1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_debug.h" 22 #include "sfc_log.h" 23 #include "sfc_kvargs.h" 24 #include "sfc_ev.h" 25 #include "sfc_rx.h" 26 #include "sfc_tx.h" 27 #include "sfc_flow.h" 28 #include "sfc_dp.h" 29 #include "sfc_dp_rx.h" 30 31 uint32_t sfc_logtype_driver; 32 33 static struct sfc_dp_list sfc_dp_head = 34 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 35 36 static int 37 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 38 { 39 struct sfc_adapter *sa = dev->data->dev_private; 40 efx_nic_fw_info_t enfi; 41 int ret; 42 int rc; 43 44 /* 45 * Return value of the callback is likely supposed to be 46 * equal to or greater than 0, nevertheless, if an error 47 * occurs, it will be desirable to pass it to the caller 48 */ 49 if ((fw_version == NULL) || (fw_size == 0)) 50 return -EINVAL; 51 52 rc = efx_nic_get_fw_version(sa->nic, &enfi); 53 if (rc != 0) 54 return -rc; 55 56 ret = snprintf(fw_version, fw_size, 57 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 58 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 59 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 60 if (ret < 0) 61 return ret; 62 63 if (enfi.enfi_dpcpu_fw_ids_valid) { 64 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 65 int ret_extra; 66 67 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 68 fw_size - dpcpu_fw_ids_offset, 69 " rx%" PRIx16 " tx%" PRIx16, 70 enfi.enfi_rx_dpcpu_fw_id, 71 enfi.enfi_tx_dpcpu_fw_id); 72 if (ret_extra < 0) 73 return ret_extra; 74 75 ret += ret_extra; 76 } 77 78 if (fw_size < (size_t)(++ret)) 79 return ret; 80 else 81 return 0; 82 } 83 84 static void 85 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 86 { 87 struct sfc_adapter *sa = dev->data->dev_private; 88 struct sfc_rss *rss = &sa->rss; 89 uint64_t txq_offloads_def = 0; 90 91 sfc_log_init(sa, "entry"); 92 93 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 94 95 /* Autonegotiation may be disabled */ 96 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 97 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 98 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 99 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 100 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 101 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX) 102 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 103 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 104 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 105 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX) 106 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 107 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX) 108 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 109 110 dev_info->max_rx_queues = sa->rxq_max; 111 dev_info->max_tx_queues = sa->txq_max; 112 113 /* By default packets are dropped if no descriptors are available */ 114 dev_info->default_rxconf.rx_drop_en = 1; 115 116 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 117 118 /* 119 * rx_offload_capa includes both device and queue offloads since 120 * the latter may be requested on a per device basis which makes 121 * sense when some offloads are needed to be set on all queues. 122 */ 123 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 124 dev_info->rx_queue_offload_capa; 125 126 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 127 128 /* 129 * tx_offload_capa includes both device and queue offloads since 130 * the latter may be requested on a per device basis which makes 131 * sense when some offloads are needed to be set on all queues. 132 */ 133 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 134 dev_info->tx_queue_offload_capa; 135 136 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 137 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 138 139 dev_info->default_txconf.offloads |= txq_offloads_def; 140 141 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 142 uint64_t rte_hf = 0; 143 unsigned int i; 144 145 for (i = 0; i < rss->hf_map_nb_entries; ++i) 146 rte_hf |= rss->hf_map[i].rte; 147 148 dev_info->reta_size = EFX_RSS_TBL_SIZE; 149 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 150 dev_info->flow_type_rss_offloads = rte_hf; 151 } 152 153 /* Initialize to hardware limits */ 154 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 155 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 156 /* The RXQ hardware requires that the descriptor count is a power 157 * of 2, but rx_desc_lim cannot properly describe that constraint. 158 */ 159 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 160 161 /* Initialize to hardware limits */ 162 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 163 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 164 /* 165 * The TXQ hardware requires that the descriptor count is a power 166 * of 2, but tx_desc_lim cannot properly describe that constraint 167 */ 168 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 169 170 if (sa->dp_rx->get_dev_info != NULL) 171 sa->dp_rx->get_dev_info(dev_info); 172 if (sa->dp_tx->get_dev_info != NULL) 173 sa->dp_tx->get_dev_info(dev_info); 174 175 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 176 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 177 } 178 179 static const uint32_t * 180 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 181 { 182 struct sfc_adapter *sa = dev->data->dev_private; 183 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 184 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 185 186 return sa->dp_rx->supported_ptypes_get(tunnel_encaps); 187 } 188 189 static int 190 sfc_dev_configure(struct rte_eth_dev *dev) 191 { 192 struct rte_eth_dev_data *dev_data = dev->data; 193 struct sfc_adapter *sa = dev_data->dev_private; 194 int rc; 195 196 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 197 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 198 199 sfc_adapter_lock(sa); 200 switch (sa->state) { 201 case SFC_ADAPTER_CONFIGURED: 202 /* FALLTHROUGH */ 203 case SFC_ADAPTER_INITIALIZED: 204 rc = sfc_configure(sa); 205 break; 206 default: 207 sfc_err(sa, "unexpected adapter state %u to configure", 208 sa->state); 209 rc = EINVAL; 210 break; 211 } 212 sfc_adapter_unlock(sa); 213 214 sfc_log_init(sa, "done %d", rc); 215 SFC_ASSERT(rc >= 0); 216 return -rc; 217 } 218 219 static int 220 sfc_dev_start(struct rte_eth_dev *dev) 221 { 222 struct sfc_adapter *sa = dev->data->dev_private; 223 int rc; 224 225 sfc_log_init(sa, "entry"); 226 227 sfc_adapter_lock(sa); 228 rc = sfc_start(sa); 229 sfc_adapter_unlock(sa); 230 231 sfc_log_init(sa, "done %d", rc); 232 SFC_ASSERT(rc >= 0); 233 return -rc; 234 } 235 236 static int 237 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 238 { 239 struct sfc_adapter *sa = dev->data->dev_private; 240 struct rte_eth_link current_link; 241 int ret; 242 243 sfc_log_init(sa, "entry"); 244 245 if (sa->state != SFC_ADAPTER_STARTED) { 246 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 247 } else if (wait_to_complete) { 248 efx_link_mode_t link_mode; 249 250 if (efx_port_poll(sa->nic, &link_mode) != 0) 251 link_mode = EFX_LINK_UNKNOWN; 252 sfc_port_link_mode_to_info(link_mode, ¤t_link); 253 254 } else { 255 sfc_ev_mgmt_qpoll(sa); 256 