xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision c78c2224b759b28d475470134e481e60722ad421)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <ethdev_driver.h>
12 #include <ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31 
32 uint32_t sfc_logtype_driver;
33 
34 static struct sfc_dp_list sfc_dp_head =
35 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
36 
37 
38 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
39 
40 
41 static int
42 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
43 {
44 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
45 	efx_nic_fw_info_t enfi;
46 	int ret;
47 	int rc;
48 
49 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
50 	if (rc != 0)
51 		return -rc;
52 
53 	ret = snprintf(fw_version, fw_size,
54 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
55 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
56 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
57 	if (ret < 0)
58 		return ret;
59 
60 	if (enfi.enfi_dpcpu_fw_ids_valid) {
61 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
62 		int ret_extra;
63 
64 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
65 				     fw_size - dpcpu_fw_ids_offset,
66 				     " rx%" PRIx16 " tx%" PRIx16,
67 				     enfi.enfi_rx_dpcpu_fw_id,
68 				     enfi.enfi_tx_dpcpu_fw_id);
69 		if (ret_extra < 0)
70 			return ret_extra;
71 
72 		ret += ret_extra;
73 	}
74 
75 	if (fw_size < (size_t)(++ret))
76 		return ret;
77 	else
78 		return 0;
79 }
80 
81 static int
82 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
83 {
84 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
85 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
86 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
87 	struct sfc_rss *rss = &sas->rss;
88 	struct sfc_mae *mae = &sa->mae;
89 	uint64_t txq_offloads_def = 0;
90 
91 	sfc_log_init(sa, "entry");
92 
93 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
94 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
95 
96 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
97 
98 	dev_info->max_vfs = sa->sriov.num_vfs;
99 
100 	/* Autonegotiation may be disabled */
101 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
102 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
103 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
104 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
105 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
106 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
107 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
108 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
109 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
110 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
111 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
112 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
113 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
114 
115 	dev_info->max_rx_queues = sa->rxq_max;
116 	dev_info->max_tx_queues = sa->txq_max;
117 
118 	/* By default packets are dropped if no descriptors are available */
119 	dev_info->default_rxconf.rx_drop_en = 1;
120 
121 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
122 
123 	/*
124 	 * rx_offload_capa includes both device and queue offloads since
125 	 * the latter may be requested on a per device basis which makes
126 	 * sense when some offloads are needed to be set on all queues.
127 	 */
128 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
129 				    dev_info->rx_queue_offload_capa;
130 
131 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
132 
133 	/*
134 	 * tx_offload_capa includes both device and queue offloads since
135 	 * the latter may be requested on a per device basis which makes
136 	 * sense when some offloads are needed to be set on all queues.
137 	 */
138 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
139 				    dev_info->tx_queue_offload_capa;
140 
141 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
142 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
143 
144 	dev_info->default_txconf.offloads |= txq_offloads_def;
145 
146 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
147 		uint64_t rte_hf = 0;
148 		unsigned int i;
149 
150 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
151 			rte_hf |= rss->hf_map[i].rte;
152 
153 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
154 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
155 		dev_info->flow_type_rss_offloads = rte_hf;
156 	}
157 
158 	/* Initialize to hardware limits */
159 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
160 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
161 	/* The RXQ hardware requires that the descriptor count is a power
162 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
163 	 */
164 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
165 
166 	/* Initialize to hardware limits */
167 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
168 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
169 	/*
170 	 * The TXQ hardware requires that the descriptor count is a power
171 	 * of 2, but tx_desc_lim cannot properly describe that constraint
172 	 */
173 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
174 
175 	if (sap->dp_rx->get_dev_info != NULL)
176 		sap->dp_rx->get_dev_info(dev_info);
177 	if (sap->dp_tx->get_dev_info != NULL)
178 		sap->dp_tx->get_dev_info(dev_info);
179 
180 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
181 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
182 
183 	if (mae->status == SFC_MAE_STATUS_SUPPORTED) {
184 		dev_info->switch_info.name = dev->device->driver->name;
185 		dev_info->switch_info.domain_id = mae->switch_domain_id;
186 		dev_info->switch_info.port_id = mae->switch_port_id;
187 	}
188 
189 	return 0;
190 }
191 
192 static const uint32_t *
193 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
194 {
195 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
196 
197 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
198 }
199 
200 static int
201 sfc_dev_configure(struct rte_eth_dev *dev)
202 {
203 	struct rte_eth_dev_data *dev_data = dev->data;
204 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
205 	int rc;
206 
207 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
208 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
209 
210 	sfc_adapter_lock(sa);
211 	switch (sa->state) {
212 	case SFC_ADAPTER_CONFIGURED:
213 		/* FALLTHROUGH */
214 	case SFC_ADAPTER_INITIALIZED:
215 		rc = sfc_configure(sa);
216 		break;
217 	default:
218 		sfc_err(sa, "unexpected adapter state %u to configure",
219 			sa->state);
220 		rc = EINVAL;
221 		break;
222 	}
223 	sfc_adapter_unlock(sa);
224 
225 	sfc_log_init(sa, "done %d", rc);
226 	SFC_ASSERT(rc >= 0);
227 	return -rc;
228 }
229 
230 static int
231 sfc_dev_start(struct rte_eth_dev *dev)
232 {
233 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
234 	int rc;
235 
236 	sfc_log_init(sa, "entry");
237 
238 	sfc_adapter_lock(sa);
239 	rc = sfc_start(sa);
240 	sfc_adapter_unlock(sa);
241 
242 	sfc_log_init(sa, "done %d", rc);
243 	SFC_ASSERT(rc >= 0);
244 	return -rc;
245 }
246 
247 static int
248 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
249 {
250 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
251 	struct rte_eth_link current_link;
252 	int ret;
253 
254 	sfc_log_init(sa, "entry");
255 
256 	if (sa->state != SFC_ADAPTER_STARTED) {
257 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
258 	} else if (wait_to_complete) {
259 		efx_link_mode_t link_mode;
260 
261 		if (efx_port_poll(sa->nic, &link_mode) != 0)
262 			link_mode = EFX_LINK_UNKNOWN;
263 		sfc_port_link_mode_to_info(link_mode, &current_link);
264 
265 	} else {
266 		sfc_ev_mgmt_qpoll(sa);
267 		rte_eth_linkstatus_get(dev, &current_link);
268 	}
269 
270 	ret = rte_eth_linkstatus_set(dev, &current_link);
271 	if (ret == 0)
272 		sfc_notice(sa, "Link status is %s",
273 			   current_link.link_status ? "UP" : "DOWN");
274 
275 	return ret;
276 }
277 
278 static int
279 sfc_dev_stop(struct rte_eth_dev *dev)
280 {
281 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
282 
283 	sfc_log_init(sa, "entry");
284 
285 	sfc_adapter_lock(sa);
286 	sfc_stop(sa);
287 	sfc_adapter_unlock(sa);
288 
289 	sfc_log_init(sa, "done");
290 
291 	return 0;
292 }
293 
294 static int
295 sfc_dev_set_link_up(struct rte_eth_dev *dev)
296 {
297 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
298 	int rc;
299 
300 	sfc_log_init(sa, "entry");
301 
302 	sfc_adapter_lock(sa);
303 	rc = sfc_start(sa);
304 	sfc_adapter_unlock(sa);
305 
306 	SFC_ASSERT(rc >= 0);
307 	return -rc;
308 }
309 
310 static int
311 sfc_dev_set_link_down(struct rte_eth_dev *dev)
312 {
313 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
314 
315 	sfc_log_init(sa, "entry");
316 
317 	sfc_adapter_lock(sa);
318 	sfc_stop(sa);
319 	sfc_adapter_unlock(sa);
320 
321 	return 0;
322 }
323 
324 static void
325 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
326 {
327 	free(dev->process_private);
328 	rte_eth_dev_release_port(dev);
329 }
330 
331 static int
332 sfc_dev_close(struct rte_eth_dev *dev)
333 {
334 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
335 
336 	sfc_log_init(sa, "entry");
337 
338 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
339 		sfc_eth_dev_secondary_clear_ops(dev);
340 		return 0;
341 	}
342 
343 	sfc_adapter_lock(sa);
344 	switch (sa->state) {
345 	case SFC_ADAPTER_STARTED:
346 		sfc_stop(sa);
347 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
348 		/* FALLTHROUGH */
349 	case SFC_ADAPTER_CONFIGURED:
350 		sfc_close(sa);
351 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
352 		/* FALLTHROUGH */
353 	case SFC_ADAPTER_INITIALIZED:
354 		break;
355 	default:
356 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
357 		break;
358 	}
359 
360 	/*
361 	 * Cleanup all resources.
