xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision c78d280e88efa2da455adeeeeec7de57102a5933)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <rte_ethdev.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 
17 #include "efx.h"
18 
19 #include "sfc.h"
20 #include "sfc_debug.h"
21 #include "sfc_log.h"
22 #include "sfc_kvargs.h"
23 #include "sfc_ev.h"
24 #include "sfc_rx.h"
25 #include "sfc_tx.h"
26 #include "sfc_flow.h"
27 #include "sfc_dp.h"
28 #include "sfc_dp_rx.h"
29 
30 static struct sfc_dp_list sfc_dp_head =
31 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
32 
33 static int
34 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
35 {
36 	struct sfc_adapter *sa = dev->data->dev_private;
37 	efx_nic_fw_info_t enfi;
38 	int ret;
39 	int rc;
40 
41 	/*
42 	 * Return value of the callback is likely supposed to be
43 	 * equal to or greater than 0, nevertheless, if an error
44 	 * occurs, it will be desirable to pass it to the caller
45 	 */
46 	if ((fw_version == NULL) || (fw_size == 0))
47 		return -EINVAL;
48 
49 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
50 	if (rc != 0)
51 		return -rc;
52 
53 	ret = snprintf(fw_version, fw_size,
54 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
55 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
56 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
57 	if (ret < 0)
58 		return ret;
59 
60 	if (enfi.enfi_dpcpu_fw_ids_valid) {
61 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
62 		int ret_extra;
63 
64 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
65 				     fw_size - dpcpu_fw_ids_offset,
66 				     " rx%" PRIx16 " tx%" PRIx16,
67 				     enfi.enfi_rx_dpcpu_fw_id,
68 				     enfi.enfi_tx_dpcpu_fw_id);
69 		if (ret_extra < 0)
70 			return ret_extra;
71 
72 		ret += ret_extra;
73 	}
74 
75 	if (fw_size < (size_t)(++ret))
76 		return ret;
77 	else
78 		return 0;
79 }
80 
81 static void
82 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
83 {
84 	struct sfc_adapter *sa = dev->data->dev_private;
85 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
86 	uint64_t txq_offloads_def = 0;
87 
88 	sfc_log_init(sa, "entry");
89 
90 	dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
91 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
92 
93 	/* Autonegotiation may be disabled */
94 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
95 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX)
96 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
97 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX)
98 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
99 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX)
100 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
101 
102 	dev_info->max_rx_queues = sa->rxq_max;
103 	dev_info->max_tx_queues = sa->txq_max;
104 
105 	/* By default packets are dropped if no descriptors are available */
106 	dev_info->default_rxconf.rx_drop_en = 1;
107 
108 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
109 
110 	/*
111 	 * rx_offload_capa includes both device and queue offloads since
112 	 * the latter may be requested on a per device basis which makes
113 	 * sense when some offloads are needed to be set on all queues.
114 	 */
115 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
116 				    dev_info->rx_queue_offload_capa;
117 
118 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
119 
120 	/*
121 	 * tx_offload_capa includes both device and queue offloads since
122 	 * the latter may be requested on a per device basis which makes
123 	 * sense when some offloads are needed to be set on all queues.
124 	 */
125 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
126 				    dev_info->tx_queue_offload_capa;
127 
128 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
129 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
130 
131 	dev_info->default_txconf.offloads |= txq_offloads_def;
132 
133 	dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP;
134 	if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) ||
135 	    !encp->enc_hw_tx_insert_vlan_enabled)
136 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL;
137 
138 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG)
139 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS;
140 
141 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL)
142 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP;
143 
144 	if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT)
145 		dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT;
146 
147 #if EFSYS_OPT_RX_SCALE
148 	if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) {
149 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
150 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
151 		dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS;
152 	}
153 #endif
154 
155 	/* Initialize to hardware limits */
156 	dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS;
157 	dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS;
158 	/* The RXQ hardware requires that the descriptor count is a power
159 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
160 	 */
161 	dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS;
162 
163 	/* Initialize to hardware limits */
164 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
165 	dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS;
166 	/*
167 	 * The TXQ hardware requires that the descriptor count is a power
168 	 * of 2, but tx_desc_lim cannot properly describe that constraint
169 	 */
170 	dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS;
171 
172 	if (sa->dp_rx->get_dev_info != NULL)
173 		sa->dp_rx->get_dev_info(dev_info);
174 	if (sa->dp_tx->get_dev_info != NULL)
175 		sa->dp_tx->get_dev_info(dev_info);
176 }
177 
178 static const uint32_t *
179 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
180 {
181 	struct sfc_adapter *sa = dev->data->dev_private;
182 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
183 	uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported;
184 
185 	return sa->dp_rx->supported_ptypes_get(tunnel_encaps);
186 }
187 
188 static int
189 sfc_dev_configure(struct rte_eth_dev *dev)
190 {
191 	struct rte_eth_dev_data *dev_data = dev->data;
192 	struct sfc_adapter *sa = dev_data->dev_private;
193 	int rc;
194 
195 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
196 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
197 
198 	sfc_adapter_lock(sa);
199 	switch (sa->state) {
200 	case SFC_ADAPTER_CONFIGURED:
201 		/* FALLTHROUGH */
202 	case SFC_ADAPTER_INITIALIZED:
203 		rc = sfc_configure(sa);
204 		break;
205 	default:
206 		sfc_err(sa, "unexpected adapter state %u to configure",
207 			sa->state);
208 		rc = EINVAL;
209 		break;
210 	}
211 	sfc_adapter_unlock(sa);
212 
213 	sfc_log_init(sa, "done %d", rc);
214 	SFC_ASSERT(rc >= 0);
215 	return -rc;
216 }
217 
218 static int
219 sfc_dev_start(struct rte_eth_dev *dev)
220 {
221 	struct sfc_adapter *sa = dev->data->dev_private;
222 	int rc;
223 
224 	sfc_log_init(sa, "entry");
225 
226 	sfc_adapter_lock(sa);
227 	rc = sfc_start(sa);
228 	sfc_adapter_unlock(sa);
229 
230 	sfc_log_init(sa, "done %d", rc);
231 	SFC_ASSERT(rc >= 0);
232 	return -rc;
233 }
234 
235 static int
236 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
237 {
238 	struct sfc_adapter *sa = dev->data->dev_private;
239 	struct rte_eth_link *dev_link = &dev->data->dev_link;
240 	struct rte_eth_link old_link;
241 	struct rte_eth_link current_link;
242 
243 	sfc_log_init(sa, "entry");
244 
245 retry:
246 	EFX_STATIC_ASSERT(sizeof(*dev_link) == sizeof(rte_atomic64_t));
247 	*(int64_t *)&old_link = rte_atomic64_read((rte_atomic64_t *)dev_link);
248 
249 	if (sa->state != SFC_ADAPTER_STARTED) {
250 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
251 		if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link,
252 					 *(uint64_t *)&old_link,
253 					 *(uint64_t *)&current_link))
254 			goto retry;
255 	} else if (wait_to_complete) {
256 		efx_link_mode_t link_mode;
257 
258 		if (efx_port_poll(sa->nic, &link_mode) != 0)
259 			link_mode = EFX_LINK_UNKNOWN;
260 		sfc_port_link_mode_to_info(link_mode, &current_link);
261 
262 		if (!rte_atomic64_cmpset((volatile uint64_t *)dev_link,
263 					 *(uint64_t *)&old_link,
264 					 *(uint64_t *)&current_link))
