xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision b53d106d34b5c638f5a2cbdfee0da5bd42d4383f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2016-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <ethdev_driver.h>
12 #include <ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 #include <rte_ether.h>
18 
19 #include "efx.h"
20 
21 #include "sfc.h"
22 #include "sfc_debug.h"
23 #include "sfc_log.h"
24 #include "sfc_kvargs.h"
25 #include "sfc_ev.h"
26 #include "sfc_rx.h"
27 #include "sfc_tx.h"
28 #include "sfc_flow.h"
29 #include "sfc_flow_tunnel.h"
30 #include "sfc_dp.h"
31 #include "sfc_dp_rx.h"
32 #include "sfc_repr.h"
33 #include "sfc_sw_stats.h"
34 #include "sfc_switch.h"
35 #include "sfc_nic_dma.h"
36 
37 #define SFC_XSTAT_ID_INVALID_VAL  UINT64_MAX
38 #define SFC_XSTAT_ID_INVALID_NAME '\0'
39 
40 uint32_t sfc_logtype_driver;
41 
42 static struct sfc_dp_list sfc_dp_head =
43 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
44 
45 
46 static void sfc_eth_dev_clear_ops(struct rte_eth_dev *dev);
47 
48 
49 static int
50 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
51 {
52 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
53 	efx_nic_fw_info_t enfi;
54 	int ret;
55 	int rc;
56 
57 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
58 	if (rc != 0)
59 		return -rc;
60 
61 	ret = snprintf(fw_version, fw_size,
62 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
63 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
64 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
65 	if (ret < 0)
66 		return ret;
67 
68 	if (enfi.enfi_dpcpu_fw_ids_valid) {
69 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
70 		int ret_extra;
71 
72 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
73 				     fw_size - dpcpu_fw_ids_offset,
74 				     " rx%" PRIx16 " tx%" PRIx16,
75 				     enfi.enfi_rx_dpcpu_fw_id,
76 				     enfi.enfi_tx_dpcpu_fw_id);
77 		if (ret_extra < 0)
78 			return ret_extra;
79 
80 		ret += ret_extra;
81 	}
82 
83 	if (fw_size < (size_t)(++ret))
84 		return ret;
85 	else
86 		return 0;
87 }
88 
89 static int
90 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
91 {
92 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
93 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
94 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
95 	struct sfc_rss *rss = &sas->rss;
96 	struct sfc_mae *mae = &sa->mae;
97 	uint64_t txq_offloads_def = 0;
98 
99 	sfc_log_init(sa, "entry");
100 
101 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
102 	dev_info->max_mtu = EFX_MAC_SDU_MAX;
103 
104 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
105 
106 	dev_info->max_vfs = sa->sriov.num_vfs;
107 
108 	/* Autonegotiation may be disabled */
109 	dev_info->speed_capa = RTE_ETH_LINK_SPEED_FIXED;
110 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX))
111 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_1G;
112 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX))
113 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_10G;
114 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX))
115 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_25G;
116 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX))
117 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_40G;
118 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX))
119 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_50G;
120 	if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX))
121 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_100G;
122 
123 	dev_info->max_rx_queues = sa->rxq_max;
124 	dev_info->max_tx_queues = sa->txq_max;
125 
126 	/* By default packets are dropped if no descriptors are available */
127 	dev_info->default_rxconf.rx_drop_en = 1;
128 
129 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
130 
131 	/*
132 	 * rx_offload_capa includes both device and queue offloads since
133 	 * the latter may be requested on a per device basis which makes
134 	 * sense when some offloads are needed to be set on all queues.
135 	 */
136 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
137 				    dev_info->rx_queue_offload_capa;
138 
139 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
140 
141 	/*
142 	 * tx_offload_capa includes both device and queue offloads since
143 	 * the latter may be requested on a per device basis which makes
144 	 * sense when some offloads are needed to be set on all queues.
145 	 */
146 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
147 				    dev_info->tx_queue_offload_capa;
148 
149 	if (dev_info->tx_offload_capa & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
150 		txq_offloads_def |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
151 
152 	dev_info->default_txconf.offloads |= txq_offloads_def;
153 
154 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
155 		uint64_t rte_hf = 0;
156 		unsigned int i;
157 
158 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
159 			rte_hf |= rss->hf_map[i].rte;
160 
161 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
162 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
163 		dev_info->flow_type_rss_offloads = rte_hf;
164 	}
165 
166 	/* Initialize to hardware limits */
167 	dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries;
168 	dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries;
169 	/* The RXQ hardware requires that the descriptor count is a power
170 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
171 	 */
172 	dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries;
173 
174 	/* Initialize to hardware limits */
175 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
176 	dev_info->tx_desc_lim.nb_min = sa->txq_min_entries;
177 	/*
178 	 * The TXQ hardware requires that the descriptor count is a power
179 	 * of 2, but tx_desc_lim cannot properly describe that constraint
180 	 */
181 	dev_info->tx_desc_lim.nb_align = sa->txq_min_entries;
182 
183 	if (sap->dp_rx->get_dev_info != NULL)
184 		sap->dp_rx->get_dev_info(dev_info);
185 	if (sap->dp_tx->get_dev_info != NULL)
186 		sap->dp_tx->get_dev_info(dev_info);
187 
188 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