362 	 * Rollback primary process sfc_eth_dev_init() below.
363 	 */
364 
365 	sfc_eth_dev_clear_ops(dev);
366 
367 	sfc_detach(sa);
368 	sfc_unprobe(sa);
369 
370 	sfc_kvargs_cleanup(sa);
371 
372 	sfc_adapter_unlock(sa);
373 	sfc_adapter_lock_fini(sa);
374 
375 	sfc_log_init(sa, "done");
376 
377 	/* Required for logging, so cleanup last */
378 	sa->eth_dev = NULL;
379 
380 	free(sa);
381 
382 	return 0;
383 }
384 
385 static int
386 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
387 		   boolean_t enabled)
388 {
389 	struct sfc_port *port;
390 	boolean_t *toggle;
391 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
392 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
393 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
394 	int rc = 0;
395 
396 	sfc_adapter_lock(sa);
397 
398 	port = &sa->port;
399 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
400 
401 	if (*toggle != enabled) {
402 		*toggle = enabled;
403 
404 		if (sfc_sa2shared(sa)->isolated) {
405 			sfc_warn(sa, "isolated mode is active on the port");
406 			sfc_warn(sa, "the change is to be applied on the next "
407 				     "start provided that isolated mode is "
408 				     "disabled prior the next start");
409 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
410 			   ((rc = sfc_set_rx_mode(sa)) != 0)) {
411 			*toggle = !(enabled);
412 			sfc_warn(sa, "Failed to %s %s mode, rc = %d",
413 				 ((enabled) ? "enable" : "disable"), desc, rc);
414 
415 			/*
416 			 * For promiscuous and all-multicast filters a
417 			 * permission failure should be reported as an
418 			 * unsupported filter.
419 			 */
420 			if (rc == EPERM)
421 				rc = ENOTSUP;
422 		}
423 	}
424 
425 	sfc_adapter_unlock(sa);
426 	return rc;
427 }
428 
429 static int
430 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
431 {
432 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
433 
434 	SFC_ASSERT(rc >= 0);
435 	return -rc;
436 }
437 
438 static int
439 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
440 {
441 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
442 
443 	SFC_ASSERT(rc >= 0);
444 	return -rc;
445 }
446 
447 static int
448 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
449 {
450 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
451 
452 	SFC_ASSERT(rc >= 0);
453 	return -rc;
454 }
455 
456 static int
457 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
458 {
459 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
460 
461 	SFC_ASSERT(rc >= 0);
462 	return -rc;
463 }
464 
465 static int
466 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
467 		   uint16_t nb_rx_desc, unsigned int socket_id,
468 		   const struct rte_eth_rxconf *rx_conf,
469 		   struct rte_mempool *mb_pool)
470 {
471 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
472 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
473 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
474 	struct sfc_rxq_info *rxq_info;
475 	sfc_sw_index_t sw_index;
476 	int rc;
477 
478 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
479 		     ethdev_qid, nb_rx_desc, socket_id);
480 
481 	sfc_adapter_lock(sa);
482 
483 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
484 	rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id,
485 			  rx_conf, mb_pool);
486 	if (rc != 0)
487 		goto fail_rx_qinit;
488 
489 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
490 	dev->data->rx_queues[ethdev_qid] = rxq_info->dp;
491 
492 	sfc_adapter_unlock(sa);
493 
494 	return 0;
495 
496 fail_rx_qinit:
497 	sfc_adapter_unlock(sa);
498 	SFC_ASSERT(rc > 0);
499 	return -rc;
500 }
501 
502 static void
503 sfc_rx_queue_release(void *queue)
504 {
505 	struct sfc_dp_rxq *dp_rxq = queue;
506 	struct sfc_rxq *rxq;
507 	struct sfc_adapter *sa;
508 	sfc_sw_index_t sw_index;
509 
510 	if (dp_rxq == NULL)
511 		return;
512 
513 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
514 	sa = rxq->evq->sa;
515 	sfc_adapter_lock(sa);
516 
517 	sw_index = dp_rxq->dpq.queue_id;
518 
519 	sfc_log_init(sa, "RxQ=%u", sw_index);
520 
521 	sfc_rx_qfini(sa, sw_index);
522 
523 	sfc_adapter_unlock(sa);
524 }
525 
526 static int
527 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
528 		   uint16_t nb_tx_desc, unsigned int socket_id,
529 		   const struct rte_eth_txconf *tx_conf)
530 {
531 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
532 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
533 	struct sfc_txq_info *txq_info;
534 	sfc_sw_index_t sw_index;
535 	int rc;
536 
537 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
538 		     ethdev_qid, nb_tx_desc, socket_id);
539 
540 	sfc_adapter_lock(sa);
541 
542 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
543 	rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf);
544 	if (rc != 0)
545 		goto fail_tx_qinit;
546 
547 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
548 	dev->data->tx_queues[ethdev_qid] = txq_info->dp;
549 
550 	sfc_adapter_unlock(sa);
551 	return 0;
552 
553 fail_tx_qinit:
554 	sfc_adapter_unlock(sa);
555 	SFC_ASSERT(rc > 0);
556 	return -rc;
557 }
558 
559 static void
560 sfc_tx_queue_release(void *queue)
561 {
562 	struct sfc_dp_txq *dp_txq = queue;
563 	struct sfc_txq *txq;
564 	sfc_sw_index_t sw_index;
565 	struct sfc_adapter *sa;
566 
567 	if (dp_txq == NULL)
568 		return;
569 
570 	txq = sfc_txq_by_dp_txq(dp_txq);
571 	sw_index = dp_txq->dpq.queue_id;
572 
573 	SFC_ASSERT(txq->evq != NULL);
574 	sa = txq->evq->sa;
575 
576 	sfc_log_init(sa, "TxQ = %u", sw_index);
577 
578 	sfc_adapter_lock(sa);
579 
580 	sfc_tx_qfini(sa, sw_index);
581 
582 	sfc_adapter_unlock(sa);
583 }
584 
585 /*
586  * Some statistics are computed as A - B where A and B each increase
587  * monotonically with some hardware counter(s) and the counters are read
588  * asynchronously.
589  *
590  * If packet X is counted in A, but not counted in B yet, computed value is
591  * greater than real.
592  *
593  * If packet X is not counted in A at the moment of reading the counter,
594  * but counted in B at the moment of reading the counter, computed value
595  * is less than real.
596  *
597  * However, counter which grows backward is worse evil than slightly wrong
598  * value. So, let's try to guarantee that it never happens except may be
599  * the case when the MAC stats are zeroed as a result of a NIC reset.
600  */
601 static void
602 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
603 {
604 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
605 		*stat = newval;
606 }
607 
608 static int
609 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
610 {
611 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
612 	struct sfc_port *port = &sa->port;
613 	uint64_t *mac_stats;
614 	int ret;
615 
616 	sfc_adapter_lock(sa);
617 
618 	ret = sfc_port_update_mac_stats(sa, B_FALSE);
619 	if (ret != 0)
620 		goto unlock;
621 
622 	mac_stats = port->mac_stats_buf;
623 
624 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
625 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
626 		stats->ipackets =
627 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
628 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
629 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
630 		stats->opackets =
631 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
632 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
633 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
634 		stats->ibytes =
635 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
636 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
637 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
638 		stats->obytes =
639 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
640 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
641 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
642 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
643 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
644 
645 		/* CRC is included in these stats, but shouldn't be */
646 		stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
647 		stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN;
648 	} else {
649 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
650 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
651 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
652 
653 		/* CRC is included in these stats, but shouldn't be */
654 		stats->ibytes -= mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN;
655 		stats->obytes -= mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN;
656 
657 		/*
658 		 * Take into account stats which are whenever supported
659 		 * on EF10. If some stat is not supported by current
660 		 * firmware variant or HW revision, it is guaranteed
661 		 * to be zero in mac_stats.