265 			goto retry;
266 	} else {
267 		sfc_ev_mgmt_qpoll(sa);
268 		*(int64_t *)&current_link =
269 			rte_atomic64_read((rte_atomic64_t *)dev_link);
270 	}
271 
272 	if (old_link.link_status != current_link.link_status)
273 		sfc_info(sa, "Link status is %s",
274 			 current_link.link_status ? "UP" : "DOWN");
275 
276 	return old_link.link_status == current_link.link_status ? 0 : -1;
277 }
278 
279 static void
280 sfc_dev_stop(struct rte_eth_dev *dev)
281 {
282 	struct sfc_adapter *sa = dev->data->dev_private;
283 
284 	sfc_log_init(sa, "entry");
285 
286 	sfc_adapter_lock(sa);
287 	sfc_stop(sa);
288 	sfc_adapter_unlock(sa);
289 
290 	sfc_log_init(sa, "done");
291 }
292 
293 static int
294 sfc_dev_set_link_up(struct rte_eth_dev *dev)
295 {
296 	struct sfc_adapter *sa = dev->data->dev_private;
297 	int rc;
298 
299 	sfc_log_init(sa, "entry");
300 
301 	sfc_adapter_lock(sa);
302 	rc = sfc_start(sa);
303 	sfc_adapter_unlock(sa);
304 
305 	SFC_ASSERT(rc >= 0);
306 	return -rc;
307 }
308 
309 static int
310 sfc_dev_set_link_down(struct rte_eth_dev *dev)
311 {
312 	struct sfc_adapter *sa = dev->data->dev_private;
313 
314 	sfc_log_init(sa, "entry");
315 
316 	sfc_adapter_lock(sa);
317 	sfc_stop(sa);
318 	sfc_adapter_unlock(sa);
319 
320 	return 0;
321 }
322 
323 static void
324 sfc_dev_close(struct rte_eth_dev *dev)
325 {
326 	struct sfc_adapter *sa = dev->data->dev_private;
327 
328 	sfc_log_init(sa, "entry");
329 
330 	sfc_adapter_lock(sa);
331 	switch (sa->state) {
332 	case SFC_ADAPTER_STARTED:
333 		sfc_stop(sa);
334 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
335 		/* FALLTHROUGH */
336 	case SFC_ADAPTER_CONFIGURED:
337 		sfc_close(sa);
338 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
339 		/* FALLTHROUGH */
340 	case SFC_ADAPTER_INITIALIZED:
341 		break;
342 	default:
343 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
344 		break;
345 	}
346 	sfc_adapter_unlock(sa);
347 
348 	sfc_log_init(sa, "done");
349 }
350 
351 static void
352 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
353 		   boolean_t enabled)
354 {
355 	struct sfc_port *port;
356 	boolean_t *toggle;
357 	struct sfc_adapter *sa = dev->data->dev_private;
358 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
359 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
360 
361 	sfc_adapter_lock(sa);
362 
363 	port = &sa->port;
364 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
365 
366 	if (*toggle != enabled) {
367 		*toggle = enabled;
368 
369 		if (port->isolated) {
370 			sfc_warn(sa, "isolated mode is active on the port");
371 			sfc_warn(sa, "the change is to be applied on the next "
372 				     "start provided that isolated mode is "
373 				     "disabled prior the next start");
374 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
375 			   (sfc_set_rx_mode(sa) != 0)) {
376 			*toggle = !(enabled);
377 			sfc_warn(sa, "Failed to %s %s mode",
378 				 ((enabled) ? "enable" : "disable"), desc);
379 		}
380 	}
381 
382 	sfc_adapter_unlock(sa);
383 }
384 
385 static void
386 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
387 {
388 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
389 }
390 
391 static void
392 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
393 {
394 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
395 }
396 
397 static void
398 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
399 {
400 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
401 }
402 
403 static void
404 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
405 {
406 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
407 }
408 
409 static int
410 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
411 		   uint16_t nb_rx_desc, unsigned int socket_id,
412 		   const struct rte_eth_rxconf *rx_conf,
413 		   struct rte_mempool *mb_pool)
414 {
415 	struct sfc_adapter *sa = dev->data->dev_private;
416 	int rc;
417 
418 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
419 		     rx_queue_id, nb_rx_desc, socket_id);
420 
421 	sfc_adapter_lock(sa);
422 
423 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
424 			  rx_conf, mb_pool);
425 	if (rc != 0)
426 		goto fail_rx_qinit;
427 
428 	dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp;
429 
430 	sfc_adapter_unlock(sa);
431 
432 	return 0;
433 
434 fail_rx_qinit:
435 	sfc_adapter_unlock(sa);
436 	SFC_ASSERT(rc > 0);
437 	return -rc;
438 }
439 
440 static void
441 sfc_rx_queue_release(void *queue)
442 {
443 	struct sfc_dp_rxq *dp_rxq = queue;
444 	struct sfc_rxq *rxq;
445 	struct sfc_adapter *sa;
446 	unsigned int sw_index;
447 
448 	if (dp_rxq == NULL)
449 		return;
450 
451 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
452 	sa = rxq->evq->sa;
453 	sfc_adapter_lock(sa);
454 
455 	sw_index = sfc_rxq_sw_index(rxq);
456 
457 	sfc_log_init(sa, "RxQ=%u", sw_index);
458 
459 	sa->eth_dev->data->rx_queues[sw_index] = NULL;
460 
461 	sfc_rx_qfini(sa, sw_index);
462 
463 	sfc_adapter_unlock(sa);
464 }
465 
466 static int
467 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
468 		   uint16_t nb_tx_desc, unsigned int socket_id,
469 		   const struct rte_eth_txconf *tx_conf)
470 {
471 	struct sfc_adapter *sa = dev->data->dev_private;
472 	int rc;
473 
474 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
475 		     tx_queue_id, nb_tx_desc, socket_id);
476 
477 	sfc_adapter_lock(sa);
478 
479 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
480 	if (rc != 0)
481 		goto fail_tx_qinit;
482 
483 	dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp;
484 
485 	sfc_adapter_unlock(sa);
486 	return 0;
487 
488 fail_tx_qinit:
489 	sfc_adapter_unlock(sa);
490 	SFC_ASSERT(rc > 0);
491 	return -rc;
492 }
493 
494 static void
495 sfc_tx_queue_release(void *queue)
496 {
497 	struct sfc_dp_txq *dp_txq = queue;
498 	struct sfc_txq *txq;
499 	unsigned int sw_index;
500 	struct sfc_adapter *sa;
501 
502 	if (dp_txq == NULL)
503 		return;
504 
505 	txq = sfc_txq_by_dp_txq(dp_txq);
506 	sw_index = sfc_txq_sw_index(txq);
507 
508 	SFC_ASSERT(txq->evq != NULL);
509 	sa = txq->evq->sa;
510 
511 	sfc_log_init(sa, "TxQ = %u", sw_index);
512 
513 	sfc_adapter_lock(sa);
514 
515 	SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues);
516 	sa->eth_dev->data->tx_queues[sw_index] = NULL;
517 
518 	sfc_tx_qfini(sa, sw_index);
519 
520 	sfc_adapter_unlock(sa);
521 }
522 
523 static int
524 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
525 {
526 	struct sfc_adapter *sa = dev->data->dev_private;
527 	struct sfc_port *port = &sa->port;
528 	uint64_t *mac_stats;
529 	int ret;
530 
531 	rte_spinlock_lock(&port->mac_stats_lock);
532 
533 	ret = sfc_port_update_mac_stats(sa);
534 	if (ret != 0)
535 		goto unlock;
536 
537 	mac_stats = port->mac_stats_buf;
538 
539 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
540 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
541 		stats->ipackets =
542 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
543 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
544 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
545 		stats->opackets =
546 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
547 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
548 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
549 		stats->ibytes =
550 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
551 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
552 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
553 		stats->obytes =
554 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
555 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
556 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
557 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW];
558 		stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
559 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
560 	} else {
561 		stats->ipackets = mac_stats[EFX_MAC_RX_PKTS];
562 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
563 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
564 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
565 		/*
566 		 * Take into account stats which are whenever supported
567 		 * on EF10. If some stat is not supported by current
568 		 * firmware variant or HW revision, it is guaranteed
569 		 * to be zero in mac_stats.