189 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
190 	dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
191 
192 	if (mae->status == SFC_MAE_STATUS_SUPPORTED ||
193 	    mae->status == SFC_MAE_STATUS_ADMIN) {
194 		dev_info->switch_info.name = dev->device->driver->name;
195 		dev_info->switch_info.domain_id = mae->switch_domain_id;
196 		dev_info->switch_info.port_id = mae->switch_port_id;
197 	}
198 
199 	return 0;
200 }
201 
202 static const uint32_t *
203 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
204 {
205 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
206 
207 	return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps);
208 }
209 
210 static int
211 sfc_dev_configure(struct rte_eth_dev *dev)
212 {
213 	struct rte_eth_dev_data *dev_data = dev->data;
214 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
215 	int rc;
216 
217 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
218 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
219 
220 	sfc_adapter_lock(sa);
221 	switch (sa->state) {
222 	case SFC_ETHDEV_CONFIGURED:
223 		/* FALLTHROUGH */
224 	case SFC_ETHDEV_INITIALIZED:
225 		rc = sfc_configure(sa);
226 		break;
227 	default:
228 		sfc_err(sa, "unexpected adapter state %u to configure",
229 			sa->state);
230 		rc = EINVAL;
231 		break;
232 	}
233 	sfc_adapter_unlock(sa);
234 
235 	sfc_log_init(sa, "done %d", rc);
236 	SFC_ASSERT(rc >= 0);
237 	return -rc;
238 }
239 
240 static int
241 sfc_dev_start(struct rte_eth_dev *dev)
242 {
243 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
244 	int rc;
245 
246 	sfc_log_init(sa, "entry");
247 
248 	sfc_adapter_lock(sa);
249 	rc = sfc_start(sa);
250 	sfc_adapter_unlock(sa);
251 
252 	sfc_log_init(sa, "done %d", rc);
253 	SFC_ASSERT(rc >= 0);
254 	return -rc;
255 }
256 
257 static int
258 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
259 {
260 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
261 	struct rte_eth_link current_link;
262 	int ret;
263 
264 	sfc_log_init(sa, "entry");
265 
266 	if (sa->state != SFC_ETHDEV_STARTED) {
267 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
268 	} else if (wait_to_complete) {
269 		efx_link_mode_t link_mode;
270 
271 		if (efx_port_poll(sa->nic, &link_mode) != 0)
272 			link_mode = EFX_LINK_UNKNOWN;
273 		sfc_port_link_mode_to_info(link_mode, &current_link);
274 
275 	} else {
276 		sfc_ev_mgmt_qpoll(sa);
277 		rte_eth_linkstatus_get(dev, &current_link);
278 	}
279 
280 	ret = rte_eth_linkstatus_set(dev, &current_link);
281 	if (ret == 0)
282 		sfc_notice(sa, "Link status is %s",
283 			   current_link.link_status ? "UP" : "DOWN");
284 
285 	return ret;
286 }
287 
288 static int
289 sfc_dev_stop(struct rte_eth_dev *dev)
290 {
291 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
292 
293 	sfc_log_init(sa, "entry");
294 
295 	sfc_adapter_lock(sa);
296 	sfc_stop(sa);
297 	sfc_adapter_unlock(sa);
298 
299 	sfc_log_init(sa, "done");
300 
301 	return 0;
302 }
303 
304 static int
305 sfc_dev_set_link_up(struct rte_eth_dev *dev)
306 {
307 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
308 	int rc;
309 
310 	sfc_log_init(sa, "entry");
311 
312 	sfc_adapter_lock(sa);
313 	rc = sfc_start(sa);
314 	sfc_adapter_unlock(sa);
315 
316 	SFC_ASSERT(rc >= 0);
317 	return -rc;
318 }
319 
320 static int
321 sfc_dev_set_link_down(struct rte_eth_dev *dev)
322 {
323 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
324 
325 	sfc_log_init(sa, "entry");
326 
327 	sfc_adapter_lock(sa);
328 	sfc_stop(sa);
329 	sfc_adapter_unlock(sa);
330 
331 	return 0;
332 }
333 
334 static void
335 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
336 {
337 	free(dev->process_private);
338 	rte_eth_dev_release_port(dev);
339 }
340 
341 static int
342 sfc_dev_close(struct rte_eth_dev *dev)
343 {
344 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
345 
346 	sfc_log_init(sa, "entry");
347 
348 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
349 		sfc_eth_dev_secondary_clear_ops(dev);
350 		return 0;
351 	}
352 
353 	sfc_pre_detach(sa);
354 
355 	sfc_adapter_lock(sa);
356 	switch (sa->state) {
357 	case SFC_ETHDEV_STARTED:
358 		sfc_stop(sa);
359 		SFC_ASSERT(sa->state == SFC_ETHDEV_CONFIGURED);
360 		/* FALLTHROUGH */
361 	case SFC_ETHDEV_CONFIGURED:
362 		sfc_close(sa);
363 		SFC_ASSERT(sa->state == SFC_ETHDEV_INITIALIZED);
364 		/* FALLTHROUGH */
365 	case SFC_ETHDEV_INITIALIZED:
366 		break;
367 	default:
368 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
369 		break;
370 	}
371 
372 	/*
373 	 * Cleanup all resources.
374 	 * Rollback primary process sfc_eth_dev_init() below.
375 	 */
376 
377 	sfc_eth_dev_clear_ops(dev);
378 
379 	sfc_nic_dma_detach(sa);
380 	sfc_detach(sa);
381 	sfc_unprobe(sa);
382 
383 	sfc_kvargs_cleanup(sa);
384 
385 	sfc_adapter_unlock(sa);
386 	sfc_adapter_lock_fini(sa);
387 
388 	sfc_log_init(sa, "done");
389 
390 	/* Required for logging, so cleanup last */
391 	sa->eth_dev = NULL;
392 
393 	free(sa);
394 
395 	return 0;
396 }
397 
398 static int
399 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
400 		   boolean_t enabled)
401 {
402 	struct sfc_port *port;
403 	boolean_t *toggle;
404 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
405 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
406 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
407 	int rc = 0;
408 
409 	sfc_adapter_lock(sa);
410 
411 	port = &sa->port;
412 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
413 
414 	if (*toggle != enabled) {
415 		*toggle = enabled;
416 
417 		if (sfc_sa2shared(sa)->isolated) {
418 			sfc_warn(sa, "isolated mode is active on the port");
419 			sfc_warn(sa, "the change is to be applied on the next "
420 				     "start provided that isolated mode is "
421 				     "disabled prior the next start");
422 		} else if ((sa->state == SFC_ETHDEV_STARTED) &&
423 			   ((rc = sfc_set_rx_mode(sa)) != 0)) {
424 			*toggle = !(enabled);
425 			sfc_warn(sa, "Failed to %s %s mode, rc = %d",
426 				 ((enabled) ? "enable" : "disable"), desc, rc);
427 
428 			/*
429 			 * For promiscuous and all-multicast filters a
430 			 * permission failure should be reported as an
431 			 * unsupported filter.
