss_conf *rss_conf) 1386 { 1387 struct sfc_adapter *sa = dev->data->dev_private; 1388 struct sfc_rss *rss = &sa->rss; 1389 struct sfc_port *port = &sa->port; 1390 unsigned int efx_hash_types; 1391 int rc = 0; 1392 1393 if (port->isolated) 1394 return -ENOTSUP; 1395 1396 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1397 sfc_err(sa, "RSS is not available"); 1398 return -ENOTSUP; 1399 } 1400 1401 if (rss->channels == 0) { 1402 sfc_err(sa, "RSS is not configured"); 1403 return -EINVAL; 1404 } 1405 1406 if ((rss_conf->rss_key != NULL) && 1407 (rss_conf->rss_key_len != sizeof(rss->key))) { 1408 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1409 sizeof(rss->key)); 1410 return -EINVAL; 1411 } 1412 1413 sfc_adapter_lock(sa); 1414 1415 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1416 if (rc != 0) 1417 goto fail_rx_hf_rte_to_efx; 1418 1419 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1420 rss->hash_alg, efx_hash_types, B_TRUE); 1421 if (rc != 0) 1422 goto fail_scale_mode_set; 1423 1424 if (rss_conf->rss_key != NULL) { 1425 if (sa->state == SFC_ADAPTER_STARTED) { 1426 rc = efx_rx_scale_key_set(sa->nic, 1427 EFX_RSS_CONTEXT_DEFAULT, 1428 rss_conf->rss_key, 1429 sizeof(rss->key)); 1430 if (rc != 0) 1431 goto fail_scale_key_set; 1432 } 1433 1434 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1435 } 1436 1437 rss->hash_types = efx_hash_types; 1438 1439 sfc_adapter_unlock(sa); 1440 1441 return 0; 1442 1443 fail_scale_key_set: 1444 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1445 EFX_RX_HASHALG_TOEPLITZ, 1446 rss->hash_types, B_TRUE) != 0) 1447 sfc_err(sa, "failed to restore RSS mode"); 1448 1449 fail_scale_mode_set: 1450 fail_rx_hf_rte_to_efx: 1451 sfc_adapter_unlock(sa); 1452 return -rc; 1453 } 1454 1455 static int 1456 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1457 struct rte_eth_rss_reta_entry64 *reta_conf, 1458 uint16_t reta_size) 1459 { 1460 struct sfc_adapter *sa = dev->data->dev_private; 1461 struct sfc_rss *rss = &sa->rss; 1462 struct sfc_port *port = &sa->port; 1463 int entry; 1464 1465 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1466 return -ENOTSUP; 1467 1468 if (rss->channels == 0) 1469 return -EINVAL; 1470 1471 if (reta_size != EFX_RSS_TBL_SIZE) 1472 return -EINVAL; 1473 1474 sfc_adapter_lock(sa); 1475 1476 for (entry = 0; entry < reta_size; entry++) { 1477 int grp = entry / RTE_RETA_GROUP_SIZE; 1478 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1479 1480 if ((reta_conf[grp].mask >> grp_idx) & 1) 1481 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1482 } 1483 1484 sfc_adapter_unlock(sa); 1485 1486 return 0; 1487 } 1488 1489 static int 1490 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1491 struct rte_eth_rss_reta_entry64 *reta_conf, 1492 uint16_t reta_size) 1493 { 1494 struct sfc_adapter *sa = dev->data->dev_private; 1495 struct sfc_rss *rss = &sa->rss; 1496 struct sfc_port *port = &sa->port; 1497 unsigned int *rss_tbl_new; 1498 uint16_t entry; 1499 int rc = 0; 1500 1501 1502 if (port->isolated) 1503 return -ENOTSUP; 1504 1505 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1506 sfc_err(sa, "RSS is not available"); 1507 return -ENOTSUP; 1508 } 1509 1510 if (rss->channels == 0) { 1511 sfc_err(sa, "RSS is not configured"); 1512 return -EINVAL; 1513 } 1514 1515 if (reta_size != EFX_RSS_TBL_SIZE) { 1516 sfc_err(sa, "RETA size is wrong (should be %u)", 1517 EFX_RSS_TBL_SIZE); 1518 return -EINVAL; 1519 } 1520 1521 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1522 if (rss_tbl_new == NULL) 1523 return -ENOMEM; 1524 1525 sfc_adapter_lock(sa); 1526 1527 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1528 1529 for (entry = 0; entry < reta_size; entry++) { 1530 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1531 struct rte_eth_rss_reta_entry64 *grp; 1532 1533 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1534 1535 if (grp->mask & (1ull << grp_idx)) { 1536 if (grp->reta[grp_idx] >= rss->channels) { 1537 rc = EINVAL; 1538 goto bad_reta_entry; 1539 } 1540 