rte_eth_linkstatus_get(dev, ¤t_link); 257 } 258 259 ret = rte_eth_linkstatus_set(dev, ¤t_link); 260 if (ret == 0) 261 sfc_notice(sa, "Link status is %s", 262 current_link.link_status ? "UP" : "DOWN"); 263 264 return ret; 265 } 266 267 static void 268 sfc_dev_stop(struct rte_eth_dev *dev) 269 { 270 struct sfc_adapter *sa = dev->data->dev_private; 271 272 sfc_log_init(sa, "entry"); 273 274 sfc_adapter_lock(sa); 275 sfc_stop(sa); 276 sfc_adapter_unlock(sa); 277 278 sfc_log_init(sa, "done"); 279 } 280 281 static int 282 sfc_dev_set_link_up(struct rte_eth_dev *dev) 283 { 284 struct sfc_adapter *sa = dev->data->dev_private; 285 int rc; 286 287 sfc_log_init(sa, "entry"); 288 289 sfc_adapter_lock(sa); 290 rc = sfc_start(sa); 291 sfc_adapter_unlock(sa); 292 293 SFC_ASSERT(rc >= 0); 294 return -rc; 295 } 296 297 static int 298 sfc_dev_set_link_down(struct rte_eth_dev *dev) 299 { 300 struct sfc_adapter *sa = dev->data->dev_private; 301 302 sfc_log_init(sa, "entry"); 303 304 sfc_adapter_lock(sa); 305 sfc_stop(sa); 306 sfc_adapter_unlock(sa); 307 308 return 0; 309 } 310 311 static void 312 sfc_dev_close(struct rte_eth_dev *dev) 313 { 314 struct sfc_adapter *sa = dev->data->dev_private; 315 316 sfc_log_init(sa, "entry"); 317 318 sfc_adapter_lock(sa); 319 switch (sa->state) { 320 case SFC_ADAPTER_STARTED: 321 sfc_stop(sa); 322 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 323 /* FALLTHROUGH */ 324 case SFC_ADAPTER_CONFIGURED: 325 sfc_close(sa); 326 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 327 /* FALLTHROUGH */ 328 case SFC_ADAPTER_INITIALIZED: 329 break; 330 default: 331 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 332 break; 333 } 334 sfc_adapter_unlock(sa); 335 336 sfc_log_init(sa, "done"); 337 } 338 339 static void 340 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 341 boolean_t enabled) 342 { 343 struct sfc_port *port; 344 boolean_t *toggle; 345 struct sfc_adapter *sa = dev->data->dev_private; 346 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 347 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 348 349 sfc_adapter_lock(sa); 350 351 port = &sa->port; 352 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 353 354 if (*toggle != enabled) { 355 *toggle = enabled; 356 357 if (port->isolated) { 358 sfc_warn(sa, "isolated mode is active on the port"); 359 sfc_warn(sa, "the change is to be applied on the next " 360 "start provided that isolated mode is " 361 "disabled prior the next start"); 362 } else if ((sa->state == SFC_ADAPTER_STARTED) && 363 (sfc_set_rx_mode(sa) != 0)) { 364 *toggle = !(enabled); 365 sfc_warn(sa, "Failed to %s %s mode", 366 ((enabled) ? "enable" : "disable"), desc); 367 } 368 } 369 370 sfc_adapter_unlock(sa); 371 } 372 373 static void 374 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 375 { 376 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 377 } 378 379 static void 380 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 381 { 382 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 383 } 384 385 static void 386 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 387 { 388 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 389 } 390 391 static void 392 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 393 { 394 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 395 } 396 397 static int 398 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 399 uint16_t nb_rx_desc, unsigned int socket_id, 400 const struct rte_eth_rxconf *rx_conf, 401 struct rte_mempool *mb_pool) 402 { 403 struct sfc_adapter *sa = dev->data->dev_private; 404 int rc; 405 406 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 407 rx_queue_id, nb_rx_desc, socket_id); 408 409 sfc_adapter_lock(sa); 410 411 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 412 rx_conf, mb_pool); 413 if (rc != 0) 414 goto fail_rx_qinit; 415 416 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 417 418 sfc_adapter_unlock(sa); 419 420 return 0; 421 422 fail_rx_qinit: 423 sfc_adapter_unlock(sa); 424 SFC_ASSERT(rc > 0); 425 return -rc; 426 } 427 428 static void 429 sfc_rx_queue_release(void *queue) 430 { 431 struct sfc_dp_rxq *dp_rxq = queue; 432 struct sfc_rxq *rxq; 433 struct sfc_adapter *sa; 434 unsigned int sw_index; 435 436 if (dp_rxq == NULL) 437 return; 438 439 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 440 sa = rxq->evq->sa; 441 sfc_adapter_lock(sa); 442 443 sw_index = sfc_rxq_sw_index(rxq); 444 445 sfc_log_init(sa, "RxQ=%u", sw_index); 446 447 sfc_rx_qfini(sa, sw_index); 448 449 sfc_adapter_unlock(sa); 450 } 451 452 static int 453 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 454 uint16_t nb_tx_desc, unsigned int socket_id, 455 const struct rte_eth_txconf *tx_conf) 456 { 457 struct sfc_adapter *sa = dev->data->dev_private; 458 int rc; 459 460 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 461 tx_queue_id, nb_tx_desc, socket_id); 462 463 sfc_adapter_lock(sa); 464 465 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 466 if (rc != 0) 467 goto fail_tx_qinit; 468 469 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 470 471 sfc_adapter_unlock(sa); 472 return 0; 473 474 fail_tx_qinit: 475 sfc_adapter_unlock(sa); 476 SFC_ASSERT(rc > 0); 477 return -rc; 478 } 479 480 static void 481 sfc_tx_queue_release(void *queue) 482 { 483 struct sfc_dp_txq *dp_txq = queue; 484 struct sfc_txq *txq; 485 unsigned int sw_index; 486 struct sfc_adapter *sa; 487 488 if (dp_txq == NULL) 489 return; 490 491 txq = sfc_txq_by_dp_txq(dp_txq); 492 sw_index = sfc_txq_sw_index(txq); 493 494 SFC_ASSERT(txq->evq != NULL); 495 sa = txq->evq->sa; 496 497 sfc_log_init(sa, "TxQ = %u", sw_index); 498 499 sfc_adapter_lock(sa); 500 501 sfc_tx_qfini(sa, sw_index); 502 503 sfc_adapter_unlock(sa); 504 } 505 506 /* 507 * Some statistics are computed as A - B where A and B each increase 508 * monotonically with some hardware counter(s) and the counters are read 509 * asynchronously. 510 * 511 * If packet X is counted in A, but not counted in B yet, computed value is 512 * greater than real. 513 * 514 * If packet X is not counted in A at the moment of reading the counter, 515 * but counted in B at the moment of reading the counter, computed value 516 * is less than real. 517 * 518 * However, counter which grows backward is worse evil than slightly wrong 519 * value. So, let's try to guarantee that it never happens except may be 520 * the case when the MAC stats are zeroed as a result of a NIC reset. 