432 			 */
433 			if (rc == EPERM)
434 				rc = ENOTSUP;
435 		}
436 	}
437 
438 	sfc_adapter_unlock(sa);
439 	return rc;
440 }
441 
442 static int
443 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
444 {
445 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
446 
447 	SFC_ASSERT(rc >= 0);
448 	return -rc;
449 }
450 
451 static int
452 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
453 {
454 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
455 
456 	SFC_ASSERT(rc >= 0);
457 	return -rc;
458 }
459 
460 static int
461 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
462 {
463 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
464 
465 	SFC_ASSERT(rc >= 0);
466 	return -rc;
467 }
468 
469 static int
470 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
471 {
472 	int rc = sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
473 
474 	SFC_ASSERT(rc >= 0);
475 	return -rc;
476 }
477 
478 static int
479 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
480 		   uint16_t nb_rx_desc, unsigned int socket_id,
481 		   const struct rte_eth_rxconf *rx_conf,
482 		   struct rte_mempool *mb_pool)
483 {
484 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
485 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
486 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
487 	struct sfc_rxq_info *rxq_info;
488 	sfc_sw_index_t sw_index;
489 	int rc;
490 
491 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
492 		     ethdev_qid, nb_rx_desc, socket_id);
493 
494 	sfc_adapter_lock(sa);
495 
496 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
497 	rc = sfc_rx_qinit(sa, sw_index, nb_rx_desc, socket_id,
498 			  rx_conf, mb_pool);
499 	if (rc != 0)
500 		goto fail_rx_qinit;
501 
502 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
503 	dev->data->rx_queues[ethdev_qid] = rxq_info->dp;
504 
505 	sfc_adapter_unlock(sa);
506 
507 	return 0;
508 
509 fail_rx_qinit:
510 	sfc_adapter_unlock(sa);
511 	SFC_ASSERT(rc > 0);
512 	return -rc;
513 }
514 
515 static void
516 sfc_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
517 {
518 	struct sfc_dp_rxq *dp_rxq = dev->data->rx_queues[qid];
519 	struct sfc_rxq *rxq;
520 	struct sfc_adapter *sa;
521 	sfc_sw_index_t sw_index;
522 
523 	if (dp_rxq == NULL)
524 		return;
525 
526 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
527 	sa = rxq->evq->sa;
528 	sfc_adapter_lock(sa);
529 
530 	sw_index = dp_rxq->dpq.queue_id;
531 
532 	sfc_log_init(sa, "RxQ=%u", sw_index);
533 
534 	sfc_rx_qfini(sa, sw_index);
535 
536 	sfc_adapter_unlock(sa);
537 }
538 
539 static int
540 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t ethdev_qid,
541 		   uint16_t nb_tx_desc, unsigned int socket_id,
542 		   const struct rte_eth_txconf *tx_conf)
543 {
544 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
545 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
546 	struct sfc_txq_info *txq_info;
547 	sfc_sw_index_t sw_index;
548 	int rc;
549 
550 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
551 		     ethdev_qid, nb_tx_desc, socket_id);
552 
553 	sfc_adapter_lock(sa);
554 
555 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
556 	rc = sfc_tx_qinit(sa, sw_index, nb_tx_desc, socket_id, tx_conf);
557 	if (rc != 0)
558 		goto fail_tx_qinit;
559 
560 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
561 	dev->data->tx_queues[ethdev_qid] = txq_info->dp;
562 
563 	sfc_adapter_unlock(sa);
564 	return 0;
565 
566 fail_tx_qinit:
567 	sfc_adapter_unlock(sa);
568 	SFC_ASSERT(rc > 0);
569 	return -rc;
570 }
571 
572 static void
573 sfc_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
574 {
575 	struct sfc_dp_txq *dp_txq = dev->data->tx_queues[qid];
576 	struct sfc_txq *txq;
577 	sfc_sw_index_t sw_index;
578 	struct sfc_adapter *sa;
579 
580 	if (dp_txq == NULL)
581 		return;
582 
583 	txq = sfc_txq_by_dp_txq(dp_txq);
584 	sw_index = dp_txq->dpq.queue_id;
585 
586 	SFC_ASSERT(txq->evq != NULL);
587 	sa = txq->evq->sa;
588 
589 	sfc_log_init(sa, "TxQ = %u", sw_index);
590 
591 	sfc_adapter_lock(sa);
592 
593 	sfc_tx_qfini(sa, sw_index);
594 
595 	sfc_adapter_unlock(sa);
596 }
597 
598 static void
599 sfc_stats_get_dp_rx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
600 {
601 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
602 	uint64_t pkts_sum = 0;
603 	uint64_t bytes_sum = 0;
604 	unsigned int i;
605 
606 	for (i = 0; i < sas->ethdev_rxq_count; ++i) {
607 		struct sfc_rxq_info *rxq_info;
608 
609 		rxq_info = sfc_rxq_info_by_ethdev_qid(sas, i);
610 		if (rxq_info->state & SFC_RXQ_INITIALIZED) {
611 			union sfc_pkts_bytes qstats;
612 
613 			sfc_pkts_bytes_get(&rxq_info->dp->dpq.stats, &qstats);
614 			pkts_sum += qstats.pkts -
615 					sa->sw_stats.reset_rx_pkts[i];
616 			bytes_sum += qstats.bytes -
617 					sa->sw_stats.reset_rx_bytes[i];
618 		}
619 	}
620 
621 	*pkts = pkts_sum;
622 	*bytes = bytes_sum;
623 }
624 
625 static void
626 sfc_stats_get_dp_tx(struct sfc_adapter *sa, uint64_t *pkts, uint64_t *bytes)
627 {
628 	struct sfc_adapter_shared *sas = sfc_sa2shared(sa);
629 	uint64_t pkts_sum = 0;
630 	uint64_t bytes_sum = 0;
631 	unsigned int i;
632 
633 	for (i = 0; i < sas->ethdev_txq_count; ++i) {
634 		struct sfc_txq_info *txq_info;
635 
636 		txq_info = sfc_txq_info_by_ethdev_qid(sas, i);
637 		if (txq_info->state & SFC_TXQ_INITIALIZED) {
638 			union sfc_pkts_bytes qstats;
639 
640 			sfc_pkts_bytes_get(&txq_info->dp->dpq.stats, &qstats);
641 			pkts_sum += qstats.pkts -
642 					sa->sw_stats.reset_tx_pkts[i];
643 			bytes_sum += qstats.bytes -
644 					sa->sw_stats.reset_tx_bytes[i];
645 		}
646 	}
647 
648 	*pkts = pkts_sum;
649 	*bytes = bytes_sum;
650 }
651 
652 /*
653  * Some statistics are computed as A - B where A and B each increase
654  * monotonically with some hardware counter(s) and the counters are read
655  * asynchronously.