662 		 */
663 		stats->imissed =
664 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
665 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
666 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
667 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
668 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
669 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
670 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
671 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
672 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
673 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
674 		stats->ierrors =
675 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
676 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
677 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
678 		/* no oerrors counters supported on EF10 */
679 
680 		/* Exclude missed, errors and pauses from Rx packets */
681 		sfc_update_diff_stat(&port->ipackets,
682 			mac_stats[EFX_MAC_RX_PKTS] -
683 			mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
684 			stats->imissed - stats->ierrors);
685 		stats->ipackets = port->ipackets;
686 	}
687 
688 unlock:
689 	sfc_adapter_unlock(sa);
690 	SFC_ASSERT(ret >= 0);
691 	return -ret;
692 }
693 
694 static int
695 sfc_stats_reset(struct rte_eth_dev *dev)
696 {
697 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
698 	struct sfc_port *port = &sa->port;
699 	int rc;
700 
701 	sfc_adapter_lock(sa);
702 
703 	if (sa->state != SFC_ADAPTER_STARTED) {
704 		/*
705 		 * The operation cannot be done if port is not started; it
706 		 * will be scheduled to be done during the next port start
707 		 */
708 		port->mac_stats_reset_pending = B_TRUE;
709 		sfc_adapter_unlock(sa);
710 		return 0;
711 	}
712 
713 	rc = sfc_port_reset_mac_stats(sa);
714 	if (rc != 0)
715 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
716 
717 	sfc_adapter_unlock(sa);
718 
719 	SFC_ASSERT(rc >= 0);
720 	return -rc;
721 }
722 
723 static int
724 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
725 	       unsigned int xstats_count)
726 {
727 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
728 	struct sfc_port *port = &sa->port;
729 	uint64_t *mac_stats;
730 	int rc;
731 	unsigned int i;
732 	int nstats = 0;
733 
734 	sfc_adapter_lock(sa);
735 
736 	if (unlikely(xstats == NULL)) {
737 		nstats = port->mac_stats_nb_supported;
738 		goto unlock;
739 	}
740 
741 	rc = sfc_port_update_mac_stats(sa, B_FALSE);
742 	if (rc != 0) {
743 		SFC_ASSERT(rc > 0);
744 		nstats = -rc;
745 		goto unlock;
746 	}
747 
748 	mac_stats = port->mac_stats_buf;
749 
750 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
751 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
752 			if (nstats < (int)xstats_count) {
753 				xstats[nstats].id = nstats;
754 				xstats[nstats].value = mac_stats[i];
755 			}
756 			nstats++;
757 		}
758 	}
759 
760 unlock:
761 	sfc_adapter_unlock(sa);
762 
763 	return nstats;
764 }
765 
766 static int
767 sfc_xstats_get_names(struct rte_eth_dev *dev,
768 		     struct rte_eth_xstat_name *xstats_names,
769 		     unsigned int xstats_count)
770 {
771 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
772 	struct sfc_port *port = &sa->port;
773 	unsigned int i;
774 	unsigned int nstats = 0;
775 
776 	if (unlikely(xstats_names == NULL)) {
777 		sfc_adapter_lock(sa);
778 		nstats = port->mac_stats_nb_supported;
779 		sfc_adapter_unlock(sa);
780 		return nstats;
781 	}
782 
783 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
784 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
785 			if (nstats < xstats_count)
786 				strlcpy(xstats_names[nstats].name,
787 					efx_mac_stat_name(sa->nic, i),
788 					sizeof(xstats_names[0].name));
789 			nstats++;
790 		}
791 	}
792 
793 	return nstats;
794 }
795 
796 static int
797 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
798 		     uint64_t *values, unsigned int n)
799 {
800 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
801 	struct sfc_port *port = &sa->port;
802 	uint64_t *mac_stats;
803 	unsigned int i;
804 	int ret;
805 	int rc;
806 
807 	if (unlikely(ids == NULL || values == NULL))
808 		return -EINVAL;
809 
810 	sfc_adapter_lock(sa);
811 
812 	rc = sfc_port_update_mac_stats(sa, B_FALSE);
813 	if (rc != 0) {
814 		SFC_ASSERT(rc > 0);
815 		ret = -rc;
816 		goto unlock;
817 	}
818 
819 	mac_stats = port->mac_stats_buf;
820 
821 	SFC_ASSERT(port->mac_stats_nb_supported <=
822 		   RTE_DIM(port->mac_stats_by_id));
823 
824 	for (i = 0; i < n; i++) {
825 		if (ids[i] < port->mac_stats_nb_supported) {
826 			values[i] = mac_stats[port->mac_stats_by_id[ids[i]]];
827 		} else {
828 			ret = i;
829 			goto unlock;
830 		}
831 	}
832 
833 	ret = n;
834 
835 unlock:
836 	sfc_adapter_unlock(sa);
837 
838 	return ret;
839 }
840 
841 static int
842 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
843 			   struct rte_eth_xstat_name *xstats_names,
844 			   const uint64_t *ids, unsigned int size)
845 {
846 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
847 	struct sfc_port *port = &sa->port;
848 	unsigned int nb_supported;
849 	unsigned int i;
850 
851 	if (unlikely(xstats_names == NULL && ids != NULL) ||
852 	    unlikely(xstats_names != NULL && ids == NULL))
853 		return -EINVAL;
854 
855 	sfc_adapter_lock(sa);
856 
857 	if (unlikely(xstats_names == NULL && ids == NULL)) {
858 		nb_supported = port->mac_stats_nb_supported;
859 		sfc_adapter_unlock(sa);
860 		return nb_supported;
861 	}
862 
863 	SFC_ASSERT(port->mac_stats_nb_supported <=
864 		   RTE_DIM(port->mac_stats_by_id));
865 
866 	for (i = 0; i < size; i++) {
867 		if (ids[i] < port->mac_stats_nb_supported) {
868 			strlcpy(xstats_names[i].name,
869 				efx_mac_stat_name(sa->nic,
870 						 port->mac_stats_by_id[ids[i]]),
871 				sizeof(xstats_names[0].name));
872 		} else {
873 			sfc_adapter_unlock(sa);
874 			return i;
875 		}
876 	}
877 
878 	sfc_adapter_unlock(sa);
879 
880 	return size;
881 }
882 
883 static int
884 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
885 {
886 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
887 	unsigned int wanted_fc, link_fc;
888 
889 	memset(fc_conf, 0, sizeof(*fc_conf));
890 
891 	sfc_adapter_lock(sa);
892 
893 	if (sa->state == SFC_ADAPTER_STARTED)
894 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
895 	else
896 		link_fc = sa->port.flow_ctrl;
897 
898 	switch (link_fc) {
899 	case 0:
900 		fc_conf->mode = RTE_FC_NONE;
901 		break;
902 	case EFX_FCNTL_RESPOND:
903 		fc_conf->mode = RTE_FC_RX_PAUSE;
904 		break;
905 	case EFX_FCNTL_GENERATE:
906 		fc_conf->mode = RTE_FC_TX_PAUSE;
907 		break;
908 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
909 		fc_conf->mode = RTE_FC_FULL;
910 		break;
911 	default:
912 		sfc_err(sa, "%s: unexpected flow control value %#x",
913 			__func__, link_fc);
914 	}
915 
916 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
917 
918 	sfc_adapter_unlock(sa);
919 
920 	return 0;
921 }
922 
923 static int
924 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
925 {
926 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
927 	struct sfc_port *port = &sa->port;
928 	unsigned int fcntl;
929 	int rc;
930 
931 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
932 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
933 	    fc_conf->mac_ctrl_frame_fwd != 0) {
934 		sfc_err(sa, "unsupported flow control settings specified");
935 		rc = EINVAL;
936 		goto fail_inval;
937 	}
938 
939 	switch (fc_conf->mode) {
940 	case RTE_FC_NONE:
941 		fcntl = 0;
942 		break;
943 	case RTE_FC_RX_PAUSE:
944 		fcntl = EFX_FCNTL_RESPOND;
945 		break;
946 	case RTE_FC_TX_PAUSE:
947 		fcntl = EFX_FCNTL_GENERATE;
948 		break;
949 	case RTE_FC_FULL:
950 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
951 		break;
952 	default:
953 		rc = EINVAL;
954 		goto fail_inval;
955 	}
956 
957 	sfc_adapter_lock(sa);
958 
959 	if (sa->state == SFC_ADAPTER_STARTED) {
960 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
961 		if (rc != 0)
962 			goto fail_mac_fcntl_set;
963 	}
964 
965 	port->flow_ctrl = fcntl;
966 	port->flow_ctrl_autoneg = fc_conf->autoneg;
967 
968 	sfc_adapter_unlock(sa);
969 
970 	return 0;