570 		 */
571 		stats->imissed =
572 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
573 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
574 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
575 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
576 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
577 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
578 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
579 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
580 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
581 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
582 		stats->ierrors =
583 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
584 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
585 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
586 		/* no oerrors counters supported on EF10 */
587 	}
588 
589 unlock:
590 	rte_spinlock_unlock(&port->mac_stats_lock);
591 	SFC_ASSERT(ret >= 0);
592 	return -ret;
593 }
594 
595 static void
596 sfc_stats_reset(struct rte_eth_dev *dev)
597 {
598 	struct sfc_adapter *sa = dev->data->dev_private;
599 	struct sfc_port *port = &sa->port;
600 	int rc;
601 
602 	if (sa->state != SFC_ADAPTER_STARTED) {
603 		/*
604 		 * The operation cannot be done if port is not started; it
605 		 * will be scheduled to be done during the next port start
606 		 */
607 		port->mac_stats_reset_pending = B_TRUE;
608 		return;
609 	}
610 
611 	rc = sfc_port_reset_mac_stats(sa);
612 	if (rc != 0)
613 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
614 }
615 
616 static int
617 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
618 	       unsigned int xstats_count)
619 {
620 	struct sfc_adapter *sa = dev->data->dev_private;
621 	struct sfc_port *port = &sa->port;
622 	uint64_t *mac_stats;
623 	int rc;
624 	unsigned int i;
625 	int nstats = 0;
626 
627 	rte_spinlock_lock(&port->mac_stats_lock);
628 
629 	rc = sfc_port_update_mac_stats(sa);
630 	if (rc != 0) {
631 		SFC_ASSERT(rc > 0);
632 		nstats = -rc;
633 		goto unlock;
634 	}
635 
636 	mac_stats = port->mac_stats_buf;
637 
638 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
639 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
640 			if (xstats != NULL && nstats < (int)xstats_count) {
641 				xstats[nstats].id = nstats;
642 				xstats[nstats].value = mac_stats[i];
643 			}
644 			nstats++;
645 		}
646 	}
647 
648 unlock:
649 	rte_spinlock_unlock(&port->mac_stats_lock);
650 
651 	return nstats;
652 }
653 
654 static int
655 sfc_xstats_get_names(struct rte_eth_dev *dev,
656 		     struct rte_eth_xstat_name *xstats_names,
657 		     unsigned int xstats_count)
658 {
659 	struct sfc_adapter *sa = dev->data->dev_private;
660 	struct sfc_port *port = &sa->port;
661 	unsigned int i;
662 	unsigned int nstats = 0;
663 
664 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
665 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
666 			if (xstats_names != NULL && nstats < xstats_count)
667 				strncpy(xstats_names[nstats].name,
668 					efx_mac_stat_name(sa->nic, i),
669 					sizeof(xstats_names[0].name));
670 			nstats++;
671 		}
672 	}
673 
674 	return nstats;
675 }
676 
677 static int
678 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
679 		     uint64_t *values, unsigned int n)
680 {
681 	struct sfc_adapter *sa = dev->data->dev_private;
682 	struct sfc_port *port = &sa->port;
683 	uint64_t *mac_stats;
684 	unsigned int nb_supported = 0;
685 	unsigned int nb_written = 0;
686 	unsigned int i;
687 	int ret;
688 	int rc;
689 
690 	if (unlikely(values == NULL) ||
691 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
692 		return port->mac_stats_nb_supported;
693 
694 	rte_spinlock_lock(&port->mac_stats_lock);
695 
696 	rc = sfc_port_update_mac_stats(sa);
697 	if (rc != 0) {
698 		SFC_ASSERT(rc > 0);
699 		ret = -rc;
700 		goto unlock;
701 	}
702 
703 	mac_stats = port->mac_stats_buf;
704 
705 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
706 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
707 			continue;
708 
709 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
710 			values[nb_written++] = mac_stats[i];
711 
712 		++nb_supported;
713 	}
714 
715 	ret = nb_written;
716 
717 unlock:
718 	rte_spinlock_unlock(&port->mac_stats_lock);
719 
720 	return ret;
721 }
722 
723 static int
724 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
725 			   struct rte_eth_xstat_name *xstats_names,
726 			   const uint64_t *ids, unsigned int size)
727 {
728 	struct sfc_adapter *sa = dev->data->dev_private;
729 	struct sfc_port *port = &sa->port;
730 	unsigned int nb_supported = 0;
731 	unsigned int nb_written = 0;
732 	unsigned int i;
733 
734 	if (unlikely(xstats_names == NULL) ||
735 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
736 		return port->mac_stats_nb_supported;
737 
738 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
739 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
740 			continue;
741 
742 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
743 			char *name = xstats_names[nb_written++].name;
744 
745 			strncpy(name, efx_mac_stat_name(sa->nic, i),
746 				sizeof(xstats_names[0].name));
747 			name[sizeof(xstats_names[0].name) - 1] = '\0';
748 		}
749 
750 		++nb_supported;
751 	}
752 
753 	return nb_written;
754 }
755 
756 static int
757 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
758 {
759 	struct sfc_adapter *sa = dev->data->dev_private;
760 	unsigned int wanted_fc, link_fc;
761 
762 	memset(fc_conf, 0, sizeof(*fc_conf));
763 
764 	sfc_adapter_lock(sa);
765 
766 	if (sa->state == SFC_ADAPTER_STARTED)
767 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
768 	else
769 		link_fc = sa->port.flow_ctrl;
770 
771 	switch (link_fc) {
772 	case 0:
773 		fc_conf->mode = RTE_FC_NONE;
774 		break;
775 	case EFX_FCNTL_RESPOND:
776 		fc_conf->mode = RTE_FC_RX_PAUSE;
777 		break;
778 	case EFX_FCNTL_GENERATE:
779 		fc_conf->mode = RTE_FC_TX_PAUSE;
780 		break;
781 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
782 		fc_conf->mode = RTE_FC_FULL;
783 		break;
784 	default:
785 		sfc_err(sa, "%s: unexpected flow control value %#x",
786 			__func__, link_fc);
787 	}
788 
789 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
790 
791 	sfc_adapter_unlock(sa);
792 
793 	return 0;
794 }
795 
796 static int
797 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
798 {
799 	struct sfc_adapter *sa = dev->data->dev_private;
800 	struct sfc_port *port = &sa->port;
801 	unsigned int fcntl;
802 	int rc;
803 
804 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
805 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
806 	    fc_conf->mac_ctrl_frame_fwd != 0) {
807 		sfc_err(sa, "unsupported flow control settings specified");
808 		rc = EINVAL;
809 		goto fail_inval;
810 	}
811 
812 	switch (fc_conf->mode) {
813 	case RTE_FC_NONE:
814 		fcntl = 0;
815 		break;
816 	case RTE_FC_RX_PAUSE:
817 		fcntl = EFX_FCNTL_RESPOND;
818 		break;
819 	case RTE_FC_TX_PAUSE:
820 		fcntl = EFX_FCNTL_GENERATE;
821 		break;
822 	case RTE_FC_FULL:
823 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
824 		break;
825 	default:
826 		rc = EINVAL;
827 		goto fail_inval;
828 	}
829 
830 	sfc_adapter_lock(sa);
831 
832 	if (sa->state == SFC_ADAPTER_STARTED) {
833 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
834 		if (rc != 0)
835 			goto fail_mac_fcntl_set;
836 	}
837 
838 	port->flow_ctrl = fcntl;
839 	port->flow_ctrl_autoneg = fc_conf->autoneg;
840 
841 	sfc_adapter_unlock(sa);
842 
843 	return 0;
844 
845 fail_mac_fcntl_set:
846 	sfc_adapter_unlock(sa);
847 fail_inval:
848 	SFC_ASSERT(rc > 0);
849 	return -rc;
850 }
851 
852 static int
853 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
854 {
855 	struct sfc_adapter *sa = dev->data->dev_private;
856 	size_t pdu = EFX_MAC_PDU(mtu);
857 	size_t old_pdu;
858 	int rc;
859 
860 	sfc_log_init(sa, "mtu=%u", mtu);
861 
862 	rc = EINVAL;
863 	if (pdu < EFX_MAC_PDU_MIN) {
864 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
865 			(unsigned int)mtu, (unsigned int)pdu,
866 			EFX_MAC_PDU_MIN);
867 		goto fail_inval;
868 	}
869 	if (pdu > EFX_MAC_PDU_MAX) {
870 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
871 			(unsigned int)mtu, (unsigned int)pdu,
872 			EFX_MAC_PDU_MAX);
873 		goto fail_inval;
874 	}
875 
876 	sfc_adapter_lock(sa);
877 
878 	if (pdu != sa->port.pdu) {
879 		if (sa->state == SFC_ADAPTER_STARTED) {
880 			sfc_stop(sa);
881 
882 			old_pdu = sa->port.pdu;
883 			sa->port.pdu = pdu;
884 			rc = sfc_start(sa);
885 			if (rc != 0)
886 				goto fail_start;
887 		} else {
888 			sa->port.pdu = pdu;
889 		}
890 	}
891 
892 	/*
893 	 * The driver does not use it, but other PMDs update jumbo_frame
894 	 * flag and max_rx_pkt_len when MTU is set.