656  *
657  * If packet X is counted in A, but not counted in B yet, computed value is
658  * greater than real.
659  *
660  * If packet X is not counted in A at the moment of reading the counter,
661  * but counted in B at the moment of reading the counter, computed value
662  * is less than real.
663  *
664  * However, counter which grows backward is worse evil than slightly wrong
665  * value. So, let's try to guarantee that it never happens except may be
666  * the case when the MAC stats are zeroed as a result of a NIC reset.
667  */
668 static void
669 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
670 {
671 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
672 		*stat = newval;
673 }
674 
675 static int
676 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
677 {
678 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
679 	bool have_dp_rx_stats = sap->dp_rx->features & SFC_DP_RX_FEAT_STATS;
680 	bool have_dp_tx_stats = sap->dp_tx->features & SFC_DP_TX_FEAT_STATS;
681 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
682 	struct sfc_port *port = &sa->port;
683 	uint64_t *mac_stats;
684 	int ret;
685 
686 	sfc_adapter_lock(sa);
687 
688 	if (have_dp_rx_stats)
689 		sfc_stats_get_dp_rx(sa, &stats->ipackets, &stats->ibytes);
690 	if (have_dp_tx_stats)
691 		sfc_stats_get_dp_tx(sa, &stats->opackets, &stats->obytes);
692 
693 	ret = sfc_port_update_mac_stats(sa, B_FALSE);
694 	if (ret != 0)
695 		goto unlock;
696 
697 	mac_stats = port->mac_stats_buf;
698 
699 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
700 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
701 		if (!have_dp_rx_stats) {
702 			stats->ipackets =
703 				mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
704 				mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
705 				mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
706 			stats->ibytes =
707 				mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
708 				mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
709 				mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
710 
711 			/* CRC is included in these stats, but shouldn't be */
712 			stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
713 		}
714 		if (!have_dp_tx_stats) {
715 			stats->opackets =
716 				mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
717 				mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
718 				mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
719 			stats->obytes =
720 				mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
721 				mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
722 				mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
723 
724 			/* CRC is included in these stats, but shouldn't be */
725 			stats->obytes -= stats->opackets * RTE_ETHER_CRC_LEN;
726 		}
727 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
728 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
729 	} else {
730 		if (!have_dp_tx_stats) {
731 			stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
732 			stats->obytes = mac_stats[EFX_MAC_TX_OCTETS] -
733 				mac_stats[EFX_MAC_TX_PKTS] * RTE_ETHER_CRC_LEN;
734 		}
735 
736 		/*
737 		 * Take into account stats which are whenever supported
738 		 * on EF10. If some stat is not supported by current
739 		 * firmware variant or HW revision, it is guaranteed
740 		 * to be zero in mac_stats.
741 		 */
742 		stats->imissed =
743 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
744 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
745 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
746 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
747 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
748 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
749 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
750 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
751 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
752 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
753 		stats->ierrors =
754 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
755 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
756 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
757 		/* no oerrors counters supported on EF10 */
758 
759 		if (!have_dp_rx_stats) {
760 			/* Exclude missed, errors and pauses from Rx packets */
761 			sfc_update_diff_stat(&port->ipackets,
762 				mac_stats[EFX_MAC_RX_PKTS] -
763 				mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
764 				stats->imissed - stats->ierrors);
765 			stats->ipackets = port->ipackets;
766 			stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS] -
767 				mac_stats[EFX_MAC_RX_PKTS] * RTE_ETHER_CRC_LEN;
768 		}
769 	}
770 
771 unlock:
772 	sfc_adapter_unlock(sa);
773 	SFC_ASSERT(ret >= 0);
774 	return -ret;
775 }
776 
777 static int
778 sfc_stats_reset(struct rte_eth_dev *dev)
779 {
780 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
781 	struct sfc_port *port = &sa->port;
782 	int rc;
783 
784 	sfc_adapter_lock(sa);
785 
786 	if (sa->state != SFC_ETHDEV_STARTED) {
787 		/*
788 		 * The operation cannot be done if port is not started; it
789 		 * will be scheduled to be done during the next port start
790 		 */
791 		port->mac_stats_reset_pending = B_TRUE;
792 		sfc_adapter_unlock(sa);
793 		return 0;
794 	}
795 
796 	rc = sfc_port_reset_mac_stats(sa);
797 	if (rc != 0)
798 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
799 
800 	sfc_sw_xstats_reset(sa);
801 
802 	sfc_adapter_unlock(sa);
803 
804 	SFC_ASSERT(rc >= 0);
805 	return -rc;
806 }
807 
808 static unsigned int
809 sfc_xstats_get_nb_supported(struct sfc_adapter *sa)
810 {
811 	struct sfc_port *port = &sa->port;
812 	unsigned int nb_supported;
813 
814 	sfc_adapter_lock(sa);
815 	nb_supported = port->mac_stats_nb_supported +
816 		       sfc_sw_xstats_get_nb_supported(sa);
817 	sfc_adapter_unlock(sa);
818 
819 	return nb_supported;
820 }
821 
822 static int
823 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
824 	       unsigned int xstats_count)
825 {
826 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
827 	unsigned int nb_written = 0;
828 	unsigned int nb_supported = 0;
829 	int rc;
830 
831 	if (unlikely(xstats == NULL))
832 		return sfc_xstats_get_nb_supported(sa);
833 
834 	rc = sfc_port_get_mac_stats(sa, xstats, xstats_count, &nb_written);
835 	if (rc < 0)
836 		return rc;
837 
838 	nb_supported = rc;
839 	sfc_sw_xstats_get_vals(sa, xstats, xstats_count, &nb_written,
840 			       &nb_supported);
841 
842 	return nb_supported;
843 }
844 
845 static int
846 sfc_xstats_get_names(struct rte_eth_dev *dev,
847 		     struct rte_eth_xstat_name *xstats_names,
848 		     unsigned int xstats_count)
849 {
850 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
851 	struct sfc_port *port = &sa->port;
852 	unsigned int i;
853 	unsigned int nstats = 0;
854 	unsigned int nb_written = 0;
855 	int ret;
856 
857 	if (unlikely(xstats_names == NULL))
858 		return sfc_xstats_get_nb_supported(sa);
859 
860 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
861 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
862 			if (nstats < xstats_count) {
863 				strlcpy(xstats_names[nstats].name,
864 					efx_mac_stat_name(sa->nic, i),
865 					sizeof(xstats_names[0].name));
866 				nb_written++;
867 			}
868 			nstats++;
869 		}
870 	}
871 
872 	ret = sfc_sw_xstats_get_names(sa, xstats_names, xstats_count,
873 				      &nb_written, &nstats);
874 	if (ret != 0) {
875 		SFC_ASSERT(ret < 0);
876 		return ret;
877 	}
878 
879 	return nstats;
880 }
881 
882 static int
883 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
884 		     uint64_t *values, unsigned int n)
885 {
886 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
887 	struct sfc_port *port = &sa->port;
888 	unsigned int nb_supported;
889 	unsigned int i;
890 	int rc;
891 
892 	if (unlikely(ids == NULL || values == NULL))
893 		return -EINVAL;
894 
895 	/*
896 	 * Values array could be filled in nonsequential order. Fill values with
897 	 * constant indicating invalid ID first.