rss_tbl_new[entry] = grp->reta[grp_idx]; 1541 } 1542 } 1543 1544 if (sa->state == SFC_ADAPTER_STARTED) { 1545 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1546 rss_tbl_new, EFX_RSS_TBL_SIZE); 1547 if (rc != 0) 1548 goto fail_scale_tbl_set; 1549 } 1550 1551 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1552 1553 fail_scale_tbl_set: 1554 bad_reta_entry: 1555 sfc_adapter_unlock(sa); 1556 1557 rte_free(rss_tbl_new); 1558 1559 SFC_ASSERT(rc >= 0); 1560 return -rc; 1561 } 1562 1563 static int 1564 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1565 enum rte_filter_op filter_op, 1566 void *arg) 1567 { 1568 struct sfc_adapter *sa = dev->data->dev_private; 1569 int rc = ENOTSUP; 1570 1571 sfc_log_init(sa, "entry"); 1572 1573 switch (filter_type) { 1574 case RTE_ETH_FILTER_NONE: 1575 sfc_err(sa, "Global filters configuration not supported"); 1576 break; 1577 case RTE_ETH_FILTER_MACVLAN: 1578 sfc_err(sa, "MACVLAN filters not supported"); 1579 break; 1580 case RTE_ETH_FILTER_ETHERTYPE: 1581 sfc_err(sa, "EtherType filters not supported"); 1582 break; 1583 case RTE_ETH_FILTER_FLEXIBLE: 1584 sfc_err(sa, "Flexible filters not supported"); 1585 break; 1586 case RTE_ETH_FILTER_SYN: 1587 sfc_err(sa, "SYN filters not supported"); 1588 break; 1589 case RTE_ETH_FILTER_NTUPLE: 1590 sfc_err(sa, "NTUPLE filters not supported"); 1591 break; 1592 case RTE_ETH_FILTER_TUNNEL: 1593 sfc_err(sa, "Tunnel filters not supported"); 1594 break; 1595 case RTE_ETH_FILTER_FDIR: 1596 sfc_err(sa, "Flow Director filters not supported"); 1597 break; 1598 case RTE_ETH_FILTER_HASH: 1599 sfc_err(sa, "Hash filters not supported"); 1600 break; 1601 case RTE_ETH_FILTER_GENERIC: 1602 if (filter_op != RTE_ETH_FILTER_GET) { 1603 rc = EINVAL; 1604 } else { 1605 *(const void **)arg = &sfc_flow_ops; 1606 rc = 0; 1607 } 1608 break; 1609 default: 1610 sfc_err(sa, "Unknown filter type %u", filter_type); 1611 break; 1612 } 1613 1614 sfc_log_init(sa, "exit: %d", -rc); 1615 SFC_ASSERT(rc >= 0); 1616 return -rc; 1617 } 1618 1619 static int 1620 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1621 { 1622 struct sfc_adapter *sa = dev->data->dev_private; 1623 1624 /* 1625 * If Rx datapath does not provide callback to check mempool, 1626 * all pools are supported. 1627 */ 1628 if (sa->dp_rx->pool_ops_supported == NULL) 1629 return 1; 1630 1631 return sa->dp_rx->pool_ops_supported(pool); 1632 } 1633 1634 static const struct eth_dev_ops sfc_eth_dev_ops = { 1635 .dev_configure = sfc_dev_configure, 1636 .dev_start = sfc_dev_start, 1637 .dev_stop = sfc_dev_stop, 1638 .dev_set_link_up = sfc_dev_set_link_up, 1639 .dev_set_link_down = sfc_dev_set_link_down, 1640 .dev_close = sfc_dev_close, 1641 .promiscuous_enable = sfc_dev_promisc_enable, 1642 .promiscuous_disable = sfc_dev_promisc_disable, 1643 .allmulticast_enable = sfc_dev_allmulti_enable, 1644 .allmulticast_disable = sfc_dev_allmulti_disable, 1645 .link_update = sfc_dev_link_update, 1646 .stats_get = sfc_stats_get, 1647 .stats_reset = sfc_stats_reset, 1648 .xstats_get = sfc_xstats_get, 1649 .xstats_reset = sfc_stats_reset, 1650 .xstats_get_names = sfc_xstats_get_names, 1651 .dev_infos_get = sfc_dev_infos_get, 1652 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1653 .mtu_set = sfc_dev_set_mtu, 1654 .rx_queue_start = sfc_rx_queue_start, 1655 .rx_queue_stop = sfc_rx_queue_stop, 1656 .tx_queue_start = sfc_tx_queue_start, 1657 .tx_queue_stop = sfc_tx_queue_stop, 1658 .rx_queue_setup = sfc_rx_queue_setup, 1659 .rx_queue_release = sfc_rx_queue_release, 1660 .rx_queue_count = sfc_rx_queue_count, 1661 .rx_descriptor_done = sfc_rx_descriptor_done, 1662 .rx_descriptor_status = sfc_rx_descriptor_status, 1663 .tx_descriptor_status = sfc_tx_descriptor_status, 1664 .tx_queue_setup = sfc_tx_queue_setup, 1665 .tx_queue_release = sfc_tx_queue_release, 1666 .flow_ctrl_get = sfc_flow_ctrl_get, 1667 .flow_ctrl_set = sfc_flow_ctrl_set, 1668 .mac_addr_set = sfc_mac_addr_set, 1669 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1670 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1671 .reta_update = sfc_dev_rss_reta_update, 1672 .reta_query = sfc_dev_rss_reta_query, 1673 .rss_hash_update = sfc_dev_rss_hash_update, 1674 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1675 .filter_ctrl = sfc_dev_filter_ctrl, 1676 .set_mc_addr_list = sfc_set_mc_addr_list, 1677 .rxq_info_get = sfc_rx_queue_info_get, 1678 .txq_info_get = sfc_tx_queue_info_get, 1679 .fw_version_get = sfc_fw_version_get, 1680 .xstats_get_by_id = sfc_xstats_get_by_id, 1681 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1682 .pool_ops_supported = sfc_pool_ops_supported, 1683 }; 1684 1685 /** 1686 * Duplicate a string in potentially shared memory required for 1687 * multi-process support. 1688 * 1689 * strdup() allocates from process-local heap/memory. 1690 */ 1691 static char * 1692 sfc_strdup(const char *str) 1693 { 1694 size_t size; 1695 char *copy; 1696 1697 if (str == NULL) 1698 return NULL; 1699 1700 size = strlen(str) + 1; 1701 copy = rte_malloc(__func__, size, 0); 1702 if (copy != NULL) 1703 rte_memcpy(copy, str, size); 1704 1705 return copy; 1706 } 1707 1708 static int 1709 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1710 { 1711 struct sfc_adapter *sa = dev->data->dev_private; 1712 const efx_nic_cfg_t *encp; 1713 unsigned int avail_caps = 0; 1714 const char *rx_name = NULL; 1715 const char *tx_name = NULL; 1716 int rc; 1717 1718 switch (sa->family) { 1719 case EFX_FAMILY_HUNTINGTON: 1720 case EFX_FAMILY_MEDFORD: 1721 case EFX_FAMILY_MEDFORD2: 1722 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1723 break; 1724 default: 1725 break; 1726 } 1727 1728 encp = efx_nic_cfg_get(sa->nic); 1729 if (encp->enc_rx_es_super_buffer_supported) 1730 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1731 1732 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1733 sfc_kvarg_string_handler, &rx_name); 1734 if (rc != 0) 1735 goto fail_kvarg_rx_datapath; 1736 1737 if (rx_name != NULL) { 1738 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1739 if (sa->dp_rx == NULL) { 1740 sfc_err(sa, "Rx datapath %s not found", rx_name); 1741 rc = ENOENT; 1742 goto fail_dp_rx; 1743 } 1744 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1745 sfc_err(sa, 1746 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1747 rx_name); 1748 rc = EINVAL; 1749 goto fail_dp_rx_caps; 1750 } 1751 } else { 1752 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1753 if (sa->dp_rx == NULL) { 1754 sfc_err(sa, "Rx datapath by caps %#x not found", 1755 avail_caps); 1756 rc = ENOENT; 1757 goto fail_dp_rx; 1758 } 1759 } 1760 1761 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1762 if (sa->dp_rx_name == NULL) { 1763 rc = ENOMEM; 1764 goto fail_dp_rx_name; 1765 } 1766 1767 sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name); 1768 1769 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1770 1771 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1772 sfc_kvarg_string_handler, &tx_name); 1773 if (rc != 0) 1774 goto fail_kvarg_tx_datapath; 1775 1776 if (tx_name != NULL) { 1777 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1778 if (sa->dp_tx == NULL) { 1779 sfc_err(sa, "Tx datapath %s not found", tx_name); 1780 rc = ENOENT; 1781 goto fail_dp_tx; 1782 } 1783 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1784 sfc_err(sa, 1785 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1786 tx_name); 1787 rc = EINVAL; 1788 goto fail_dp_tx_caps; 1789 } 1790 } else { 1791 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1792 if (sa->dp_tx == NULL) { 1793 sfc_err(sa, "Tx datapath by caps %#x not found", 1794 avail_caps); 1795 rc = ENOENT; 1796 goto fail_dp_tx; 1797 } 1798 } 1799 1800 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1801 if (sa->dp_tx_name == NULL) { 1802 rc = ENOMEM; 1803 goto fail_dp_tx_name; 1804 } 1805 1806 sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name); 1807 1808 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1809 1810 dev->dev_ops = &sfc_eth_dev_ops; 1811 1812 return 0; 1813 1814 fail_dp_tx_name: 1815 