521 */ 522 static void 523 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 524 { 525 if ((int64_t)(newval - *stat) > 0 || newval == 0) 526 *stat = newval; 527 } 528 529 static int 530 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 531 { 532 struct sfc_adapter *sa = dev->data->dev_private; 533 struct sfc_port *port = &sa->port; 534 uint64_t *mac_stats; 535 int ret; 536 537 rte_spinlock_lock(&port->mac_stats_lock); 538 539 ret = sfc_port_update_mac_stats(sa); 540 if (ret != 0) 541 goto unlock; 542 543 mac_stats = port->mac_stats_buf; 544 545 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 546 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 547 stats->ipackets = 548 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 549 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 550 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 551 stats->opackets = 552 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 553 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 554 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 555 stats->ibytes = 556 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 557 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 558 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 559 stats->obytes = 560 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 561 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 562 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 563 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 564 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 565 } else { 566 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 567 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 568 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 569 /* 570 * Take into account stats which are whenever supported 571 * on EF10. If some stat is not supported by current 572 * firmware variant or HW revision, it is guaranteed 573 * to be zero in mac_stats. 574 */ 575 stats->imissed = 576 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 577 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 578 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 579 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 580 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 581 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 582 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 583 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 584 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 585 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 586 stats->ierrors = 587 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 588 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 589 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 590 /* no oerrors counters supported on EF10 */ 591 592 /* Exclude missed, errors and pauses from Rx packets */ 593 sfc_update_diff_stat(&port->ipackets, 594 mac_stats[EFX_MAC_RX_PKTS] - 595 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 596 stats->imissed - stats->ierrors); 597 stats->ipackets = port->ipackets; 598 } 599 600 unlock: 601 rte_spinlock_unlock(&port->mac_stats_lock); 602 SFC_ASSERT(ret >= 0); 603 return -ret; 604 } 605 606 static void 607 sfc_stats_reset(struct rte_eth_dev *dev) 608 { 609 struct sfc_adapter *sa = dev->data->dev_private; 610 struct sfc_port *port = &sa->port; 611 int rc; 612 613 if (sa->state != SFC_ADAPTER_STARTED) { 614 /* 615 * The operation cannot be done if port is not started; it 616 * will be scheduled to be done during the next port start 617 */ 618 port->mac_stats_reset_pending = B_TRUE; 619 return; 620 } 621 622 rc = sfc_port_reset_mac_stats(sa); 623 if (rc != 0) 624 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 625 } 626 627 static int 628 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 629 unsigned int xstats_count) 630 { 631 struct sfc_adapter *sa = dev->data->dev_private; 632 struct sfc_port *port = &sa->port; 633 uint64_t *mac_stats; 634 int rc; 635 unsigned int i; 636 int nstats = 0; 637 638 rte_spinlock_lock(&port->mac_stats_lock); 639 640 rc = sfc_port_update_mac_stats(sa); 641 if (rc != 0) { 642 SFC_ASSERT(rc > 0); 643 nstats = -rc; 644 goto unlock; 645 } 646 647 mac_stats = port->mac_stats_buf; 648 649 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 650 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 651 if (xstats != NULL && nstats < (int)xstats_count) { 652 xstats[nstats].id = nstats; 653 xstats[nstats].value = mac_stats[i]; 654 } 655 nstats++; 656 } 657 } 658 659 unlock: 660 rte_spinlock_unlock(&port->mac_stats_lock); 661 662 return nstats; 663 } 664 665 static int 666 sfc_xstats_get_names(struct rte_eth_dev *dev, 667 struct rte_eth_xstat_name *xstats_names, 668 unsigned int xstats_count) 669 { 670 struct sfc_adapter *sa = dev->data->dev_private; 671 struct sfc_port *port = &sa->port; 672 unsigned int i; 673 unsigned int nstats = 0; 674 675 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 676 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 677 if (xstats_names != NULL && nstats < xstats_count) 678 strlcpy(xstats_names[nstats].name, 679 efx_mac_stat_name(sa->nic, i), 680 sizeof(xstats_names[0].name)); 681 nstats++; 682 } 683 } 684 685 return nstats; 686 } 687 688 static int 689 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 690 uint64_t *values, unsigned int n) 691 { 692 struct sfc_adapter *sa = dev->data->dev_private; 693 struct sfc_port *port = &sa->port; 694 uint64_t *mac_stats; 695 unsigned int nb_supported = 0; 696 unsigned int nb_written = 0; 697 unsigned int i; 698 int ret; 699 int rc; 700 701 if (unlikely(values == NULL) || 702 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 703 return port->mac_stats_nb_supported; 704 705 rte_spinlock_lock(&port->mac_stats_lock); 706 707 rc = sfc_port_update_mac_stats(sa); 708 if (rc != 0) { 709 SFC_ASSERT(rc > 0); 710 ret = -rc; 711 goto unlock; 712 } 713 714 mac_stats = port->mac_stats_buf; 715 716 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 717 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 718 continue; 719 720 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 721 values[nb_written++] = mac_stats[i]; 722 723 ++nb_supported; 724 } 725 726 ret = nb_written; 727 728 unlock: 729 rte_spinlock_unlock(&port->mac_stats_lock); 730 731 return ret; 732 } 733 734 static int 735 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 736 struct rte_eth_xstat_name *xstats_names, 737 const uint64_t *ids, unsigned int size) 738 { 739 struct sfc_adapter *sa = dev->data->dev_private; 740 struct sfc_port *port = &sa->port; 741 unsigned int nb_supported = 0; 742 unsigned int nb_written = 0; 743 unsigned int i; 744 745 if (unlikely(xstats_names == NULL) || 746 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 747 return port->mac_stats_nb_supported; 748 749 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 750 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 751 continue; 752 753 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 754 char *name = xstats_names[nb_written++].name; 755 756 strlcpy(name, efx_mac_stat_name(sa->nic, i), 757 sizeof(xstats_names[0].name)); 758 } 759 760 ++nb_supported; 761 } 762 763 return nb_written; 764 } 765 766 static int 767 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 768 { 769 struct sfc_adapter *sa = dev->data->dev_private; 770 unsigned int wanted_fc, link_fc; 771 772 memset(fc_conf, 0, sizeof(*fc_conf)); 773 774 sfc_adapter_lock(sa); 775 776 if (sa->state == SFC_ADAPTER_STARTED) 777 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 778 else 779 link_fc = sa->port.flow_ctrl; 780 781 switch (link_fc) { 782 case 0: 783 fc_conf->mode = RTE_FC_NONE; 784 break; 785 case EFX_FCNTL_RESPOND: 786 fc_conf->mode = RTE_FC_RX_PAUSE; 787 break; 788 case EFX_FCNTL_GENERATE: 789 fc_conf->mode = RTE_FC_TX_PAUSE; 790 break; 791 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 792 fc_conf->mode = RTE_FC_FULL; 793 break; 794 default: 795 