898 	 */
899 	for (i = 0; i < n; i++)
900 		values[i] = SFC_XSTAT_ID_INVALID_VAL;
901 
902 	rc = sfc_port_get_mac_stats_by_id(sa, ids, values, n);
903 	if (rc != 0)
904 		return rc;
905 
906 	nb_supported = port->mac_stats_nb_supported;
907 	sfc_sw_xstats_get_vals_by_id(sa, ids, values, n, &nb_supported);
908 
909 	/* Return number of written stats before invalid ID is encountered. */
910 	for (i = 0; i < n; i++) {
911 		if (values[i] == SFC_XSTAT_ID_INVALID_VAL)
912 			return i;
913 	}
914 
915 	return n;
916 }
917 
918 static int
919 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
920 			   const uint64_t *ids,
921 			   struct rte_eth_xstat_name *xstats_names,
922 			   unsigned int size)
923 {
924 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
925 	struct sfc_port *port = &sa->port;
926 	unsigned int nb_supported;
927 	unsigned int i;
928 	int ret;
929 
930 	if (unlikely(xstats_names == NULL && ids != NULL) ||
931 	    unlikely(xstats_names != NULL && ids == NULL))
932 		return -EINVAL;
933 
934 	if (unlikely(xstats_names == NULL && ids == NULL))
935 		return sfc_xstats_get_nb_supported(sa);
936 
937 	/*
938 	 * Names array could be filled in nonsequential order. Fill names with
939 	 * string indicating invalid ID first.
940 	 */
941 	for (i = 0; i < size; i++)
942 		xstats_names[i].name[0] = SFC_XSTAT_ID_INVALID_NAME;
943 
944 	sfc_adapter_lock(sa);
945 
946 	SFC_ASSERT(port->mac_stats_nb_supported <=
947 		   RTE_DIM(port->mac_stats_by_id));
948 
949 	for (i = 0; i < size; i++) {
950 		if (ids[i] < port->mac_stats_nb_supported) {
951 			strlcpy(xstats_names[i].name,
952 				efx_mac_stat_name(sa->nic,
953 						 port->mac_stats_by_id[ids[i]]),
954 				sizeof(xstats_names[0].name));
955 		}
956 	}
957 
958 	nb_supported = port->mac_stats_nb_supported;
959 
960 	sfc_adapter_unlock(sa);
961 
962 	ret = sfc_sw_xstats_get_names_by_id(sa, ids, xstats_names, size,
963 					    &nb_supported);
964 	if (ret != 0) {
965 		SFC_ASSERT(ret < 0);
966 		return ret;
967 	}
968 
969 	/* Return number of written names before invalid ID is encountered. */
970 	for (i = 0; i < size; i++) {
971 		if (xstats_names[i].name[0] == SFC_XSTAT_ID_INVALID_NAME)
972 			return i;
973 	}
974 
975 	return size;
976 }
977 
978 static int
979 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
980 {
981 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
982 	unsigned int wanted_fc, link_fc;
983 
984 	memset(fc_conf, 0, sizeof(*fc_conf));
985 
986 	sfc_adapter_lock(sa);
987 
988 	if (sa->state == SFC_ETHDEV_STARTED)
989 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
990 	else
991 		link_fc = sa->port.flow_ctrl;
992 
993 	switch (link_fc) {
994 	case 0:
995 		fc_conf->mode = RTE_ETH_FC_NONE;
996 		break;
997 	case EFX_FCNTL_RESPOND:
998 		fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
999 		break;
1000 	case EFX_FCNTL_GENERATE:
1001 		fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
1002 		break;
1003 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
1004 		fc_conf->mode = RTE_ETH_FC_FULL;
1005 		break;
1006 	default:
1007 		sfc_err(sa, "%s: unexpected flow control value %#x",
1008 			__func__, link_fc);
1009 	}
1010 
1011 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
1012 
1013 	sfc_adapter_unlock(sa);
1014 
1015 	return 0;
1016 }
1017 
1018 static int
1019 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1020 {
1021 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1022 	struct sfc_port *port = &sa->port;
1023 	unsigned int fcntl;
1024 	int rc;
1025 
1026 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
1027 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
1028 	    fc_conf->mac_ctrl_frame_fwd != 0) {
1029 		sfc_err(sa, "unsupported flow control settings specified");
1030 		rc = EINVAL;
1031 		goto fail_inval;
1032 	}
1033 
1034 	switch (fc_conf->mode) {
1035 	case RTE_ETH_FC_NONE:
1036 		fcntl = 0;
1037 		break;
1038 	case RTE_ETH_FC_RX_PAUSE:
1039 		fcntl = EFX_FCNTL_RESPOND;
1040 		break;
1041 	case RTE_ETH_FC_TX_PAUSE:
1042 		fcntl = EFX_FCNTL_GENERATE;
1043 		break;
1044 	case RTE_ETH_FC_FULL:
1045 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
1046 		break;
1047 	default:
1048 		rc = EINVAL;
1049 		goto fail_inval;
1050 	}
1051 
1052 	sfc_adapter_lock(sa);
1053 
1054 	if (sa->state == SFC_ETHDEV_STARTED) {
1055 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
1056 		if (rc != 0)
1057 			goto fail_mac_fcntl_set;
1058 	}
1059 
1060 	port->flow_ctrl = fcntl;
1061 	port->flow_ctrl_autoneg = fc_conf->autoneg;
1062 
1063 	sfc_adapter_unlock(sa);
1064 
1065 	return 0;
1066 
1067 fail_mac_fcntl_set:
1068 	sfc_adapter_unlock(sa);
1069 fail_inval:
1070 	SFC_ASSERT(rc > 0);
1071 	return -rc;
1072 }
1073 
1074 static int
1075 sfc_check_scatter_on_all_rx_queues(struct sfc_adapter *sa, size_t pdu)
1076 {