971 
972 fail_mac_fcntl_set:
973 	sfc_adapter_unlock(sa);
974 fail_inval:
975 	SFC_ASSERT(rc > 0);
976 	return -rc;
977 }
978 
979 static int
980 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
981 {
982 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
983 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
984 	boolean_t scatter_enabled;
985 	const char *error;
986 	unsigned int i;
987 
988 	for (i = 0; i < sas->rxq_count; i++) {
989 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
990 			continue;
991 
992 		scatter_enabled = (sas->rxq_info[i].type_flags &
993 				   EFX_RXQ_FLAG_SCATTER);
994 
995 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
996 					  encp->enc_rx_prefix_size,
997 					  scatter_enabled,
998 					  encp->enc_rx_scatter_max, &error)) {
999 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
1000 				error);
1001 			return EINVAL;
1002 		}
1003 	}
1004 
1005 	return 0;
1006 }
1007 
1008 static int
1009 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
1010 {
1011 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1012 	size_t pdu = EFX_MAC_PDU(mtu);
1013 	size_t old_pdu;
1014 	int rc;
1015 
1016 	sfc_log_init(sa, "mtu=%u", mtu);
1017 
1018 	rc = EINVAL;
1019 	if (pdu < EFX_MAC_PDU_MIN) {
1020 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
1021 			(unsigned int)mtu, (unsigned int)pdu,
1022 			EFX_MAC_PDU_MIN);
1023 		goto fail_inval;
1024 	}
1025 	if (pdu > EFX_MAC_PDU_MAX) {
1026 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
1027 			(unsigned int)mtu, (unsigned int)pdu,
1028 			(unsigned int)EFX_MAC_PDU_MAX);
1029 		goto fail_inval;
1030 	}
1031 
1032 	sfc_adapter_lock(sa);
1033 
1034 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
1035 	if (rc != 0)
1036 		goto fail_check_scatter;
1037 
1038 	if (pdu != sa->port.pdu) {
1039 		if (sa->state == SFC_ADAPTER_STARTED) {
1040 			sfc_stop(sa);
1041 
1042 			old_pdu = sa->port.pdu;
1043 			sa->port.pdu = pdu;
1044 			rc = sfc_start(sa);
1045 			if (rc != 0)
1046 				goto fail_start;
1047 		} else {
1048 			sa->port.pdu = pdu;
1049 		}
1050 	}
1051 
1052 	/*
1053 	 * The driver does not use it, but other PMDs update jumbo frame
1054 	 * flag and max_rx_pkt_len when MTU is set.
1055 	 */
1056 	if (mtu > RTE_ETHER_MTU) {
1057 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1058 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1059 	}
1060 
1061 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
1062 
1063 	sfc_adapter_unlock(sa);
1064 
1065 	sfc_log_init(sa, "done");
1066 	return 0;
1067 
1068 fail_start:
1069 	sa->port.pdu = old_pdu;
1070 	if (sfc_start(sa) != 0)
1071 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1072 			"PDU max size - port is stopped",
1073 			(unsigned int)pdu, (unsigned int)old_pdu);
1074 
1075 fail_check_scatter:
1076 	sfc_adapter_unlock(sa);
1077 
1078 fail_inval:
1079 	sfc_log_init(sa, "failed %d", rc);
1080 	SFC_ASSERT(rc > 0);
1081 	return -rc;
1082 }
1083 static int
1084 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1085 {
1086 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1087 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1088 	struct sfc_port *port = &sa->port;
1089 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1090 	int rc = 0;
1091 
1092 	sfc_adapter_lock(sa);
1093 
1094 	if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1095 		goto unlock;
1096 
1097 	/*
1098 	 * Copy the address to the device private data so that
1099 	 * it could be recalled in the case of adapter restart.
1100 	 */
1101 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1102 
1103 	/*
1104 	 * Neither of the two following checks can return
1105 	 * an error. The new MAC address is preserved in
1106 	 * the device private data and can be activated
1107 	 * on the next port start if the user prevents
1108 	 * isolated mode from being enabled.
1109 	 */
1110 	if (sfc_sa2shared(sa)->isolated) {
1111 		sfc_warn(sa, "isolated mode is active on the port");
1112 		sfc_warn(sa, "will not set MAC address");
1113 		goto unlock;
1114 	}
1115 
1116 	if (sa->state != SFC_ADAPTER_STARTED) {
1117 		sfc_notice(sa, "the port is not started");
1118 		sfc_notice(sa, "the new MAC address will be set on port start");
1119 
1120 		goto unlock;
1121 	}
1122 
1123 	if (encp->enc_allow_set_mac_with_installed_filters) {
1124 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1125 		if (rc != 0) {
1126 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1127 			goto unlock;
1128 		}
1129 
1130 		/*
1131 		 * Changing the MAC address by means of MCDI request
1132 		 * has no effect on received traffic, therefore
1133 		 * we also need to update unicast filters
1134 		 */
1135 		rc = sfc_set_rx_mode_unchecked(sa);
1136 		if (rc != 0) {
1137 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1138 			/* Rollback the old address */
1139 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1140 			(void)sfc_set_rx_mode_unchecked(sa);
1141 		}
1142 	} else {
1143 		sfc_warn(sa, "cannot set MAC address with filters installed");
1144 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1145 		sfc_warn(sa, "(some traffic may be dropped)");
1146 
1147 		/*
1148 		 * Since setting MAC address with filters installed is not
1149 		 * allowed on the adapter, the new MAC address will be set
1150 		 * by means of adapter restart. sfc_start() shall retrieve
1151 		 * the new address from the device private data and set it.
1152 		 */
1153 		sfc_stop(sa);
1154 		rc = sfc_start(sa);
1155 		if (rc != 0)
1156 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1157 	}
1158 
1159 unlock:
1160 	if (rc != 0)
1161 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1162 
1163 	sfc_adapter_unlock(sa);
1164 
1165 	SFC_ASSERT(rc >= 0);
1166 	return -rc;
1167 }
1168 
1169 
1170 static int
1171 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1172 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1173 {
1174 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1175 	struct sfc_port *port = &sa->port;
1176 	uint8_t *mc_addrs = port->mcast_addrs;
1177 	int rc;
1178 	unsigned int i;
1179 
1180 	if (sfc_sa2shared(sa)->isolated) {
1181 		sfc_err(sa, "isolated mode is active on the port");
1182 		sfc_err(sa, "will not set multicast address list");
1183 		return -ENOTSUP;
1184 	}
1185 
1186 	if (mc_addrs == NULL)
1187 		return -ENOBUFS;
1188 
1189 	if (nb_mc_addr > port->max_mcast_addrs) {
1190 		sfc_err(sa, "too many multicast addresses: %u > %u",
1191 			 nb_mc_addr, port->max_mcast_addrs);
1192 		return -EINVAL;
1193 	}
1194 
1195 	for (i = 0; i < nb_mc_addr; ++i) {
1196 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1197 				 EFX_MAC_ADDR_LEN);
1198 		mc_addrs += EFX_MAC_ADDR_LEN;
1199 	}
1200 
1201 	port->nb_mcast_addrs = nb_mc_addr;
1202 
1203 	if (sa->state != SFC_ADAPTER_STARTED)
1204 		return 0;
1205 
1206 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1207 					port->nb_mcast_addrs);
1208 	if (rc != 0)
1209 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1210 
1211 	SFC_ASSERT(rc >= 0);
1212 	return -rc;
1213 }
1214 
1215 /*
1216  * The function is used by the secondary process as well. It must not
1217  * use any process-local pointers from the adapter data.
1218  */
1219 static void
1220 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1221 		      struct rte_eth_rxq_info *qinfo)
1222 {
1223 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1224 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1225 	struct sfc_rxq_info *rxq_info;
1226 
1227 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1228 
1229 	qinfo->mp = rxq_info->refill_mb_pool;
1230 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1231 	qinfo->conf.rx_drop_en = 1;
1232 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1233 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1234 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1235 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1236 		qinfo->scattered_rx = 1;
1237 	}
1238 	qinfo->nb_desc = rxq_info->entries;
1239 }
1240 
1241 /*
1242  * The function is used by the secondary process as well. It must not
1243  * use any process-local pointers from the adapter data.