sfc_err(sa, "%s: unexpected flow control value %#x", 796 __func__, link_fc); 797 } 798 799 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 800 801 sfc_adapter_unlock(sa); 802 803 return 0; 804 } 805 806 static int 807 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 808 { 809 struct sfc_adapter *sa = dev->data->dev_private; 810 struct sfc_port *port = &sa->port; 811 unsigned int fcntl; 812 int rc; 813 814 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 815 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 816 fc_conf->mac_ctrl_frame_fwd != 0) { 817 sfc_err(sa, "unsupported flow control settings specified"); 818 rc = EINVAL; 819 goto fail_inval; 820 } 821 822 switch (fc_conf->mode) { 823 case RTE_FC_NONE: 824 fcntl = 0; 825 break; 826 case RTE_FC_RX_PAUSE: 827 fcntl = EFX_FCNTL_RESPOND; 828 break; 829 case RTE_FC_TX_PAUSE: 830 fcntl = EFX_FCNTL_GENERATE; 831 break; 832 case RTE_FC_FULL: 833 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 834 break; 835 default: 836 rc = EINVAL; 837 goto fail_inval; 838 } 839 840 sfc_adapter_lock(sa); 841 842 if (sa->state == SFC_ADAPTER_STARTED) { 843 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 844 if (rc != 0) 845 goto fail_mac_fcntl_set; 846 } 847 848 port->flow_ctrl = fcntl; 849 port->flow_ctrl_autoneg = fc_conf->autoneg; 850 851 sfc_adapter_unlock(sa); 852 853 return 0; 854 855 fail_mac_fcntl_set: 856 sfc_adapter_unlock(sa); 857 fail_inval: 858 SFC_ASSERT(rc > 0); 859 return -rc; 860 } 861 862 static int 863 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 864 { 865 struct sfc_adapter *sa = dev->data->dev_private; 866 size_t pdu = EFX_MAC_PDU(mtu); 867 size_t old_pdu; 868 int rc; 869 870 sfc_log_init(sa, "mtu=%u", mtu); 871 872 rc = EINVAL; 873 if (pdu < EFX_MAC_PDU_MIN) { 874 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 875 (unsigned int)mtu, (unsigned int)pdu, 876 EFX_MAC_PDU_MIN); 877 goto fail_inval; 878 } 879 if (pdu > EFX_MAC_PDU_MAX) { 880 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 881 (unsigned int)mtu, (unsigned int)pdu, 882 EFX_MAC_PDU_MAX); 883 goto fail_inval; 884 } 885 886 sfc_adapter_lock(sa); 887 888 if (pdu != sa->port.pdu) { 889 if (sa->state == SFC_ADAPTER_STARTED) { 890 sfc_stop(sa); 891 892 old_pdu = sa->port.pdu; 893 sa->port.pdu = pdu; 894 rc = sfc_start(sa); 895 if (rc != 0) 896 goto fail_start; 897 } else { 898 sa->port.pdu = pdu; 899 } 900 } 901 902 /* 903 * The driver does not use it, but other PMDs update jumbo frame 904 * flag and max_rx_pkt_len when MTU is set. 905 */ 906 if (mtu > ETHER_MAX_LEN) { 907 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 908 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 909 } 910 911 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 912 913 sfc_adapter_unlock(sa); 914 915 sfc_log_init(sa, "done"); 916 return 0; 917 918 fail_start: 919 sa->port.pdu = old_pdu; 920 if (sfc_start(sa) != 0) 921 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 922 "PDU max size - port is stopped", 923 (unsigned int)pdu, (unsigned int)old_pdu); 924 sfc_adapter_unlock(sa); 925 926 fail_inval: 927 sfc_log_init(sa, "failed %d", rc); 928 SFC_ASSERT(rc > 0); 929 return -rc; 930 } 931 static int 932 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 933 { 934 struct sfc_adapter *sa = dev->data->dev_private; 935 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 936 struct sfc_port *port = &sa->port; 937 struct ether_addr *old_addr = &dev->data->mac_addrs[0]; 938 int rc = 0; 939 940 sfc_adapter_lock(sa); 941 942 /* 943 * Copy the address to the device private data so that 944 * it could be recalled in the case of adapter restart. 945 */ 946 ether_addr_copy(mac_addr, &port->default_mac_addr); 947 948 /* 949 * Neither of the two following checks can return 950 * an error. The new MAC address is preserved in 951 * the device private data and can be activated 952 * on the next port start if the user prevents 953 * isolated mode from being enabled. 954 */ 955 if (port->isolated) { 956 sfc_warn(sa, "isolated mode is active on the port"); 957 sfc_warn(sa, "will not set MAC address"); 958 goto unlock; 959 } 960 961 if (sa->state != SFC_ADAPTER_STARTED) { 962 sfc_notice(sa, "the port is not started"); 963 sfc_notice(sa, "the new MAC address will be set on port start"); 964 965 goto unlock; 966 } 967 968 if (encp->enc_allow_set_mac_with_installed_filters) { 969 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 970 if (rc != 0) { 971 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 972 goto unlock; 973 } 974 975 /* 976 * Changing the MAC address by means of MCDI request 977 * has no effect on received traffic, therefore 978 * we also need to update unicast filters 979 */ 980 rc = sfc_set_rx_mode(sa); 981 if (rc != 0) { 982 sfc_err(sa, "cannot set filter (rc = %u)", rc); 983 /* Rollback the old address */ 984 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 985 (void)sfc_set_rx_mode(sa); 986 } 987 } else { 988 sfc_warn(sa, "cannot set MAC address with filters installed"); 989 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 990 sfc_warn(sa, "(some traffic may be dropped)"); 991 992 /* 993 * Since setting MAC address with filters installed is not 994 * allowed on the adapter, the new MAC address will be set 995 * by means of adapter restart. sfc_start() shall retrieve 996 * the new address from the device private data and set it. 997 */ 998 sfc_stop(sa); 999 rc = sfc_start(sa); 1000 if (rc != 0) 1001 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1002 } 1003 1004 unlock: 1005 if (rc != 0) 1006 ether_addr_copy(old_addr, &port->default_mac_addr); 1007 1008 sfc_adapter_unlock(sa); 1009 1010 SFC_ASSERT(rc >= 0); 1011 return -rc; 1012 } 1013 1014 1015 static int 1016 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 1017 uint32_t nb_mc_addr) 1018 { 1019 struct sfc_adapter *sa = dev->data->dev_private; 1020 struct sfc_port *port = &sa->port; 1021 uint8_t *mc_addrs = port->mcast_addrs; 1022 int rc; 1023 unsigned int i; 1024 1025 if (port->isolated) { 1026 sfc_err(sa, "isolated mode is active on the port"); 1027 sfc_err(sa, "will not set multicast address list"); 1028 return -ENOTSUP; 1029 } 1030 1031 if (mc_addrs == NULL) 1032 return -ENOBUFS; 1033 1034 if (nb_mc_addr > port->max_mcast_addrs) { 1035 sfc_err(sa, "too many multicast addresses: %u > %u", 1036 nb_mc_addr, port->max_mcast_addrs); 1037 return -EINVAL; 1038 } 1039 1040 for (i = 0; i < nb_mc_addr; ++i) { 1041 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1042 EFX_MAC_ADDR_LEN); 1043 mc_addrs += EFX_MAC_ADDR_LEN; 1044 } 1045 1046 port->nb_mcast_addrs = nb_mc_addr; 1047 1048 if (sa->state != SFC_ADAPTER_STARTED) 1049 return 0; 1050 1051 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1052 port->nb_mcast_addrs); 1053 if (rc != 0) 1054 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1055 1056 SFC_ASSERT(rc >= 0); 1057 return -rc; 1058 } 1059 1060 /* 1061 * The function is used by the secondary process as well. It must not 1062 * use any process-local pointers from the adapter data. 1063 */ 1064 static void 1065 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1066 struct rte_eth_rxq_info *qinfo) 1067 { 1068 struct sfc_adapter *sa = dev->data->dev_private; 