1077 	struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1078 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1079 	boolean_t scatter_enabled;
1080 	const char *error;
1081 	unsigned int i;
1082 
1083 	for (i = 0; i < sas->rxq_count; i++) {
1084 		if ((sas->rxq_info[i].state & SFC_RXQ_INITIALIZED) == 0)
1085 			continue;
1086 
1087 		scatter_enabled = (sas->rxq_info[i].type_flags &
1088 				   EFX_RXQ_FLAG_SCATTER);
1089 
1090 		if (!sfc_rx_check_scatter(pdu, sa->rxq_ctrl[i].buf_size,
1091 					  encp->enc_rx_prefix_size,
1092 					  scatter_enabled,
1093 					  encp->enc_rx_scatter_max, &error)) {
1094 			sfc_err(sa, "MTU check for RxQ %u failed: %s", i,
1095 				error);
1096 			return EINVAL;
1097 		}
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 static int
1104 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
1105 {
1106 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1107 	size_t pdu = EFX_MAC_PDU(mtu);
1108 	size_t old_pdu;
1109 	int rc;
1110 
1111 	sfc_log_init(sa, "mtu=%u", mtu);
1112 
1113 	rc = EINVAL;
1114 	if (pdu < EFX_MAC_PDU_MIN) {
1115 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
1116 			(unsigned int)mtu, (unsigned int)pdu,
1117 			EFX_MAC_PDU_MIN);
1118 		goto fail_inval;
1119 	}
1120 	if (pdu > EFX_MAC_PDU_MAX) {
1121 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
1122 			(unsigned int)mtu, (unsigned int)pdu,
1123 			(unsigned int)EFX_MAC_PDU_MAX);
1124 		goto fail_inval;
1125 	}
1126 
1127 	sfc_adapter_lock(sa);
1128 
1129 	rc = sfc_check_scatter_on_all_rx_queues(sa, pdu);
1130 	if (rc != 0)
1131 		goto fail_check_scatter;
1132 
1133 	if (pdu != sa->port.pdu) {
1134 		if (sa->state == SFC_ETHDEV_STARTED) {
1135 			sfc_stop(sa);
1136 
1137 			old_pdu = sa->port.pdu;
1138 			sa->port.pdu = pdu;
1139 			rc = sfc_start(sa);
1140 			if (rc != 0)
1141 				goto fail_start;
1142 		} else {
1143 			sa->port.pdu = pdu;
1144 		}
1145 	}
1146 
1147 	sfc_adapter_unlock(sa);
1148 
1149 	sfc_log_init(sa, "done");
1150 	return 0;
1151 
1152 fail_start:
1153 	sa->port.pdu = old_pdu;
1154 	if (sfc_start(sa) != 0)
1155 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
1156 			"PDU max size - port is stopped",
1157 			(unsigned int)pdu, (unsigned int)old_pdu);
1158 
1159 fail_check_scatter:
1160 	sfc_adapter_unlock(sa);
1161 
1162 fail_inval:
1163 	sfc_log_init(sa, "failed %d", rc);
1164 	SFC_ASSERT(rc > 0);
1165 	return -rc;
1166 }
1167 static int
1168 sfc_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1169 {
1170 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1171 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1172 	struct sfc_port *port = &sa->port;
1173 	struct rte_ether_addr *old_addr = &dev->data->mac_addrs[0];
1174 	int rc = 0;
1175 
1176 	sfc_adapter_lock(sa);
1177 
1178 	if (rte_is_same_ether_addr(mac_addr, &port->default_mac_addr))
1179 		goto unlock;
1180 
1181 	/*
1182 	 * Copy the address to the device private data so that
1183 	 * it could be recalled in the case of adapter restart.
1184 	 */
1185 	rte_ether_addr_copy(mac_addr, &port->default_mac_addr);
1186 
1187 	/*
1188 	 * Neither of the two following checks can return
1189 	 * an error. The new MAC address is preserved in
1190 	 * the device private data and can be activated
1191 	 * on the next port start if the user prevents
1192 	 * isolated mode from being enabled.
1193 	 */
1194 	if (sfc_sa2shared(sa)->isolated) {
1195 		sfc_warn(sa, "isolated mode is active on the port");
1196 		sfc_warn(sa, "will not set MAC address");
1197 		goto unlock;
1198 	}
1199 
1200 	if (sa->state != SFC_ETHDEV_STARTED) {
1201 		sfc_notice(sa, "the port is not started");
1202 		sfc_notice(sa, "the new MAC address will be set on port start");
1203 
1204 		goto unlock;
1205 	}
1206 
1207 	if (encp->enc_allow_set_mac_with_installed_filters) {
1208 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
1209 		if (rc != 0) {
1210 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
1211 			goto unlock;
1212 		}
1213 
1214 		/*
1215 		 * Changing the MAC address by means of MCDI request
1216 		 * has no effect on received traffic, therefore
1217 		 * we also need to update unicast filters
1218 		 */
1219 		rc = sfc_set_rx_mode_unchecked(sa);
1220 		if (rc != 0) {
1221 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
1222 			/* Rollback the old address */
1223 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
1224 			(void)sfc_set_rx_mode_unchecked(sa);
1225 		}
1226 	} else {
1227 		sfc_warn(sa, "cannot set MAC address with filters installed");
1228 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
1229 		sfc_warn(sa, "(some traffic may be dropped)");
1230 
1231 		/*
1232 		 * Since setting MAC address with filters installed is not
1233 		 * allowed on the adapter, the new MAC address will be set
1234 		 * by means of adapter restart. sfc_start() shall retrieve
1235 		 * the new address from the device private data and set it.
