1 /*- 2 * BSD LICENSE 3 * 4 * Copyright (c) 2016-2017 Solarflare Communications Inc. 5 * All rights reserved. 6 * 7 * This software was jointly developed between OKTET Labs (under contract 8 * for Solarflare) and Solarflare Communications, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright notice, 14 * this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright notice, 16 * this list of conditions and the following disclaimer in the documentation 17 * and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 26 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 28 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 29 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <rte_dev.h> 33 #include <rte_ethdev.h> 34 #include <rte_ethdev_pci.h> 35 #include <rte_pci.h> 36 #include <rte_bus_pci.h> 37 #include <rte_errno.h> 38 39 #include "efx.h" 40 41 #include "sfc.h" 42 #include "sfc_debug.h" 43 #include "sfc_log.h" 44 #include "sfc_kvargs.h" 45 #include "sfc_ev.h" 46 #include "sfc_rx.h" 47 #include "sfc_tx.h" 48 #include "sfc_flow.h" 49 #include "sfc_dp.h" 50 #include "sfc_dp_rx.h" 51 52 static struct sfc_dp_list sfc_dp_head = 53 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 54 55 static int 56 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 57 { 58 struct sfc_adapter *sa = dev->data->dev_private; 59 efx_nic_fw_info_t enfi; 60 int ret; 61 int rc; 62 63 /* 64 * Return value of the callback is likely supposed to be 65 * equal to or greater than 0, nevertheless, if an error 66 * occurs, it will be desirable to pass it to the caller 67 */ 68 if ((fw_version == NULL) || (fw_size == 0)) 69 return -EINVAL; 70 71 rc = efx_nic_get_fw_version(sa->nic, &enfi); 72 if (rc != 0) 73 return -rc; 74 75 ret = snprintf(fw_version, fw_size, 76 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 77 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 78 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 79 if (ret < 0) 80 return ret; 81 82 if (enfi.enfi_dpcpu_fw_ids_valid) { 83 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 84 int ret_extra; 85 86 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 87 fw_size - dpcpu_fw_ids_offset, 88 " rx%" PRIx16 " tx%" PRIx16, 89 enfi.enfi_rx_dpcpu_fw_id, 90 enfi.enfi_tx_dpcpu_fw_id); 91 if (ret_extra < 0) 92 return ret_extra; 93 94 ret += ret_extra; 95 } 96 97 if (fw_size < (size_t)(++ret)) 98 return ret; 99 else 100 return 0; 101 } 102 103 static void 104 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 105 { 106 struct sfc_adapter *sa = dev->data->dev_private; 107 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 108 109 sfc_log_init(sa, "entry"); 110 111 dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev); 112 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 113 114 /* Autonegotiation may be disabled */ 115 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 116 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 117 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 118 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 119 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 120 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 121 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 122 123 dev_info->max_rx_queues = sa->rxq_max; 124 dev_info->max_tx_queues = sa->txq_max; 125 126 /* By default packets are dropped if no descriptors are available */ 127 dev_info->default_rxconf.rx_drop_en = 1; 128 129 dev_info->rx_offload_capa = 130 DEV_RX_OFFLOAD_IPV4_CKSUM | 131 DEV_RX_OFFLOAD_UDP_CKSUM | 132 DEV_RX_OFFLOAD_TCP_CKSUM; 133 134 if ((encp->enc_tunnel_encapsulations_supported != 0) && 135 (sa->dp_rx->features & SFC_DP_RX_FEAT_TUNNELS)) 136 dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM; 137 138 dev_info->tx_offload_capa = 139 DEV_TX_OFFLOAD_IPV4_CKSUM | 140 DEV_TX_OFFLOAD_UDP_CKSUM | 141 DEV_TX_OFFLOAD_TCP_CKSUM; 142 143 if (encp->enc_tunnel_encapsulations_supported != 0) 144 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM; 145 146 dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP; 147 if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) || 148 !encp->enc_hw_tx_insert_vlan_enabled) 149 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL; 150 else 151 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_VLAN_INSERT; 152 153 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG) 154 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS; 155 156 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL) 157 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP; 158 159 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT) 160 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT; 161 162 #if EFSYS_OPT_RX_SCALE 163 if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) { 164 dev_info->reta_size = EFX_RSS_TBL_SIZE; 165 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 166 dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS; 167 } 168 #endif 169 170 if (sa->tso) 171 dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_TCP_TSO; 172 173 /* Initialize to hardware limits */ 174 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 175 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 176 /* The RXQ hardware requires that the descriptor count is a power 177 * of 2, but rx_desc_lim cannot properly describe that constraint. 178 */ 179 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 180 181 /* Initialize to hardware limits */ 182 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 183 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 184 /* 185 * The TXQ hardware requires that the descriptor count is a power 186 * of 2, but tx_desc_lim cannot properly describe that constraint 187 */ 188 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 189 190 if (sa->dp_rx->get_dev_info != NULL) 191 sa->dp_rx->get_dev_info(dev_info); 192 if (sa->dp_tx->get_dev_info != NULL) 193 sa->dp_tx->get_dev_info(dev_info); 194 } 195 196 static const uint32_t * 197 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 198 { 199 struct sfc_adapter *sa = dev->data->dev_private; 200 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 201 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 202 203 return sa->dp_rx->supported_ptypes_get(tunnel_encaps); 204 } 205 206 static int 207 sfc_dev_configure(struct rte_eth_dev *dev) 208 { 209 struct rte_eth_dev_data *dev_data = dev->data; 210 struct sfc_adapter *sa = dev_data->dev_private; 211 int rc; 212 213 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 214 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 215 216 sfc_adapter_lock(sa); 217 switch (sa->state) { 218 case SFC_ADAPTER_CONFIGURED: 219 /* FALLTHROUGH */ 220 case SFC_ADAPTER_INITIALIZED: 221 rc = sfc_configure(sa); 222 break; 223 default: 224 sfc_err(sa, "unexpected adapter state %u to configure", 225 sa->state); 226 rc = EINVAL; 227 break; 228 } 229 sfc_adapter_unlock(sa); 230 231 sfc_log_init(sa, "done %d", rc); 232 SFC_ASSERT(rc >= 0); 233 return -rc; 234 } 235 236 static int 237 sfc_dev_start(struct rte_eth_dev *dev) 238 { 239 struct sfc_adapter *sa = dev->data->dev_private; 240 int rc; 241 242 sfc_log_init(sa, "entry"); 243 244 sfc_adapter_lock(sa); 245 rc = sfc_start(sa); 246 sfc_adapter_unlock(sa); 247 248 sfc_log_init(sa, "done %d", rc); 249 SFC_ASSERT(rc >= 0); 250 return -rc; 251 } 252 253 static int 254 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 255 { 256 struct sfc_adapter *sa = dev->data->dev_private; 257 struct rte_eth_link *dev_link = &dev->data->dev_link; 258 struct rte_eth_link old_link; 259 struct rte_eth_link current_link; 260 261 sfc_log_init(sa, "entry"); 262 263 retry: 264 EFX_STATIC_ASSERT(sizeof(*dev_link) == sizeof(rte_atomic64_t)); 265 *(int64_t *)&old_link = rte_atomic64_read((rte_atomic64_t *)dev_link); 266 267 if (sa->state != SFC_ADAPTER_STARTED) { 268 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 269 if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link, 270 *(uint64_t *)&old_link, 271 *(uint64_t *)¤t_link)) 272 goto retry; 273 } else if (wait_to_complete) { 274 efx_link_mode_t link_mode; 275 276 if (efx_port_poll(sa->nic, &link_mode) != 0) 277 link_mode = EFX_LINK_UNKNOWN; 278 sfc_port_link_mode_to_info(link_mode, ¤t_link); 279 280 if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link, 281 *(uint64_t *)&old_link, 282 *(uint64_t *)¤t_link)) 283 goto retry; 284 } else { 285 sfc_ev_mgmt_qpoll(sa); 286 *(int64_t *)¤t_link = 287 rte_atomic64_read((rte_atomic64_t *)dev_link); 288 } 289 290 if (old_link.link_status != current_link.link_status) 291 sfc_info(sa, "Link status is %s", 292 current_link.link_status ? "UP" : "DOWN"); 293 294 return old_link.link_status == current_link.link_status ? 0 : -1; 295 } 296 297 static void 298 sfc_dev_stop(struct rte_eth_dev *dev) 299 { 300 struct sfc_adapter *sa = dev->data->dev_private; 301 302 sfc_log_init(sa, "entry"); 303 304 sfc_adapter_lock(sa); 305 sfc_stop(sa); 306 sfc_adapter_unlock(sa); 307 308 sfc_log_init(sa, "done"); 309 } 310 311 static int 312 sfc_dev_set_link_up(struct rte_eth_dev *dev) 313 { 314 struct sfc_adapter *sa = dev->data->dev_private; 315 int rc; 316 317 sfc_log_init(sa, "entry"); 318 319 sfc_adapter_lock(sa); 320 rc = sfc_start(sa); 321 sfc_adapter_unlock(sa); 322 323 SFC_ASSERT(rc >= 0); 324 return -rc; 325 } 326 327 static int 328 sfc_dev_set_link_down(struct rte_eth_dev *dev) 329 { 330 struct sfc_adapter *sa = dev->data->dev_private; 331 332 sfc_log_init(sa, "entry"); 333 334 sfc_adapter_lock(sa); 335 sfc_stop(sa); 336 sfc_adapter_unlock(sa); 337 338 return 0; 339 } 340 341 static void 342 sfc_dev_close(struct rte_eth_dev *dev) 343 { 344 struct sfc_adapter *sa = dev->data->dev_private; 345 346 sfc_log_init(sa, "entry"); 347 348 sfc_adapter_lock(sa); 349 switch (sa->state) { 350 case SFC_ADAPTER_STARTED: 351 sfc_stop(sa); 352 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 353 /* FALLTHROUGH */ 354 case SFC_ADAPTER_CONFIGURED: 355 sfc_close(sa); 356 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 357 /* FALLTHROUGH */ 358 case SFC_ADAPTER_INITIALIZED: 359 break; 360 default: 361 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 362 break; 363 } 364 sfc_adapter_unlock(sa); 365 366 sfc_log_init(sa, "done"); 367 } 368 369 static void 370 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 371 boolean_t enabled) 372 { 373 struct sfc_port *port; 374 boolean_t *toggle; 375 struct sfc_adapter *sa = dev->data->dev_private; 376 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 377 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 378 379 sfc_adapter_lock(sa); 380 381 port = &sa->port; 382 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 383 384 if (*toggle != enabled) { 385 *toggle = enabled; 386 387 if (port->isolated) { 388 sfc_warn(sa, "isolated mode is active on the port"); 389 sfc_warn(sa, "the change is to be applied on the next " 390 "start provided that isolated mode is " 391 "disabled prior the next start"); 392 } else if ((sa->state == SFC_ADAPTER_STARTED) && 393 (sfc_set_rx_mode(sa) != 0)) { 394 *toggle = !(enabled); 395 sfc_warn(sa, "Failed to %s %s mode", 396 ((enabled) ? "enable" : "disable"), desc); 397 } 398 } 399 400 sfc_adapter_unlock(sa); 401 } 402 403 static void 404 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 405 { 406 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 407 } 408 409 static void 410 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 411 { 412 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 413 } 414 415 static void 416 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 417 { 418 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 419 } 420 421 static void 422 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 423 { 424 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 425 } 426 427 static int 428 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 429 uint16_t nb_rx_desc, unsigned int socket_id, 430 const struct rte_eth_rxconf *rx_conf, 431 struct rte_mempool *mb_pool) 432 { 433 struct sfc_adapter *sa = dev->data->dev_private; 434 int rc; 435 436 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 437 rx_queue_id, nb_rx_desc, socket_id); 438 439 sfc_adapter_lock(sa); 440 441 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 442 rx_conf, mb_pool); 443 if (rc != 0) 444 goto fail_rx_qinit; 445 446 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 447 448 sfc_adapter_unlock(sa); 449 450 return 0; 451 452 fail_rx_qinit: 453 sfc_adapter_unlock(sa); 454 SFC_ASSERT(rc > 0); 455 return -rc; 456 } 457 458 static void 459 sfc_rx_queue_release(void *queue) 460 { 461 struct sfc_dp_rxq *dp_rxq = queue; 462 struct sfc_rxq *rxq; 463 struct sfc_adapter *sa; 464 unsigned int sw_index; 465 466 if (dp_rxq == NULL) 467 return; 468 469 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 470 sa = rxq->evq->sa; 471 sfc_adapter_lock(sa); 472 473 sw_index = sfc_rxq_sw_index(rxq); 474 475 sfc_log_init(sa, "RxQ=%u", sw_index); 476 477 sa->eth_dev->data->rx_queues[sw_index] = NULL; 478 479 sfc_rx_qfini(sa, sw_index); 480 481 sfc_adapter_unlock(sa); 482 } 483 484 static int 485 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 486 uint16_t nb_tx_desc, unsigned int socket_id, 487 const struct rte_eth_txconf *tx_conf) 488 { 489 struct sfc_adapter *sa = dev->data->dev_private; 490 int rc; 491 492 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 493 tx_queue_id, nb_tx_desc, socket_id); 494 495 sfc_adapter_lock(sa); 496 497 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 498 if (rc != 0) 499 goto fail_tx_qinit; 500 501 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 502 503 sfc_adapter_unlock(sa); 504 return 0; 505 506 fail_tx_qinit: 507 sfc_adapter_unlock(sa); 508 SFC_ASSERT(rc > 0); 509 return -rc; 510 } 511 512 static void 513 sfc_tx_queue_release(void *queue) 514 { 515 struct sfc_dp_txq *dp_txq = queue; 516 struct sfc_txq *txq; 517 unsigned int sw_index; 518 struct sfc_adapter *sa; 519 520 if (dp_txq == NULL) 521 return; 522 523 txq = sfc_txq_by_dp_txq(dp_txq); 524 sw_index = sfc_txq_sw_index(txq); 525 526 SFC_ASSERT(txq->evq != NULL); 527 sa = txq->evq->sa; 528 529 sfc_log_init(sa, "TxQ = %u", sw_index); 530 531 sfc_adapter_lock(sa); 