xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision c377f1adf7093c6fab17833b289138d67db27563)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <ethdev_driver.h>
12 #include <ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_dp.h"
30 #include "sfc_dp_rx.h"
31 #include "sfc_repr.h"
32 #include "sfc_sw_stats.h"
33 
34 #define SFC_XSTAT_ID_INVALID_VAL  UINT64_MAX
35 #define SFC_XSTAT_ID_INVALID_NAME '\0'
36 
37 uint32_t sfc_logtype_driver;
38 
39 static struct sfc_dp_list sfc_dp_head =
40 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
41 
42 
43 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
44 
45 
46 static int
47 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
48 {
49 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
50 	efx_nic_fw_info_t enfi;
51 	int ret;
52 	int rc;
53 
54 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
55 	if (rc != 0)
56 		return -rc;
57 
58 	ret = snprintf(fw_version, fw_size,
59 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
60 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
61 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
62 	if (ret < 0)
63 		return ret;
64 
65 	if (enfi.enfi_dpcpu_fw_ids_valid) {
66 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
67 		int ret_extra;
68 
69 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
70 				     fw_size - dpcpu_fw_ids_offset,
71 				     " rx%" PRIx16 " tx%" PRIx16,
72 				     enfi.enfi_rx_dpcpu_fw_id,
73 				     enfi.enfi_tx_dpcpu_fw_id);
74 		if (ret_extra < 0)
75 			return ret_extra;
76 
77 		ret += ret_extra;
78 	}
79 
80 	if (fw_size < (size_t)(++ret))
81 		return ret;
82 	else
83 		return 0;
84 }
85 
86 static int
87 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
88 {
89 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
90 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
91 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
92 	struct sfc_rss *rss = &sas->rss;
93 	struct sfc_mae *mae = &sa->mae;
94 	uint64_t txq_offloads_def = 0;
95 
96 	sfc_log_init(sa, "entry");
97 
98 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
99 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
100 
101 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
102 
103 	dev_info->max_vfs = sa->sriov.num_vfs;
104 
105 	/* Autonegotiation may be disabled */
106 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
107 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
108 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
109 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
110 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
111 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
112 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
113 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
114 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
115 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
116 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
117 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
118 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
119 
120 	dev_info->max_rx_queues = sa->rxq_max;
121 	dev_info->max_tx_queues = sa->txq_max;
122 
123 	/* By default packets are dropped if no descriptors are available */
124 	dev_info->default_rxconf.rx_drop_en = 1;
125 
126 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
127 
128 	/*
129 	 * rx_offload_capa includes both device and queue offloads since
130 	 * the latter may be requested on a per device basis which makes
131 	 * sense when some offloads are needed to be set on all queues.
132 	 */
133 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
134 				    dev_info->rx_queue_offload_capa;
135 
136 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
137 
138 	/*
139 	 * tx_offload_capa includes both device and queue offloads since
140 	 * the latter may be requested on a per device basis which makes
141 	 * sense when some offloads are needed to be set on all queues.
142 	 */
143 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
144 				    dev_info->tx_queue_offload_capa;
145 
146 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
147 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
148 
149 	dev_info->default_txconf.offloads |= txq_offloads_def;
150 
151 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
152 		uint64_t rte_hf = 0;
153 		unsigned int i;
154 
155 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
156 			rte_hf |= rss->hf_map[i].rte;
157 
158 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
159 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
160 		dev_info->flow_type_rss_offloads = rte_hf;
161 	}
162 
163 	/* Initialize to hardware limits */
164 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
165 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
166 	/* The RXQ hardware requires that the descriptor count is a power
167 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
168 	 */
169 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
170 
171 	/* Initialize to hardware limits */
172 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
173 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
174 	/*
175 	 * The TXQ hardware requires that the descriptor count is a power
176 	 * of 2, but tx_desc_lim cannot properly describe that constraint
177 	 */
178 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
179 
180 	if (sap->dp_rx->get_dev_info != NULL)
181 		sap->dp_rx->get_dev_info(dev_info);
182 	if (sap->dp_tx->get_dev_info != NULL)
183 		sap->dp_tx->get_dev_info(dev_info);
184 
185 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
186 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
187 
188 	if (mae->status == SFC_MAE_STATUS_SUPPORTED) {
189 		dev_info->switch_info.name = dev->device->driver->name;
190 		dev_info->switch_info.domain_id = mae->switch_domain_id;
191 		dev_info->switch_info.port_id = mae->switch_port_id;
192 	}
193 
194 	return 0;
195 }
196 
197 static const uint32_t *
198 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
199 {
200 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
201 
202 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
203 }
204 
205 static int
206 sfc_dev_configure(struct rte_eth_dev *dev)
207 {
208 	struct rte_eth_dev_data *dev_data = dev->data;
209 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
210 	int rc;
211 
212 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
213 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
214 
215 	sfc_adapter_lock(sa);
216 	switch (sa->state) {
217 	case SFC_ETHDEV_CONFIGURED:
218 		/* FALLTHROUGH */
219 	case SFC_ETHDEV_INITIALIZED:
220 		rc = sfc_configure(sa);
221 		break;
222 	default:
223 		sfc_err(sa, "unexpected adapter state %u to configure",
224 			sa->state);
225 		rc = EINVAL;
226 		break;
227 	}
228 	sfc_adapter_unlock(sa);
229 
230 	sfc_log_init(sa, "done %d", rc);
231 	SFC_ASSERT(rc >= 0);
232 	return -rc;
233 }
234 
235 static int
236 sfc_dev_start(struct rte_eth_dev *dev)
237 {
238 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
239 	int rc;
240 
241 	sfc_log_init(sa, "entry");
242 
243 	sfc_adapter_lock(sa);
244 	rc = sfc_start(sa);
245 	sfc_adapter_unlock(sa);
246 
247 	sfc_log_init(sa, "done %d", rc);
248 	SFC_ASSERT(rc >= 0);
249 	return -rc;
250 }
251 
252 static int
253 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
254 {
255 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
256 	struct rte_eth_link current_link;
257 	int ret;
258 
259 	sfc_log_init(sa, "entry");
260 
261 	if (sa->state != SFC_ETHDEV_STARTED) {
262 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
263 	} else if (wait_to_complete) {
264 		efx_link_mode_t link_mode;
265 
266 		if (efx_port_poll(sa->nic, &link_mode) != 0)
267 			link_mode = EFX_LINK_UNKNOWN;
268 		sfc_port_link_mode_to_info(link_mode, &current_link);
269 
270 	} else {
271 		sfc_ev_mgmt_qpoll(sa);
272 		rte_eth_linkstatus_get(dev, &current_link);
273 	}
274 
275 	ret = rte_eth_linkstatus_set(dev, &current_link);
276 	if (ret == 0)
277 		sfc_notice(sa, "Link status is %s",
278 			   current_link.link_status ? "UP" : "DOWN");
279 
280 	return ret;
281 }
282 
283 static int
284 sfc_dev_stop(struct rte_eth_dev *dev)
285 {
286 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
287 
288 	sfc_log_init(sa, "entry");
289 
290 	sfc_adapter_lock(sa);
291 	sfc_stop(sa);
292 	sfc_adapter_unlock(sa);
293 
294 	sfc_log_init(sa, "done");
295 
296 	return 0;
297 }
298 
299 static int
300 sfc_dev_set_link_up(struct rte_eth_dev *dev)
301 {
302 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
303 	int rc;
304 
305 	sfc_log_init(sa, "entry");
306 
307 	sfc_adapter_lock(sa);
308 	rc = sfc_start(sa);
309 	sfc_adapter_unlock(sa);
310 
311 	SFC_ASSERT(rc >= 0);
312 	return -rc;
313 }
314 
315 static int
316 sfc_dev_set_link_down(struct rte_eth_dev *dev)
317 {
318 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
319 
320 	sfc_log_init(sa, "entry");
321 
322 	sfc_adapter_lock(sa);
323 	sfc_stop(sa);
324 	sfc_adapter_unlock(sa);
325 
326 	return 0;
327 }
328 
329 static void
330 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
331 {
332 	free(dev->process_private);
333 	rte_eth_dev_release_port(dev);
334 }
335 
336 static int
337 sfc_dev_close(struct rte_eth_dev *dev)
338 {
339 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
340 
341 	sfc_log_init(sa, "entry");
342 
343 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
344 		sfc_eth_dev_secondary_clear_ops(dev);
345 		return 0;
346 	}
347 
348 	sfc_pre_detach(sa);
349 
350 	sfc_adapter_lock(sa);
351 	switch (sa->state) {
352 	case SFC_ETHDEV_STARTED:
353 		sfc_stop(sa);
354 		SFC_ASSERT(sa->state == SFC_ETHDEV_CONFIGURED);
355 		/* FALLTHROUGH */
356 	case SFC_ETHDEV_CONFIGURED:
357 		sfc_close(sa);
358 		SFC_ASSERT(sa->state == SFC_ETHDEV_INITIALIZED);
359 		/* FALLTHROUGH */
360 	case SFC_ETHDEV_INITIALIZED:
361 		break;
362 	default:
363 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
364 		break;
365 	}
366 
367 	/*
368 	 * Cleanup all resources.
369 	 * Rollback primary process sfc_eth_dev_init() below.