895 	 */
896 	if (mtu > ETHER_MAX_LEN) {
897 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
898 
899 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
900 		rxmode->jumbo_frame = 1;
901 	}
902 
903 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
904 
905 	sfc_adapter_unlock(sa);
906 
907 	sfc_log_init(sa, "done");
908 	return 0;
909 
910 fail_start:
911 	sa->port.pdu = old_pdu;
912 	if (sfc_start(sa) != 0)
913 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
914 			"PDU max size - port is stopped",
915 			(unsigned int)pdu, (unsigned int)old_pdu);
916 	sfc_adapter_unlock(sa);
917 
918 fail_inval:
919 	sfc_log_init(sa, "failed %d", rc);
920 	SFC_ASSERT(rc > 0);
921 	return -rc;
922 }
923 static void
924 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
925 {
926 	struct sfc_adapter *sa = dev->data->dev_private;
927 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
928 	struct sfc_port *port = &sa->port;
929 	int rc;
930 
931 	sfc_adapter_lock(sa);
932 
933 	/*
934 	 * Copy the address to the device private data so that
935 	 * it could be recalled in the case of adapter restart.
936 	 */
937 	ether_addr_copy(mac_addr, &port->default_mac_addr);
938 
939 	if (port->isolated) {
940 		sfc_err(sa, "isolated mode is active on the port");
941 		sfc_err(sa, "will not set MAC address");
942 		goto unlock;
943 	}
944 
945 	if (sa->state != SFC_ADAPTER_STARTED) {
946 		sfc_info(sa, "the port is not started");
947 		sfc_info(sa, "the new MAC address will be set on port start");
948 
949 		goto unlock;
950 	}
951 
952 	if (encp->enc_allow_set_mac_with_installed_filters) {
953 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
954 		if (rc != 0) {
955 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
956 			goto unlock;
957 		}
958 
959 		/*
960 		 * Changing the MAC address by means of MCDI request
961 		 * has no effect on received traffic, therefore
962 		 * we also need to update unicast filters
963 		 */
964 		rc = sfc_set_rx_mode(sa);
965 		if (rc != 0)
966 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
967 	} else {
968 		sfc_warn(sa, "cannot set MAC address with filters installed");
969 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
970 		sfc_warn(sa, "(some traffic may be dropped)");
971 
972 		/*
973 		 * Since setting MAC address with filters installed is not
974 		 * allowed on the adapter, the new MAC address will be set
975 		 * by means of adapter restart. sfc_start() shall retrieve
976 		 * the new address from the device private data and set it.
977 		 */
978 		sfc_stop(sa);
979 		rc = sfc_start(sa);
980 		if (rc != 0)
981 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
982 	}
983 
984 unlock:
985 	/*
986 	 * In the case of failure sa->port->default_mac_addr does not
987 	 * need rollback since no error code is returned, and the upper
988 	 * API will anyway update the external MAC address storage.
989 	 * To be consistent with that new value it is better to keep
990 	 * the device private value the same.
991 	 */
992 	sfc_adapter_unlock(sa);
993 }
994 
995 
996 static int
997 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set,
998 		     uint32_t nb_mc_addr)
999 {
1000 	struct sfc_adapter *sa = dev->data->dev_private;
1001 	struct sfc_port *port = &sa->port;
1002 	uint8_t *mc_addrs = port->mcast_addrs;
1003 	int rc;
1004 	unsigned int i;
1005 
1006 	if (port->isolated) {
1007 		sfc_err(sa, "isolated mode is active on the port");
1008 		sfc_err(sa, "will not set multicast address list");
1009 		return -ENOTSUP;
1010 	}
1011 
1012 	if (mc_addrs == NULL)
1013 		return -ENOBUFS;
1014 
1015 	if (nb_mc_addr > port->max_mcast_addrs) {
1016 		sfc_err(sa, "too many multicast addresses: %u > %u",
1017 			 nb_mc_addr, port->max_mcast_addrs);
1018 		return -EINVAL;
1019 	}
1020 
1021 	for (i = 0; i < nb_mc_addr; ++i) {
1022 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1023 				 EFX_MAC_ADDR_LEN);
1024 		mc_addrs += EFX_MAC_ADDR_LEN;
1025 	}
1026 
1027 	port->nb_mcast_addrs = nb_mc_addr;
1028 
1029 	if (sa->state != SFC_ADAPTER_STARTED)
1030 		return 0;
1031 
1032 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1033 					port->nb_mcast_addrs);
1034 	if (rc != 0)
1035 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1036 
1037 	SFC_ASSERT(rc > 0);
1038 	return -rc;
1039 }
1040 
1041 /*
1042  * The function is used by the secondary process as well. It must not
1043  * use any process-local pointers from the adapter data.
1044  */
1045 static void
1046 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1047 		      struct rte_eth_rxq_info *qinfo)
1048 {
1049 	struct sfc_adapter *sa = dev->data->dev_private;
1050 	struct sfc_rxq_info *rxq_info;
1051 	struct sfc_rxq *rxq;
1052 
1053 	sfc_adapter_lock(sa);
1054 
1055 	SFC_ASSERT(rx_queue_id < sa->rxq_count);
1056 
1057 	rxq_info = &sa->rxq_info[rx_queue_id];
1058 	rxq = rxq_info->rxq;
1059 	SFC_ASSERT(rxq != NULL);
1060 
1061 	qinfo->mp = rxq->refill_mb_pool;
1062 	qinfo->conf.rx_free_thresh = rxq->refill_threshold;
1063 	qinfo->conf.rx_drop_en = 1;
1064 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1065 	qinfo->conf.offloads = DEV_RX_OFFLOAD_IPV4_CKSUM |
1066 			       DEV_RX_OFFLOAD_UDP_CKSUM |
1067 			       DEV_RX_OFFLOAD_TCP_CKSUM;
1068 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1069 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1070 		qinfo->scattered_rx = 1;
1071 	}
1072 	qinfo->nb_desc = rxq_info->entries;
1073 
1074 	sfc_adapter_unlock(sa);
1075 }
1076 
1077 /*
1078  * The function is used by the secondary process as well. It must not
1079  * use any process-local pointers from the adapter data.