1244  */
1245 static void
1246 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1247 		      struct rte_eth_txq_info *qinfo)
1248 {
1249 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1250 	struct sfc_txq_info *txq_info;
1251 
1252 	SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count);
1253 
1254 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1255 
1256 	memset(qinfo, 0, sizeof(*qinfo));
1257 
1258 	qinfo->conf.offloads = txq_info->offloads;
1259 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1260 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1261 	qinfo->nb_desc = txq_info->entries;
1262 }
1263 
1264 /*
1265  * The function is used by the secondary process as well. It must not
1266  * use any process-local pointers from the adapter data.
1267  */
1268 static uint32_t
1269 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1270 {
1271 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1272 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1273 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1274 	struct sfc_rxq_info *rxq_info;
1275 
1276 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1277 
1278 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1279 		return 0;
1280 
1281 	return sap->dp_rx->qdesc_npending(rxq_info->dp);
1282 }
1283 
1284 /*
1285  * The function is used by the secondary process as well. It must not
1286  * use any process-local pointers from the adapter data.
1287  */
1288 static int
1289 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1290 {
1291 	struct sfc_dp_rxq *dp_rxq = queue;
1292 	const struct sfc_dp_rx *dp_rx;
1293 
1294 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1295 
1296 	return offset < dp_rx->qdesc_npending(dp_rxq);
1297 }
1298 
1299 /*
1300  * The function is used by the secondary process as well. It must not
1301  * use any process-local pointers from the adapter data.
1302  */
1303 static int
1304 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1305 {
1306 	struct sfc_dp_rxq *dp_rxq = queue;
1307 	const struct sfc_dp_rx *dp_rx;
1308 
1309 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1310 
1311 	return dp_rx->qdesc_status(dp_rxq, offset);
1312 }
1313 
1314 /*
1315  * The function is used by the secondary process as well. It must not
1316  * use any process-local pointers from the adapter data.
1317  */
1318 static int
1319 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1320 {
1321 	struct sfc_dp_txq *dp_txq = queue;
1322 	const struct sfc_dp_tx *dp_tx;
1323 
1324 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1325 
1326 	return dp_tx->qdesc_status(dp_txq, offset);
1327 }
1328 
1329 static int
1330 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1331 {
1332 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1333 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1334 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1335 	struct sfc_rxq_info *rxq_info;
1336 	sfc_sw_index_t sw_index;
1337 	int rc;
1338 
1339 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1340 
1341 	sfc_adapter_lock(sa);
1342 
1343 	rc = EINVAL;
1344 	if (sa->state != SFC_ADAPTER_STARTED)
1345 		goto fail_not_started;
1346 
1347 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1348 	if (rxq_info->state != SFC_RXQ_INITIALIZED)
1349 		goto fail_not_setup;
1350 
1351 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1352 	rc = sfc_rx_qstart(sa, sw_index);
1353 	if (rc != 0)
1354 		goto fail_rx_qstart;
1355 
1356 	rxq_info->deferred_started = B_TRUE;
1357 
1358 	sfc_adapter_unlock(sa);
1359 
1360 	return 0;
1361 
1362 fail_rx_qstart:
1363 fail_not_setup:
1364 fail_not_started:
1365 	sfc_adapter_unlock(sa);
1366 	SFC_ASSERT(rc > 0);
1367 	return -rc;
1368 }
1369 
1370 static int
1371 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1372 {
1373 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1374 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1375 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1376 	struct sfc_rxq_info *rxq_info;
1377 	sfc_sw_index_t sw_index;
1378 
1379 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1380 
1381 	sfc_adapter_lock(sa);
1382 
1383 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1384 	sfc_rx_qstop(sa, sw_index);
1385 
1386 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1387 	rxq_info->deferred_started = B_FALSE;
1388 
1389 	sfc_adapter_unlock(sa);
1390 
1391 	return 0;
1392 }
1393 
1394 static int
1395 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1396 {
1397 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1398 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1399 	struct sfc_txq_info *txq_info;
1400 	sfc_sw_index_t sw_index;
1401 	int rc;
1402 
1403 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1404 
1405 	sfc_adapter_lock(sa);
1406 
1407 	rc = EINVAL;
1408 	if (sa->state != SFC_ADAPTER_STARTED)
1409 		goto fail_not_started;
1410 
1411 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1412 	if (txq_info->state != SFC_TXQ_INITIALIZED)
1413 		goto fail_not_setup;
1414 
1415 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1416 	rc = sfc_tx_qstart(sa, sw_index);
1417 	if (rc != 0)
1418 		goto fail_tx_qstart;
1419 
1420 	txq_info->deferred_started = B_TRUE;
1421 
1422 	sfc_adapter_unlock(sa);
1423 	return 0;
1424 
1425 fail_tx_qstart:
1426 
1427 fail_not_setup:
1428 fail_not_started:
1429 	sfc_adapter_unlock(sa);
1430 	SFC_ASSERT(rc > 0);
1431 	return -rc;
1432 }
1433 
1434 static int
1435 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1436 {
1437 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1438 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1439 	struct sfc_txq_info *txq_info;
1440 	sfc_sw_index_t sw_index;
1441 
1442 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1443 
1444 	sfc_adapter_lock(sa);
1445 
1446 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1447 	sfc_tx_qstop(sa, sw_index);
1448 
1449 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1450 	txq_info->deferred_started = B_FALSE;
1451 
1452 	sfc_adapter_unlock(sa);
1453 	return 0;
1454 }
1455 
1456 static efx_tunnel_protocol_t
1457 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1458 {
1459 	switch (rte_type) {
1460 	case RTE_TUNNEL_TYPE_VXLAN:
1461 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1462 	case RTE_TUNNEL_TYPE_GENEVE:
1463 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1464 	default:
1465 		return EFX_TUNNEL_NPROTOS;
1466 	}
1467 }
1468 
1469 enum sfc_udp_tunnel_op_e {
1470 	SFC_UDP_TUNNEL_ADD_PORT,
1471 	SFC_UDP_TUNNEL_DEL_PORT,
1472 };
1473 
1474 static int
1475 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1476 		      struct rte_eth_udp_tunnel *tunnel_udp,
1477 		      enum sfc_udp_tunnel_op_e op)
1478 {
1479 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1480 	efx_tunnel_protocol_t tunnel_proto;
1481 	int rc;
1482 
1483 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1484 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1485 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1486 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1487 
1488 	tunnel_proto =
1489 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1490 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1491 		rc = ENOTSUP;
1492 		goto fail_bad_proto;
1493 	}
1494 
1495 	sfc_adapter_lock(sa);
1496 
1497 	switch (op) {
1498 	case SFC_UDP_TUNNEL_ADD_PORT:
1499 		rc = efx_tunnel_config_udp_add(sa->nic,
1500 					       tunnel_udp->udp_port,
1501 					       tunnel_proto);
1502 		break;
1503 	case SFC_UDP_TUNNEL_DEL_PORT:
1504 		rc = efx_tunnel_config_udp_remove(sa->nic,
1505 						  tunnel_udp->udp_port,
1506 						  tunnel_proto);
1507 		break;
1508 	default:
1509 		rc = EINVAL;
1510 		goto fail_bad_op;
1511 	}
1512 
1513 	if (rc != 0)
1514 		goto fail_op;
1515 
1516 	if (sa->state == SFC_ADAPTER_STARTED) {
1517 		rc = efx_tunnel_reconfigure(sa->nic);
1518 		if (rc == EAGAIN) {
1519 			/*
1520 			 * Configuration is accepted by FW and MC reboot
1521 			 * is initiated to apply the changes. MC reboot
1522 			 * will be handled in a usual way (MC reboot
1523 			 * event on management event queue and adapter
1524 			 * restart).