370 	 */
371 
372 	sfc_eth_dev_clear_ops(dev);
373 
374 	sfc_detach(sa);
375 	sfc_unprobe(sa);
376 
377 	sfc_kvargs_cleanup(sa);
378 
379 	sfc_adapter_unlock(sa);
380 	sfc_adapter_lock_fini(sa);
381 
382 	sfc_log_init(sa, "done");
383 
384 	/* Required for logging, so cleanup last */
385 	sa->eth_dev = NULL;
386 
387 	free(sa);
388 
389 	return 0;
390 }
391 
392 static int
393 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
394 		   boolean_t enabled)
395 {
396 	struct sfc_port *port;
397 	boolean_t *toggle;
398 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
399 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
400 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
401 	int rc = 0;
402 
403 	sfc_adapter_lock(sa);
404 
405 	port = &sa->port;
406 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
407 
408 	if (*toggle != enabled) {
409 		*toggle = enabled;
410 
411 		if (sfc_sa2shared(sa)->isolated) {
412 			sfc_warn(sa, "isolated mode is active on the port");
413 			sfc_warn(sa, "the change is to be applied on the next "
414 				     "start provided that isolated mode is "
415 				     "disabled prior the next start");
416 		} else if ((sa->state == SFC_ETHDEV_STARTED) &&
417 			   ((rc = sfc_set_rx_mode(sa)) != 0)) {
418 			*toggle = !(enabled);
419 			sfc_warn(sa, "Failed to %s %s mode, rc = %d",
420 				 ((enabled) ? "enable" : "disable"), desc, rc);
421 
422 			/*
423 			 * For promiscuous and all-multicast filters a
424 			 * permission failure should be reported as an
425 			 * unsupported filter.
426 			 */
427 			if (rc == EPERM)
428 				rc = ENOTSUP;
429 		}
430 	}
431 
432 	sfc_adapter_unlock(sa);
433 	return rc;
434 }
435 
436 static int
437 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
438 {
439 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
440 
441 	SFC_ASSERT(rc >= 0);
442 	return -rc;
443 }
444 
445 static int
446 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
447 {
448 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
449 
450 	SFC_ASSERT(rc >= 0);
451 	return -rc;
452 }
453 
454 static int
455 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
456 {
457 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
458 
459 	SFC_ASSERT(rc >= 0);
460 	return -rc;
461 }
462 
463 static int
464 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
465 {
466 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
467 
468 	SFC_ASSERT(rc >= 0);
469 	return -rc;
470 }
471 
472 static int
473 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
474 		   uint16_t nb_rx_desc, unsigned int socket_id,
475 		   const struct rte_eth_rxconf *rx_conf,
476 		   struct rte_mempool *mb_pool)
477 {
478 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
479 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
480 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
481 	struct sfc_rxq_info *rxq_info;
482 	sfc_sw_index_t sw_index;
483 	int rc;
484 
485 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
486 		     ethdev_qid, nb_rx_desc, socket_id);
487 
488 	sfc_adapter_lock(sa);
489 
490 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
491 	rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id,
492 			  rx_conf, mb_pool);
493 	if (rc != 0)
494 		goto fail_rx_qinit;
495 
496 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
497 	dev->data->rx_queues[ethdev_qid] = rxq_info->dp;
498 
499 	sfc_adapter_unlock(sa);
500 
501 	return 0;
502 
503 fail_rx_qinit:
504 	sfc_adapter_unlock(sa);
505 	SFC_ASSERT(rc > 0);
506 	return -rc;
507 }
508 
509 static void
510 sfc_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
511 {
512 	struct sfc_dp_rxq *dp_rxq = dev->data->rx_queues[qid];
513 	struct sfc_rxq *rxq;
514 	struct sfc_adapter *sa;
515 	sfc_sw_index_t sw_index;
516 
517 	if (dp_rxq == NULL)
518 		return;
519 
520 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
521 	sa = rxq->evq->sa;
522 	sfc_adapter_lock(sa);
523 
524 	sw_index = dp_rxq->dpq.queue_id;
525 
526 	sfc_log_init(sa, "RxQ=%u", sw_index);
527 
528 	sfc_rx_qfini(sa, sw_index);
529 
530 	sfc_adapter_unlock(sa);
531 }
532 
533 static int
534 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
535 		   uint16_t nb_tx_desc, unsigned int socket_id,
536 		   const struct rte_eth_txconf *tx_conf)
537 {
538 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
539 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
540 	struct sfc_txq_info *txq_info;
541 	sfc_sw_index_t sw_index;
542 	int rc;
543 
544 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
545 		     ethdev_qid, nb_tx_desc, socket_id);
546 
547 	sfc_adapter_lock(sa);
548 
549 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
550 	rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf);
551 	if (rc != 0)
552 		goto fail_tx_qinit;
553 
554 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
555 	dev->data->tx_queues[ethdev_qid] = txq_info->dp;
556 
557 	sfc_adapter_unlock(sa);
558 	return 0;
559 
560 fail_tx_qinit:
561 	sfc_adapter_unlock(sa);
562 	SFC_ASSERT(rc > 0);
563 	return -rc;
564 }
565 
566 static void
567 sfc_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
568 {
569 	struct sfc_dp_txq *dp_txq = dev->data->tx_queues[qid];
570 	struct sfc_txq *txq;
571 	sfc_sw_index_t sw_index;
572 	struct sfc_adapter *sa;
573 
574 	if (dp_txq == NULL)
575 		return;
576 
577 	txq = sfc_txq_by_dp_txq(dp_txq);
578 	sw_index = dp_txq->dpq.queue_id;
579 
580 	SFC_ASSERT(txq->evq != NULL);
581 	sa = txq->evq->sa;
582 
583 	sfc_log_init(sa, "TxQ = %u", sw_index);
584 
585 	sfc_adapter_lock(sa);
586 
587 	sfc_tx_qfini(sa, sw_index);
588 
589 	sfc_adapter_unlock(sa);
590 }
591 
592 static void
593 sfc_stats_get_dp_rx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
594 {
595 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
596 	uint64_t pkts_sum = 0;
597 	uint64_t bytes_sum = 0;
598 	unsigned int i;
599 
600 	for (i = 0; i < sas->ethdev_rxq_count; ++i) {
601 		struct sfc_rxq_info *rxq_info;
602 
603 		rxq_info = sfc_rxq_info_by_ethdev_qid(sas, i);
604 		if (rxq_info->state & SFC_RXQ_INITIALIZED) {
605 			union sfc_pkts_bytes qstats;
606 
607 			sfc_pkts_bytes_get(&rxq_info->dp->dpq.stats, &qstats);
608 			pkts_sum += qstats.pkts -
609 					sa->sw_stats.reset_rx_pkts[i];
610 			bytes_sum += qstats.bytes -
611 					sa->sw_stats.reset_rx_bytes[i];
612 		}
613 	}
614 
615 	*pkts = pkts_sum;
616 	*bytes = bytes_sum;
617 }
618 
619 static void
620 sfc_stats_get_dp_tx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
621 {
622 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
623 	uint64_t pkts_sum = 0;
624 	uint64_t bytes_sum = 0;
625 	unsigned int i;
626 
627 	for (i = 0; i < sas->ethdev_txq_count; ++i) {
628 		struct sfc_txq_info *txq_info;
629 
630 		txq_info = sfc_txq_info_by_ethdev_qid(sas, i);
631 		if (txq_info->state & SFC_TXQ_INITIALIZED) {
632 			union sfc_pkts_bytes qstats;
633 
634 			sfc_pkts_bytes_get(&txq_info->dp->dpq.stats, &qstats);
635 			pkts_sum += qstats.pkts -
636 					sa->sw_stats.reset_tx_pkts[i];
637 			bytes_sum += qstats.bytes -
638 					sa->sw_stats.reset_tx_bytes[i];
639 		}
640 	}
641 
642 	*pkts = pkts_sum;
643 	*bytes = bytes_sum;
644 }
645 
646 /*
647  * Some statistics are computed as A - B where A and B each increase
648  * monotonically with some hardware counter(s) and the counters are read
649  * asynchronously.
650  *
651  * If packet X is counted in A, but not counted in B yet, computed value is
652  * greater than real.
653  *
654  * If packet X is not counted in A at the moment of reading the counter,
655  * but counted in B at the moment of reading the counter, computed value
656  * is less than real.
657  *
658  * However, counter which grows backward is worse evil than slightly wrong
659  * value. So, let's try to guarantee that it never happens except may be
660  * the case when the MAC stats are zeroed as a result of a NIC reset.
661  */
662 static void
663 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
664 {
665 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
666 		*stat = newval;
667 }
668 
669 static int
670 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
671 {
672 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
673 	bool have_dp_rx_stats = sap->dp_rx->features & SFC_DP_RX_FEAT_STATS;
674 	bool have_dp_tx_stats = sap->dp_tx->features & SFC_DP_TX_FEAT_STATS;
675 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
676 	struct sfc_port *port = &sa->port;
677 	uint64_t *mac_stats;
678 	int ret;
679 
680 	sfc_adapter_lock(sa);
681 
682 	if (have_dp_rx_stats)
683 		sfc_stats_get_dp_rx(sa, &stats->ipackets, &stats->ibytes);
684 	if (have_dp_tx_stats)
685 		sfc_stats_get_dp_tx(sa, &stats->opackets, &stats->obytes);
686 
687 	ret = sfc_port_update_mac_stats(sa, B_FALSE);
688 	if (ret != 0)
689 		goto unlock;
690 
691 	mac_stats = port->mac_stats_buf;
692 
693 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
694 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
695 		if (!have_dp_rx_stats) {
696 			stats->ipackets =
697 				mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
698 				mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
699 				mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
700 			stats->ibytes =
701 				mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
702 				mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
703 				mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
704 
705 			/* CRC is included in these stats, but shouldn't be */
706 			stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
707 		}
708 		if (!have_dp_tx_stats) {
709 			stats->opackets =
710 				mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
711 				mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
712 				mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
713 			stats->obytes =
714 				mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
715 				mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
716 				mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
717 
718 			/* CRC is included in these stats, but shouldn't be */
719 			stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN;
720 		}
721 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
722 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
723 	} else {
724 		if (!have_dp_tx_stats) {
725 			stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
726 			stats->obytes = mac_stats[EFX_MAC_TX_OCTETS] -
727 				mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN;
728 		}
729 
730 		/*
731 		 * Take into account stats which are whenever supported
732 		 * on EF10. If some stat is not supported by current
733 		 * firmware variant or HW revision, it is guaranteed
734 		 * to be zero in mac_stats.