532 533 SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues); 534 sa->eth_dev->data->tx_queues[sw_index] = NULL; 535 536 sfc_tx_qfini(sa, sw_index); 537 538 sfc_adapter_unlock(sa); 539 } 540 541 static int 542 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 543 { 544 struct sfc_adapter *sa = dev->data->dev_private; 545 struct sfc_port *port = &sa->port; 546 uint64_t *mac_stats; 547 int ret; 548 549 rte_spinlock_lock(&port->mac_stats_lock); 550 551 ret = sfc_port_update_mac_stats(sa); 552 if (ret != 0) 553 goto unlock; 554 555 mac_stats = port->mac_stats_buf; 556 557 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 558 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 559 stats->ipackets = 560 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 561 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 562 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 563 stats->opackets = 564 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 565 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 566 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 567 stats->ibytes = 568 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 569 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 570 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 571 stats->obytes = 572 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 573 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 574 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 575 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW]; 576 stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 577 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 578 } else { 579 stats->ipackets = mac_stats[EFX_MAC_RX_PKTS]; 580 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 581 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 582 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 583 /* 584 * Take into account stats which are whenever supported 585 * on EF10. If some stat is not supported by current 586 * firmware variant or HW revision, it is guaranteed 587 * to be zero in mac_stats. 588 */ 589 stats->imissed = 590 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 591 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 592 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 593 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 594 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 595 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 596 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 597 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 598 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 599 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 600 stats->ierrors = 601 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 602 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 603 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 604 /* no oerrors counters supported on EF10 */ 605 } 606 607 unlock: 608 rte_spinlock_unlock(&port->mac_stats_lock); 609 SFC_ASSERT(ret >= 0); 610 return -ret; 611 } 612 613 static void 614 sfc_stats_reset(struct rte_eth_dev *dev) 615 { 616 struct sfc_adapter *sa = dev->data->dev_private; 617 struct sfc_port *port = &sa->port; 618 int rc; 619 620 if (sa->state != SFC_ADAPTER_STARTED) { 621 /* 622 * The operation cannot be done if port is not started; it 623 * will be scheduled to be done during the next port start 624 */ 625 port->mac_stats_reset_pending = B_TRUE; 626 return; 627 } 628 629 rc = sfc_port_reset_mac_stats(sa); 630 if (rc != 0) 631 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 632 } 633 634 static int 635 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 636 unsigned int xstats_count) 637 { 638 struct sfc_adapter *sa = dev->data->dev_private; 639 struct sfc_port *port = &sa->port; 640 uint64_t *mac_stats; 641 int rc; 642 unsigned int i; 643 int nstats = 0; 644 645 rte_spinlock_lock(&port->mac_stats_lock); 646 647 rc = sfc_port_update_mac_stats(sa); 648 if (rc != 0) { 649 SFC_ASSERT(rc > 0); 650 nstats = -rc; 651 goto unlock; 652 } 653 654 mac_stats = port->mac_stats_buf; 655 656 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 657 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 658 if (xstats != NULL && nstats < (int)xstats_count) { 659 xstats[nstats].id = nstats; 660 xstats[nstats].value = mac_stats[i]; 661 } 662 nstats++; 663 } 664 } 665 666 unlock: 667 rte_spinlock_unlock(&port->mac_stats_lock); 668 669 return nstats; 670 } 671 672 static int 673 sfc_xstats_get_names(struct rte_eth_dev *dev, 674 struct rte_eth_xstat_name *xstats_names, 675 unsigned int xstats_count) 676 { 677 struct sfc_adapter *sa = dev->data->dev_private; 678 struct sfc_port *port = &sa->port; 679 unsigned int i; 680 unsigned int nstats = 0; 681 682 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 683 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 684 if (xstats_names != NULL && nstats < xstats_count) 685 strncpy(xstats_names[nstats].name, 686 efx_mac_stat_name(sa->nic, i), 687 sizeof(xstats_names[0].name)); 688 nstats++; 689 } 690 } 691 692 return nstats; 693 } 694 695 static int 696 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 697 uint64_t *values, unsigned int n) 698 { 699 struct sfc_adapter *sa = dev->data->dev_private; 700 struct sfc_port *port = &sa->port; 701 uint64_t *mac_stats; 702 unsigned int nb_supported = 0; 703 unsigned int nb_written = 0; 704 unsigned int i; 705 int ret; 706 int rc; 707 708 if (unlikely(values == NULL) || 709 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 710 return port->mac_stats_nb_supported; 711 712 rte_spinlock_lock(&port->mac_stats_lock); 713 714 rc = sfc_port_update_mac_stats(sa); 715 if (rc != 0) { 716 SFC_ASSERT(rc > 0); 717 ret = -rc; 718 goto unlock; 719 } 720 721 mac_stats = port->mac_stats_buf; 722 723 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 724 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 725 continue; 726 727 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 728 values[nb_written++] = mac_stats[i]; 729 730 ++nb_supported; 731 } 732 733 ret = nb_written; 734 735 unlock: 736 rte_spinlock_unlock(&port->mac_stats_lock); 737 738 return ret; 739 } 740 741 static int 742 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 743 struct rte_eth_xstat_name *xstats_names, 744 const uint64_t *ids, unsigned int size) 745 { 746 struct sfc_adapter *sa = dev->data->dev_private; 747 struct sfc_port *port = &sa->port; 748 unsigned int nb_supported = 0; 749 unsigned int nb_written = 0; 750 unsigned int i; 751 752 if (unlikely(xstats_names == NULL) || 753 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 754 return port->mac_stats_nb_supported; 755 756 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 757 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 758 continue; 759 760 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 761 char *name = xstats_names[nb_written++].name; 762 763 strncpy(name, efx_mac_stat_name(sa->nic, i), 764 sizeof(xstats_names[0].name)); 765 name[sizeof(xstats_names[0].name) - 1] = '\0'; 766 } 767 768 ++nb_supported; 769 } 770 771 return nb_written; 772 } 773 774 static int 775 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 776 { 777 struct sfc_adapter *sa = dev->data->dev_private; 778 unsigned int wanted_fc, link_fc; 779 780 memset(fc_conf, 0, sizeof(*fc_conf)); 781 782 sfc_adapter_lock(sa); 783 784 if (sa->state == SFC_ADAPTER_STARTED) 785 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 786 else 787 link_fc = sa->port.flow_ctrl; 788 789 switch (link_fc) { 790 case 0: 791 fc_conf->mode = RTE_FC_NONE; 792 break; 793 case EFX_FCNTL_RESPOND: 794 fc_conf->mode = RTE_FC_RX_PAUSE; 795 break; 796 case EFX_FCNTL_GENERATE: 797 fc_conf->mode = RTE_FC_TX_PAUSE; 798 break; 799 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 800 fc_conf->mode = RTE_FC_FULL; 801 break; 802 default: 803 sfc_err(sa, "%s: unexpected flow control value %#x", 804 __func__, link_fc); 805 } 806 807 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 808 809 sfc_adapter_unlock(sa); 810 811 return 0; 812 } 813 814 static int 815 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 816 { 817 struct sfc_adapter *sa = dev->data->dev_private; 818 struct sfc_port *port = &sa->port; 819 unsigned int fcntl; 820 int rc; 821 822 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 823 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 824 fc_conf->mac_ctrl_frame_fwd != 0) { 825 sfc_err(sa, "unsupported flow control settings specified"); 826 rc = EINVAL; 827 goto fail_inval; 828 } 829 830 switch (fc_conf->mode) { 831 case RTE_FC_NONE: 832 fcntl = 0; 833 break; 834 case RTE_FC_RX_PAUSE: 835 fcntl = EFX_FCNTL_RESPOND; 836 break; 837 case RTE_FC_TX_PAUSE: 838 fcntl = EFX_FCNTL_GENERATE; 839 break; 840 case RTE_FC_FULL: 841 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 842 break; 843 default: 844 rc = EINVAL; 845 goto fail_inval; 846 } 847 848 sfc_adapter_lock(sa); 849 850 if (sa->state == SFC_ADAPTER_STARTED) { 851 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 852 if (rc != 0) 853 goto fail_mac_fcntl_set; 854 } 855 856 port->flow_ctrl = fcntl; 857 port->flow_ctrl_autoneg = fc_conf->autoneg; 858 859 sfc_adapter_unlock(sa); 860 861 return 0; 862 863 fail_mac_fcntl_set: 864 sfc_adapter_unlock(sa); 865 fail_inval: 866 SFC_ASSERT(rc > 0); 867 return -rc; 868 } 869 870 static int 871 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 872 { 873 struct sfc_adapter *sa = dev->data->dev_private; 874 size_t pdu = EFX_MAC_PDU(mtu); 875 size_t old_pdu; 876 int rc; 877 878 sfc_log_init(sa, "mtu=%u", mtu); 879 880 rc = EINVAL; 881 if (pdu < EFX_MAC_PDU_MIN) { 882 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 883 (unsigned int)mtu, (unsigned int)pdu, 884 EFX_MAC_PDU_MIN); 885 goto fail_inval; 886 } 887 if (pdu > EFX_MAC_PDU_MAX) { 888 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 889 (unsigned int)mtu, (unsigned int)pdu, 890 EFX_MAC_PDU_MAX); 891 goto fail_inval; 892 } 893 894 sfc_adapter_lock(sa); 895 896 if (pdu != sa->port.pdu) { 897 if (sa->state == SFC_ADAPTER_STARTED) { 898 sfc_stop(sa); 899 900 old_pdu = sa->port.pdu; 901 sa->port.pdu = pdu; 902 rc = sfc_start(sa); 903 if (rc != 0) 904 goto fail_start; 905 } else { 906 sa->port.pdu = pdu; 907 } 908 } 909 910 /* 911 * The driver does not use it, but other PMDs update jumbo_frame 912 * flag and max_rx_pkt_len when MTU is set. 913 */ 914 dev->data->dev_conf.rxmode.jumbo_frame = (mtu > ETHER_MAX_LEN); 915 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 916 917 sfc_adapter_unlock(sa); 918 919 sfc_log_init(sa, "done"); 920 return 0; 921 922 fail_start: 923 sa->port.pdu = old_pdu; 924 if (sfc_start(sa) != 0) 925 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 926 "PDU max size - port is stopped", 927 (unsigned int)pdu, (unsigned int)old_pdu); 928 sfc_adapter_unlock(sa); 929 930 fail_inval: 931 sfc_log_init(sa, "failed %d", rc); 932 SFC_ASSERT(rc > 0); 933 return -rc; 934 } 935 static void 936 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 937 { 938 struct sfc_adapter *sa = dev->data->dev_private; 939 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 940 struct sfc_port *port = &sa->port; 941 int rc; 942 943 sfc_adapter_lock(sa); 944 945 /* 946 * Copy the address to the device private data so that 947 * it could be recalled in the case of adapter restart. 948 */ 949 ether_addr_copy(mac_addr, &port->default_mac_addr); 950 951 if (port->isolated) { 952 sfc_err(sa, "isolated mode is active on the port"); 953 sfc_err(sa, "will not set MAC address"); 954 goto unlock; 955 } 956 957 if (sa->state != SFC_ADAPTER_STARTED) { 958 sfc_info(sa, "the port is not started"); 959 sfc_info(sa, "the new MAC address will be set on port start"); 960 961 goto unlock; 962 } 963 964 if (encp->enc_allow_set_mac_with_installed_filters) { 965 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 966 if (rc != 0) { 967 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 968 goto unlock; 969 } 970 971 /* 972 * Changing the MAC address by means of MCDI request 973 * has no effect on received traffic, therefore 974 * we also need to update unicast filters 975 */ 976 rc = sfc_set_rx_mode(sa); 977 if (rc != 0) 978 sfc_err(sa, "cannot set filter (rc = %u)", rc); 979 } else { 980 sfc_warn(sa, "cannot set MAC address with filters installed"); 981 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 982 sfc_warn(sa, "(some traffic may be dropped)"); 983 984 /* 985 * Since setting MAC address with filters installed is not 986 * allowed on the adapter, the new MAC address will be set 987 * by means of adapter restart. sfc_start() shall retrieve 988 * the new address from the device private data and set it. 989 */ 990 sfc_stop(sa); 991 rc = sfc_start(sa); 992 if (rc != 0) 993 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 994 } 995 996 unlock: 997 /* 998 * In the case of failure sa->port->default_mac_addr does not 999 * need rollback since no error code is returned, and the upper 1000 * API will anyway update the external MAC address storage. 1001 * To be consistent with that new value it is better to keep 1002 * the device private value the same. 1003 */ 1004 sfc_adapter_unlock(sa); 1005 } 1006 1007 1008 static int 1009 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 1010 uint32_t nb_mc_addr) 1011 { 1012 struct sfc_adapter *sa = dev->data->dev_private; 1013 struct sfc_port *port = &sa->port; 1014 uint8_t *mc_addrs = port->mcast_addrs; 1015 int rc; 1016 unsigned int i; 1017 1018 if (port->isolated) { 1019 sfc_err(sa, "isolated mode is active on the port"); 1020 sfc_err(sa, "will not set multicast address list"); 1021 return -ENOTSUP; 1022 } 1023 1024 if (mc_addrs == NULL) 1025 return -ENOBUFS; 1026 1027 if (nb_mc_addr > port->max_mcast_addrs) { 1028 sfc_err(sa, "too many multicast addresses: %u > %u", 1029 nb_mc_addr, port->max_mcast_addrs); 1030 return -EINVAL; 1031 } 1032 1033 for (i = 0; i < nb_mc_addr; ++i) { 1034 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1035 EFX_MAC_ADDR_LEN); 1036 mc_addrs += EFX_MAC_ADDR_LEN; 1037 } 1038 1039 port->nb_mcast_addrs = nb_mc_addr; 1040 1041 if (sa->state != SFC_ADAPTER_STARTED) 1042 return 0; 1043 