1525 			 */
1526 			rc = 0;
1527 		} else if (rc != 0) {
1528 			goto fail_reconfigure;
1529 		}
1530 	}
1531 
1532 	sfc_adapter_unlock(sa);
1533 	return 0;
1534 
1535 fail_reconfigure:
1536 	/* Remove/restore entry since the change makes the trouble */
1537 	switch (op) {
1538 	case SFC_UDP_TUNNEL_ADD_PORT:
1539 		(void)efx_tunnel_config_udp_remove(sa->nic,
1540 						   tunnel_udp->udp_port,
1541 						   tunnel_proto);
1542 		break;
1543 	case SFC_UDP_TUNNEL_DEL_PORT:
1544 		(void)efx_tunnel_config_udp_add(sa->nic,
1545 						tunnel_udp->udp_port,
1546 						tunnel_proto);
1547 		break;
1548 	}
1549 
1550 fail_op:
1551 fail_bad_op:
1552 	sfc_adapter_unlock(sa);
1553 
1554 fail_bad_proto:
1555 	SFC_ASSERT(rc > 0);
1556 	return -rc;
1557 }
1558 
1559 static int
1560 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1561 			    struct rte_eth_udp_tunnel *tunnel_udp)
1562 {
1563 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1564 }
1565 
1566 static int
1567 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1568 			    struct rte_eth_udp_tunnel *tunnel_udp)
1569 {
1570 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1571 }
1572 
1573 /*
1574  * The function is used by the secondary process as well. It must not
1575  * use any process-local pointers from the adapter data.
1576  */
1577 static int
1578 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1579 			  struct rte_eth_rss_conf *rss_conf)
1580 {
1581 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1582 	struct sfc_rss *rss = &sas->rss;
1583 
1584 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1585 		return -ENOTSUP;
1586 
1587 	/*
1588 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1589 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1590 	 * flags which corresponds to the active EFX configuration stored
1591 	 * locally in 'sfc_adapter' and kept up-to-date
1592 	 */
1593 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1594 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1595 	if (rss_conf->rss_key != NULL)
1596 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1597 
1598 	return 0;
1599 }
1600 
1601 static int
1602 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1603 			struct rte_eth_rss_conf *rss_conf)
1604 {
1605 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1606 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1607 	unsigned int efx_hash_types;
1608 	uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1609 	unsigned int n_contexts;
1610 	unsigned int mode_i = 0;
1611 	unsigned int key_i = 0;
1612 	unsigned int i = 0;
1613 	int rc = 0;
1614 
1615 	n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1616 
1617 	if (sfc_sa2shared(sa)->isolated)
1618 		return -ENOTSUP;
1619 
1620 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1621 		sfc_err(sa, "RSS is not available");
1622 		return -ENOTSUP;
1623 	}
1624 
1625 	if (rss->channels == 0) {
1626 		sfc_err(sa, "RSS is not configured");
1627 		return -EINVAL;
1628 	}
1629 
1630 	if ((rss_conf->rss_key != NULL) &&
1631 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1632 		sfc_err(sa, "RSS key size is wrong (should be %zu)",
1633 			sizeof(rss->key));
1634 		return -EINVAL;
1635 	}
1636 
1637 	sfc_adapter_lock(sa);
1638 
1639 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1640 	if (rc != 0)
1641 		goto fail_rx_hf_rte_to_efx;
1642 
1643 	for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1644 		rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1645 					   rss->hash_alg, efx_hash_types,
1646 					   B_TRUE);
1647 		if (rc != 0)
1648 			goto fail_scale_mode_set;
1649 	}
1650 
1651 	if (rss_conf->rss_key != NULL) {
1652 		if (sa->state == SFC_ADAPTER_STARTED) {
1653 			for (key_i = 0; key_i < n_contexts; key_i++) {
1654 				rc = efx_rx_scale_key_set(sa->nic,
1655 							  contexts[key_i],
1656 							  rss_conf->rss_key,
1657 							  sizeof(rss->key));
1658 				if (rc != 0)
1659 					goto fail_scale_key_set;
1660 			}
1661 		}
1662 
1663 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1664 	}
1665 
1666 	rss->hash_types = efx_hash_types;
1667 
1668 	sfc_adapter_unlock(sa);
1669 
1670 	return 0;
1671 
1672 fail_scale_key_set:
1673 	for (i = 0; i < key_i; i++) {
1674 		if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1675 					 sizeof(rss->key)) != 0)
1676 			sfc_err(sa, "failed to restore RSS key");
1677 	}
1678 
1679 fail_scale_mode_set:
1680 	for (i = 0; i < mode_i; i++) {
1681 		if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1682 					  EFX_RX_HASHALG_TOEPLITZ,
1683 					  rss->hash_types, B_TRUE) != 0)
1684 			sfc_err(sa, "failed to restore RSS mode");
1685 	}
1686 
1687 fail_rx_hf_rte_to_efx:
1688 	sfc_adapter_unlock(sa);
1689 	return -rc;
1690 }
1691 
1692 /*
1693  * The function is used by the secondary process as well. It must not
1694  * use any process-local pointers from the adapter data.
1695  */
1696 static int
1697 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1698 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1699 		       uint16_t reta_size)
1700 {
1701 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1702 	struct sfc_rss *rss = &sas->rss;
1703 	int entry;
1704 
1705 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1706 		return -ENOTSUP;
1707 
1708 	if (rss->channels == 0)
1709 		return -EINVAL;
1710 
1711 	if (reta_size != EFX_RSS_TBL_SIZE)
1712 		return -EINVAL;
1713 
1714 	for (entry = 0; entry < reta_size; entry++) {
1715 		int grp = entry / RTE_RETA_GROUP_SIZE;
1716 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1717 
1718 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1719 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1720 	}
1721 
1722 	return 0;
1723 }
1724 
1725 static int
1726 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1727 			struct rte_eth_rss_reta_entry64 *reta_conf,
1728 			uint16_t reta_size)
1729 {
1730 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1731 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1732 	unsigned int *rss_tbl_new;
1733 	uint16_t entry;
1734 	int rc = 0;
1735 
1736 
1737 	if (sfc_sa2shared(sa)->isolated)
1738 		return -ENOTSUP;
1739 
1740 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1741 		sfc_err(sa, "RSS is not available");
1742 		return -ENOTSUP;
1743 	}
1744 
1745 	if (rss->channels == 0) {
1746 		sfc_err(sa, "RSS is not configured");
1747 		return -EINVAL;
1748 	}
1749 
1750 	if (reta_size != EFX_RSS_TBL_SIZE) {
1751 		sfc_err(sa, "RETA size is wrong (should be %u)",
1752 			EFX_RSS_TBL_SIZE);
1753 		return -EINVAL;
1754 	}
1755 
1756 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1757 	if (rss_tbl_new == NULL)
1758 		return -ENOMEM;
1759 
1760 	sfc_adapter_lock(sa);
1761 
1762 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1763 
1764 	for (entry = 0; entry < reta_size; entry++) {
1765 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1766 		struct rte_eth_rss_reta_entry64 *grp;
1767 
1768 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1769 
1770 		if (grp->mask & (1ull << grp_idx)) {
1771 			if (grp->reta[grp_idx] >= rss->channels) {
1772 				rc = EINVAL;
1773 				goto bad_reta_entry;
1774 			}
1775 			rss_tbl_new[entry] = grp->reta[grp_idx];
1776 		}
1777 	}
1778 
1779 	if (sa->state == SFC_ADAPTER_STARTED) {
1780 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1781 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1782 		if (rc != 0)
1783 			goto fail_scale_tbl_set;
1784 	}
1785 
1786 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1787 
1788 fail_scale_tbl_set:
1789 bad_reta_entry:
1790 	sfc_adapter_unlock(sa);
1791 
1792 	rte_free(rss_tbl_new);
1793 
1794 	SFC_ASSERT(rc >= 0);
1795 	return -rc;
1796 }
1797 
1798 static int
1799 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
1800 		     const struct rte_flow_ops **ops)
1801 {
1802 	*ops = &sfc_flow_ops;
1803 	return 0;
1804 }
1805 
1806 static int
1807 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1808 {
1809 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1810 
1811 	/*
1812 	 * If Rx datapath does not provide callback to check mempool,
1813 	 * all pools are supported.