1080  */
1081 static void
1082 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1083 		      struct rte_eth_txq_info *qinfo)
1084 {
1085 	struct sfc_adapter *sa = dev->data->dev_private;
1086 	struct sfc_txq_info *txq_info;
1087 
1088 	sfc_adapter_lock(sa);
1089 
1090 	SFC_ASSERT(tx_queue_id < sa->txq_count);
1091 
1092 	txq_info = &sa->txq_info[tx_queue_id];
1093 	SFC_ASSERT(txq_info->txq != NULL);
1094 
1095 	memset(qinfo, 0, sizeof(*qinfo));
1096 
1097 	qinfo->conf.txq_flags = txq_info->txq->flags;
1098 	qinfo->conf.offloads = txq_info->txq->offloads;
1099 	qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh;
1100 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1101 	qinfo->nb_desc = txq_info->entries;
1102 
1103 	sfc_adapter_unlock(sa);
1104 }
1105 
1106 static uint32_t
1107 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1108 {
1109 	struct sfc_adapter *sa = dev->data->dev_private;
1110 
1111 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1112 
1113 	return sfc_rx_qdesc_npending(sa, rx_queue_id);
1114 }
1115 
1116 static int
1117 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1118 {
1119 	struct sfc_dp_rxq *dp_rxq = queue;
1120 
1121 	return sfc_rx_qdesc_done(dp_rxq, offset);
1122 }
1123 
1124 static int
1125 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1126 {
1127 	struct sfc_dp_rxq *dp_rxq = queue;
1128 	struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
1129 
1130 	return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset);
1131 }
1132 
1133 static int
1134 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1135 {
1136 	struct sfc_dp_txq *dp_txq = queue;
1137 	struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq);
1138 
1139 	return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset);
1140 }
1141 
1142 static int
1143 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1144 {
1145 	struct sfc_adapter *sa = dev->data->dev_private;
1146 	int rc;
1147 
1148 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1149 
1150 	sfc_adapter_lock(sa);
1151 
1152 	rc = EINVAL;
1153 	if (sa->state != SFC_ADAPTER_STARTED)
1154 		goto fail_not_started;
1155 
1156 	rc = sfc_rx_qstart(sa, rx_queue_id);
1157 	if (rc != 0)
1158 		goto fail_rx_qstart;
1159 
1160 	sa->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1161 
1162 	sfc_adapter_unlock(sa);
1163 
1164 	return 0;
1165 
1166 fail_rx_qstart:
1167 fail_not_started:
1168 	sfc_adapter_unlock(sa);
1169 	SFC_ASSERT(rc > 0);
1170 	return -rc;
1171 }
1172 
1173 static int
1174 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1175 {
1176 	struct sfc_adapter *sa = dev->data->dev_private;
1177 
1178 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1179 
1180 	sfc_adapter_lock(sa);
1181 	sfc_rx_qstop(sa, rx_queue_id);
1182 
1183 	sa->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1184 
1185 	sfc_adapter_unlock(sa);
1186 
1187 	return 0;
1188 }
1189 
1190 static int
1191 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1192 {
1193 	struct sfc_adapter *sa = dev->data->dev_private;
1194 	int rc;
1195 
1196 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1197 
1198 	sfc_adapter_lock(sa);
1199 
1200 	rc = EINVAL;
1201 	if (sa->state != SFC_ADAPTER_STARTED)
1202 		goto fail_not_started;
1203 
1204 	rc = sfc_tx_qstart(sa, tx_queue_id);
1205 	if (rc != 0)
1206 		goto fail_tx_qstart;
1207 
1208 	sa->txq_info[tx_queue_id].deferred_started = B_TRUE;
1209 
1210 	sfc_adapter_unlock(sa);
1211 	return 0;
1212 
1213 fail_tx_qstart:
1214 
1215 fail_not_started:
1216 	sfc_adapter_unlock(sa);
1217 	SFC_ASSERT(rc > 0);
1218 	return -rc;
1219 }
1220 
1221 static int
1222 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1223 {
1224 	struct sfc_adapter *sa = dev->data->dev_private;
1225 
1226 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1227 
1228 	sfc_adapter_lock(sa);
1229 
1230 	sfc_tx_qstop(sa, tx_queue_id);
1231 
1232 	sa->txq_info[tx_queue_id].deferred_started = B_FALSE;
1233 
1234 	sfc_adapter_unlock(sa);
1235 	return 0;
1236 }
1237 
1238 static efx_tunnel_protocol_t
1239 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1240 {
1241 	switch (rte_type) {
1242 	case RTE_TUNNEL_TYPE_VXLAN:
1243 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1244 	case RTE_TUNNEL_TYPE_GENEVE:
1245 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1246 	default:
1247 		return EFX_TUNNEL_NPROTOS;
1248 	}
1249 }
1250 
1251 enum sfc_udp_tunnel_op_e {
1252 	SFC_UDP_TUNNEL_ADD_PORT,
1253 	SFC_UDP_TUNNEL_DEL_PORT,
1254 };
1255 
1256 static int
1257 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1258 		      struct rte_eth_udp_tunnel *tunnel_udp,
1259 		      enum sfc_udp_tunnel_op_e op)
1260 {
1261 	struct sfc_adapter *sa = dev->data->dev_private;
1262 	efx_tunnel_protocol_t tunnel_proto;
1263 	int rc;
1264 
1265 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1266 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1267 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1268 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1269 
1270 	tunnel_proto =
1271 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1272 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1273 		rc = ENOTSUP;
1274 		goto fail_bad_proto;
1275 	}
1276 
1277 	sfc_adapter_lock(sa);
1278 
1279 	switch (op) {
1280 	case SFC_UDP_TUNNEL_ADD_PORT:
1281 		rc = efx_tunnel_config_udp_add(sa->nic,
1282 					       tunnel_udp->udp_port,
1283 					       tunnel_proto);
1284 		break;
1285 	case SFC_UDP_TUNNEL_DEL_PORT:
1286 		rc = efx_tunnel_config_udp_remove(sa->nic,
1287 						  tunnel_udp->udp_port,
1288 						  tunnel_proto);
1289 		break;
1290 	default:
1291 		rc = EINVAL;
1292 		goto fail_bad_op;
1293 	}
1294 
1295 	if (rc != 0)
1296 		goto fail_op;
1297 
1298 	if (sa->state == SFC_ADAPTER_STARTED) {
1299 		rc = efx_tunnel_reconfigure(sa->nic);
1300 		if (rc == EAGAIN) {
1301 			/*
1302 			 * Configuration is accepted by FW and MC reboot
1303 			 * is initiated to apply the changes. MC reboot
1304 			 * will be handled in a usual way (MC reboot
1305 			 * event on management event queue and adapter
1306 			 * restart).