1069 struct sfc_rxq_info *rxq_info; 1070 struct sfc_rxq *rxq; 1071 1072 sfc_adapter_lock(sa); 1073 1074 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1075 1076 rxq_info = &sa->rxq_info[rx_queue_id]; 1077 rxq = rxq_info->rxq; 1078 SFC_ASSERT(rxq != NULL); 1079 1080 qinfo->mp = rxq->refill_mb_pool; 1081 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1082 qinfo->conf.rx_drop_en = 1; 1083 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1084 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1085 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1086 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1087 qinfo->scattered_rx = 1; 1088 } 1089 qinfo->nb_desc = rxq_info->entries; 1090 1091 sfc_adapter_unlock(sa); 1092 } 1093 1094 /* 1095 * The function is used by the secondary process as well. It must not 1096 * use any process-local pointers from the adapter data. 1097 */ 1098 static void 1099 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1100 struct rte_eth_txq_info *qinfo) 1101 { 1102 struct sfc_adapter *sa = dev->data->dev_private; 1103 struct sfc_txq_info *txq_info; 1104 1105 sfc_adapter_lock(sa); 1106 1107 SFC_ASSERT(tx_queue_id < sa->txq_count); 1108 1109 txq_info = &sa->txq_info[tx_queue_id]; 1110 SFC_ASSERT(txq_info->txq != NULL); 1111 1112 memset(qinfo, 0, sizeof(*qinfo)); 1113 1114 qinfo->conf.offloads = txq_info->txq->offloads; 1115 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1116 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1117 qinfo->nb_desc = txq_info->entries; 1118 1119 sfc_adapter_unlock(sa); 1120 } 1121 1122 static uint32_t 1123 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1124 { 1125 struct sfc_adapter *sa = dev->data->dev_private; 1126 1127 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1128 } 1129 1130 static int 1131 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1132 { 1133 struct sfc_dp_rxq *dp_rxq = queue; 1134 1135 return sfc_rx_qdesc_done(dp_rxq, offset); 1136 } 1137 1138 static int 1139 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1140 { 1141 struct sfc_dp_rxq *dp_rxq = queue; 1142 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1143 1144 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1145 } 1146 1147 static int 1148 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1149 { 1150 struct sfc_dp_txq *dp_txq = queue; 1151 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1152 1153 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1154 } 1155 1156 static int 1157 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1158 { 1159 struct sfc_adapter *sa = dev->data->dev_private; 1160 int rc; 1161 1162 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1163 1164 sfc_adapter_lock(sa); 1165 1166 rc = EINVAL; 1167 if (sa->state != SFC_ADAPTER_STARTED) 1168 goto fail_not_started; 1169 1170 if (sa->rxq_info[rx_queue_id].rxq == NULL) 1171 goto fail_not_setup; 1172 1173 rc = sfc_rx_qstart(sa, rx_queue_id); 1174 if (rc != 0) 1175 goto fail_rx_qstart; 1176 1177 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1178 1179 sfc_adapter_unlock(sa); 1180 1181 return 0; 1182 1183 fail_rx_qstart: 1184 fail_not_setup: 1185 fail_not_started: 1186 sfc_adapter_unlock(sa); 1187 SFC_ASSERT(rc > 0); 1188 return -rc; 1189 } 1190 1191 static int 1192 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1193 { 1194 struct sfc_adapter *sa = dev->data->dev_private; 1195 1196 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1197 1198 sfc_adapter_lock(sa); 1199 sfc_rx_qstop(sa, rx_queue_id); 1200 1201 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1202 1203 sfc_adapter_unlock(sa); 1204 1205 return 0; 1206 } 1207 1208 static int 1209 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1210 { 1211 struct sfc_adapter *sa = dev->data->dev_private; 1212 int rc; 1213 1214 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1215 1216 sfc_adapter_lock(sa); 1217 1218 rc = EINVAL; 1219 if (sa->state != SFC_ADAPTER_STARTED) 1220 goto fail_not_started; 1221 1222 if (sa->txq_info[tx_queue_id].txq == NULL) 1223 goto fail_not_setup; 1224 1225 rc = sfc_tx_qstart(sa, tx_queue_id); 1226 if (rc != 0) 1227 goto fail_tx_qstart; 1228 1229 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1230 1231 sfc_adapter_unlock(sa); 1232 return 0; 1233 1234 fail_tx_qstart: 1235 1236 fail_not_setup: 1237 fail_not_started: 1238 sfc_adapter_unlock(sa); 1239 SFC_ASSERT(rc > 0); 1240 return -rc; 1241 } 1242 1243 static int 1244 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1245 { 1246 struct sfc_adapter *sa = dev->data->dev_private; 1247 1248 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1249 1250 sfc_adapter_lock(sa); 1251 1252 sfc_tx_qstop(sa, tx_queue_id); 1253 1254 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1255 1256 sfc_adapter_unlock(sa); 1257 return 0; 1258 } 1259 1260 static efx_tunnel_protocol_t 1261 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1262 { 1263 switch (rte_type) { 1264 case RTE_TUNNEL_TYPE_VXLAN: 1265 return EFX_TUNNEL_PROTOCOL_VXLAN; 1266 case RTE_TUNNEL_TYPE_GENEVE: 1267 return EFX_TUNNEL_PROTOCOL_GENEVE; 1268 default: 1269 return EFX_TUNNEL_NPROTOS; 1270 } 1271 } 1272 1273 enum sfc_udp_tunnel_op_e { 1274 SFC_UDP_TUNNEL_ADD_PORT, 1275 SFC_UDP_TUNNEL_DEL_PORT, 1276 }; 1277 1278 static int 1279 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1280 struct rte_eth_udp_tunnel *tunnel_udp, 1281 enum sfc_udp_tunnel_op_e op) 1282 { 1283 struct sfc_adapter *sa = dev->data->dev_private; 1284 efx_tunnel_protocol_t tunnel_proto; 1285 int rc; 1286 1287 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1288 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1289 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1290 tunnel_udp->udp_port, tunnel_udp->prot_type); 1291 1292 tunnel_proto = 1293 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1294 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1295 rc = ENOTSUP; 1296 goto fail_bad_proto; 1297 } 1298 1299 sfc_adapter_lock(sa); 1300 1301 switch (op) { 1302 case SFC_UDP_TUNNEL_ADD_PORT: 1303 rc = efx_tunnel_config_udp_add(sa->nic, 1304 tunnel_udp->udp_port, 1305 tunnel_proto); 1306 break; 1307 case SFC_UDP_TUNNEL_DEL_PORT: 1308 rc = efx_tunnel_config_udp_remove(sa->nic, 1309 tunnel_udp->udp_port, 1310 tunnel_proto); 1311 break; 1312 default: 1313 rc = EINVAL; 1314 goto fail_bad_op; 1315 } 1316 1317 if (rc != 0) 1318 goto fail_op; 1319 1320 if (sa->state == SFC_ADAPTER_STARTED) { 1321 rc = efx_tunnel_reconfigure(sa->nic); 1322 if (rc == EAGAIN) { 1323 /* 1324 * Configuration is accepted by FW and MC reboot 1325 * is initiated to apply the changes. MC reboot 1326 * will be handled in a usual way (MC reboot 1327 * event on management event queue and adapter 1328 * restart). 