735 		 */
736 		stats->imissed =
737 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
738 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
739 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
740 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
741 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
742 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
743 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
744 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
745 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
746 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
747 		stats->ierrors =
748 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
749 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
750 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
751 		/* no oerrors counters supported on EF10 */
752 
753 		if (!have_dp_rx_stats) {
754 			/* Exclude missed, errors and pauses from Rx packets */
755 			sfc_update_diff_stat(&port->ipackets,
756 				mac_stats[EFX_MAC_RX_PKTS] -
757 				mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
758 				stats->imissed - stats->ierrors);
759 			stats->ipackets = port->ipackets;
760 			stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS] -
761 				mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN;
762 		}
763 	}
764 
765 unlock:
766 	sfc_adapter_unlock(sa);
767 	SFC_ASSERT(ret >= 0);
768 	return -ret;
769 }
770 
771 static int
772 sfc_stats_reset(struct rte_eth_dev *dev)
773 {
774 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
775 	struct sfc_port *port = &sa->port;
776 	int rc;
777 
778 	sfc_adapter_lock(sa);
779 
780 	if (sa->state != SFC_ETHDEV_STARTED) {
781 		/*
782 		 * The operation cannot be done if port is not started; it
783 		 * will be scheduled to be done during the next port start
784 		 */
785 		port->mac_stats_reset_pending = B_TRUE;
786 		sfc_adapter_unlock(sa);
787 		return 0;
788 	}
789 
790 	rc = sfc_port_reset_mac_stats(sa);
791 	if (rc != 0)
792 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
793 
794 	sfc_sw_xstats_reset(sa);
795 
796 	sfc_adapter_unlock(sa);
797 
798 	SFC_ASSERT(rc >= 0);
799 	return -rc;
800 }
801 
802 static unsigned int
803 sfc_xstats_get_nb_supported(struct sfc_adapter *sa)
804 {
805 	struct sfc_port *port = &sa->port;
806 	unsigned int nb_supported;
807 
808 	sfc_adapter_lock(sa);
809 	nb_supported = port->mac_stats_nb_supported +
810 		       sfc_sw_xstats_get_nb_supported(sa);
811 	sfc_adapter_unlock(sa);
812 
813 	return nb_supported;
814 }
815 
816 static int
817 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
818 	       unsigned int xstats_count)
819 {
820 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
821 	unsigned int nb_written = 0;
822 	unsigned int nb_supported = 0;
823 	int rc;
824 
825 	if (unlikely(xstats == NULL))
826 		return sfc_xstats_get_nb_supported(sa);
827 
828 	rc = sfc_port_get_mac_stats(sa, xstats, xstats_count, &nb_written);
829 	if (rc < 0)
830 		return rc;
831 
832 	nb_supported = rc;
833 	sfc_sw_xstats_get_vals(sa, xstats, xstats_count, &nb_written,
834 			       &nb_supported);
835 
836 	return nb_supported;
837 }
838 
839 static int
840 sfc_xstats_get_names(struct rte_eth_dev *dev,
841 		     struct rte_eth_xstat_name *xstats_names,
842 		     unsigned int xstats_count)
843 {
844 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
845 	struct sfc_port *port = &sa->port;
846 	unsigned int i;
847 	unsigned int nstats = 0;
848 	unsigned int nb_written = 0;
849 	int ret;
850 
851 	if (unlikely(xstats_names == NULL))
852 		return sfc_xstats_get_nb_supported(sa);
853 
854 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
855 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
856 			if (nstats < xstats_count) {
857 				strlcpy(xstats_names[nstats].name,
858 					efx_mac_stat_name(sa->nic, i),
859 					sizeof(xstats_names[0].name));
860 				nb_written++;
861 			}
862 			nstats++;
863 		}
864 	}
865 
866 	ret = sfc_sw_xstats_get_names(sa, xstats_names, xstats_count,
867 				      &nb_written, &nstats);
868 	if (ret != 0) {
869 		SFC_ASSERT(ret < 0);
870 		return ret;
871 	}
872 
873 	return nstats;
874 }
875 
876 static int
877 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
878 		     uint64_t *values, unsigned int n)
879 {
880 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
881 	struct sfc_port *port = &sa->port;
882 	unsigned int nb_supported;
883 	unsigned int i;
884 	int rc;
885 
886 	if (unlikely(ids == NULL || values == NULL))
887 		return -EINVAL;
888 
889 	/*
890 	 * Values array could be filled in nonsequential order. Fill values with
891 	 * constant indicating invalid ID first.
892 	 */
893 	for (i = 0; i < n; i++)
894 		values[i] = SFC_XSTAT_ID_INVALID_VAL;
895 
896 	rc = sfc_port_get_mac_stats_by_id(sa, ids, values, n);
897 	if (rc != 0)
898 		return rc;
899 
900 	nb_supported = port->mac_stats_nb_supported;
901 	sfc_sw_xstats_get_vals_by_id(sa, ids, values, n, &nb_supported);
902 
903 	/* Return number of written stats before invalid ID is encountered. */
904 	for (i = 0; i < n; i++) {
905 		if (values[i] == SFC_XSTAT_ID_INVALID_VAL)
906 			return i;
907 	}
908 
909 	return n;
910 }
911 
912 static int
913 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
914 			   const uint64_t *ids,
915 			   struct rte_eth_xstat_name *xstats_names,
916 			   unsigned int size)
917 {
918 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
919 	struct sfc_port *port = &sa->port;
920 	unsigned int nb_supported;
921 	unsigned int i;
922 	int ret;
923 
924 	if (unlikely(xstats_names == NULL && ids != NULL) ||
925 	    unlikely(xstats_names != NULL && ids == NULL))
926 		return -EINVAL;
927 
928 	if (unlikely(xstats_names == NULL && ids == NULL))
929 		return sfc_xstats_get_nb_supported(sa);
930 
931 	/*
932 	 * Names array could be filled in nonsequential order. Fill names with
933 	 * string indicating invalid ID first.
934 	 */
935 	for (i = 0; i < size; i++)
936 		xstats_names[i].name[0] = SFC_XSTAT_ID_INVALID_NAME;
937 
938 	sfc_adapter_lock(sa);
939 
940 	SFC_ASSERT(port->mac_stats_nb_supported <=
941 		   RTE_DIM(port->mac_stats_by_id));
942 
943 	for (i = 0; i < size; i++) {
944 		if (ids[i] < port->mac_stats_nb_supported) {
945 			strlcpy(xstats_names[i].name,
946 				efx_mac_stat_name(sa->nic,
947 						 port->mac_stats_by_id[ids[i]]),
948 				sizeof(xstats_names[0].name));
949 		}
950 	}
951 
952 	nb_supported = port->mac_stats_nb_supported;
953 
954 	sfc_adapter_unlock(sa);
955 
956 	ret = sfc_sw_xstats_get_names_by_id(sa, ids, xstats_names, size,
957 					    &nb_supported);
958 	if (ret != 0) {
959 		SFC_ASSERT(ret < 0);
960 		return ret;
961 	}
962 
963 	/* Return number of written names before invalid ID is encountered. */
964 	for (i = 0; i < size; i++) {
965 		if (xstats_names[i].name[0] == SFC_XSTAT_ID_INVALID_NAME)
966 			return i;
967 	}
968 
969 	return size;
970 }
971 
972 static int
973 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
974 {
975 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
976 	unsigned int wanted_fc, link_fc;
977 
978 	memset(fc_conf, 0, sizeof(*fc_conf));
979 
980 	sfc_adapter_lock(sa);
981 
982 	if (sa->state == SFC_ETHDEV_STARTED)
983 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
984 	else
985 		link_fc = sa->port.flow_ctrl;
986 
987 	switch (link_fc) {
988 	case 0:
989 		fc_conf->mode = RTE_FC_NONE;
990 		break;
991 	case EFX_FCNTL_RESPOND:
992 		fc_conf->mode = RTE_FC_RX_PAUSE;
993 		break;
994 	case EFX_FCNTL_GENERATE:
995 		fc_conf->mode = RTE_FC_TX_PAUSE;
996 		break;
997 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
998 		fc_conf->mode = RTE_FC_FULL;
999 		break;
1000 	default:
1001 		sfc_err(sa, "%s: unexpected flow control value %#x",
1002 			__func__, link_fc);
1003 	}
1004 
1005 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
1006 
1007 	sfc_adapter_unlock(sa);
1008 
1009 	return 0;
1010 }
1011 
1012 static int
1013 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1014 {
1015 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1016 	struct sfc_port *port = &sa->port;
1017 	unsigned int fcntl;
1018 	int rc;
1019 
1020 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
1021 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
1022 	    fc_conf->mac_ctrl_frame_fwd != 0) {
1023 		sfc_err(sa, "unsupported flow control settings specified");
1024 		rc = EINVAL;
1025 		goto fail_inval;
1026 	}
1027 
1028 	switch (fc_conf->mode) {
1029 	case RTE_FC_NONE:
1030 		fcntl = 0;
1031 		break;
1032 	case RTE_FC_RX_PAUSE:
1033 		fcntl = EFX_FCNTL_RESPOND;
1034 		break;
1035 	case RTE_FC_TX_PAUSE:
1036 		fcntl = EFX_FCNTL_GENERATE;
1037 		break;
1038 	case RTE_FC_FULL:
1039 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
1040 		break;
1041 	default:
1042 		rc = EINVAL;
1043 		goto fail_inval;
1044 	}
1045 
1046 	sfc_adapter_lock(sa);
1047 
1048 	if (sa->state == SFC_ETHDEV_STARTED) {
1049 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
1050 		if (rc != 0)
1051 			goto fail_mac_fcntl_set;
1052 	}
1053 
1054 	port->flow_ctrl = fcntl;
1055 	port->flow_ctrl_autoneg = fc_conf->autoneg;
1056 
1057 	sfc_adapter_unlock(sa);
1058 
1059 	return 0;
1060 
1061 fail_mac_fcntl_set:
1062 	sfc_adapter_unlock(sa);
1063 fail_inval:
1064 	SFC_ASSERT(rc > 0);
1065 	return -rc;
1066 }
1067 
1068 static int
1069 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
1070 {