1044 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1045 port->nb_mcast_addrs); 1046 if (rc != 0) 1047 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1048 1049 SFC_ASSERT(rc > 0); 1050 return -rc; 1051 } 1052 1053 /* 1054 * The function is used by the secondary process as well. It must not 1055 * use any process-local pointers from the adapter data. 1056 */ 1057 static void 1058 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1059 struct rte_eth_rxq_info *qinfo) 1060 { 1061 struct sfc_adapter *sa = dev->data->dev_private; 1062 struct sfc_rxq_info *rxq_info; 1063 struct sfc_rxq *rxq; 1064 1065 sfc_adapter_lock(sa); 1066 1067 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1068 1069 rxq_info = &sa->rxq_info[rx_queue_id]; 1070 rxq = rxq_info->rxq; 1071 SFC_ASSERT(rxq != NULL); 1072 1073 qinfo->mp = rxq->refill_mb_pool; 1074 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1075 qinfo->conf.rx_drop_en = 1; 1076 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1077 qinfo->scattered_rx = 1078 ((rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) != 0); 1079 qinfo->nb_desc = rxq_info->entries; 1080 1081 sfc_adapter_unlock(sa); 1082 } 1083 1084 /* 1085 * The function is used by the secondary process as well. It must not 1086 * use any process-local pointers from the adapter data. 1087 */ 1088 static void 1089 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1090 struct rte_eth_txq_info *qinfo) 1091 { 1092 struct sfc_adapter *sa = dev->data->dev_private; 1093 struct sfc_txq_info *txq_info; 1094 1095 sfc_adapter_lock(sa); 1096 1097 SFC_ASSERT(tx_queue_id < sa->txq_count); 1098 1099 txq_info = &sa->txq_info[tx_queue_id]; 1100 SFC_ASSERT(txq_info->txq != NULL); 1101 1102 memset(qinfo, 0, sizeof(*qinfo)); 1103 1104 qinfo->conf.txq_flags = txq_info->txq->flags; 1105 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1106 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1107 qinfo->nb_desc = txq_info->entries; 1108 1109 sfc_adapter_unlock(sa); 1110 } 1111 1112 static uint32_t 1113 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1114 { 1115 struct sfc_adapter *sa = dev->data->dev_private; 1116 1117 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1118 1119 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1120 } 1121 1122 static int 1123 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1124 { 1125 struct sfc_dp_rxq *dp_rxq = queue; 1126 1127 return sfc_rx_qdesc_done(dp_rxq, offset); 1128 } 1129 1130 static int 1131 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1132 { 1133 struct sfc_dp_rxq *dp_rxq = queue; 1134 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1135 1136 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1137 } 1138 1139 static int 1140 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1141 { 1142 struct sfc_dp_txq *dp_txq = queue; 1143 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1144 1145 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1146 } 1147 1148 static int 1149 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1150 { 1151 struct sfc_adapter *sa = dev->data->dev_private; 1152 int rc; 1153 1154 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1155 1156 sfc_adapter_lock(sa); 1157 1158 rc = EINVAL; 1159 if (sa->state != SFC_ADAPTER_STARTED) 1160 goto fail_not_started; 1161 1162 rc = sfc_rx_qstart(sa, rx_queue_id); 1163 if (rc != 0) 1164 goto fail_rx_qstart; 1165 1166 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1167 1168 sfc_adapter_unlock(sa); 1169 1170 return 0; 1171 1172 fail_rx_qstart: 1173 fail_not_started: 1174 sfc_adapter_unlock(sa); 1175 SFC_ASSERT(rc > 0); 1176 return -rc; 1177 } 1178 1179 static int 1180 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1181 { 1182 struct sfc_adapter *sa = dev->data->dev_private; 1183 1184 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1185 1186 sfc_adapter_lock(sa); 1187 sfc_rx_qstop(sa, rx_queue_id); 1188 1189 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1190 1191 sfc_adapter_unlock(sa); 1192 1193 return 0; 1194 } 1195 1196 static int 1197 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1198 { 1199 struct sfc_adapter *sa = dev->data->dev_private; 1200 int rc; 1201 1202 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1203 1204 sfc_adapter_lock(sa); 1205 1206 rc = EINVAL; 1207 if (sa->state != SFC_ADAPTER_STARTED) 1208 goto fail_not_started; 1209 1210 rc = sfc_tx_qstart(sa, tx_queue_id); 1211 if (rc != 0) 1212 goto fail_tx_qstart; 1213 1214 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1215 1216 sfc_adapter_unlock(sa); 1217 return 0; 1218 1219 fail_tx_qstart: 1220 1221 fail_not_started: 1222 sfc_adapter_unlock(sa); 1223 SFC_ASSERT(rc > 0); 1224 return -rc; 1225 } 1226 1227 static int 1228 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1229 { 1230 struct sfc_adapter *sa = dev->data->dev_private; 1231 1232 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1233 1234 sfc_adapter_lock(sa); 1235 1236 sfc_tx_qstop(sa, tx_queue_id); 1237 1238 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1239 1240 sfc_adapter_unlock(sa); 1241 return 0; 1242 } 1243 1244 static efx_tunnel_protocol_t 1245 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1246 { 1247 switch (rte_type) { 1248 case RTE_TUNNEL_TYPE_VXLAN: 1249 return EFX_TUNNEL_PROTOCOL_VXLAN; 1250 case RTE_TUNNEL_TYPE_GENEVE: 1251 return EFX_TUNNEL_PROTOCOL_GENEVE; 1252 default: 1253 return EFX_TUNNEL_NPROTOS; 1254 } 1255 } 1256 1257 enum sfc_udp_tunnel_op_e { 1258 SFC_UDP_TUNNEL_ADD_PORT, 1259 SFC_UDP_TUNNEL_DEL_PORT, 1260 }; 1261 1262 static int 1263 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1264 struct rte_eth_udp_tunnel *tunnel_udp, 1265 enum sfc_udp_tunnel_op_e op) 1266 { 1267 struct sfc_adapter *sa = dev->data->dev_private; 1268 efx_tunnel_protocol_t tunnel_proto; 1269 int rc; 1270 1271 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1272 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1273 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1274 tunnel_udp->udp_port, tunnel_udp->prot_type); 1275 1276 tunnel_proto = 1277 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1278 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1279 rc = ENOTSUP; 1280 goto fail_bad_proto; 1281 } 1282 1283 sfc_adapter_lock(sa); 1284 1285 switch (op) { 1286 case SFC_UDP_TUNNEL_ADD_PORT: 1287 rc = efx_tunnel_config_udp_add(sa->nic, 1288 tunnel_udp->udp_port, 1289 tunnel_proto); 1290 break; 1291 case SFC_UDP_TUNNEL_DEL_PORT: 1292 rc = efx_tunnel_config_udp_remove(sa->nic, 1293 tunnel_udp->udp_port, 1294 tunnel_proto); 1295 break; 1296 default: 1297 rc = EINVAL; 1298 goto fail_bad_op; 1299 } 1300 1301 if (rc != 0) 1302 goto fail_op; 1303 1304 if (sa->state == SFC_ADAPTER_STARTED) { 1305 rc = efx_tunnel_reconfigure(sa->nic); 1306 if (rc == EAGAIN) { 1307 /* 1308 * Configuration is accepted by FW and MC reboot 1309 * is initiated to apply the changes. MC reboot 1310 * will be handled in a usual way (MC reboot 1311 * event on management event queue and adapter 1312 * restart). 