1329 */ 1330 rc = 0; 1331 } else if (rc != 0) { 1332 goto fail_reconfigure; 1333 } 1334 } 1335 1336 sfc_adapter_unlock(sa); 1337 return 0; 1338 1339 fail_reconfigure: 1340 /* Remove/restore entry since the change makes the trouble */ 1341 switch (op) { 1342 case SFC_UDP_TUNNEL_ADD_PORT: 1343 (void)efx_tunnel_config_udp_remove(sa->nic, 1344 tunnel_udp->udp_port, 1345 tunnel_proto); 1346 break; 1347 case SFC_UDP_TUNNEL_DEL_PORT: 1348 (void)efx_tunnel_config_udp_add(sa->nic, 1349 tunnel_udp->udp_port, 1350 tunnel_proto); 1351 break; 1352 } 1353 1354 fail_op: 1355 fail_bad_op: 1356 sfc_adapter_unlock(sa); 1357 1358 fail_bad_proto: 1359 SFC_ASSERT(rc > 0); 1360 return -rc; 1361 } 1362 1363 static int 1364 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1365 struct rte_eth_udp_tunnel *tunnel_udp) 1366 { 1367 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1368 } 1369 1370 static int 1371 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1372 struct rte_eth_udp_tunnel *tunnel_udp) 1373 { 1374 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1375 } 1376 1377 static int 1378 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1379 struct rte_eth_rss_conf *rss_conf) 1380 { 1381 struct sfc_adapter *sa = dev->data->dev_private; 1382 struct sfc_rss *rss = &sa->rss; 1383 1384 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1385 return -ENOTSUP; 1386 1387 sfc_adapter_lock(sa); 1388 1389 /* 1390 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1391 * hence, conversion is done here to derive a correct set of ETH_RSS 1392 * flags which corresponds to the active EFX configuration stored 1393 * locally in 'sfc_adapter' and kept up-to-date 1394 */ 1395 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types); 1396 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1397 if (rss_conf->rss_key != NULL) 1398 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1399 1400 sfc_adapter_unlock(sa); 1401 1402 return 0; 1403 } 1404 1405 static int 1406 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1407 struct rte_eth_rss_conf *rss_conf) 1408 { 1409 struct sfc_adapter *sa = dev->data->dev_private; 1410 struct sfc_rss *rss = &sa->rss; 1411 struct sfc_port *port = &sa->port; 1412 unsigned int efx_hash_types; 1413 int rc = 0; 1414 1415 if (port->isolated) 1416 return -ENOTSUP; 1417 1418 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1419 sfc_err(sa, "RSS is not available"); 1420 return -ENOTSUP; 1421 } 1422 1423 if (rss->channels == 0) { 1424 sfc_err(sa, "RSS is not configured"); 1425 return -EINVAL; 1426 } 1427 1428 if ((rss_conf->rss_key != NULL) && 1429 (rss_conf->rss_key_len != sizeof(rss->key))) { 1430 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1431 sizeof(rss->key)); 1432 return -EINVAL; 1433 } 1434 1435 sfc_adapter_lock(sa); 1436 1437 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1438 if (rc != 0) 1439 goto fail_rx_hf_rte_to_efx; 1440 1441 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1442 rss->hash_alg, efx_hash_types, B_TRUE); 1443 if (rc != 0) 1444 goto fail_scale_mode_set; 1445 1446 if (rss_conf->rss_key != NULL) { 1447 if (sa->state == SFC_ADAPTER_STARTED) { 1448 rc = efx_rx_scale_key_set(sa->nic, 1449 EFX_RSS_CONTEXT_DEFAULT, 1450 rss_conf->rss_key, 1451 sizeof(rss->key)); 1452 if (rc != 0) 1453 goto fail_scale_key_set; 1454 } 1455 1456 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1457 } 1458 1459 rss->hash_types = efx_hash_types; 1460 1461 sfc_adapter_unlock(sa); 1462 1463 return 0; 1464 1465 fail_scale_key_set: 1466 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1467 EFX_RX_HASHALG_TOEPLITZ, 1468 rss->hash_types, B_TRUE) != 0) 1469 sfc_err(sa, "failed to restore RSS mode"); 1470 1471 fail_scale_mode_set: 1472 fail_rx_hf_rte_to_efx: 1473 sfc_adapter_unlock(sa); 1474 return -rc; 1475 } 1476 1477 static int 1478 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1479 struct rte_eth_rss_reta_entry64 *reta_conf, 1480 uint16_t reta_size) 1481 { 1482 struct sfc_adapter *sa = dev->data->dev_private; 1483 struct sfc_rss *rss = &sa->rss; 1484 struct sfc_port *port = &sa->port; 1485 int entry; 1486 1487 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1488 return -ENOTSUP; 1489 1490 if (rss->channels == 0) 1491 return -EINVAL; 1492 1493 if (reta_size != EFX_RSS_TBL_SIZE) 1494 return -EINVAL; 1495 1496 sfc_adapter_lock(sa); 1497 1498 for (entry = 0; entry < reta_size; entry++) { 1499 int grp = entry / RTE_RETA_GROUP_SIZE; 1500 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1501 1502 if ((reta_conf[grp].mask >> grp_idx) & 1) 1503 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1504 } 1505 1506 sfc_adapter_unlock(sa); 1507 1508 return 0; 1509 } 1510 1511 static int 1512 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1513 struct rte_eth_rss_reta_entry64 *reta_conf, 1514 uint16_t reta_size) 1515 { 1516 struct sfc_adapter *sa = dev->data->dev_private; 1517 struct sfc_rss *rss = &sa->rss; 1518 struct sfc_port *port = &sa->port; 1519 unsigned int *rss_tbl_new; 1520 uint16_t entry; 1521 int rc = 0; 1522 1523 1524 if (port->isolated) 1525 return -ENOTSUP; 1526 1527 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1528 sfc_err(sa, "RSS is not available"); 1529 return -ENOTSUP; 1530 } 1531 1532 if (rss->channels == 0) { 1533 sfc_err(sa, "RSS is not configured"); 1534 return -EINVAL; 1535 } 1536 1537 if (reta_size != EFX_RSS_TBL_SIZE) { 1538 sfc_err(sa, "RETA size is wrong (should be %u)", 1539 EFX_RSS_TBL_SIZE); 1540 return -EINVAL; 1541 } 1542 1543 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1544 if (rss_tbl_new == NULL) 1545 return -ENOMEM; 1546 1547 sfc_adapter_lock(sa); 1548 1549 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1550 1551 for (entry = 0; entry < reta_size; entry++) { 1552 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1553 struct rte_eth_rss_reta_entry64 *grp; 1554 1555 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1556 1557 if (grp->mask & (1ull << grp_idx)) { 1558 if (grp->reta[grp_idx] >= rss->channels) { 1559 rc = EINVAL; 1560 goto bad_reta_entry; 1561 } 1562 rss_tbl_new[entry] = grp->reta[grp_idx]; 1563 } 1564 } 1565 1566 if (sa->state == SFC_ADAPTER_STARTED) { 1567 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1568 rss_tbl_new, EFX_RSS_TBL_SIZE); 1569 if (rc != 0) 1570 goto fail_scale_tbl_set; 1571 } 1572 1573 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1574 1575 fail_scale_tbl_set: 1576 bad_reta_entry: 1577 sfc_adapter_unlock(sa); 1578 1579 rte_free(rss_tbl_new); 1580 1581 SFC_ASSERT(rc >= 0); 1582 return -rc; 1583 } 1584 1585 static int 1586 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1587 enum rte_filter_op filter_op, 1588 void *arg) 1589 { 1590 struct sfc_adapter *sa = dev->data->dev_private; 1591 int rc = ENOTSUP; 1592 1593 sfc_log_init(sa, "entry"); 1594 1595 switch (filter_type) { 1596 case RTE_ETH_FILTER_NONE: 1597 sfc_err(sa, "Global filters configuration not supported"); 1598 break; 1599 case RTE_ETH_FILTER_MACVLAN: 1600 sfc_err(sa, "MACVLAN filters not supported"); 1601 break; 1602 case RTE_ETH_FILTER_ETHERTYPE: 1603 sfc_err(sa, "EtherType filters not supported"); 1604 break; 1605 case RTE_ETH_FILTER_FLEXIBLE: 1606 sfc_err(sa, "Flexible filters not supported"); 1607 break; 1608 case RTE_ETH_FILTER_SYN: 1609 sfc_err(sa, "SYN filters not supported"); 1610 break; 1611 case RTE_ETH_FILTER_NTUPLE: 1612 sfc_err(sa, "NTUPLE filters not supported"); 1613 break; 1614 case RTE_ETH_FILTER_TUNNEL: 1615 sfc_err(sa, "Tunnel filters not supported"); 1616 break; 1617 case RTE_ETH_FILTER_FDIR: 1618 sfc_err(sa, "Flow Director filters not supported"); 1619 break; 1620 case RTE_ETH_FILTER_HASH: 1621 sfc_err(sa, "Hash filters not supported"); 1622 break; 1623 case RTE_ETH_FILTER_GENERIC: 1624 if (filter_op != RTE_ETH_FILTER_GET) { 1625 rc = EINVAL; 1626 } else { 1627 *(const void **)arg = &sfc_flow_ops; 1628 rc = 0; 1629 } 1630 break; 1631 default: 1632 sfc_err(sa, "Unknown filter type %u", filter_type); 1633 break; 1634 } 1635 1636 sfc_log_init(sa, "exit: %d", -rc); 1637 SFC_ASSERT(rc >= 0); 1638 return -rc; 1639 } 1640 1641 static int 1642 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1643 { 1644 struct sfc_adapter *sa = dev->data->dev_private; 1645 1646 /* 1647 * If Rx datapath does not provide callback to check mempool, 1648 * all pools are supported. 