1814 	 */
1815 	if (sap->dp_rx->pool_ops_supported == NULL)
1816 		return 1;
1817 
1818 	return sap->dp_rx->pool_ops_supported(pool);
1819 }
1820 
1821 static int
1822 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1823 {
1824 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1825 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1826 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1827 	struct sfc_rxq_info *rxq_info;
1828 
1829 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1830 
1831 	return sap->dp_rx->intr_enable(rxq_info->dp);
1832 }
1833 
1834 static int
1835 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1836 {
1837 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1838 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1839 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1840 	struct sfc_rxq_info *rxq_info;
1841 
1842 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1843 
1844 	return sap->dp_rx->intr_disable(rxq_info->dp);
1845 }
1846 
1847 static const struct eth_dev_ops sfc_eth_dev_ops = {
1848 	.dev_configure			= sfc_dev_configure,
1849 	.dev_start			= sfc_dev_start,
1850 	.dev_stop			= sfc_dev_stop,
1851 	.dev_set_link_up		= sfc_dev_set_link_up,
1852 	.dev_set_link_down		= sfc_dev_set_link_down,
1853 	.dev_close			= sfc_dev_close,
1854 	.promiscuous_enable		= sfc_dev_promisc_enable,
1855 	.promiscuous_disable		= sfc_dev_promisc_disable,
1856 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1857 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1858 	.link_update			= sfc_dev_link_update,
1859 	.stats_get			= sfc_stats_get,
1860 	.stats_reset			= sfc_stats_reset,
1861 	.xstats_get			= sfc_xstats_get,
1862 	.xstats_reset			= sfc_stats_reset,
1863 	.xstats_get_names		= sfc_xstats_get_names,
1864 	.dev_infos_get			= sfc_dev_infos_get,
1865 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1866 	.mtu_set			= sfc_dev_set_mtu,
1867 	.rx_queue_start			= sfc_rx_queue_start,
1868 	.rx_queue_stop			= sfc_rx_queue_stop,
1869 	.tx_queue_start			= sfc_tx_queue_start,
1870 	.tx_queue_stop			= sfc_tx_queue_stop,
1871 	.rx_queue_setup			= sfc_rx_queue_setup,
1872 	.rx_queue_release		= sfc_rx_queue_release,
1873 	.rx_queue_intr_enable		= sfc_rx_queue_intr_enable,
1874 	.rx_queue_intr_disable		= sfc_rx_queue_intr_disable,
1875 	.tx_queue_setup			= sfc_tx_queue_setup,
1876 	.tx_queue_release		= sfc_tx_queue_release,
1877 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1878 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1879 	.mac_addr_set			= sfc_mac_addr_set,
1880 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1881 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1882 	.reta_update			= sfc_dev_rss_reta_update,
1883 	.reta_query			= sfc_dev_rss_reta_query,
1884 	.rss_hash_update		= sfc_dev_rss_hash_update,
1885 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1886 	.flow_ops_get			= sfc_dev_flow_ops_get,
1887 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1888 	.rxq_info_get			= sfc_rx_queue_info_get,
1889 	.txq_info_get			= sfc_tx_queue_info_get,
1890 	.fw_version_get			= sfc_fw_version_get,
1891 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1892 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1893 	.pool_ops_supported		= sfc_pool_ops_supported,
1894 };
1895 
1896 /**
1897  * Duplicate a string in potentially shared memory required for
1898  * multi-process support.
1899  *
1900  * strdup() allocates from process-local heap/memory.
1901  */
1902 static char *
1903 sfc_strdup(const char *str)
1904 {
1905 	size_t size;
1906 	char *copy;
1907 
1908 	if (str == NULL)
1909 		return NULL;
1910 
1911 	size = strlen(str) + 1;
1912 	copy = rte_malloc(__func__, size, 0);
1913 	if (copy != NULL)
1914 		rte_memcpy(copy, str, size);
1915 
1916 	return copy;
1917 }
1918 
1919 static int
1920 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1921 {
1922 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1923 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1924 	const struct sfc_dp_rx *dp_rx;
1925 	const struct sfc_dp_tx *dp_tx;
1926 	const efx_nic_cfg_t *encp;
1927 	unsigned int avail_caps = 0;
1928 	const char *rx_name = NULL;
1929 	const char *tx_name = NULL;
1930 	int rc;
1931 
1932 	switch (sa->family) {
1933 	case EFX_FAMILY_HUNTINGTON:
1934 	case EFX_FAMILY_MEDFORD:
1935 	case EFX_FAMILY_MEDFORD2:
1936 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1937 		avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
1938 		avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
1939 		break;
1940 	case EFX_FAMILY_RIVERHEAD:
1941 		avail_caps |= SFC_DP_HW_FW_CAP_EF100;
1942 		break;
1943 	default:
1944 		break;
1945 	}
1946 
1947 	encp = efx_nic_cfg_get(sa->nic);
1948 	if (encp->enc_rx_es_super_buffer_supported)
1949 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1950 
1951 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1952 				sfc_kvarg_string_handler, &rx_name);
1953 	if (rc != 0)
1954 		goto fail_kvarg_rx_datapath;
1955 
1956 	if (rx_name != NULL) {
1957 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1958 		if (dp_rx == NULL) {
1959 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1960 			rc = ENOENT;
1961 			goto fail_dp_rx;
1962 		}
1963 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
1964 			sfc_err(sa,
1965 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1966 				rx_name);
1967 			rc = EINVAL;
1968 			goto fail_dp_rx_caps;
1969 		}
1970 	} else {
1971 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1972 		if (dp_rx == NULL) {
1973 			sfc_err(sa, "Rx datapath by caps %#x not found",
1974 				avail_caps);
1975 			rc = ENOENT;
1976 			goto fail_dp_rx;
1977 		}
1978 	}
1979 
1980 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
1981 	if (sas->dp_rx_name == NULL) {
1982 		rc = ENOMEM;
1983 		goto fail_dp_rx_name;
1984 	}
1985 
1986 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
1987 
1988 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1989 				sfc_kvarg_string_handler, &tx_name);
1990 	if (rc != 0)
1991 		goto fail_kvarg_tx_datapath;
1992 
1993 	if (tx_name != NULL) {
1994 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1995 		if (dp_tx == NULL) {
1996 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1997 			rc = ENOENT;
1998 			goto fail_dp_tx;
1999 		}
2000 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
2001 			sfc_err(sa,
2002 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
2003 				tx_name);
2004 			rc = EINVAL;
2005 			goto fail_dp_tx_caps;
2006 		}
2007 	} else {
2008 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
2009 		if (dp_tx == NULL) {
2010 			sfc_err(sa, "Tx datapath by caps %#x not found",
2011 				avail_caps);
2012 			rc = ENOENT;
2013 			goto fail_dp_tx;
2014 		}
2015 	}
2016 
2017 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
2018 	if (sas->dp_tx_name == NULL) {
2019 		rc = ENOMEM;
2020 		goto fail_dp_tx_name;
2021 	}
2022 
2023 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
2024 
2025 	sa->priv.dp_rx = dp_rx;
2026 	sa->priv.dp_tx = dp_tx;
2027 
2028 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2029 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2030 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2031 
2032 	dev->rx_queue_count = sfc_rx_queue_count;
2033 	dev->rx_descriptor_done = sfc_rx_descriptor_done;
2034 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2035 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2036 	dev->dev_ops = &sfc_eth_dev_ops;
2037 
2038 	return 0;
2039 
2040 fail_dp_tx_name:
2041 fail_dp_tx_caps:
2042 fail_dp_tx:
2043 fail_kvarg_tx_datapath:
2044 	rte_free(sas->dp_rx_name);
2045 	sas->dp_rx_name = NULL;
2046 
2047 fail_dp_rx_name:
2048 fail_dp_rx_caps:
2049 fail_dp_rx:
2050 fail_kvarg_rx_datapath:
2051 	return rc;
2052 }
2053 
2054 static void
2055 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2056 {
2057 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2058 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2059 
2060 	dev->dev_ops = NULL;
2061 	dev->tx_pkt_prepare = NULL;
2062 	dev->rx_pkt_burst = NULL;
2063 	dev->tx_pkt_burst = NULL;
2064 
2065 	rte_free(sas->dp_tx_name);
2066 	sas->dp_tx_name = NULL;
2067 	sa->priv.dp_tx = NULL;
2068 
2069 	rte_free(sas->dp_rx_name);
2070 	sas->dp_rx_name = NULL;
2071 	sa->priv.dp_rx = NULL;
2072 }
2073 
2074 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2075 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2076 	.reta_query			= sfc_dev_rss_reta_query,
2077 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2078 	.rxq_info_get			= sfc_rx_queue_info_get,
2079 	.txq_info_get			= sfc_tx_queue_info_get,
2080 };
2081 
2082 static int
2083 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2084 {
2085 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2086 	struct sfc_adapter_priv *sap;
2087 	const struct sfc_dp_rx *dp_rx;
2088 	const struct sfc_dp_tx *dp_tx;
2089 	int rc;
2090 
2091 	/*
2092 	 * Allocate process private data from heap, since it should not
2093 	 * be located in shared memory allocated using rte_malloc() API.