1313 */ 1314 rc = 0; 1315 } else if (rc != 0) { 1316 goto fail_reconfigure; 1317 } 1318 } 1319 1320 sfc_adapter_unlock(sa); 1321 return 0; 1322 1323 fail_reconfigure: 1324 /* Remove/restore entry since the change makes the trouble */ 1325 switch (op) { 1326 case SFC_UDP_TUNNEL_ADD_PORT: 1327 (void)efx_tunnel_config_udp_remove(sa->nic, 1328 tunnel_udp->udp_port, 1329 tunnel_proto); 1330 break; 1331 case SFC_UDP_TUNNEL_DEL_PORT: 1332 (void)efx_tunnel_config_udp_add(sa->nic, 1333 tunnel_udp->udp_port, 1334 tunnel_proto); 1335 break; 1336 } 1337 1338 fail_op: 1339 fail_bad_op: 1340 sfc_adapter_unlock(sa); 1341 1342 fail_bad_proto: 1343 SFC_ASSERT(rc > 0); 1344 return -rc; 1345 } 1346 1347 static int 1348 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1349 struct rte_eth_udp_tunnel *tunnel_udp) 1350 { 1351 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1352 } 1353 1354 static int 1355 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1356 struct rte_eth_udp_tunnel *tunnel_udp) 1357 { 1358 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1359 } 1360 1361 #if EFSYS_OPT_RX_SCALE 1362 static int 1363 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1364 struct rte_eth_rss_conf *rss_conf) 1365 { 1366 struct sfc_adapter *sa = dev->data->dev_private; 1367 struct sfc_port *port = &sa->port; 1368 1369 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1370 return -ENOTSUP; 1371 1372 if (sa->rss_channels == 0) 1373 return -EINVAL; 1374 1375 sfc_adapter_lock(sa); 1376 1377 /* 1378 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1379 * hence, conversion is done here to derive a correct set of ETH_RSS 1380 * flags which corresponds to the active EFX configuration stored 1381 * locally in 'sfc_adapter' and kept up-to-date 1382 */ 1383 rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types); 1384 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1385 if (rss_conf->rss_key != NULL) 1386 rte_memcpy(rss_conf->rss_key, sa->rss_key, EFX_RSS_KEY_SIZE); 1387 1388 sfc_adapter_unlock(sa); 1389 1390 return 0; 1391 } 1392 1393 static int 1394 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1395 struct rte_eth_rss_conf *rss_conf) 1396 { 1397 struct sfc_adapter *sa = dev->data->dev_private; 1398 struct sfc_port *port = &sa->port; 1399 unsigned int efx_hash_types; 1400 int rc = 0; 1401 1402 if (port->isolated) 1403 return -ENOTSUP; 1404 1405 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1406 sfc_err(sa, "RSS is not available"); 1407 return -ENOTSUP; 1408 } 1409 1410 if (sa->rss_channels == 0) { 1411 sfc_err(sa, "RSS is not configured"); 1412 return -EINVAL; 1413 } 1414 1415 if ((rss_conf->rss_key != NULL) && 1416 (rss_conf->rss_key_len != sizeof(sa->rss_key))) { 1417 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1418 sizeof(sa->rss_key)); 1419 return -EINVAL; 1420 } 1421 1422 if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) { 1423 sfc_err(sa, "unsupported hash functions requested"); 1424 return -EINVAL; 1425 } 1426 1427 sfc_adapter_lock(sa); 1428 1429 efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf); 1430 1431 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1432 EFX_RX_HASHALG_TOEPLITZ, 1433 efx_hash_types, B_TRUE); 1434 if (rc != 0) 1435 goto fail_scale_mode_set; 1436 1437 if (rss_conf->rss_key != NULL) { 1438 if (sa->state == SFC_ADAPTER_STARTED) { 1439 rc = efx_rx_scale_key_set(sa->nic, 1440 EFX_RSS_CONTEXT_DEFAULT, 1441 rss_conf->rss_key, 1442 sizeof(sa->rss_key)); 1443 if (rc != 0) 1444 goto fail_scale_key_set; 1445 } 1446 1447 rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key)); 1448 } 1449 1450 sa->rss_hash_types = efx_hash_types; 1451 1452 sfc_adapter_unlock(sa); 1453 1454 return 0; 1455 1456 fail_scale_key_set: 1457 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1458 EFX_RX_HASHALG_TOEPLITZ, 1459 sa->rss_hash_types, B_TRUE) != 0) 1460 sfc_err(sa, "failed to restore RSS mode"); 1461 1462 fail_scale_mode_set: 1463 sfc_adapter_unlock(sa); 1464 return -rc; 1465 } 1466 1467 static int 1468 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1469 struct rte_eth_rss_reta_entry64 *reta_conf, 1470 uint16_t reta_size) 1471 { 1472 struct sfc_adapter *sa = dev->data->dev_private; 1473 struct sfc_port *port = &sa->port; 1474 int entry; 1475 1476 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1477 return -ENOTSUP; 1478 1479 if (sa->rss_channels == 0) 1480 return -EINVAL; 1481 1482 if (reta_size != EFX_RSS_TBL_SIZE) 1483 return -EINVAL; 1484 1485 sfc_adapter_lock(sa); 1486 1487 for (entry = 0; entry < reta_size; entry++) { 1488 int grp = entry / RTE_RETA_GROUP_SIZE; 1489 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1490 1491 if ((reta_conf[grp].mask >> grp_idx) & 1) 1492 reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry]; 1493 } 1494 1495 sfc_adapter_unlock(sa); 1496 1497 return 0; 1498 } 1499 1500 static int 1501 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1502 struct rte_eth_rss_reta_entry64 *reta_conf, 1503 uint16_t reta_size) 1504 { 1505 struct sfc_adapter *sa = dev->data->dev_private; 1506 struct sfc_port *port = &sa->port; 1507 unsigned int *rss_tbl_new; 1508 uint16_t entry; 1509 int rc = 0; 1510 1511 1512 if (port->isolated) 1513 return -ENOTSUP; 1514 1515 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1516 sfc_err(sa, "RSS is not available"); 1517 return -ENOTSUP; 1518 } 1519 1520 if (sa->rss_channels == 0) { 1521 sfc_err(sa, "RSS is not configured"); 1522 return -EINVAL; 1523 } 1524 1525 if (reta_size != EFX_RSS_TBL_SIZE) { 1526 sfc_err(sa, "RETA size is wrong (should be %u)", 1527 EFX_RSS_TBL_SIZE); 1528 return -EINVAL; 1529 } 1530 1531 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0); 1532 if (rss_tbl_new == NULL) 1533 return -ENOMEM; 1534 1535 sfc_adapter_lock(sa); 1536 1537 rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl)); 1538 1539 for (entry = 0; entry < reta_size; entry++) { 1540 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1541 struct rte_eth_rss_reta_entry64 *grp; 1542 1543 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1544 1545 if (grp->mask & (1ull << grp_idx)) { 1546 if (grp->reta[grp_idx] >= sa->rss_channels) { 1547 rc = EINVAL; 1548 goto bad_reta_entry; 1549 } 1550 rss_tbl_new[entry] = grp->reta[grp_idx]; 1551 } 1552 } 1553 1554 if (sa->state == SFC_ADAPTER_STARTED) { 1555 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1556 rss_tbl_new, EFX_RSS_TBL_SIZE); 1557 if (rc != 0) 1558 goto fail_scale_tbl_set; 1559 } 1560 1561 rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl)); 1562 1563 fail_scale_tbl_set: 1564 bad_reta_entry: 1565 sfc_adapter_unlock(sa); 1566 1567 rte_free(rss_tbl_new); 1568 1569 SFC_ASSERT(rc >= 0); 1570 return -rc; 1571 } 1572 #endif 1573 1574 static int 1575 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1576 enum rte_filter_op filter_op, 1577 void *arg) 1578 { 1579 struct sfc_adapter *sa = dev->data->dev_private; 1580 int rc = ENOTSUP; 1581 1582 sfc_log_init(sa, "entry"); 1583 1584 switch (filter_type) { 1585 case RTE_ETH_FILTER_NONE: 1586 sfc_err(sa, "Global filters configuration not supported"); 1587 break; 1588 case RTE_ETH_FILTER_MACVLAN: 1589 sfc_err(sa, "MACVLAN filters not