1649 */ 1650 if (sa->dp_rx->pool_ops_supported == NULL) 1651 return 1; 1652 1653 return sa->dp_rx->pool_ops_supported(pool); 1654 } 1655 1656 static const struct eth_dev_ops sfc_eth_dev_ops = { 1657 .dev_configure = sfc_dev_configure, 1658 .dev_start = sfc_dev_start, 1659 .dev_stop = sfc_dev_stop, 1660 .dev_set_link_up = sfc_dev_set_link_up, 1661 .dev_set_link_down = sfc_dev_set_link_down, 1662 .dev_close = sfc_dev_close, 1663 .promiscuous_enable = sfc_dev_promisc_enable, 1664 .promiscuous_disable = sfc_dev_promisc_disable, 1665 .allmulticast_enable = sfc_dev_allmulti_enable, 1666 .allmulticast_disable = sfc_dev_allmulti_disable, 1667 .link_update = sfc_dev_link_update, 1668 .stats_get = sfc_stats_get, 1669 .stats_reset = sfc_stats_reset, 1670 .xstats_get = sfc_xstats_get, 1671 .xstats_reset = sfc_stats_reset, 1672 .xstats_get_names = sfc_xstats_get_names, 1673 .dev_infos_get = sfc_dev_infos_get, 1674 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1675 .mtu_set = sfc_dev_set_mtu, 1676 .rx_queue_start = sfc_rx_queue_start, 1677 .rx_queue_stop = sfc_rx_queue_stop, 1678 .tx_queue_start = sfc_tx_queue_start, 1679 .tx_queue_stop = sfc_tx_queue_stop, 1680 .rx_queue_setup = sfc_rx_queue_setup, 1681 .rx_queue_release = sfc_rx_queue_release, 1682 .rx_queue_count = sfc_rx_queue_count, 1683 .rx_descriptor_done = sfc_rx_descriptor_done, 1684 .rx_descriptor_status = sfc_rx_descriptor_status, 1685 .tx_descriptor_status = sfc_tx_descriptor_status, 1686 .tx_queue_setup = sfc_tx_queue_setup, 1687 .tx_queue_release = sfc_tx_queue_release, 1688 .flow_ctrl_get = sfc_flow_ctrl_get, 1689 .flow_ctrl_set = sfc_flow_ctrl_set, 1690 .mac_addr_set = sfc_mac_addr_set, 1691 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1692 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1693 .reta_update = sfc_dev_rss_reta_update, 1694 .reta_query = sfc_dev_rss_reta_query, 1695 .rss_hash_update = sfc_dev_rss_hash_update, 1696 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1697 .filter_ctrl = sfc_dev_filter_ctrl, 1698 .set_mc_addr_list = sfc_set_mc_addr_list, 1699 .rxq_info_get = sfc_rx_queue_info_get, 1700 .txq_info_get = sfc_tx_queue_info_get, 1701 .fw_version_get = sfc_fw_version_get, 1702 .xstats_get_by_id = sfc_xstats_get_by_id, 1703 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1704 .pool_ops_supported = sfc_pool_ops_supported, 1705 }; 1706 1707 /** 1708 * Duplicate a string in potentially shared memory required for 1709 * multi-process support. 1710 * 1711 * strdup() allocates from process-local heap/memory. 1712 */ 1713 static char * 1714 sfc_strdup(const char *str) 1715 { 1716 size_t size; 1717 char *copy; 1718 1719 if (str == NULL) 1720 return NULL; 1721 1722 size = strlen(str) + 1; 1723 copy = rte_malloc(__func__, size, 0); 1724 if (copy != NULL) 1725 rte_memcpy(copy, str, size); 1726 1727 return copy; 1728 } 1729 1730 static int 1731 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1732 { 1733 struct sfc_adapter *sa = dev->data->dev_private; 1734 const efx_nic_cfg_t *encp; 1735 unsigned int avail_caps = 0; 1736 const char *rx_name = NULL; 1737 const char *tx_name = NULL; 1738 int rc; 1739 1740 switch (sa->family) { 1741 case EFX_FAMILY_HUNTINGTON: 1742 case EFX_FAMILY_MEDFORD: 1743 case EFX_FAMILY_MEDFORD2: 1744 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1745 break; 1746 default: 1747 break; 1748 } 1749 1750 encp = efx_nic_cfg_get(sa->nic); 1751 if (encp->enc_rx_es_super_buffer_supported) 1752 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1753 1754 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1755 sfc_kvarg_string_handler, &rx_name); 1756 if (rc != 0) 1757 goto fail_kvarg_rx_datapath; 1758 1759 if (rx_name != NULL) { 1760 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1761 if (sa->dp_rx == NULL) { 1762 sfc_err(sa, "Rx datapath %s not found", rx_name); 1763 rc = ENOENT; 1764 goto fail_dp_rx; 1765 } 1766 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1767 sfc_err(sa, 1768 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1769 rx_name); 1770 rc = EINVAL; 1771 goto fail_dp_rx_caps; 1772 } 1773 } else { 1774 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1775 if (sa->dp_rx == NULL) { 1776 sfc_err(sa, "Rx datapath by caps %#x not found", 1777 avail_caps); 1778 rc = ENOENT; 1779 goto fail_dp_rx; 1780 } 1781 } 1782 1783 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1784 if (sa->dp_rx_name == NULL) { 1785 rc = ENOMEM; 1786 goto fail_dp_rx_name; 1787 } 1788 1789 sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name); 1790 1791 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1792 1793 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1794 sfc_kvarg_string_handler, &tx_name); 1795 if (rc != 0) 1796 goto fail_kvarg_tx_datapath; 1797 1798 if (tx_name != NULL) { 1799 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1800 if (sa->dp_tx == NULL) { 1801 sfc_err(sa, "Tx datapath %s not found", tx_name); 1802 rc = ENOENT; 1803 goto fail_dp_tx; 1804 } 1805 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1806 sfc_err(sa, 1807 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1808 tx_name); 1809 rc = EINVAL; 1810 goto fail_dp_tx_caps; 1811 } 1812 } else { 1813 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1814 if (sa->dp_tx == NULL) { 1815 sfc_err(sa, "Tx datapath by caps %#x not found", 1816 avail_caps); 1817 rc = ENOENT; 1818 goto fail_dp_tx; 1819 } 1820 } 1821 1822 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1823 if (sa->dp_tx_name == NULL) { 1824 rc = ENOMEM; 1825 goto fail_dp_tx_name; 1826 } 1827 1828 sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name); 1829 1830 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1831 1832 dev->dev_ops = &sfc_eth_dev_ops; 1833 1834 return 0; 1835 1836 fail_dp_tx_name: 1837 fail_dp_tx_caps: 1838 sa->dp_tx = NULL; 1839 1840 fail_dp_tx: 1841 fail_kvarg_tx_datapath: 1842 rte_free(sa->dp_rx_name); 1843 sa->dp_rx_name = NULL; 1844 1845 fail_dp_rx_name: 1846 fail_dp_rx_caps: 1847 sa->dp_rx = NULL; 1848 1849 fail_dp_rx: 1850 fail_kvarg_rx_datapath: 1851 return rc; 1852 } 1853 1854 static void 1855 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1856 { 1857 struct sfc_adapter *sa = dev->data->dev_private; 1858 1859 dev->dev_ops = NULL; 1860 dev->rx_pkt_burst = NULL; 1861 dev->tx_pkt_burst = NULL; 1862 1863 rte_free(sa->dp_tx_name); 1864 sa->dp_tx_name = NULL; 1865 sa->dp_tx = NULL; 1866 1867 rte_free(sa->dp_rx_name); 1868 sa->dp_rx_name = NULL; 1869 sa->dp_rx = NULL; 1870 } 1871 1872 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1873 .rxq_info_get = sfc_rx_queue_info_get, 1874 .txq_info_get = sfc_tx_queue_info_get, 1875 }; 1876 1877 static int 1878 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1879 { 1880 /* 1881 * Device private data has really many process-local pointers. 