fail_dp_tx_caps: 1816 sa->dp_tx = NULL; 1817 1818 fail_dp_tx: 1819 fail_kvarg_tx_datapath: 1820 rte_free(sa->dp_rx_name); 1821 sa->dp_rx_name = NULL; 1822 1823 fail_dp_rx_name: 1824 fail_dp_rx_caps: 1825 sa->dp_rx = NULL; 1826 1827 fail_dp_rx: 1828 fail_kvarg_rx_datapath: 1829 return rc; 1830 } 1831 1832 static void 1833 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1834 { 1835 struct sfc_adapter *sa = dev->data->dev_private; 1836 1837 dev->dev_ops = NULL; 1838 dev->rx_pkt_burst = NULL; 1839 dev->tx_pkt_burst = NULL; 1840 1841 rte_free(sa->dp_tx_name); 1842 sa->dp_tx_name = NULL; 1843 sa->dp_tx = NULL; 1844 1845 rte_free(sa->dp_rx_name); 1846 sa->dp_rx_name = NULL; 1847 sa->dp_rx = NULL; 1848 } 1849 1850 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1851 .rxq_info_get = sfc_rx_queue_info_get, 1852 .txq_info_get = sfc_tx_queue_info_get, 1853 }; 1854 1855 static int 1856 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1857 { 1858 /* 1859 * Device private data has really many process-local pointers. 1860 * Below code should be extremely careful to use data located 1861 * in shared memory only. 1862 */ 1863 struct sfc_adapter *sa = dev->data->dev_private; 1864 const struct sfc_dp_rx *dp_rx; 1865 const struct sfc_dp_tx *dp_tx; 1866 int rc; 1867 1868 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1869 if (dp_rx == NULL) { 1870 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name); 1871 rc = ENOENT; 1872 goto fail_dp_rx; 1873 } 1874 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1875 sfc_err(sa, "%s Rx datapath does not support multi-process", 1876 sa->dp_tx_name); 1877 rc = EINVAL; 1878 goto fail_dp_rx_multi_process; 1879 } 1880 1881 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1882 if (dp_tx == NULL) { 1883 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1884 rc = ENOENT; 1885 goto fail_dp_tx; 1886 } 1887 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1888 sfc_err(sa, "%s Tx datapath does not support multi-process", 1889 sa->dp_tx_name); 1890 rc = EINVAL; 1891 goto fail_dp_tx_multi_process; 1892 } 1893 1894 dev->rx_pkt_burst = dp_rx->pkt_burst; 1895 dev->tx_pkt_burst = dp_tx->pkt_burst; 1896 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1897 1898 return 0; 1899 1900 fail_dp_tx_multi_process: 1901 fail_dp_tx: 1902 fail_dp_rx_multi_process: 1903 fail_dp_rx: 1904 return rc; 1905 } 1906 1907 static void 1908 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1909 { 1910 dev->dev_ops = NULL; 1911 dev->tx_pkt_burst = NULL; 1912 dev->rx_pkt_burst = NULL; 1913 } 1914 1915 static void 1916 sfc_register_dp(void) 1917 { 1918 /* Register once */ 1919 if (TAILQ_EMPTY(&sfc_dp_head)) { 1920 /* Prefer EF10 datapath */ 1921 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 1922 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1923 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1924 1925 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1926 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1927 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1928 } 1929 } 1930 1931 static int 1932 sfc_eth_dev_init(struct rte_eth_dev *dev) 1933 { 1934 struct sfc_adapter *sa = dev->data->dev_private; 1935 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1936 int rc; 1937 const efx_nic_cfg_t *encp; 1938 const struct ether_addr *from; 1939 1940 sfc_register_dp(); 1941 1942 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1943 return -sfc_eth_dev_secondary_set_ops(dev); 1944 1945 /* Required for logging */ 1946 sa->pci_addr = pci_dev->addr; 1947 sa->port_id = dev->data->port_id; 1948 1949 sa->eth_dev = dev; 1950 1951 /* Copy PCI device info to the dev->data */ 1952 rte_eth_copy_pci_info(dev, pci_dev); 1953 1954 sa->logtype_main = sfc_register_logtype(sa, SFC_LOGTYPE_MAIN_STR, 1955 RTE_LOG_NOTICE); 1956 1957 rc = sfc_kvargs_parse(sa); 1958 if (rc != 0) 1959 goto fail_kvargs_parse; 1960 1961 sfc_log_init(sa, "entry"); 1962 1963 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1964 if (dev->data->mac_addrs == NULL) { 1965 rc = ENOMEM; 1966 goto fail_mac_addrs; 1967 } 1968 1969 sfc_adapter_lock_init(sa); 1970 sfc_adapter_lock(sa); 1971 1972 sfc_log_init(sa, "probing"); 1973 rc = sfc_probe(sa); 1974 if (rc != 0) 1975 goto fail_probe; 1976 1977 sfc_log_init(sa, "set device ops"); 1978 rc = sfc_eth_dev_set_ops(dev); 1979 if (rc != 0) 1980 goto fail_set_ops; 1981 1982 sfc_log_init(sa, "attaching"); 1983 rc = sfc_attach(sa); 1984 if (rc != 0) 1985 goto fail_attach; 1986 1987 encp = efx_nic_cfg_get(sa->nic); 1988 1989 /* 1990 * The arguments are really reverse order in comparison to 1991 * Linux kernel. Copy from NIC config to Ethernet device data. 1992 */ 1993 from = (const struct ether_addr *)(encp->enc_mac_addr); 1994 ether_addr_copy(from, &dev->data->mac_addrs[0]); 1995 1996 sfc_adapter_unlock(sa); 1997 1998 sfc_log_init(sa, "done"); 1999 return 0; 2000 2001 fail_attach: 2002 sfc_eth_dev_clear_ops(dev); 2003 2004 fail_set_ops: 2005 sfc_unprobe(sa); 2006 2007 fail_probe: 2008 sfc_adapter_unlock(sa); 2009 sfc_adapter_lock_fini(sa); 2010 rte_free(dev->data->mac_addrs); 2011 dev->data->mac_addrs = NULL; 2012 2013 fail_mac_addrs: 2014 sfc_kvargs_cleanup(sa); 2015 2016 fail_kvargs_parse: 2017 sfc_log_init(sa, "failed %d", rc); 2018 SFC_ASSERT(rc > 0); 2019 return -rc; 2020 } 2021 2022 static int 2023 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2024 { 2025 struct sfc_adapter *sa; 2026 2027 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2028 sfc_eth_dev_secondary_clear_ops(dev); 2029 return 0; 2030 } 2031 2032 sa = dev->data->dev_private; 2033 sfc_log_init(sa, "entry"); 2034 2035 sfc_adapter_lock(sa); 2036 2037 sfc_eth_dev_clear_ops(dev); 2038 2039 sfc_detach(sa); 2040 sfc_unprobe(sa); 2041 2042 rte_free(dev->data->mac_addrs); 2043 dev->data->mac_addrs = NULL; 2044 2045 sfc_kvargs_cleanup(sa); 2046 2047 sfc_adapter_unlock(sa); 2048 sfc_adapter_lock_fini(sa); 2049 2050 sfc_log_init(sa, "done"); 2051 2052 /* Required for logging, so cleanup last */ 2053 sa->eth_dev = NULL; 2054 return 0; 2055 } 2056 2057 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2058 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2059 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2060 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2061 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2062 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2063 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2064 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2065 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2066 { .vendor_id = 0 /* sentinel */ } 2067 }; 2068 2069 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2070 struct rte_pci_device *pci_dev) 2071 { 2072 return rte_eth_dev_pci_generic_probe(pci_dev, 2073 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2074 } 2075 2076 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2077 { 2078 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2079 } 2080 2081 static struct rte_pci_driver sfc_efx_pmd = { 2082 .id_table = pci_id_sfc_efx_map, 2083 .drv_flags = 2084 RTE_PCI_DRV_INTR_LSC | 2085 RTE_PCI_DRV_NEED_MAPPING, 2086 .probe = sfc_eth_dev_pci_probe, 2087 .remove = sfc_eth_dev_pci_remove, 2088 }; 2089 2090 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2091 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2092 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2093 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2094 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2095 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2096 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2097 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2098 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2099 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2100 2101 RTE_INIT(sfc_driver_register_logtype) 2102 { 2103 int ret; 2104 2105 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2106 RTE_LOG_NOTICE); 2107 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2108 } 2109