supported"); 1590 break; 1591 case RTE_ETH_FILTER_ETHERTYPE: 1592 sfc_err(sa, "EtherType filters not supported"); 1593 break; 1594 case RTE_ETH_FILTER_FLEXIBLE: 1595 sfc_err(sa, "Flexible filters not supported"); 1596 break; 1597 case RTE_ETH_FILTER_SYN: 1598 sfc_err(sa, "SYN filters not supported"); 1599 break; 1600 case RTE_ETH_FILTER_NTUPLE: 1601 sfc_err(sa, "NTUPLE filters not supported"); 1602 break; 1603 case RTE_ETH_FILTER_TUNNEL: 1604 sfc_err(sa, "Tunnel filters not supported"); 1605 break; 1606 case RTE_ETH_FILTER_FDIR: 1607 sfc_err(sa, "Flow Director filters not supported"); 1608 break; 1609 case RTE_ETH_FILTER_HASH: 1610 sfc_err(sa, "Hash filters not supported"); 1611 break; 1612 case RTE_ETH_FILTER_GENERIC: 1613 if (filter_op != RTE_ETH_FILTER_GET) { 1614 rc = EINVAL; 1615 } else { 1616 *(const void **)arg = &sfc_flow_ops; 1617 rc = 0; 1618 } 1619 break; 1620 default: 1621 sfc_err(sa, "Unknown filter type %u", filter_type); 1622 break; 1623 } 1624 1625 sfc_log_init(sa, "exit: %d", -rc); 1626 SFC_ASSERT(rc >= 0); 1627 return -rc; 1628 } 1629 1630 static const struct eth_dev_ops sfc_eth_dev_ops = { 1631 .dev_configure = sfc_dev_configure, 1632 .dev_start = sfc_dev_start, 1633 .dev_stop = sfc_dev_stop, 1634 .dev_set_link_up = sfc_dev_set_link_up, 1635 .dev_set_link_down = sfc_dev_set_link_down, 1636 .dev_close = sfc_dev_close, 1637 .promiscuous_enable = sfc_dev_promisc_enable, 1638 .promiscuous_disable = sfc_dev_promisc_disable, 1639 .allmulticast_enable = sfc_dev_allmulti_enable, 1640 .allmulticast_disable = sfc_dev_allmulti_disable, 1641 .link_update = sfc_dev_link_update, 1642 .stats_get = sfc_stats_get, 1643 .stats_reset = sfc_stats_reset, 1644 .xstats_get = sfc_xstats_get, 1645 .xstats_reset = sfc_stats_reset, 1646 .xstats_get_names = sfc_xstats_get_names, 1647 .dev_infos_get = sfc_dev_infos_get, 1648 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1649 .mtu_set = sfc_dev_set_mtu, 1650 .rx_queue_start = sfc_rx_queue_start, 1651 .rx_queue_stop = sfc_rx_queue_stop, 1652 .tx_queue_start = sfc_tx_queue_start, 1653 .tx_queue_stop = sfc_tx_queue_stop, 1654 .rx_queue_setup = sfc_rx_queue_setup, 1655 .rx_queue_release = sfc_rx_queue_release, 1656 .rx_queue_count = sfc_rx_queue_count, 1657 .rx_descriptor_done = sfc_rx_descriptor_done, 1658 .rx_descriptor_status = sfc_rx_descriptor_status, 1659 .tx_descriptor_status = sfc_tx_descriptor_status, 1660 .tx_queue_setup = sfc_tx_queue_setup, 1661 .tx_queue_release = sfc_tx_queue_release, 1662 .flow_ctrl_get = sfc_flow_ctrl_get, 1663 .flow_ctrl_set = sfc_flow_ctrl_set, 1664 .mac_addr_set = sfc_mac_addr_set, 1665 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1666 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1667 #if EFSYS_OPT_RX_SCALE 1668 .reta_update = sfc_dev_rss_reta_update, 1669 .reta_query = sfc_dev_rss_reta_query, 1670 .rss_hash_update = sfc_dev_rss_hash_update, 1671 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1672 #endif 1673 .filter_ctrl = sfc_dev_filter_ctrl, 1674 .set_mc_addr_list = sfc_set_mc_addr_list, 1675 .rxq_info_get = sfc_rx_queue_info_get, 1676 .txq_info_get = sfc_tx_queue_info_get, 1677 .fw_version_get = sfc_fw_version_get, 1678 .xstats_get_by_id = sfc_xstats_get_by_id, 1679 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1680 }; 1681 1682 /** 1683 * Duplicate a string in potentially shared memory required for 1684 * multi-process support. 1685 * 1686 * strdup() allocates from process-local heap/memory. 1687 */ 1688 static char * 1689 sfc_strdup(const char *str) 1690 { 1691 size_t size; 1692 char *copy; 1693 1694 if (str == NULL) 1695 return NULL; 1696 1697 size = strlen(str) + 1; 1698 copy = rte_malloc(__func__, size, 0); 1699 if (copy != NULL) 1700 rte_memcpy(copy, str, size); 1701 1702 return copy; 1703 } 1704 1705 static int 1706 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1707 { 1708 struct sfc_adapter *sa = dev->data->dev_private; 1709 unsigned int avail_caps = 0; 1710 const char *rx_name = NULL; 1711 const char *tx_name = NULL; 1712 int rc; 1713 1714 switch (sa->family) { 1715 case EFX_FAMILY_HUNTINGTON: 1716 case EFX_FAMILY_MEDFORD: 1717 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1718 break; 1719 default: 1720 break; 1721 } 1722 1723 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1724 sfc_kvarg_string_handler, &rx_name); 1725 if (rc != 0) 1726 goto fail_kvarg_rx_datapath; 1727 1728 if (rx_name != NULL) { 1729 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1730 if (sa->dp_rx == NULL) { 1731 sfc_err(sa, "Rx datapath %s not found", rx_name); 1732 rc = ENOENT; 1733 goto fail_dp_rx; 1734 } 1735 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1736 sfc_err(sa, 1737 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1738 rx_name); 1739 rc = EINVAL; 1740 goto fail_dp_rx_caps; 1741 } 1742 } else { 1743 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1744 if (sa->dp_rx == NULL) { 1745 sfc_err(sa, "Rx datapath by caps %#x not found", 1746 avail_caps); 1747 rc = ENOENT; 1748 goto fail_dp_rx; 1749 } 1750 } 1751 1752 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1753 if (sa->dp_rx_name == NULL) { 1754 rc = ENOMEM; 1755 goto fail_dp_rx_name; 1756 } 1757 1758 sfc_info(sa, "use %s Rx datapath", sa->dp_rx_name); 1759 1760 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1761 1762 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1763 sfc_kvarg_string_handler, &tx_name); 1764 if (rc != 0) 1765 goto fail_kvarg_tx_datapath; 1766 1767 if (tx_name != NULL) { 1768 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1769 if (sa->dp_tx == NULL) { 1770 sfc_err(sa, "Tx datapath %s not found", tx_name); 1771 rc = ENOENT; 1772 goto fail_dp_tx; 1773 } 1774 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1775 sfc_err(sa, 1776 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1777 tx_name); 1778 rc = EINVAL; 1779 goto fail_dp_tx_caps; 1780 } 1781 } else { 1782 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1783 if (sa->dp_tx == NULL) { 1784 sfc_err(sa, "Tx datapath by caps %#x not found", 1785 avail_caps); 1786 rc = ENOENT; 1787 goto fail_dp_tx; 1788 } 1789 } 1790 1791 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1792 if (sa->dp_tx_name == NULL) { 1793 rc = ENOMEM; 1794 goto fail_dp_tx_name; 1795 } 1796 1797 sfc_info(sa, "use %s Tx datapath", sa->dp_tx_name); 1798 1799 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1800 1801 dev->dev_ops = &sfc_eth_dev_ops; 1802 1803 return 0; 1804 1805 fail_dp_tx_name: 1806 fail_dp_tx_caps: 1807 sa->dp_tx = NULL; 1808 1809 fail_dp_tx: 1810 fail_kvarg_tx_datapath: 1811 rte_free(sa->dp_rx_name); 1812 sa->dp_rx_name = NULL; 1813 1814 fail_dp_rx_name: 1815 fail_dp_rx_caps: 1816 sa->dp_rx = NULL; 1817 1818 fail_dp_rx: 1819 fail_kvarg_rx_datapath: 1820 return rc; 1821 } 1822 1823 static void 1824 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1825 { 1826 struct sfc_adapter *sa = dev->data->dev_private; 1827 1828 dev->dev_ops = NULL; 1829 dev->rx_pkt_burst = NULL; 1830 dev->tx_pkt_burst = NULL; 1831 1832 rte_free(sa->dp_tx_name); 1833 sa->dp_tx_name = NULL; 1834 sa->dp_tx = NULL; 1835 1836 rte_free(sa->dp_rx_name); 1837 sa->dp_rx_name = NULL; 1838 sa->dp_rx = NULL; 1839 } 1840 1841 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1842 .rxq_info_get = sfc_rx_queue_info_get, 1843 .txq_info_get = sfc_tx_queue_info_get, 1844 }; 1845 1846 static int 1847 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1848 { 1849 /* 1850 * Device private data has really many process-local pointers. 