1882 * Below code should be extremely careful to use data located 1883 * in shared memory only. 1884 */ 1885 struct sfc_adapter *sa = dev->data->dev_private; 1886 const struct sfc_dp_rx *dp_rx; 1887 const struct sfc_dp_tx *dp_tx; 1888 int rc; 1889 1890 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1891 if (dp_rx == NULL) { 1892 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_rx_name); 1893 rc = ENOENT; 1894 goto fail_dp_rx; 1895 } 1896 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1897 sfc_err(sa, "%s Rx datapath does not support multi-process", 1898 sa->dp_rx_name); 1899 rc = EINVAL; 1900 goto fail_dp_rx_multi_process; 1901 } 1902 1903 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1904 if (dp_tx == NULL) { 1905 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1906 rc = ENOENT; 1907 goto fail_dp_tx; 1908 } 1909 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1910 sfc_err(sa, "%s Tx datapath does not support multi-process", 1911 sa->dp_tx_name); 1912 rc = EINVAL; 1913 goto fail_dp_tx_multi_process; 1914 } 1915 1916 dev->rx_pkt_burst = dp_rx->pkt_burst; 1917 dev->tx_pkt_burst = dp_tx->pkt_burst; 1918 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1919 1920 return 0; 1921 1922 fail_dp_tx_multi_process: 1923 fail_dp_tx: 1924 fail_dp_rx_multi_process: 1925 fail_dp_rx: 1926 return rc; 1927 } 1928 1929 static void 1930 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1931 { 1932 dev->dev_ops = NULL; 1933 dev->tx_pkt_burst = NULL; 1934 dev->rx_pkt_burst = NULL; 1935 } 1936 1937 static void 1938 sfc_register_dp(void) 1939 { 1940 /* Register once */ 1941 if (TAILQ_EMPTY(&sfc_dp_head)) { 1942 /* Prefer EF10 datapath */ 1943 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 1944 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1945 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1946 1947 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1948 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1949 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1950 } 1951 } 1952 1953 static int 1954 sfc_eth_dev_init(struct rte_eth_dev *dev) 1955 { 1956 struct sfc_adapter *sa = dev->data->dev_private; 1957 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1958 int rc; 1959 const efx_nic_cfg_t *encp; 1960 const struct ether_addr *from; 1961 1962 sfc_register_dp(); 1963 1964 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1965 return -sfc_eth_dev_secondary_set_ops(dev); 1966 1967 /* Required for logging */ 1968 sa->pci_addr = pci_dev->addr; 1969 sa->port_id = dev->data->port_id; 1970 1971 sa->eth_dev = dev; 1972 1973 /* Copy PCI device info to the dev->data */ 1974 rte_eth_copy_pci_info(dev, pci_dev); 1975 1976 sa->logtype_main = sfc_register_logtype(sa, SFC_LOGTYPE_MAIN_STR, 1977 RTE_LOG_NOTICE); 1978 1979 rc = sfc_kvargs_parse(sa); 1980 if (rc != 0) 1981 goto fail_kvargs_parse; 1982 1983 sfc_log_init(sa, "entry"); 1984 1985 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1986 if (dev->data->mac_addrs == NULL) { 1987 rc = ENOMEM; 1988 goto fail_mac_addrs; 1989 } 1990 1991 sfc_adapter_lock_init(sa); 1992 sfc_adapter_lock(sa); 1993 1994 sfc_log_init(sa, "probing"); 1995 rc = sfc_probe(sa); 1996 if (rc != 0) 1997 goto fail_probe; 1998 1999 sfc_log_init(sa, "set device ops"); 2000 rc = sfc_eth_dev_set_ops(dev); 2001 if (rc != 0) 2002 goto fail_set_ops; 2003 2004 sfc_log_init(sa, "attaching"); 2005 rc = sfc_attach(sa); 2006 if (rc != 0) 2007 goto fail_attach; 2008 2009 encp = efx_nic_cfg_get(sa->nic); 2010 2011 /* 2012 * The arguments are really reverse order in comparison to 2013 * Linux kernel. Copy from NIC config to Ethernet device data. 2014 */ 2015 from = (const struct ether_addr *)(encp->enc_mac_addr); 2016 ether_addr_copy(from, &dev->data->mac_addrs[0]); 2017 2018 sfc_adapter_unlock(sa); 2019 2020 sfc_log_init(sa, "done"); 2021 return 0; 2022 2023 fail_attach: 2024 sfc_eth_dev_clear_ops(dev); 2025 2026 fail_set_ops: 2027 sfc_unprobe(sa); 2028 2029 fail_probe: 2030 sfc_adapter_unlock(sa); 2031 sfc_adapter_lock_fini(sa); 2032 rte_free(dev->data->mac_addrs); 2033 dev->data->mac_addrs = NULL; 2034 2035 fail_mac_addrs: 2036 sfc_kvargs_cleanup(sa); 2037 2038 fail_kvargs_parse: 2039 sfc_log_init(sa, "failed %d", rc); 2040 SFC_ASSERT(rc > 0); 2041 return -rc; 2042 } 2043 2044 static int 2045 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2046 { 2047 struct sfc_adapter *sa; 2048 2049 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2050 sfc_eth_dev_secondary_clear_ops(dev); 2051 return 0; 2052 } 2053 2054 sa = dev->data->dev_private; 2055 sfc_log_init(sa, "entry"); 2056 2057 sfc_adapter_lock(sa); 2058 2059 sfc_eth_dev_clear_ops(dev); 2060 2061 sfc_detach(sa); 2062 sfc_unprobe(sa); 2063 2064 sfc_kvargs_cleanup(sa); 2065 2066 sfc_adapter_unlock(sa); 2067 sfc_adapter_lock_fini(sa); 2068 2069 sfc_log_init(sa, "done"); 2070 2071 /* Required for logging, so cleanup last */ 2072 sa->eth_dev = NULL; 2073 return 0; 2074 } 2075 2076 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2077 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2078 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2079 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2080 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2081 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2082 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2083 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2084 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2085 { .vendor_id = 0 /* sentinel */ } 2086 }; 2087 2088 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2089 struct rte_pci_device *pci_dev) 2090 { 2091 return rte_eth_dev_pci_generic_probe(pci_dev, 2092 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2093 } 2094 2095 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2096 { 2097 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2098 } 2099 2100 static struct rte_pci_driver sfc_efx_pmd = { 2101 .id_table = pci_id_sfc_efx_map, 2102 .drv_flags = 2103 RTE_PCI_DRV_INTR_LSC | 2104 RTE_PCI_DRV_NEED_MAPPING, 2105 .probe = sfc_eth_dev_pci_probe, 2106 .remove = sfc_eth_dev_pci_remove, 2107 }; 2108 2109 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2110 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2111 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2112 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2113 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2114 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2115 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2116 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2117 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2118 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2119 2120 RTE_INIT(sfc_driver_register_logtype) 2121 { 2122 int ret; 2123 2124 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2125 RTE_LOG_NOTICE); 2126 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2127 } 2128