1071 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1072 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1073 	boolean_t scatter_enabled;
1074 	const char *error;
1075 	unsigned int i;
1076 
1077 	for (i = 0; i < sas->rxq_count; i++) {
1078 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
1079 			continue;
1080 
1081 		scatter_enabled = (sas->rxq_info[i].type_flags &
1082 				   EFX_RXQ_FLAG_SCATTER);
1083 
1084 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
1085 					  encp->enc_rx_prefix_size,
1086 					  scatter_enabled,
1087 					  encp->enc_rx_scatter_max, &error)) {
1088 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
1089 				error);
1090 			return EINVAL;
1091 		}
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 static int
1098 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
1099 {
1100 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1101 	size_t pdu = EFX_MAC_PDU(mtu);
1102 	size_t old_pdu;
1103 	int rc;
1104 
1105 	sfc_log_init(sa, "mtu=%u", mtu);
1106 
1107 	rc = EINVAL;
1108 	if (pdu < EFX_MAC_PDU_MIN) {
1109 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
1110 			(unsigned int)mtu, (unsigned int)pdu,
1111 			EFX_MAC_PDU_MIN);
1112 		goto fail_inval;
1113 	}
1114 	if (pdu > EFX_MAC_PDU_MAX) {
1115 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
1116 			(unsigned int)mtu, (unsigned int)pdu,
1117 			(unsigned int)EFX_MAC_PDU_MAX);
1118 		goto fail_inval;
1119 	}
1120 
1121 	sfc_adapter_lock(sa);
1122 
1123 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
1124 	if (rc != 0)
1125 		goto fail_check_scatter;
1126 
1127 	if (pdu != sa->port.pdu) {
1128 		if (sa->state == SFC_ETHDEV_STARTED) {
1129 			sfc_stop(sa);
1130 
1131 			old_pdu = sa->port.pdu;
1132 			sa->port.pdu = pdu;
1133 			rc = sfc_start(sa);
1134 			if (rc != 0)
1135 				goto fail_start;
1136 		} else {
1137 			sa->port.pdu = pdu;
1138 		}
1139 	}
1140 
1141 	/*
1142 	 * The driver does not use it, but other PMDs update jumbo frame
1143 	 * flag and max_rx_pkt_len when MTU is set.
1144 	 */
1145 	if (mtu > RTE_ETHER_MTU) {
1146 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1147 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1148 	}
1149 
1150 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
1151 
1152 	sfc_adapter_unlock(sa);
1153 
1154 	sfc_log_init(sa, "done");
1155 	return 0;
1156 
1157 fail_start:
1158 	sa->port.pdu = old_pdu;
1159 	if (sfc_start(sa) != 0)
1160 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1161 			"PDU max size - port is stopped",
1162 			(unsigned int)pdu, (unsigned int)old_pdu);
1163 
1164 fail_check_scatter:
1165 	sfc_adapter_unlock(sa);
1166 
1167 fail_inval:
1168 	sfc_log_init(sa, "failed %d", rc);
1169 	SFC_ASSERT(rc > 0);
1170 	return -rc;
1171 }
1172 static int
1173 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1174 {
1175 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1176 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1177 	struct sfc_port *port = &sa->port;
1178 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1179 	int rc = 0;
1180 
1181 	sfc_adapter_lock(sa);
1182 
1183 	if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1184 		goto unlock;
1185 
1186 	/*
1187 	 * Copy the address to the device private data so that
1188 	 * it could be recalled in the case of adapter restart.
1189 	 */
1190 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1191 
1192 	/*
1193 	 * Neither of the two following checks can return
1194 	 * an error. The new MAC address is preserved in
1195 	 * the device private data and can be activated
1196 	 * on the next port start if the user prevents
1197 	 * isolated mode from being enabled.
1198 	 */
1199 	if (sfc_sa2shared(sa)->isolated) {
1200 		sfc_warn(sa, "isolated mode is active on the port");
1201 		sfc_warn(sa, "will not set MAC address");
1202 		goto unlock;
1203 	}
1204 
1205 	if (sa->state != SFC_ETHDEV_STARTED) {
1206 		sfc_notice(sa, "the port is not started");
1207 		sfc_notice(sa, "the new MAC address will be set on port start");
1208 
1209 		goto unlock;
1210 	}
1211 
1212 	if (encp->enc_allow_set_mac_with_installed_filters) {
1213 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1214 		if (rc != 0) {
1215 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1216 			goto unlock;
1217 		}
1218 
1219 		/*
1220 		 * Changing the MAC address by means of MCDI request
1221 		 * has no effect on received traffic, therefore
1222 		 * we also need to update unicast filters
1223 		 */
1224 		rc = sfc_set_rx_mode_unchecked(sa);
1225 		if (rc != 0) {
1226 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1227 			/* Rollback the old address */
1228 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1229 			(void)sfc_set_rx_mode_unchecked(sa);
1230 		}
1231 	} else {
1232 		sfc_warn(sa, "cannot set MAC address with filters installed");
1233 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1234 		sfc_warn(sa, "(some traffic may be dropped)");
1235 
1236 		/*
1237 		 * Since setting MAC address with filters installed is not
1238 		 * allowed on the adapter, the new MAC address will be set
1239 		 * by means of adapter restart. sfc_start() shall retrieve
1240 		 * the new address from the device private data and set it.
1241 		 */
1242 		sfc_stop(sa);
1243 		rc = sfc_start(sa);
1244 		if (rc != 0)
1245 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1246 	}
1247 
1248 unlock:
1249 	if (rc != 0)
1250 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1251 
1252 	sfc_adapter_unlock(sa);
1253 
1254 	SFC_ASSERT(rc >= 0);
1255 	return -rc;
1256 }
1257 
1258 
1259 static int
1260 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1261 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1262 {
1263 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1264 	struct sfc_port *port = &sa->port;
1265 	uint8_t *mc_addrs = port->mcast_addrs;
1266 	int rc;
1267 	unsigned int i;
1268 
1269 	if (sfc_sa2shared(sa)->isolated) {
1270 		sfc_err(sa, "isolated mode is active on the port");
1271 		sfc_err(sa, "will not set multicast address list");
1272 		return -ENOTSUP;
1273 	}
1274 
1275 	if (mc_addrs == NULL)
1276 		return -ENOBUFS;
1277 
1278 	if (nb_mc_addr > port->max_mcast_addrs) {
1279 		sfc_err(sa, "too many multicast addresses: %u > %u",
1280 			 nb_mc_addr, port->max_mcast_addrs);
1281 		return -EINVAL;
1282 	}
1283 
1284 	for (i = 0; i < nb_mc_addr; ++i) {
1285 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1286 				 EFX_MAC_ADDR_LEN);
1287 		mc_addrs += EFX_MAC_ADDR_LEN;
1288 	}
1289 
1290 	port->nb_mcast_addrs = nb_mc_addr;
1291 
1292 	if (sa->state != SFC_ETHDEV_STARTED)
1293 		return 0;
1294 
1295 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1296 					port->nb_mcast_addrs);
1297 	if (rc != 0)
1298 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1299 
1300 	SFC_ASSERT(rc >= 0);
1301 	return -rc;
1302 }
1303 
1304 /*
1305  * The function is used by the secondary process as well. It must not
1306  * use any process-local pointers from the adapter data.
1307  */
1308 static void
1309 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1310 		      struct rte_eth_rxq_info *qinfo)
1311 {
1312 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1313 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1314 	struct sfc_rxq_info *rxq_info;
1315 
1316 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1317 
1318 	qinfo->mp = rxq_info->refill_mb_pool;
1319 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1320 	qinfo->conf.rx_drop_en = 1;
1321 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1322 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1323 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1324 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1325 		qinfo->scattered_rx = 1;
1326 	}
1327 	qinfo->nb_desc = rxq_info->entries;
1328 }
1329 
1330 /*
1331  * The function is used by the secondary process as well. It must not
1332  * use any process-local pointers from the adapter data.
1333  */
1334 static void
1335 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1336 		      struct rte_eth_txq_info *qinfo)
1337 {
1338 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1339 	struct sfc_txq_info *txq_info;
1340 
1341 	SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count);
1342 
1343 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1344 
1345 	memset(qinfo, 0, sizeof(*qinfo));
1346 
1347 	qinfo->conf.offloads = txq_info->offloads;
1348 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1349 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1350 	qinfo->nb_desc = txq_info->entries;
1351 }
1352 
1353 /*
1354  * The function is used by the secondary process as well. It must not
1355  * use any process-local pointers from the adapter data.
1356  */
1357 static uint32_t
1358 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1359 {
1360 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1361 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1362 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1363 	struct sfc_rxq_info *rxq_info;
1364 
1365 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1366 
1367 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1368 		return 0;
1369 
1370 	return sap->dp_rx->qdesc_npending(rxq_info->dp);
1371 }
1372 
1373 /*
1374  * The function is used by the secondary process as well. It must not
1375  * use any process-local pointers from the adapter data.