2094 	 */
2095 	sap = calloc(1, sizeof(*sap));
2096 	if (sap == NULL) {
2097 		rc = ENOMEM;
2098 		goto fail_alloc_priv;
2099 	}
2100 
2101 	sap->logtype_main = logtype_main;
2102 
2103 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2104 	if (dp_rx == NULL) {
2105 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2106 			"cannot find %s Rx datapath", sas->dp_rx_name);
2107 		rc = ENOENT;
2108 		goto fail_dp_rx;
2109 	}
2110 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2111 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2112 			"%s Rx datapath does not support multi-process",
2113 			sas->dp_rx_name);
2114 		rc = EINVAL;
2115 		goto fail_dp_rx_multi_process;
2116 	}
2117 
2118 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2119 	if (dp_tx == NULL) {
2120 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2121 			"cannot find %s Tx datapath", sas->dp_tx_name);
2122 		rc = ENOENT;
2123 		goto fail_dp_tx;
2124 	}
2125 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2126 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2127 			"%s Tx datapath does not support multi-process",
2128 			sas->dp_tx_name);
2129 		rc = EINVAL;
2130 		goto fail_dp_tx_multi_process;
2131 	}
2132 
2133 	sap->dp_rx = dp_rx;
2134 	sap->dp_tx = dp_tx;
2135 
2136 	dev->process_private = sap;
2137 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2138 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2139 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2140 	dev->rx_queue_count = sfc_rx_queue_count;
2141 	dev->rx_descriptor_done = sfc_rx_descriptor_done;
2142 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2143 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2144 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2145 
2146 	return 0;
2147 
2148 fail_dp_tx_multi_process:
2149 fail_dp_tx:
2150 fail_dp_rx_multi_process:
2151 fail_dp_rx:
2152 	free(sap);
2153 
2154 fail_alloc_priv:
2155 	return rc;
2156 }
2157 
2158 static void
2159 sfc_register_dp(void)
2160 {
2161 	/* Register once */
2162 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2163 		/* Prefer EF10 datapath */
2164 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2165 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2166 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2167 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2168 
2169 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2170 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2171 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2172 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2173 	}
2174 }
2175 
2176 static int
2177 sfc_eth_dev_init(struct rte_eth_dev *dev)
2178 {
2179 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2180 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2181 	uint32_t logtype_main;
2182 	struct sfc_adapter *sa;
2183 	int rc;
2184 	const efx_nic_cfg_t *encp;
2185 	const struct rte_ether_addr *from;
2186 	int ret;
2187 
2188 	if (sfc_efx_dev_class_get(pci_dev->device.devargs) !=
2189 			SFC_EFX_DEV_CLASS_NET) {
2190 		SFC_GENERIC_LOG(DEBUG,
2191 			"Incompatible device class: skip probing, should be probed by other sfc driver.");
2192 		return 1;
2193 	}
2194 
2195 	sfc_register_dp();
2196 
2197 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2198 					    SFC_LOGTYPE_MAIN_STR,
2199 					    RTE_LOG_NOTICE);
2200 
2201 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2202 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2203 
2204 	/* Required for logging */
2205 	ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2206 			"PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2207 			pci_dev->addr.domain, pci_dev->addr.bus,
2208 			pci_dev->addr.devid, pci_dev->addr.function,
2209 			dev->data->port_id);
2210 	if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2211 		SFC_GENERIC_LOG(ERR,
2212 			"reserved log prefix is too short for " PCI_PRI_FMT,
2213 			pci_dev->addr.domain, pci_dev->addr.bus,
2214 			pci_dev->addr.devid, pci_dev->addr.function);
2215 		return -EINVAL;
2216 	}
2217 	sas->pci_addr = pci_dev->addr;
2218 	sas->port_id = dev->data->port_id;
2219 
2220 	/*
2221 	 * Allocate process private data from heap, since it should not
2222 	 * be located in shared memory allocated using rte_malloc() API.
2223 	 */
2224 	sa = calloc(1, sizeof(*sa));
2225 	if (sa == NULL) {
2226 		rc = ENOMEM;
2227 		goto fail_alloc_sa;
2228 	}
2229 
2230 	dev->process_private = sa;
2231 
2232 	/* Required for logging */
2233 	sa->priv.shared = sas;
2234 	sa->priv.logtype_main = logtype_main;
2235 
2236 	sa->eth_dev = dev;
2237 
2238 	/* Copy PCI device info to the dev->data */
2239 	rte_eth_copy_pci_info(dev, pci_dev);
2240 	dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2241 	dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
2242 
2243 	rc = sfc_kvargs_parse(sa);
2244 	if (rc != 0)
2245 		goto fail_kvargs_parse;
2246 
2247 	sfc_log_init(sa, "entry");
2248 
2249 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2250 	if (dev->data->mac_addrs == NULL) {
2251 		rc = ENOMEM;
2252 		goto fail_mac_addrs;
2253 	}
2254 
2255 	sfc_adapter_lock_init(sa);
2256 	sfc_adapter_lock(sa);
2257 
2258 	sfc_log_init(sa, "probing");
2259 	rc = sfc_probe(sa);
2260 	if (rc != 0)
2261 		goto fail_probe;
2262 
2263 	sfc_log_init(sa, "set device ops");
2264 	rc = sfc_eth_dev_set_ops(dev);
2265 	if (rc != 0)
2266 		goto fail_set_ops;
2267 
2268 	sfc_log_init(sa, "attaching");
2269 	rc = sfc_attach(sa);
2270 	if (rc != 0)
2271 		goto fail_attach;
2272 
2273 	encp = efx_nic_cfg_get(sa->nic);
2274 
2275 	/*
2276 	 * The arguments are really reverse order in comparison to
2277 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2278 	 */
2279 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2280 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2281 
2282 	sfc_adapter_unlock(sa);
2283 
2284 	sfc_log_init(sa, "done");
2285 	return 0;
2286 
2287 fail_attach:
2288 	sfc_eth_dev_clear_ops(dev);
2289 
2290 fail_set_ops:
2291 	sfc_unprobe(sa);
2292 
2293 fail_probe:
2294 	sfc_adapter_unlock(sa);
2295 	sfc_adapter_lock_fini(sa);
2296 	rte_free(dev->data->mac_addrs);
2297 	dev->data->mac_addrs = NULL;
2298 
2299 fail_mac_addrs:
2300 	sfc_kvargs_cleanup(sa);
2301 
2302 fail_kvargs_parse:
2303 	sfc_log_init(sa, "failed %d", rc);
2304 	dev->process_private = NULL;
2305 	free(sa);
2306 
2307 fail_alloc_sa:
2308 	SFC_ASSERT(rc > 0);
2309 	return -rc;
2310 }
2311 
2312 static int
2313 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2314 {
2315 	sfc_dev_close(dev);
2316 
2317 	return 0;
2318 }
2319 
2320 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2321 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2322 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2323 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2324 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2325 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2326 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2327 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2328 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2329 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2330 	{ .vendor_id = 0 /* sentinel */ }
2331 };
2332 
2333 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2334 	struct rte_pci_device *pci_dev)
2335 {
2336 	return rte_eth_dev_pci_generic_probe(pci_dev,
2337 		sizeof(struct sfc_adapter_shared), sfc_eth_dev_init);
2338 }
2339 
2340 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2341 {
2342 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2343 }
2344 
2345 static struct rte_pci_driver sfc_efx_pmd = {
2346 	.id_table = pci_id_sfc_efx_map,
2347 	.drv_flags =
2348 		RTE_PCI_DRV_INTR_LSC |
2349 		RTE_PCI_DRV_NEED_MAPPING,
2350 	.probe = sfc_eth_dev_pci_probe,
2351 	.remove = sfc_eth_dev_pci_remove,
2352 };
2353 
2354 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2355 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2356 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2357 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2358 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2359 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2360 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2361 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2362 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2363 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2364 
2365 RTE_INIT(sfc_driver_register_logtype)
2366 {
2367 	int ret;
2368 
2369 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2370 						   RTE_LOG_NOTICE);
2371 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2372 }
2373