1307 			 */
1308 			rc = 0;
1309 		} else if (rc != 0) {
1310 			goto fail_reconfigure;
1311 		}
1312 	}
1313 
1314 	sfc_adapter_unlock(sa);
1315 	return 0;
1316 
1317 fail_reconfigure:
1318 	/* Remove/restore entry since the change makes the trouble */
1319 	switch (op) {
1320 	case SFC_UDP_TUNNEL_ADD_PORT:
1321 		(void)efx_tunnel_config_udp_remove(sa->nic,
1322 						   tunnel_udp->udp_port,
1323 						   tunnel_proto);
1324 		break;
1325 	case SFC_UDP_TUNNEL_DEL_PORT:
1326 		(void)efx_tunnel_config_udp_add(sa->nic,
1327 						tunnel_udp->udp_port,
1328 						tunnel_proto);
1329 		break;
1330 	}
1331 
1332 fail_op:
1333 fail_bad_op:
1334 	sfc_adapter_unlock(sa);
1335 
1336 fail_bad_proto:
1337 	SFC_ASSERT(rc > 0);
1338 	return -rc;
1339 }
1340 
1341 static int
1342 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1343 			    struct rte_eth_udp_tunnel *tunnel_udp)
1344 {
1345 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1346 }
1347 
1348 static int
1349 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1350 			    struct rte_eth_udp_tunnel *tunnel_udp)
1351 {
1352 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1353 }
1354 
1355 #if EFSYS_OPT_RX_SCALE
1356 static int
1357 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1358 			  struct rte_eth_rss_conf *rss_conf)
1359 {
1360 	struct sfc_adapter *sa = dev->data->dev_private;
1361 	struct sfc_port *port = &sa->port;
1362 
1363 	if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated)
1364 		return -ENOTSUP;
1365 
1366 	if (sa->rss_channels == 0)
1367 		return -EINVAL;
1368 
1369 	sfc_adapter_lock(sa);
1370 
1371 	/*
1372 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1373 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1374 	 * flags which corresponds to the active EFX configuration stored
1375 	 * locally in 'sfc_adapter' and kept up-to-date
1376 	 */
1377 	rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types);
1378 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1379 	if (rss_conf->rss_key != NULL)
1380 		rte_memcpy(rss_conf->rss_key, sa->rss_key, EFX_RSS_KEY_SIZE);
1381 
1382 	sfc_adapter_unlock(sa);
1383 
1384 	return 0;
1385 }
1386 
1387 static int
1388 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1389 			struct rte_eth_rss_conf *rss_conf)
1390 {
1391 	struct sfc_adapter *sa = dev->data->dev_private;
1392 	struct sfc_port *port = &sa->port;
1393 	unsigned int efx_hash_types;
1394 	int rc = 0;
1395 
1396 	if (port->isolated)
1397 		return -ENOTSUP;
1398 
1399 	if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) {
1400 		sfc_err(sa, "RSS is not available");
1401 		return -ENOTSUP;
1402 	}
1403 
1404 	if (sa->rss_channels == 0) {
1405 		sfc_err(sa, "RSS is not configured");
1406 		return -EINVAL;
1407 	}
1408 
1409 	if ((rss_conf->rss_key != NULL) &&
1410 	    (rss_conf->rss_key_len != sizeof(sa->rss_key))) {
1411 		sfc_err(sa, "RSS key size is wrong (should be %lu)",
1412 			sizeof(sa->rss_key));
1413 		return -EINVAL;
1414 	}
1415 
1416 	if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) {
1417 		sfc_err(sa, "unsupported hash functions requested");
1418 		return -EINVAL;
1419 	}
1420 
1421 	sfc_adapter_lock(sa);
1422 
1423 	efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf);
1424 
1425 	rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1426 				   EFX_RX_HASHALG_TOEPLITZ,
1427 				   efx_hash_types, B_TRUE);
1428 	if (rc != 0)
1429 		goto fail_scale_mode_set;
1430 
1431 	if (rss_conf->rss_key != NULL) {
1432 		if (sa->state == SFC_ADAPTER_STARTED) {
1433 			rc = efx_rx_scale_key_set(sa->nic,
1434 						  EFX_RSS_CONTEXT_DEFAULT,
1435 						  rss_conf->rss_key,
1436 						  sizeof(sa->rss_key));
1437 			if (rc != 0)
1438 				goto fail_scale_key_set;
1439 		}
1440 
1441 		rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key));
1442 	}
1443 
1444 	sa->rss_hash_types = efx_hash_types;
1445 
1446 	sfc_adapter_unlock(sa);
1447 
1448 	return 0;
1449 
1450 fail_scale_key_set:
1451 	if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1452 				  EFX_RX_HASHALG_TOEPLITZ,
1453 				  sa->rss_hash_types, B_TRUE) != 0)
1454 		sfc_err(sa, "failed to restore RSS mode");
1455 
1456 fail_scale_mode_set:
1457 	sfc_adapter_unlock(sa);
1458 	return -rc;
1459 }
1460 
1461 static int
1462 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1463 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1464 		       uint16_t reta_size)
1465 {
1466 	struct sfc_adapter *sa = dev->data->dev_private;
1467 	struct sfc_port *port = &sa->port;
1468 	int entry;
1469 
1470 	if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated)
1471 		return -ENOTSUP;
1472 
1473 	if (sa->rss_channels == 0)
1474 		return -EINVAL;
1475 
1476 	if (reta_size != EFX_RSS_TBL_SIZE)
1477 		return -EINVAL;
1478 
1479 	sfc_adapter_lock(sa);
1480 
1481 	for (entry = 0; entry < reta_size; entry++) {
1482 		int grp = entry / RTE_RETA_GROUP_SIZE;
1483 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1484 
1485 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1486 			reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry];
1487 	}
1488 
1489 	sfc_adapter_unlock(sa);
1490 
1491 	return 0;
1492 }
1493 
1494 static int
1495 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1496 			struct rte_eth_rss_reta_entry64 *reta_conf,
1497 			uint16_t reta_size)
1498 {
1499 	struct sfc_adapter *sa = dev->data->dev_private;
1500 	struct sfc_port *port = &sa->port;
1501 	unsigned int *rss_tbl_new;
1502 	uint16_t entry;
1503 	int rc = 0;
1504 
1505 
1506 	if (port->isolated)
1507 		return -ENOTSUP;
1508 
1509 	if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) {
1510 		sfc_err(sa, "RSS is not available");
1511 		return -ENOTSUP;
1512 	}
1513 
1514 	if (sa->rss_channels == 0) {
1515 		sfc_err(sa, "RSS is not configured");
1516 		return -EINVAL;
1517 	}
1518 
1519 	if (reta_size != EFX_RSS_TBL_SIZE) {
1520 		sfc_err(sa, "RETA size is wrong (should be %u)",
1521 			EFX_RSS_TBL_SIZE);
1522 		return -EINVAL;
1523 	}
1524 
1525 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0);
1526 	if (rss_tbl_new == NULL)
1527 		return -ENOMEM;
1528 
1529 	sfc_adapter_lock(sa);
1530 
1531 	rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl));
1532 
1533 	for (entry = 0; entry < reta_size; entry++) {
1534 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1535 		struct rte_eth_rss_reta_entry64 *grp;
1536 
1537 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1538 
1539 		if (grp->mask & (1ull << grp_idx)) {
1540 			if (grp->reta[grp_idx] >= sa->rss_channels) {
1541 				rc = EINVAL;
1542 				goto bad_reta_entry;
1543 			}
1544 			rss_tbl_new[entry] = grp->reta[grp_idx];
1545 		}
1546 	}
1547 
1548 	if (sa->state == SFC_ADAPTER_STARTED) {
1549 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1550 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1551 		if (rc != 0)
1552 			goto fail_scale_tbl_set;
1553 	}
1554 
1555 	rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl));
1556 
1557 fail_scale_tbl_set:
1558 bad_reta_entry:
1559 	sfc_adapter_unlock(sa);
1560 
1561 	rte_free(rss_tbl_new);
1562 
1563 	SFC_ASSERT(rc >= 0);
1564 	return -rc;
1565 }
1566 #endif
1567 
1568 static int
1569 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1570 		    enum rte_filter_op filter_op,
1571 		    void *arg)
1572 {
1573 	struct sfc_adapter *sa = dev->data->dev_private;
1574 	int rc = ENOTSUP;
1575 
1576 	sfc_log_init(sa, "entry");
1577 
1578 	switch (filter_type) {
1579 	case RTE_ETH_FILTER_NONE:
1580 		sfc_err(sa, "Global filters configuration not supported");
1581 		break;
1582 	case RTE_ETH_FILTER_MACVLAN:
1583 		sfc_err(sa, "MACVLAN filters not supported");
1584 		break;
1585 	case RTE_ETH_FILTER_ETHERTYPE:
1586 		sfc_err(sa, "EtherType filters not supported");
1587 		break;
1588 	case RTE_ETH_FILTER_FLEXIBLE:
1589 		sfc_err(sa, "Flexible filters not supported");
1590 		break;
1591 	case RTE_ETH_FILTER_SYN:
1592 		sfc_err(sa, "SYN filters not supported");
1593 		break;
1594 	case RTE_ETH_FILTER_NTUPLE:
1595 		sfc_err(sa, "NTUPLE filters not supported");
1596 		break;
1597 	case RTE_ETH_FILTER_TUNNEL:
1598 		sfc_err(sa, "Tunnel filters not supported");
1599 		break;
1600 	case RTE_ETH_FILTER_FDIR:
1601 		sfc_err(sa, "Flow Director filters not supported");
1602 		break;
1603 	case RTE_ETH_FILTER_HASH:
1604 		sfc_err(sa, "Hash filters not supported");
1605 		break;
1606 	case RTE_ETH_FILTER_GENERIC:
1607 		if (filter_op != RTE_ETH_FILTER_GET) {
1608 			rc = EINVAL;
1609 		} else {
1610 			*(const void **)arg = &sfc_flow_ops;
1611 			rc = 0;
1612 		}
1613 		break;
1614 	default:
1615 		sfc_err(sa, "Unknown filter type %u", filter_type);
1616 		break;
1617 	}
1618 
1619 	sfc_log_init(sa, "exit: %d", -rc);
1620 	SFC_ASSERT(rc >= 0);
1621 	return -rc;
1622 }
1623 
1624 static const struct eth_dev_ops sfc_eth_dev_ops = {
1625 	.dev_configure			= sfc_dev_configure,
1626 	.dev_start			= sfc_dev_start,
1627 	.dev_stop			= sfc_dev_stop,
1628 	.dev_set_link_up		= sfc_dev_set_link_up,
1629 	.dev_set_link_down		= sfc_dev_set_link_down,
1630 	.dev_close			= sfc_dev_close,
1631 	.promiscuous_enable		= sfc_dev_promisc_enable,
1632 	.promiscuous_disable		= sfc_dev_promisc_disable,
1633 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1634 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1635 	.link_update			= sfc_dev_link_update,
1636 	.stats_get			= sfc_stats_get,
1637 	.stats_reset			= sfc_stats_reset,
1638 	.xstats_get			= sfc_xstats_get,
1639 	.xstats_reset			= sfc_stats_reset,
1640 	.xstats_get_names		= sfc_xstats_get_names,
1641 	.dev_infos_get			= sfc_dev_infos_get,
1642 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1643 	.mtu_set			= sfc_dev_set_mtu,
1644 	.rx_queue_start			= sfc_rx_queue_start,
1645 	.rx_queue_stop			= sfc_rx_queue_stop,
1646 	.tx_queue_start			= sfc_tx_queue_start,
1647 	.tx_queue_stop			= sfc_tx_queue_stop,
1648 	.rx_queue_setup			= sfc_rx_queue_setup,
1649 	.rx_queue_release		= sfc_rx_queue_release,
1650 	.rx_queue_count			= sfc_rx_queue_count,
1651 	.rx_descriptor_done		= sfc_rx_descriptor_done,
1652 	.rx_descriptor_status		= sfc_rx_descriptor_status,
1653 	.tx_descriptor_status		= sfc_tx_descriptor_status,
1654 	.tx_queue_setup			= sfc_tx_queue_setup,
1655 	.tx_queue_release		= sfc_tx_queue_release,
1656 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1657 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1658 	.mac_addr_set			= sfc_mac_addr_set,
1659 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1660 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1661 #if EFSYS_OPT_RX_SCALE
1662 	.reta_update			= sfc_dev_rss_reta_update,
1663 	.reta_query			= sfc_dev_rss_reta_query,
1664 	.rss_hash_update		= sfc_dev_rss_hash_update,
1665 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1666 #endif
1667 	.filter_ctrl			= sfc_dev_filter_ctrl,
1668 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1669 	.rxq_info_get			= sfc_rx_queue_info_get,
1670 	.txq_info_get			= sfc_tx_queue_info_get,
1671 	.fw_version_get			= sfc_fw_version_get,
1672 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1673 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1674 };
1675 
1676 /**
1677  * Duplicate a string in potentially shared memory required for
1678  * multi-process support.
1679  *
1680  * strdup() allocates from process-local heap/memory.
1681  */
1682 static char *
1683 sfc_strdup(const char *str)
1684 {
1685 	size_t size;
1686 	char *copy;
1687 
1688 	if (str == NULL)
1689 		return NULL;
1690 
1691 	size = strlen(str) + 1;
1692 	copy = rte_malloc(__func__, size, 0);
1693 	if (copy != NULL)
1694 		rte_memcpy(copy, str, size);
1695 
1696 	return copy;
1697 }
1698 
1699 static int
1700 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1701 {
1702 	struct sfc_adapter *sa = dev->data->dev_private;
1703 	unsigned int avail_caps = 0;
1704 	const char *rx_name = NULL;
1705 	const char *tx_name = NULL;
1706 	int rc;
1707 
1708 	switch (sa->family) {
1709 	case EFX_FAMILY_HUNTINGTON:
1710 	case EFX_FAMILY_MEDFORD:
1711 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1712 		break;
1713 	default:
1714 		break;
1715 	}
1716 
1717 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1718 				sfc_kvarg_string_handler, &rx_name);
1719 	if (rc != 0)
1720 		goto fail_kvarg_rx_datapath;
1721 
1722 	if (rx_name != NULL) {
1723 		sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1724 		if (sa->dp_rx == NULL) {
1725 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1726 			rc = ENOENT;
1727 			goto fail_dp_rx;
1728 		}
1729 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) {
1730 			sfc_err(sa,
1731 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1732 				rx_name);
1733 			rc = EINVAL;
1734 			goto fail_dp_rx_caps;
1735 		}
1736 	} else {
1737 		sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1738 		if (sa->dp_rx == NULL) {
1739 			sfc_err(sa, "Rx datapath by caps %#x not found",
1740 				avail_caps);
1741 			rc = ENOENT;
1742 			goto fail_dp_rx;
1743 		}
1744 	}
1745 
1746 	sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name);
1747 	if (sa->dp_rx_name == NULL) {
1748 		rc = ENOMEM;
1749 		goto fail_dp_rx_name;
1750 	}
1751 
1752 	sfc_info(sa, "use %s Rx datapath", sa->dp_rx_name);
1753 
1754 	dev->rx_pkt_burst = sa->dp_rx->pkt_burst;
1755 
1756 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1757 				sfc_kvarg_string_handler, &tx_name);
1758 	if (rc != 0)
1759 		goto fail_kvarg_tx_datapath;
1760 
1761 	if (tx_name != NULL) {
1762 		sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1763 		if (sa->dp_tx == NULL) {
1764 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1765 			rc = ENOENT;
1766 			goto fail_dp_tx;
1767 		}
1768 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) {
1769 			sfc_err(sa,
1770 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1771 				tx_name);
1772 			rc = EINVAL;
1773 			goto fail_dp_tx_caps;
1774 		}
1775 	} else {
1776 		sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1777 		if (sa->dp_tx == NULL) {
1778 			sfc_err(sa, "Tx datapath by caps %#x not found",
1779 				avail_caps);
1780 			rc = ENOENT;
1781 			goto fail_dp_tx;
1782 		}
1783 	}
1784 
1785 	sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name);
1786 	if (sa->dp_tx_name == NULL) {
1787 		rc = ENOMEM;
1788 		goto fail_dp_tx_name;
1789 	}
1790 
1791 	sfc_info(sa, "use %s Tx datapath", sa->dp_tx_name);
1792 
1793 	dev->tx_pkt_burst = sa->dp_tx->pkt_burst;
1794 
1795 	dev->dev_ops = &sfc_eth_dev_ops;
1796 
1797 	return 0;
1798 
1799 fail_dp_tx_name:
1800 fail_dp_tx_caps:
1801 	sa->dp_tx = NULL;
1802 
1803 fail_dp_tx:
1804 fail_kvarg_tx_datapath:
1805 	rte_free(sa->dp_rx_name);
1806 	sa->dp_rx_name = NULL;
1807 
1808 fail_dp_rx_name:
1809 fail_dp_rx_caps:
1810 	sa->dp_rx = NULL;
1811 
1812 fail_dp_rx:
1813 fail_kvarg_rx_datapath:
1814 	return rc;
1815 }
1816 
1817 static void
1818 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
1819 {
1820 	struct sfc_adapter *sa = dev->data->dev_private;
1821 
1822 	dev->dev_ops = NULL;
1823 	dev->rx_pkt_burst = NULL;
1824 	dev->tx_pkt_burst = NULL;
1825 
1826 	rte_free(sa->dp_tx_name);
1827 	sa->dp_tx_name = NULL;
1828 	sa->dp_tx = NULL;
1829 
1830 	rte_free(sa->dp_rx_name);
1831 	sa->dp_rx_name = NULL;
1832 	sa->dp_rx = NULL;
1833 }
1834 
1835 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
1836 	.rxq_info_get			= sfc_rx_queue_info_get,
1837 	.txq_info_get			= sfc_tx_queue_info_get,
1838 };
1839 
1840 static int
1841 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev)
1842 {
1843 	/*
1844 	 * Device private data has really many process-local pointers.