1236 		 */
1237 		sfc_stop(sa);
1238 		rc = sfc_start(sa);
1239 		if (rc != 0)
1240 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1241 	}
1242 
1243 unlock:
1244 	if (rc != 0)
1245 		rte_ether_addr_copy(old_addr, &port->default_mac_addr);
1246 
1247 	sfc_adapter_unlock(sa);
1248 
1249 	SFC_ASSERT(rc >= 0);
1250 	return -rc;
1251 }
1252 
1253 
1254 static int
1255 sfc_set_mc_addr_list(struct rte_eth_dev *dev,
1256 		struct rte_ether_addr *mc_addr_set, uint32_t nb_mc_addr)
1257 {
1258 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1259 	struct sfc_port *port = &sa->port;
1260 	uint8_t *mc_addrs = port->mcast_addrs;
1261 	int rc;
1262 	unsigned int i;
1263 
1264 	if (sfc_sa2shared(sa)->isolated) {
1265 		sfc_err(sa, "isolated mode is active on the port");
1266 		sfc_err(sa, "will not set multicast address list");
1267 		return -ENOTSUP;
1268 	}
1269 
1270 	if (mc_addrs == NULL)
1271 		return -ENOBUFS;
1272 
1273 	if (nb_mc_addr > port->max_mcast_addrs) {
1274 		sfc_err(sa, "too many multicast addresses: %u > %u",
1275 			 nb_mc_addr, port->max_mcast_addrs);
1276 		return -EINVAL;
1277 	}
1278 
1279 	for (i = 0; i < nb_mc_addr; ++i) {
1280 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1281 				 EFX_MAC_ADDR_LEN);
1282 		mc_addrs += EFX_MAC_ADDR_LEN;
1283 	}
1284 
1285 	port->nb_mcast_addrs = nb_mc_addr;
1286 
1287 	if (sa->state != SFC_ETHDEV_STARTED)
1288 		return 0;
1289 
1290 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1291 					port->nb_mcast_addrs);
1292 	if (rc != 0)
1293 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1294 
1295 	SFC_ASSERT(rc >= 0);
1296 	return -rc;
1297 }
1298 
1299 /*
1300  * The function is used by the secondary process as well. It must not
1301  * use any process-local pointers from the adapter data.
1302  */
1303 static void
1304 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1305 		      struct rte_eth_rxq_info *qinfo)
1306 {
1307 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1308 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1309 	struct sfc_rxq_info *rxq_info;
1310 
1311 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1312 
1313 	qinfo->mp = rxq_info->refill_mb_pool;
1314 	qinfo->conf.rx_free_thresh = rxq_info->refill_threshold;
1315 	qinfo->conf.rx_drop_en = 1;
1316 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1317 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1318 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1319 		qinfo->conf.offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
1320 		qinfo->scattered_rx = 1;
1321 	}
1322 	qinfo->nb_desc = rxq_info->entries;
1323 }
1324 
1325 /*
1326  * The function is used by the secondary process as well. It must not
1327  * use any process-local pointers from the adapter data.
1328  */
1329 static void
1330 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t ethdev_qid,
1331 		      struct rte_eth_txq_info *qinfo)
1332 {
1333 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1334 	struct sfc_txq_info *txq_info;
1335 
1336 	SFC_ASSERT(ethdev_qid < sas->ethdev_txq_count);
1337 
1338 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1339 
1340 	memset(qinfo, 0, sizeof(*qinfo));
1341 
1342 	qinfo->conf.offloads = txq_info->offloads;
1343 	qinfo->conf.tx_free_thresh = txq_info->free_thresh;
1344 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1345 	qinfo->nb_desc = txq_info->entries;
1346 }
1347 
1348 /*
1349  * The function is used by the secondary process as well. It must not
1350  * use any process-local pointers from the adapter data.
1351  */
1352 static uint32_t
1353 sfc_rx_queue_count(void *rx_queue)
1354 {
1355 	struct sfc_dp_rxq *dp_rxq = rx_queue;
1356 	const struct sfc_dp_rx *dp_rx;
1357 	struct sfc_rxq_info *rxq_info;
1358 
1359 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1360 	rxq_info = sfc_rxq_info_by_dp_rxq(dp_rxq);
1361 
1362 	if ((rxq_info->state & SFC_RXQ_STARTED) == 0)
1363 		return 0;
1364 
1365 	return dp_rx->qdesc_npending(dp_rxq);
1366 }
1367 
1368 /*
1369  * The function is used by the secondary process as well. It must not
1370  * use any process-local pointers from the adapter data.
1371  */
1372 static int
1373 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1374 {
1375 	struct sfc_dp_rxq *dp_rxq = queue;
1376 	const struct sfc_dp_rx *dp_rx;
1377 
1378 	dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq);
1379 
1380 	return dp_rx->qdesc_status(dp_rxq, offset);
1381 }
1382 
1383 /*
1384  * The function is used by the secondary process as well. It must not
1385  * use any process-local pointers from the adapter data.