1376  */
1377 static int
1378 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1379 {
1380 	struct sfc_dp_rxq *dp_rxq = queue;
1381 	const struct sfc_dp_rx *dp_rx;
1382 
1383 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1384 
1385 	return dp_rx->qdesc_status(dp_rxq, offset);
1386 }
1387 
1388 /*
1389  * The function is used by the secondary process as well. It must not
1390  * use any process-local pointers from the adapter data.
1391  */
1392 static int
1393 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1394 {
1395 	struct sfc_dp_txq *dp_txq = queue;
1396 	const struct sfc_dp_tx *dp_tx;
1397 
1398 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1399 
1400 	return dp_tx->qdesc_status(dp_txq, offset);
1401 }
1402 
1403 static int
1404 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1405 {
1406 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1407 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1408 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1409 	struct sfc_rxq_info *rxq_info;
1410 	sfc_sw_index_t sw_index;
1411 	int rc;
1412 
1413 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1414 
1415 	sfc_adapter_lock(sa);
1416 
1417 	rc = EINVAL;
1418 	if (sa->state != SFC_ETHDEV_STARTED)
1419 		goto fail_not_started;
1420 
1421 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1422 	if (rxq_info->state != SFC_RXQ_INITIALIZED)
1423 		goto fail_not_setup;
1424 
1425 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1426 	rc = sfc_rx_qstart(sa, sw_index);
1427 	if (rc != 0)
1428 		goto fail_rx_qstart;
1429 
1430 	rxq_info->deferred_started = B_TRUE;
1431 
1432 	sfc_adapter_unlock(sa);
1433 
1434 	return 0;
1435 
1436 fail_rx_qstart:
1437 fail_not_setup:
1438 fail_not_started:
1439 	sfc_adapter_unlock(sa);
1440 	SFC_ASSERT(rc > 0);
1441 	return -rc;
1442 }
1443 
1444 static int
1445 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1446 {
1447 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1448 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1449 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1450 	struct sfc_rxq_info *rxq_info;
1451 	sfc_sw_index_t sw_index;
1452 
1453 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1454 
1455 	sfc_adapter_lock(sa);
1456 
1457 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1458 	sfc_rx_qstop(sa, sw_index);
1459 
1460 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1461 	rxq_info->deferred_started = B_FALSE;
1462 
1463 	sfc_adapter_unlock(sa);
1464 
1465 	return 0;
1466 }
1467 
1468 static int
1469 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1470 {
1471 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1472 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1473 	struct sfc_txq_info *txq_info;
1474 	sfc_sw_index_t sw_index;
1475 	int rc;
1476 
1477 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1478 
1479 	sfc_adapter_lock(sa);
1480 
1481 	rc = EINVAL;
1482 	if (sa->state != SFC_ETHDEV_STARTED)
1483 		goto fail_not_started;
1484 
1485 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1486 	if (txq_info->state != SFC_TXQ_INITIALIZED)
1487 		goto fail_not_setup;
1488 
1489 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1490 	rc = sfc_tx_qstart(sa, sw_index);
1491 	if (rc != 0)
1492 		goto fail_tx_qstart;
1493 
1494 	txq_info->deferred_started = B_TRUE;
1495 
1496 	sfc_adapter_unlock(sa);
1497 	return 0;
1498 
1499 fail_tx_qstart:
1500 
1501 fail_not_setup:
1502 fail_not_started:
1503 	sfc_adapter_unlock(sa);
1504 	SFC_ASSERT(rc > 0);
1505 	return -rc;
1506 }
1507 
1508 static int
1509 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1510 {
1511 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1512 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1513 	struct sfc_txq_info *txq_info;
1514 	sfc_sw_index_t sw_index;
1515 
1516 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1517 
1518 	sfc_adapter_lock(sa);
1519 
1520 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1521 	sfc_tx_qstop(sa, sw_index);
1522 
1523 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1524 	txq_info->deferred_started = B_FALSE;
1525 
1526 	sfc_adapter_unlock(sa);
1527 	return 0;
1528 }
1529 
1530 static efx_tunnel_protocol_t
1531 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1532 {
1533 	switch (rte_type) {
1534 	case RTE_TUNNEL_TYPE_VXLAN:
1535 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1536 	case RTE_TUNNEL_TYPE_GENEVE:
1537 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1538 	default:
1539 		return EFX_TUNNEL_NPROTOS;
1540 	}
1541 }
1542 
1543 enum sfc_udp_tunnel_op_e {
1544 	SFC_UDP_TUNNEL_ADD_PORT,
1545 	SFC_UDP_TUNNEL_DEL_PORT,
1546 };
1547 
1548 static int
1549 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1550 		      struct rte_eth_udp_tunnel *tunnel_udp,
1551 		      enum sfc_udp_tunnel_op_e op)
1552 {
1553 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1554 	efx_tunnel_protocol_t tunnel_proto;
1555 	int rc;
1556 
1557 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1558 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1559 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1560 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1561 
1562 	tunnel_proto =
1563 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1564 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1565 		rc = ENOTSUP;
1566 		goto fail_bad_proto;
1567 	}
1568 
1569 	sfc_adapter_lock(sa);
1570 
1571 	switch (op) {
1572 	case SFC_UDP_TUNNEL_ADD_PORT:
1573 		rc = efx_tunnel_config_udp_add(sa->nic,
1574 					       tunnel_udp->udp_port,
1575 					       tunnel_proto);
1576 		break;
1577 	case SFC_UDP_TUNNEL_DEL_PORT:
1578 		rc = efx_tunnel_config_udp_remove(sa->nic,
1579 						  tunnel_udp->udp_port,
1580 						  tunnel_proto);
1581 		break;
1582 	default:
1583 		rc = EINVAL;
1584 		goto fail_bad_op;
1585 	}
1586 
1587 	if (rc != 0)
1588 		goto fail_op;
1589 
1590 	if (sa->state == SFC_ETHDEV_STARTED) {
1591 		rc = efx_tunnel_reconfigure(sa->nic);
1592 		if (rc == EAGAIN) {
1593 			/*
1594 			 * Configuration is accepted by FW and MC reboot
1595 			 * is initiated to apply the changes. MC reboot
1596 			 * will be handled in a usual way (MC reboot
1597 			 * event on management event queue and adapter
1598 			 * restart).
1599 			 */
1600 			rc = 0;
1601 		} else if (rc != 0) {
1602 			goto fail_reconfigure;
1603 		}
1604 	}
1605 
1606 	sfc_adapter_unlock(sa);
1607 	return 0;
1608 
1609 fail_reconfigure:
1610 	/* Remove/restore entry since the change makes the trouble */
1611 	switch (op) {
1612 	case SFC_UDP_TUNNEL_ADD_PORT:
1613 		(void)efx_tunnel_config_udp_remove(sa->nic,
1614 						   tunnel_udp->udp_port,
1615 						   tunnel_proto);
1616 		break;
1617 	case SFC_UDP_TUNNEL_DEL_PORT:
1618 		(void)efx_tunnel_config_udp_add(sa->nic,
1619 						tunnel_udp->udp_port,
1620 						tunnel_proto);
1621 		break;
1622 	}
1623 
1624 fail_op:
1625 fail_bad_op:
1626 	sfc_adapter_unlock(sa);
1627 
1628 fail_bad_proto:
1629 	SFC_ASSERT(rc > 0);
1630 	return -rc;
1631 }
1632 
1633 static int
1634 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1635 			    struct rte_eth_udp_tunnel *tunnel_udp)
1636 {
1637 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1638 }
1639 
1640 static int
1641 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1642 			    struct rte_eth_udp_tunnel *tunnel_udp)
1643 {
1644 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1645 }
1646 
1647 /*
1648  * The function is used by the secondary process as well. It must not
1649  * use any process-local pointers from the adapter data.
1650  */
1651 static int
1652 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1653 			  struct rte_eth_rss_conf *rss_conf)
1654 {
1655 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1656 	struct sfc_rss *rss = &sas->rss;
1657 
1658 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1659 		return -ENOTSUP;
1660 
1661 	/*
1662 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1663 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1664 	 * flags which corresponds to the active EFX configuration stored
1665 	 * locally in 'sfc_adapter' and kept up-to-date
1666 	 */
1667 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1668 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1669 	if (rss_conf->rss_key != NULL)
1670 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1671 
1672 	return 0;
1673 }
1674 
1675 static int
1676 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1677 			struct rte_eth_rss_conf *rss_conf)
1678 {
1679 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1680 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1681 	unsigned int efx_hash_types;
1682 	uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1683 	unsigned int n_contexts;
1684 	unsigned int mode_i = 0;
1685 	unsigned int key_i = 0;
1686 	unsigned int i = 0;
1687 	int rc = 0;
1688 
1689 	n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1690 
1691 	if (sfc_sa2shared(sa)->isolated)
1692 		return -ENOTSUP;
1693 
1694 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1695 		sfc_err(sa, "RSS is not available");
1696 		return -ENOTSUP;
1697 	}
1698 
1699 	if (rss->channels == 0) {
1700 		sfc_err(sa, "RSS is not configured");
1701 		return -EINVAL;
1702 	}
1703 
1704 	if ((rss_conf->rss_key != NULL) &&
1705 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1706 		sfc_err(sa, "RSS key size is wrong (should be %zu)",
1707 			sizeof(rss->key));
1708 		return -EINVAL;
1709 	}
1710 
1711 	sfc_adapter_lock(sa);
1712 
1713 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1714 	if (rc != 0)
1715 		goto fail_rx_hf_rte_to_efx;
1716 
1717 	for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1718 		rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1719 					   rss->hash_alg, efx_hash_types,
1720 					   B_TRUE);
1721 		if (rc != 0)
1722 			goto fail_scale_mode_set;
1723 	}
1724 
1725 	if (rss_conf->rss_key != NULL) {
1726 		if (sa->state == SFC_ETHDEV_STARTED) {
1727 			for (key_i = 0; key_i < n_contexts; key_i++) {
1728 				rc = efx_rx_scale_key_set(sa->nic,
1729 							  contexts[key_i],
1730 							  rss_conf->rss_key,
1731 							  sizeof(rss->key));
1732 				if (rc != 0)
1733 					goto fail_scale_key_set;
1734 			}
1735 		}
1736 
1737 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1738 	}
1739 
1740 	rss->hash_types = efx_hash_types;
1741 
1742 	sfc_adapter_unlock(sa);
1743 
1744 	return 0;
1745 
1746 fail_scale_key_set:
1747 	for (i = 0; i < key_i; i++) {
1748 		if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1749 					 sizeof(rss->key)) != 0)
1750 			sfc_err(sa, "failed to restore RSS key");
1751 	}
1752 
1753 fail_scale_mode_set:
1754 	for (i = 0; i < mode_i; i++) {
1755 		if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1756 					  EFX_RX_HASHALG_TOEPLITZ,
1757 					  rss->hash_types, B_TRUE) != 0)
1758 			sfc_err(sa, "failed to restore RSS mode");
1759 	}
1760 
1761 fail_rx_hf_rte_to_efx:
1762 	sfc_adapter_unlock(sa);
1763 	return -rc;
1764 }
1765 
1766 /*
1767  * The function is used by the secondary process as well. It must not
1768  * use any process-local pointers from the adapter data.