1845 	 * Below code should be extremely careful to use data located
1846 	 * in shared memory only.
1847 	 */
1848 	struct sfc_adapter *sa = dev->data->dev_private;
1849 	const struct sfc_dp_rx *dp_rx;
1850 	const struct sfc_dp_tx *dp_tx;
1851 	int rc;
1852 
1853 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name);
1854 	if (dp_rx == NULL) {
1855 		sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name);
1856 		rc = ENOENT;
1857 		goto fail_dp_rx;
1858 	}
1859 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
1860 		sfc_err(sa, "%s Rx datapath does not support multi-process",
1861 			sa->dp_tx_name);
1862 		rc = EINVAL;
1863 		goto fail_dp_rx_multi_process;
1864 	}
1865 
1866 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name);
1867 	if (dp_tx == NULL) {
1868 		sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name);
1869 		rc = ENOENT;
1870 		goto fail_dp_tx;
1871 	}
1872 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
1873 		sfc_err(sa, "%s Tx datapath does not support multi-process",
1874 			sa->dp_tx_name);
1875 		rc = EINVAL;
1876 		goto fail_dp_tx_multi_process;
1877 	}
1878 
1879 	dev->rx_pkt_burst = dp_rx->pkt_burst;
1880 	dev->tx_pkt_burst = dp_tx->pkt_burst;
1881 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
1882 
1883 	return 0;
1884 
1885 fail_dp_tx_multi_process:
1886 fail_dp_tx:
1887 fail_dp_rx_multi_process:
1888 fail_dp_rx:
1889 	return rc;
1890 }
1891 
1892 static void
1893 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
1894 {
1895 	dev->dev_ops = NULL;
1896 	dev->tx_pkt_burst = NULL;
1897 	dev->rx_pkt_burst = NULL;
1898 }
1899 
1900 static void
1901 sfc_register_dp(void)
1902 {
1903 	/* Register once */
1904 	if (TAILQ_EMPTY(&sfc_dp_head)) {
1905 		/* Prefer EF10 datapath */
1906 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
1907 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
1908 
1909 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
1910 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
1911 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
1912 	}
1913 }
1914 
1915 static int
1916 sfc_eth_dev_init(struct rte_eth_dev *dev)
1917 {
1918 	struct sfc_adapter *sa = dev->data->dev_private;
1919 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1920 	int rc;
1921 	const efx_nic_cfg_t *encp;
1922 	const struct ether_addr *from;
1923 
1924 	sfc_register_dp();
1925 
1926 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1927 		return -sfc_eth_dev_secondary_set_ops(dev);
1928 
1929 	/* Required for logging */
1930 	sa->pci_addr = pci_dev->addr;
1931 	sa->port_id = dev->data->port_id;
1932 
1933 	sa->eth_dev = dev;
1934 
1935 	/* Copy PCI device info to the dev->data */
1936 	rte_eth_copy_pci_info(dev, pci_dev);
1937 
1938 	rc = sfc_kvargs_parse(sa);
1939 	if (rc != 0)
1940 		goto fail_kvargs_parse;
1941 
1942 	rc = sfc_kvargs_process(sa, SFC_KVARG_DEBUG_INIT,
1943 				sfc_kvarg_bool_handler, &sa->debug_init);
1944 	if (rc != 0)
1945 		goto fail_kvarg_debug_init;
1946 
1947 	sfc_log_init(sa, "entry");
1948 
1949 	dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0);
1950 	if (dev->data->mac_addrs == NULL) {
1951 		rc = ENOMEM;
1952 		goto fail_mac_addrs;
1953 	}
1954 
1955 	sfc_adapter_lock_init(sa);
1956 	sfc_adapter_lock(sa);
1957 
1958 	sfc_log_init(sa, "probing");
1959 	rc = sfc_probe(sa);
1960 	if (rc != 0)
1961 		goto fail_probe;
1962 
1963 	sfc_log_init(sa, "set device ops");
1964 	rc = sfc_eth_dev_set_ops(dev);
1965 	if (rc != 0)
1966 		goto fail_set_ops;
1967 
1968 	sfc_log_init(sa, "attaching");
1969 	rc = sfc_attach(sa);
1970 	if (rc != 0)
1971 		goto fail_attach;
1972 
1973 	encp = efx_nic_cfg_get(sa->nic);
1974 
1975 	/*
1976 	 * The arguments are really reverse order in comparison to
1977 	 * Linux kernel. Copy from NIC config to Ethernet device data.
1978 	 */
1979 	from = (const struct ether_addr *)(encp->enc_mac_addr);
1980 	ether_addr_copy(from, &dev->data->mac_addrs[0]);
1981 
1982 	sfc_adapter_unlock(sa);
1983 
1984 	sfc_log_init(sa, "done");
1985 	return 0;
1986 
1987 fail_attach:
1988 	sfc_eth_dev_clear_ops(dev);
1989 
1990 fail_set_ops:
1991 	sfc_unprobe(sa);
1992 
1993 fail_probe:
1994 	sfc_adapter_unlock(sa);
1995 	sfc_adapter_lock_fini(sa);
1996 	rte_free(dev->data->mac_addrs);
1997 	dev->data->mac_addrs = NULL;
1998 
1999 fail_mac_addrs:
2000 fail_kvarg_debug_init:
2001 	sfc_kvargs_cleanup(sa);
2002 
2003 fail_kvargs_parse:
2004 	sfc_log_init(sa, "failed %d", rc);
2005 	SFC_ASSERT(rc > 0);
2006 	return -rc;
2007 }
2008 
2009 static int
2010 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2011 {
2012 	struct sfc_adapter *sa;
2013 
2014 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2015 		sfc_eth_dev_secondary_clear_ops(dev);
2016 		return 0;
2017 	}
2018 
2019 	sa = dev->data->dev_private;
2020 	sfc_log_init(sa, "entry");
2021 
2022 	sfc_adapter_lock(sa);
2023 
2024 	sfc_eth_dev_clear_ops(dev);
2025 
2026 	sfc_detach(sa);
2027 	sfc_unprobe(sa);
2028 
2029 	rte_free(dev->data->mac_addrs);
2030 	dev->data->mac_addrs = NULL;
2031 
2032 	sfc_kvargs_cleanup(sa);
2033 
2034 	sfc_adapter_unlock(sa);
2035 	sfc_adapter_lock_fini(sa);
2036 
2037 	sfc_log_init(sa, "done");
2038 
2039 	/* Required for logging, so cleanup last */
2040 	sa->eth_dev = NULL;
2041 	return 0;
2042 }
2043 
2044 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2045 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2046 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2047 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2048 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2049 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2050 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2051 	{ .vendor_id = 0 /* sentinel */ }
2052 };
2053 
2054 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2055 	struct rte_pci_device *pci_dev)
2056 {
2057 	return rte_eth_dev_pci_generic_probe(pci_dev,
2058 		sizeof(struct sfc_adapter), sfc_eth_dev_init);
2059 }
2060 
2061 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2062 {
2063 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2064 }
2065 
2066 static struct rte_pci_driver sfc_efx_pmd = {
2067 	.id_table = pci_id_sfc_efx_map,
2068 	.drv_flags =
2069 		RTE_PCI_DRV_INTR_LSC |
2070 		RTE_PCI_DRV_NEED_MAPPING,
2071 	.probe = sfc_eth_dev_pci_probe,
2072 	.remove = sfc_eth_dev_pci_remove,
2073 };
2074 
2075 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2076 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2077 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2078 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2079 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2080 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2081 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2082 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long> "
2083 	SFC_KVARG_MCDI_LOGGING "=" SFC_KVARG_VALUES_BOOL " "
2084 	SFC_KVARG_DEBUG_INIT "=" SFC_KVARG_VALUES_BOOL);
2085