1851 * Below code should be extremely careful to use data located 1852 * in shared memory only. 1853 */ 1854 struct sfc_adapter *sa = dev->data->dev_private; 1855 const struct sfc_dp_rx *dp_rx; 1856 const struct sfc_dp_tx *dp_tx; 1857 int rc; 1858 1859 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1860 if (dp_rx == NULL) { 1861 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name); 1862 rc = ENOENT; 1863 goto fail_dp_rx; 1864 } 1865 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1866 sfc_err(sa, "%s Rx datapath does not support multi-process", 1867 sa->dp_tx_name); 1868 rc = EINVAL; 1869 goto fail_dp_rx_multi_process; 1870 } 1871 1872 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1873 if (dp_tx == NULL) { 1874 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1875 rc = ENOENT; 1876 goto fail_dp_tx; 1877 } 1878 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1879 sfc_err(sa, "%s Tx datapath does not support multi-process", 1880 sa->dp_tx_name); 1881 rc = EINVAL; 1882 goto fail_dp_tx_multi_process; 1883 } 1884 1885 dev->rx_pkt_burst = dp_rx->pkt_burst; 1886 dev->tx_pkt_burst = dp_tx->pkt_burst; 1887 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1888 1889 return 0; 1890 1891 fail_dp_tx_multi_process: 1892 fail_dp_tx: 1893 fail_dp_rx_multi_process: 1894 fail_dp_rx: 1895 return rc; 1896 } 1897 1898 static void 1899 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1900 { 1901 dev->dev_ops = NULL; 1902 dev->tx_pkt_burst = NULL; 1903 dev->rx_pkt_burst = NULL; 1904 } 1905 1906 static void 1907 sfc_register_dp(void) 1908 { 1909 /* Register once */ 1910 if (TAILQ_EMPTY(&sfc_dp_head)) { 1911 /* Prefer EF10 datapath */ 1912 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1913 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1914 1915 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1916 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1917 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1918 } 1919 } 1920 1921 static int 1922 sfc_eth_dev_init(struct rte_eth_dev *dev) 1923 { 1924 struct sfc_adapter *sa = dev->data->dev_private; 1925 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1926 int rc; 1927 const efx_nic_cfg_t *encp; 1928 const struct ether_addr *from; 1929 1930 sfc_register_dp(); 1931 1932 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1933 return -sfc_eth_dev_secondary_set_ops(dev); 1934 1935 /* Required for logging */ 1936 sa->pci_addr = pci_dev->addr; 1937 sa->port_id = dev->data->port_id; 1938 1939 sa->eth_dev = dev; 1940 1941 /* Copy PCI device info to the dev->data */ 1942 rte_eth_copy_pci_info(dev, pci_dev); 1943 1944 rc = sfc_kvargs_parse(sa); 1945 if (rc != 0) 1946 goto fail_kvargs_parse; 1947 1948 rc = sfc_kvargs_process(sa, SFC_KVARG_DEBUG_INIT, 1949 sfc_kvarg_bool_handler, &sa->debug_init); 1950 if (rc != 0) 1951 goto fail_kvarg_debug_init; 1952 1953 sfc_log_init(sa, "entry"); 1954 1955 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1956 if (dev->data->mac_addrs == NULL) { 1957 rc = ENOMEM; 1958 goto fail_mac_addrs; 1959 } 1960 1961 sfc_adapter_lock_init(sa); 1962 sfc_adapter_lock(sa); 1963 1964 sfc_log_init(sa, "probing"); 1965 rc = sfc_probe(sa); 1966 if (rc != 0) 1967 goto fail_probe; 1968 1969 sfc_log_init(sa, "set device ops"); 1970 rc = sfc_eth_dev_set_ops(dev); 1971 if (rc != 0) 1972 goto fail_set_ops; 1973 1974 sfc_log_init(sa, "attaching"); 1975 rc = sfc_attach(sa); 1976 if (rc != 0) 1977 goto fail_attach; 1978 1979 encp = efx_nic_cfg_get(sa->nic); 1980 1981 /* 1982 * The arguments are really reverse order in comparison to 1983 * Linux kernel. Copy from NIC config to Ethernet device data. 1984 */ 1985 from = (const struct ether_addr *)(encp->enc_mac_addr); 1986 ether_addr_copy(from, &dev->data->mac_addrs[0]); 1987 1988 sfc_adapter_unlock(sa); 1989 1990 sfc_log_init(sa, "done"); 1991 return 0; 1992 1993 fail_attach: 1994 sfc_eth_dev_clear_ops(dev); 1995 1996 fail_set_ops: 1997 sfc_unprobe(sa); 1998 1999 fail_probe: 2000 sfc_adapter_unlock(sa); 2001 sfc_adapter_lock_fini(sa); 2002 rte_free(dev->data->mac_addrs); 2003 dev->data->mac_addrs = NULL; 2004 2005 fail_mac_addrs: 2006 fail_kvarg_debug_init: 2007 sfc_kvargs_cleanup(sa); 2008 2009 fail_kvargs_parse: 2010 sfc_log_init(sa, "failed %d", rc); 2011 SFC_ASSERT(rc > 0); 2012 return -rc; 2013 } 2014 2015 static int 2016 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2017 { 2018 struct sfc_adapter *sa; 2019 2020 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2021 sfc_eth_dev_secondary_clear_ops(dev); 2022 return 0; 2023 } 2024 2025 sa = dev->data->dev_private; 2026 sfc_log_init(sa, "entry"); 2027 2028 sfc_adapter_lock(sa); 2029 2030 sfc_eth_dev_clear_ops(dev); 2031 2032 sfc_detach(sa); 2033 sfc_unprobe(sa); 2034 2035 rte_free(dev->data->mac_addrs); 2036 dev->data->mac_addrs = NULL; 2037 2038 sfc_kvargs_cleanup(sa); 2039 2040 sfc_adapter_unlock(sa); 2041 sfc_adapter_lock_fini(sa); 2042 2043 sfc_log_init(sa, "done"); 2044 2045 /* Required for logging, so cleanup last */ 2046 sa->eth_dev = NULL; 2047 return 0; 2048 } 2049 2050 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2051 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2052 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2053 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2054 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2055 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2056 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2057 { .vendor_id = 0 /* sentinel */ } 2058 }; 2059 2060 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2061 struct rte_pci_device *pci_dev) 2062 { 2063 return rte_eth_dev_pci_generic_probe(pci_dev, 2064 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2065 } 2066 2067 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2068 { 2069 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2070 } 2071 2072 static struct rte_pci_driver sfc_efx_pmd = { 2073 .id_table = pci_id_sfc_efx_map, 2074 .drv_flags = 2075 RTE_PCI_DRV_INTR_LSC | 2076 RTE_PCI_DRV_NEED_MAPPING, 2077 .probe = sfc_eth_dev_pci_probe, 2078 .remove = sfc_eth_dev_pci_remove, 2079 }; 2080 2081 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2082 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2083 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2084 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2085 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2086 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2087 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2088 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long> " 2089 SFC_KVARG_MCDI_LOGGING "=" SFC_KVARG_VALUES_BOOL " " 2090 SFC_KVARG_DEBUG_INIT "=" SFC_KVARG_VALUES_BOOL); 2091