1769  */
1770 static int
1771 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1772 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1773 		       uint16_t reta_size)
1774 {
1775 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1776 	struct sfc_rss *rss = &sas->rss;
1777 	int entry;
1778 
1779 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1780 		return -ENOTSUP;
1781 
1782 	if (rss->channels == 0)
1783 		return -EINVAL;
1784 
1785 	if (reta_size != EFX_RSS_TBL_SIZE)
1786 		return -EINVAL;
1787 
1788 	for (entry = 0; entry < reta_size; entry++) {
1789 		int grp = entry / RTE_RETA_GROUP_SIZE;
1790 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1791 
1792 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1793 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1794 	}
1795 
1796 	return 0;
1797 }
1798 
1799 static int
1800 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1801 			struct rte_eth_rss_reta_entry64 *reta_conf,
1802 			uint16_t reta_size)
1803 {
1804 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1805 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1806 	unsigned int *rss_tbl_new;
1807 	uint16_t entry;
1808 	int rc = 0;
1809 
1810 
1811 	if (sfc_sa2shared(sa)->isolated)
1812 		return -ENOTSUP;
1813 
1814 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1815 		sfc_err(sa, "RSS is not available");
1816 		return -ENOTSUP;
1817 	}
1818 
1819 	if (rss->channels == 0) {
1820 		sfc_err(sa, "RSS is not configured");
1821 		return -EINVAL;
1822 	}
1823 
1824 	if (reta_size != EFX_RSS_TBL_SIZE) {
1825 		sfc_err(sa, "RETA size is wrong (should be %u)",
1826 			EFX_RSS_TBL_SIZE);
1827 		return -EINVAL;
1828 	}
1829 
1830 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1831 	if (rss_tbl_new == NULL)
1832 		return -ENOMEM;
1833 
1834 	sfc_adapter_lock(sa);
1835 
1836 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1837 
1838 	for (entry = 0; entry < reta_size; entry++) {
1839 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1840 		struct rte_eth_rss_reta_entry64 *grp;
1841 
1842 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1843 
1844 		if (grp->mask & (1ull << grp_idx)) {
1845 			if (grp->reta[grp_idx] >= rss->channels) {
1846 				rc = EINVAL;
1847 				goto bad_reta_entry;
1848 			}
1849 			rss_tbl_new[entry] = grp->reta[grp_idx];
1850 		}
1851 	}
1852 
1853 	if (sa->state == SFC_ETHDEV_STARTED) {
1854 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1855 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1856 		if (rc != 0)
1857 			goto fail_scale_tbl_set;
1858 	}
1859 
1860 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1861 
1862 fail_scale_tbl_set:
1863 bad_reta_entry:
1864 	sfc_adapter_unlock(sa);
1865 
1866 	rte_free(rss_tbl_new);
1867 
1868 	SFC_ASSERT(rc >= 0);
1869 	return -rc;
1870 }
1871 
1872 static int
1873 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
1874 		     const struct rte_flow_ops **ops)
1875 {
1876 	*ops = &sfc_flow_ops;
1877 	return 0;
1878 }
1879 
1880 static int
1881 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1882 {
1883 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1884 
1885 	/*
1886 	 * If Rx datapath does not provide callback to check mempool,
1887 	 * all pools are supported.
1888 	 */
1889 	if (sap->dp_rx->pool_ops_supported == NULL)
1890 		return 1;
1891 
1892 	return sap->dp_rx->pool_ops_supported(pool);
1893 }
1894 
1895 static int
1896 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1897 {
1898 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1899 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1900 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1901 	struct sfc_rxq_info *rxq_info;
1902 
1903 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1904 
1905 	return sap->dp_rx->intr_enable(rxq_info->dp);
1906 }
1907 
1908 static int
1909 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1910 {
1911 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1912 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1913 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1914 	struct sfc_rxq_info *rxq_info;
1915 
1916 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1917 
1918 	return sap->dp_rx->intr_disable(rxq_info->dp);
1919 }
1920 
1921 static const struct eth_dev_ops sfc_eth_dev_ops = {
1922 	.dev_configure			= sfc_dev_configure,
1923 	.dev_start			= sfc_dev_start,
1924 	.dev_stop			= sfc_dev_stop,
1925 	.dev_set_link_up		= sfc_dev_set_link_up,
1926 	.dev_set_link_down		= sfc_dev_set_link_down,
1927 	.dev_close			= sfc_dev_close,
1928 	.promiscuous_enable		= sfc_dev_promisc_enable,
1929 	.promiscuous_disable		= sfc_dev_promisc_disable,
1930 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1931 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1932 	.link_update			= sfc_dev_link_update,
1933 	.stats_get			= sfc_stats_get,
1934 	.stats_reset			= sfc_stats_reset,
1935 	.xstats_get			= sfc_xstats_get,
1936 	.xstats_reset			= sfc_stats_reset,
1937 	.xstats_get_names		= sfc_xstats_get_names,
1938 	.dev_infos_get			= sfc_dev_infos_get,
1939 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1940 	.mtu_set			= sfc_dev_set_mtu,
1941 	.rx_queue_start			= sfc_rx_queue_start,
1942 	.rx_queue_stop			= sfc_rx_queue_stop,
1943 	.tx_queue_start			= sfc_tx_queue_start,
1944 	.tx_queue_stop			= sfc_tx_queue_stop,
1945 	.rx_queue_setup			= sfc_rx_queue_setup,
1946 	.rx_queue_release		= sfc_rx_queue_release,
1947 	.rx_queue_intr_enable		= sfc_rx_queue_intr_enable,
1948 	.rx_queue_intr_disable		= sfc_rx_queue_intr_disable,
1949 	.tx_queue_setup			= sfc_tx_queue_setup,
1950 	.tx_queue_release		= sfc_tx_queue_release,
1951 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1952 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1953 	.mac_addr_set			= sfc_mac_addr_set,
1954 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1955 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1956 	.reta_update			= sfc_dev_rss_reta_update,
1957 	.reta_query			= sfc_dev_rss_reta_query,
1958 	.rss_hash_update		= sfc_dev_rss_hash_update,
1959 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1960 	.flow_ops_get			= sfc_dev_flow_ops_get,
1961 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1962 	.rxq_info_get			= sfc_rx_queue_info_get,
1963 	.txq_info_get			= sfc_tx_queue_info_get,
1964 	.fw_version_get			= sfc_fw_version_get,
1965 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1966 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1967 	.pool_ops_supported		= sfc_pool_ops_supported,
1968 };
1969 
1970 struct sfc_ethdev_init_data {
1971 	uint16_t		nb_representors;
1972 };
1973 
1974 /**
1975  * Duplicate a string in potentially shared memory required for
1976  * multi-process support.
1977  *
1978  * strdup() allocates from process-local heap/memory.
1979  */
1980 static char *
1981 sfc_strdup(const char *str)
1982 {
1983 	size_t size;
1984 	char *copy;
1985 
1986 	if (str == NULL)
1987 		return NULL;
1988 
1989 	size = strlen(str) + 1;
1990 	copy = rte_malloc(__func__, size, 0);
1991 	if (copy != NULL)
1992 		rte_memcpy(copy, str, size);
1993 
1994 	return copy;
1995 }
1996 
1997 static int
1998 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1999 {
2000 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2001 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2002 	const struct sfc_dp_rx *dp_rx;
2003 	const struct sfc_dp_tx *dp_tx;
2004 	const efx_nic_cfg_t *encp;
2005 	unsigned int avail_caps = 0;
2006 	const char *rx_name = NULL;
2007 	const char *tx_name = NULL;
2008 	int rc;
2009 
2010 	switch (sa->family) {
2011 	case EFX_FAMILY_HUNTINGTON:
2012 	case EFX_FAMILY_MEDFORD:
2013 	case EFX_FAMILY_MEDFORD2:
2014 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
2015 		avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
2016 		avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
2017 		break;
2018 	case EFX_FAMILY_RIVERHEAD:
2019 		avail_caps |= SFC_DP_HW_FW_CAP_EF100;
2020 		break;
2021 	default:
2022 		break;
2023 	}
2024 
2025 	encp = efx_nic_cfg_get(sa->nic);
2026 	if (encp->enc_rx_es_super_buffer_supported)
2027 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
2028 
2029 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
2030 				sfc_kvarg_string_handler, &rx_name);
2031 	if (rc != 0)
2032 		goto fail_kvarg_rx_datapath;
2033 
2034 	if (rx_name != NULL) {
2035 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
2036 		if (dp_rx == NULL) {
2037 			sfc_err(sa, "Rx datapath %s not found", rx_name);
2038 			rc = ENOENT;
2039 			goto fail_dp_rx;
2040 		}
2041 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
2042 			sfc_err(sa,
2043 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
2044 				rx_name);
2045 			rc = EINVAL;
2046 			goto fail_dp_rx_caps;
2047 		}
2048 	} else {
2049 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
2050 		if (dp_rx == NULL) {
2051 			sfc_err(sa, "Rx datapath by caps %#x not found",
2052 				avail_caps);
2053 			rc = ENOENT;
2054 			goto fail_dp_rx;
2055 		}
2056 	}
2057 
2058 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
2059 	if (sas->dp_rx_name == NULL) {
2060 		rc = ENOMEM;
2061 		goto fail_dp_rx_name;
2062 	}
2063 
2064 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
2065 
2066 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
2067 				sfc_kvarg_string_handler, &tx_name);
2068 	if (rc != 0)
2069 		goto fail_kvarg_tx_datapath;
2070 
2071 	if (tx_name != NULL) {
2072 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
2073 		if (dp_tx == NULL) {
2074 			sfc_err(sa, "Tx datapath %s not found", tx_name);
2075 			rc = ENOENT;
2076 			goto fail_dp_tx;
2077 		}
2078 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
2079 			sfc_err(sa,
2080 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
2081 				tx_name);
2082 			rc = EINVAL;
2083 			goto fail_dp_tx_caps;
2084 		}
2085 	} else {
2086 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
2087 		if (dp_tx == NULL) {
2088 			sfc_err(sa, "Tx datapath by caps %#x not found",
2089 				avail_caps);
2090 			rc = ENOENT;
2091 			goto fail_dp_tx;
2092 		}
2093 	}
2094 
2095 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
2096 	if (sas->dp_tx_name == NULL) {
2097 		rc = ENOMEM;
2098 		goto fail_dp_tx_name;
2099 	}
2100 
2101 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
2102 
2103 	sa->priv.dp_rx = dp_rx;
2104 	sa->priv.dp_tx = dp_tx;
2105 
2106 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2107 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2108 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2109 
2110 	dev->rx_queue_count = sfc_rx_queue_count;
2111 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2112 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2113 	dev->dev_ops = &sfc_eth_dev_ops;
2114 
2115 	return 0;
2116 
2117 fail_dp_tx_name:
2118 fail_dp_tx_caps:
2119 fail_dp_tx:
2120 fail_kvarg_tx_datapath:
2121 	rte_free(sas->dp_rx_name);
2122 	sas->dp_rx_name = NULL;
2123 
2124 fail_dp_rx_name:
2125 fail_dp_rx_caps:
2126 fail_dp_rx:
2127 fail_kvarg_rx_datapath:
2128 	return rc;
2129 }
2130 
2131 static void
2132 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2133 {
2134 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2135 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2136 
2137 	dev->dev_ops = NULL;
2138 	dev->tx_pkt_prepare = NULL;
2139 	dev->rx_pkt_burst = NULL;
2140 	dev->tx_pkt_burst = NULL;
2141 
2142 	rte_free(sas->dp_tx_name);
2143 	sas->dp_tx_name = NULL;
2144 	sa->priv.dp_tx = NULL;
2145 
2146 	rte_free(sas->dp_rx_name);
2147 	sas->dp_rx_name = NULL;
2148 	sa->priv.dp_rx = NULL;
2149 }
2150 
2151 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2152 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2153 	.reta_query			= sfc_dev_rss_reta_query,
2154 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2155 	.rxq_info_get			= sfc_rx_queue_info_get,
2156 	.txq_info_get			= sfc_tx_queue_info_get,
2157 };
2158 
2159 static int
2160 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2161 {
2162 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2163 	struct sfc_adapter_priv *sap;
2164 	const struct sfc_dp_rx *dp_rx;
2165 	const struct sfc_dp_tx *dp_tx;
2166 	int rc;
2167 
2168 	/*
2169 	 * Allocate process private data from heap, since it should not
2170 	 * be located in shared memory allocated using rte_malloc() API.
2171 	 */
2172 	sap = calloc(1, sizeof(*sap));
2173 	if (sap == NULL) {
2174 		rc = ENOMEM;
2175 		goto fail_alloc_priv;
2176 	}
2177 
2178 	sap->logtype_main = logtype_main;
2179 
2180 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2181 	if (dp_rx == NULL) {
2182 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2183 			"cannot find %s Rx datapath", sas->dp_rx_name);
2184 		rc = ENOENT;
2185 		goto fail_dp_rx;
2186 	}
2187 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2188 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2189 			"%s Rx datapath does not support multi-process",
2190 			sas->dp_rx_name);
2191 		rc = EINVAL;
2192 		goto fail_dp_rx_multi_process;
2193 	}
2194 
2195 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2196 	if (dp_tx == NULL) {
2197 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2198 			"cannot find %s Tx datapath", sas->dp_tx_name);
2199 		rc = ENOENT;
2200 		goto fail_dp_tx;
2201 	}
2202 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2203 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2204 			"%s Tx datapath does not support multi-process",
2205 			sas->dp_tx_name);
2206 		rc = EINVAL;
2207 		goto fail_dp_tx_multi_process;
2208 	}
2209 
2210 	sap->dp_rx = dp_rx;
2211 	sap->dp_tx = dp_tx;
2212 
2213 	dev->process_private = sap;
2214 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2215 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2216 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2217 	dev->rx_queue_count = sfc_rx_queue_count;
2218 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2219 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2220 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2221 
2222 	return 0;
2223 
2224 fail_dp_tx_multi_process:
2225 fail_dp_tx:
2226 fail_dp_rx_multi_process:
2227 fail_dp_rx:
2228 	free(sap);
2229 
2230 fail_alloc_priv:
2231 	return rc;
2232 }
2233 
2234 static void
2235 sfc_register_dp(void)
2236 {
2237 	/* Register once */
2238 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2239 		/* Prefer EF10 datapath */
2240 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2241 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2242 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2243 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2244 
2245 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2246 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2247 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2248 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2249 	}
2250 }
2251 
2252 static int
2253 sfc_parse_switch_mode(struct sfc_adapter *sa, bool has_representors)
2254 {
2255 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
2256 	const char *switch_mode = NULL;
2257 	int rc;
2258 
2259 	sfc_log_init(sa, "entry");
2260 
2261 	rc = sfc_kvargs_process(sa, SFC_KVARG_SWITCH_MODE,
2262 				sfc_kvarg_string_handler, &switch_mode);
2263 	if (rc != 0)
2264 		goto fail_kvargs;
2265 
2266 	if (switch_mode == NULL) {
2267 		sa->switchdev = encp->enc_mae_supported &&
2268 				(!encp->enc_datapath_cap_evb ||
2269 				 has_representors);
2270 	} else if (strcasecmp(switch_mode, SFC_KVARG_SWITCH_MODE_LEGACY) == 0) {
2271 		sa->switchdev = false;
2272 	} else if (strcasecmp(switch_mode,
2273 			      SFC_KVARG_SWITCH_MODE_SWITCHDEV) == 0) {
2274 		sa->switchdev = true;
2275 	} else {
2276 		sfc_err(sa, "invalid switch mode device argument '%s'",
2277 			switch_mode);
2278 		rc = EINVAL;
2279 		goto fail_mode;
2280 	}
2281 
2282 	sfc_log_init(sa, "done");
2283 
2284 	return 0;
2285 
2286 fail_mode:
2287 fail_kvargs:
2288 	sfc_log_init(sa, "failed: %s", rte_strerror(rc));
2289 
2290 	return rc;
2291 }
2292 
2293 static int
2294 sfc_eth_dev_init(struct rte_eth_dev *dev, void *init_params)
2295 {
2296 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2297 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2298 	struct sfc_ethdev_init_data *init_data = init_params;
2299 	uint32_t logtype_main;
2300 	struct sfc_adapter *sa;
2301 	int rc;
2302 	const efx_nic_cfg_t *encp;
2303 	const struct rte_ether_addr *from;
2304 	int ret;
2305 
2306 	if (sfc_efx_dev_class_get(pci_dev->device.devargs) !=
2307 			SFC_EFX_DEV_CLASS_NET) {
2308 		SFC_GENERIC_LOG(DEBUG,
2309 			"Incompatible device class: skip probing, should be probed by other sfc driver.");
2310 		return 1;
2311 	}
2312 
2313 	rc = sfc_dp_mport_register();
2314 	if (rc != 0)
2315 		return rc;
2316 
2317 	sfc_register_dp();
2318 
2319 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2320 					    SFC_LOGTYPE_MAIN_STR,
2321 					    RTE_LOG_NOTICE);
2322 
2323 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2324 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2325 
2326 	/* Required for logging */
2327 	ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2328 			"PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2329 			pci_dev->addr.domain, pci_dev->addr.bus,
2330 			pci_dev->addr.devid, pci_dev->addr.function,
2331 			dev->data->port_id);
2332 	if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2333 		SFC_GENERIC_LOG(ERR,
2334 			"reserved log prefix is too short for " PCI_PRI_FMT,
2335 			pci_dev->addr.domain, pci_dev->addr.bus,
2336 			pci_dev->addr.devid, pci_dev->addr.function);
2337 		return -EINVAL;
2338 	}
2339 	sas->pci_addr = pci_dev->addr;
2340 	sas->port_id = dev->data->port_id;
2341 
2342 	/*
2343 	 * Allocate process private data from heap, since it should not
2344 	 * be located in shared memory allocated using rte_malloc() API.
2345 	 */
2346 	sa = calloc(1, sizeof(*sa));
2347 	if (sa == NULL) {
2348 		rc = ENOMEM;
2349 		goto fail_alloc_sa;
2350 	}
2351 
2352 	dev->process_private = sa;
2353 
2354 	/* Required for logging */
2355 	sa->priv.shared = sas;
2356 	sa->priv.logtype_main = logtype_main;
2357 
2358 	sa->eth_dev = dev;
2359 
2360 	/* Copy PCI device info to the dev->data */
2361 	rte_eth_copy_pci_info(dev, pci_dev);
2362 	dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2363 	dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
2364 
2365 	rc = sfc_kvargs_parse(sa);
2366 	if (rc != 0)
2367 		goto fail_kvargs_parse;
2368 
2369 	sfc_log_init(sa, "entry");
2370 
2371 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2372 	if (dev->data->mac_addrs == NULL) {
2373 		rc = ENOMEM;
2374 		goto fail_mac_addrs;
2375 	}
2376 
2377 	sfc_adapter_lock_init(sa);
2378 	sfc_adapter_lock(sa);
2379 
2380 	sfc_log_init(sa, "probing");
2381 	rc = sfc_probe(sa);
2382 	if (rc != 0)
2383 		goto fail_probe;
2384 
2385 	/*
2386 	 * Selecting a default switch mode requires the NIC to be probed and
2387 	 * to have its capabilities filled in.
2388 	 */
2389 	rc = sfc_parse_switch_mode(sa, init_data->nb_representors > 0);
2390 	if (rc != 0)
2391 		goto fail_switch_mode;
2392 
2393 	sfc_log_init(sa, "set device ops");
2394 	rc = sfc_eth_dev_set_ops(dev);
2395 	if (rc != 0)
2396 		goto fail_set_ops;
2397 
2398 	sfc_log_init(sa, "attaching");
2399 	rc = sfc_attach(sa);
2400 	if (rc != 0)
2401 		goto fail_attach;
2402 
2403 	if (sa->switchdev && sa->mae.status != SFC_MAE_STATUS_SUPPORTED) {
2404 		sfc_err(sa,
2405 			"failed to enable switchdev mode without MAE support");
2406 		rc = ENOTSUP;
2407 		goto fail_switchdev_no_mae;
2408 	}
2409 
2410 	encp = efx_nic_cfg_get(sa->nic);
2411 
2412 	/*
2413 	 * The arguments are really reverse order in comparison to
2414 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2415 	 */
2416 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2417 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2418 
2419 	sfc_adapter_unlock(sa);
2420 
2421 	sfc_log_init(sa, "done");
2422 	return 0;
2423 
2424 fail_switchdev_no_mae:
2425 	sfc_detach(sa);
2426 
2427 fail_attach:
2428 	sfc_eth_dev_clear_ops(dev);
2429 
2430 fail_set_ops:
2431 fail_switch_mode:
2432 	sfc_unprobe(sa);
2433 
2434 fail_probe:
2435 	sfc_adapter_unlock(sa);
2436 	sfc_adapter_lock_fini(sa);
2437 	rte_free(dev->data->mac_addrs);
2438 	dev->data->mac_addrs = NULL;
2439 
2440 fail_mac_addrs:
2441 	sfc_kvargs_cleanup(sa);
2442 
2443 fail_kvargs_parse:
2444 	sfc_log_init(sa, "failed %d", rc);
2445 	dev->process_private = NULL;
2446 	free(sa);
2447 
2448 fail_alloc_sa:
2449 	SFC_ASSERT(rc > 0);
2450 	return -rc;
2451 }
2452 
2453 static int
2454 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2455 {
2456 	sfc_dev_close(dev);
2457 
2458 	return 0;
2459 }
2460 
2461 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2462 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2463 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2464 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2465 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2466 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2467 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2468 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2469 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2470 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2471 	{ .vendor_id = 0 /* sentinel */ }
2472 };
2473 
2474 static int
2475 sfc_parse_rte_devargs(const char *args, struct rte_eth_devargs *devargs)
2476 {
2477 	struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
2478 	int rc;
2479 
2480 	if (args != NULL) {
2481 		rc = rte_eth_devargs_parse(args, &eth_da);
2482 		if (rc != 0) {
2483 			SFC_GENERIC_LOG(ERR,
2484 					"Failed to parse generic devargs '%s'",
2485 					args);
2486 			return rc;
2487 		}
2488 	}
2489 
2490 	*devargs = eth_da;
2491 
2492 	return 0;
2493 }
2494 
2495 static int
2496 sfc_eth_dev_create(struct rte_pci_device *pci_dev,
2497 		   struct sfc_ethdev_init_data *init_data,
2498 		   struct rte_eth_dev **devp)
2499 {
2500 	struct rte_eth_dev *dev;
2501 	int rc;
2502 
2503 	rc = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
2504 				sizeof(struct sfc_adapter_shared),
2505 				eth_dev_pci_specific_init, pci_dev,
2506 				sfc_eth_dev_init, init_data);
2507 	if (rc != 0) {
2508 		SFC_GENERIC_LOG(ERR, "Failed to create sfc ethdev '%s'",
2509 				pci_dev->device.name);
2510 		return rc;
2511 	}
2512 
2513 	dev = rte_eth_dev_allocated(pci_dev->device.name);
2514 	if (dev == NULL) {
2515 		SFC_GENERIC_LOG(ERR, "Failed to find allocated sfc ethdev '%s'",
2516 				pci_dev->device.name);
2517 		return -ENODEV;
2518 	}
2519 
2520 	*devp = dev;
2521 
2522 	return 0;
2523 }
2524 
2525 static int
2526 sfc_eth_dev_create_representors(struct rte_eth_dev *dev,
2527 				const struct rte_eth_devargs *eth_da)
2528 {
2529 	struct sfc_adapter *sa;
2530 	unsigned int i;
2531 	int rc;
2532 
2533 	if (eth_da->nb_representor_ports == 0)
2534 		return 0;
2535 
2536 	sa = sfc_adapter_by_eth_dev(dev);
2537 
2538 	if (!sa->switchdev) {
2539 		sfc_err(sa, "cannot create representors in non-switchdev mode");
2540 		return -EINVAL;
2541 	}
2542 
2543 	if (!sfc_repr_available(sfc_sa2shared(sa))) {
2544 		sfc_err(sa, "cannot create representors: unsupported");
2545 
2546 		return -ENOTSUP;
2547 	}
2548 
2549 	for (i = 0; i < eth_da->nb_representor_ports; ++i) {
2550 		const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
2551 		efx_mport_sel_t mport_sel;
2552 
2553 		rc = efx_mae_mport_by_pcie_function(encp->enc_pf,
2554 				eth_da->representor_ports[i], &mport_sel);
2555 		if (rc != 0) {
2556 			sfc_err(sa,
2557 				"failed to get representor %u m-port: %s - ignore",
2558 				eth_da->representor_ports[i],
2559 				rte_strerror(-rc));
2560 			continue;
2561 		}
2562 
2563 		rc = sfc_repr_create(dev, eth_da->representor_ports[i],
2564 				     sa->mae.switch_domain_id, &mport_sel);
2565 		if (rc != 0) {
2566 			sfc_err(sa, "cannot create representor %u: %s - ignore",
2567 				eth_da->representor_ports[i],
2568 				rte_strerror(-rc));
2569 		}
2570 	}
2571 
2572 	return 0;
2573 }
2574 
2575 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2576 	struct rte_pci_device *pci_dev)
2577 {
2578 	struct sfc_ethdev_init_data init_data;
2579 	struct rte_eth_devargs eth_da;
2580 	struct rte_eth_dev *dev;
2581 	int rc;
2582 
2583 	if (pci_dev->device.devargs != NULL) {
2584 		rc = sfc_parse_rte_devargs(pci_dev->device.devargs->args,
2585 					   &eth_da);
2586 		if (rc != 0)
2587 			return rc;
2588 	} else {
2589 		memset(&eth_da, 0, sizeof(eth_da));
2590 	}
2591 
2592 	init_data.nb_representors = eth_da.nb_representor_ports;
2593 
2594 	if (eth_da.nb_representor_ports > 0 &&
2595 	    rte_eal_process_type() != RTE_PROC_PRIMARY) {
2596 		SFC_GENERIC_LOG(ERR,
2597 			"Create representors from secondary process not supported, dev '%s'",
2598 			pci_dev->device.name);
2599 		return -ENOTSUP;
2600 	}
2601 
2602 	rc = sfc_eth_dev_create(pci_dev, &init_data, &dev);
2603 	if (rc != 0)
2604 		return rc;
2605 
2606 	rc = sfc_eth_dev_create_representors(dev, &eth_da);
2607 	if (rc != 0) {
2608 		(void)rte_eth_dev_destroy(dev, sfc_eth_dev_uninit);
2609 		return rc;
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2616 {
2617 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2618 }
2619 
2620 static struct rte_pci_driver sfc_efx_pmd = {
2621 	.id_table = pci_id_sfc_efx_map,
2622 	.drv_flags =
2623 		RTE_PCI_DRV_INTR_LSC |
2624 		RTE_PCI_DRV_NEED_MAPPING,
2625 	.probe = sfc_eth_dev_pci_probe,
2626 	.remove = sfc_eth_dev_pci_remove,
2627 };
2628 
2629 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2630 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2631 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2632 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2633 	SFC_KVARG_SWITCH_MODE "=" SFC_KVARG_VALUES_SWITCH_MODE " "
2634 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2635 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2636 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2637 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2638 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2639 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2640 
2641 RTE_INIT(sfc_driver_register_logtype)
2642 {
2643 	int ret;
2644 
2645 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2646 						   RTE_LOG_NOTICE);
2647 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2648 }
2649