1386  */
1387 static int
1388 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1389 {
1390 	struct sfc_dp_txq *dp_txq = queue;
1391 	const struct sfc_dp_tx *dp_tx;
1392 
1393 	dp_tx = sfc_dp_tx_by_dp_txq(dp_txq);
1394 
1395 	return dp_tx->qdesc_status(dp_txq, offset);
1396 }
1397 
1398 static int
1399 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1400 {
1401 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1402 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1403 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1404 	struct sfc_rxq_info *rxq_info;
1405 	sfc_sw_index_t sw_index;
1406 	int rc;
1407 
1408 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1409 
1410 	sfc_adapter_lock(sa);
1411 
1412 	rc = EINVAL;
1413 	if (sa->state != SFC_ETHDEV_STARTED)
1414 		goto fail_not_started;
1415 
1416 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1417 	if (rxq_info->state != SFC_RXQ_INITIALIZED)
1418 		goto fail_not_setup;
1419 
1420 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1421 	rc = sfc_rx_qstart(sa, sw_index);
1422 	if (rc != 0)
1423 		goto fail_rx_qstart;
1424 
1425 	rxq_info->deferred_started = B_TRUE;
1426 
1427 	sfc_adapter_unlock(sa);
1428 
1429 	return 0;
1430 
1431 fail_rx_qstart:
1432 fail_not_setup:
1433 fail_not_started:
1434 	sfc_adapter_unlock(sa);
1435 	SFC_ASSERT(rc > 0);
1436 	return -rc;
1437 }
1438 
1439 static int
1440 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1441 {
1442 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1443 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1444 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1445 	struct sfc_rxq_info *rxq_info;
1446 	sfc_sw_index_t sw_index;
1447 
1448 	sfc_log_init(sa, "RxQ=%u", ethdev_qid);
1449 
1450 	sfc_adapter_lock(sa);
1451 
1452 	sw_index = sfc_rxq_sw_index_by_ethdev_rx_qid(sas, sfc_ethdev_qid);
1453 	sfc_rx_qstop(sa, sw_index);
1454 
1455 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1456 	rxq_info->deferred_started = B_FALSE;
1457 
1458 	sfc_adapter_unlock(sa);
1459 
1460 	return 0;
1461 }
1462 
1463 static int
1464 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1465 {
1466 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1467 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1468 	struct sfc_txq_info *txq_info;
1469 	sfc_sw_index_t sw_index;
1470 	int rc;
1471 
1472 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1473 
1474 	sfc_adapter_lock(sa);
1475 
1476 	rc = EINVAL;
1477 	if (sa->state != SFC_ETHDEV_STARTED)
1478 		goto fail_not_started;
1479 
1480 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1481 	if (txq_info->state != SFC_TXQ_INITIALIZED)
1482 		goto fail_not_setup;
1483 
1484 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1485 	rc = sfc_tx_qstart(sa, sw_index);
1486 	if (rc != 0)
1487 		goto fail_tx_qstart;
1488 
1489 	txq_info->deferred_started = B_TRUE;
1490 
1491 	sfc_adapter_unlock(sa);
1492 	return 0;
1493 
1494 fail_tx_qstart:
1495 
1496 fail_not_setup:
1497 fail_not_started:
1498 	sfc_adapter_unlock(sa);
1499 	SFC_ASSERT(rc > 0);
1500 	return -rc;
1501 }
1502 
1503 static int
1504 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1505 {
1506 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1507 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1508 	struct sfc_txq_info *txq_info;
1509 	sfc_sw_index_t sw_index;
1510 
1511 	sfc_log_init(sa, "TxQ = %u", ethdev_qid);
1512 
1513 	sfc_adapter_lock(sa);
1514 
1515 	sw_index = sfc_txq_sw_index_by_ethdev_tx_qid(sas, ethdev_qid);
1516 	sfc_tx_qstop(sa, sw_index);
1517 
1518 	txq_info = sfc_txq_info_by_ethdev_qid(sas, ethdev_qid);
1519 	txq_info->deferred_started = B_FALSE;
1520 
1521 	sfc_adapter_unlock(sa);
1522 	return 0;
1523 }
1524 
1525 static efx_tunnel_protocol_t
1526 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1527 {
1528 	switch (rte_type) {
1529 	case RTE_ETH_TUNNEL_TYPE_VXLAN:
1530 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1531 	case RTE_ETH_TUNNEL_TYPE_GENEVE:
1532 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1533 	default:
1534 		return EFX_TUNNEL_NPROTOS;
1535 	}
1536 }
1537 
1538 enum sfc_udp_tunnel_op_e {
1539 	SFC_UDP_TUNNEL_ADD_PORT,
1540 	SFC_UDP_TUNNEL_DEL_PORT,
1541 };
1542 
1543 static int
1544 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1545 		      struct rte_eth_udp_tunnel *tunnel_udp,
1546 		      enum sfc_udp_tunnel_op_e op)
1547 {
1548 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1549 	efx_tunnel_protocol_t tunnel_proto;
1550 	int rc;
1551 
1552 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1553 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1554 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1555 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1556 
1557 	tunnel_proto =
1558 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1559 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1560 		rc = ENOTSUP;
1561 		goto fail_bad_proto;
1562 	}
1563 
1564 	sfc_adapter_lock(sa);
1565 
1566 	switch (op) {
1567 	case SFC_UDP_TUNNEL_ADD_PORT:
1568 		rc = efx_tunnel_config_udp_add(sa->nic,
1569 					       tunnel_udp->udp_port,
1570 					       tunnel_proto);
1571 		break;
1572 	case SFC_UDP_TUNNEL_DEL_PORT:
1573 		rc = efx_tunnel_config_udp_remove(sa->nic,
1574 						  tunnel_udp->udp_port,
1575 						  tunnel_proto);
1576 		break;
1577 	default:
1578 		rc = EINVAL;
1579 		goto fail_bad_op;
1580 	}
1581 
1582 	if (rc != 0)
1583 		goto fail_op;
1584 
1585 	if (sa->state == SFC_ETHDEV_STARTED) {
1586 		rc = efx_tunnel_reconfigure(sa->nic);
1587 		if (rc == EAGAIN) {
1588 			/*
1589 			 * Configuration is accepted by FW and MC reboot
1590 			 * is initiated to apply the changes. MC reboot
1591 			 * will be handled in a usual way (MC reboot
1592 			 * event on management event queue and adapter
1593 			 * restart).
1594 			 */
1595 			rc = 0;
1596 		} else if (rc != 0) {
1597 			goto fail_reconfigure;
1598 		}
1599 	}
1600 
1601 	sfc_adapter_unlock(sa);
1602 	return 0;
1603 
1604 fail_reconfigure:
1605 	/* Remove/restore entry since the change makes the trouble */
1606 	switch (op) {
1607 	case SFC_UDP_TUNNEL_ADD_PORT:
1608 		(void)efx_tunnel_config_udp_remove(sa->nic,
1609 						   tunnel_udp->udp_port,
1610 						   tunnel_proto);
1611 		break;
1612 	case SFC_UDP_TUNNEL_DEL_PORT:
1613 		(void)efx_tunnel_config_udp_add(sa->nic,
1614 						tunnel_udp->udp_port,
1615 						tunnel_proto);
1616 		break;
1617 	}
1618 
1619 fail_op:
1620 fail_bad_op:
1621 	sfc_adapter_unlock(sa);
1622 
1623 fail_bad_proto:
1624 	SFC_ASSERT(rc > 0);
1625 	return -rc;
1626 }
1627 
1628 static int
1629 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1630 			    struct rte_eth_udp_tunnel *tunnel_udp)
1631 {
1632 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1633 }
1634 
1635 static int
1636 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1637 			    struct rte_eth_udp_tunnel *tunnel_udp)
1638 {
1639 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1640 }
1641 
1642 /*
1643  * The function is used by the secondary process as well. It must not
1644  * use any process-local pointers from the adapter data.
1645  */
1646 static int
1647 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1648 			  struct rte_eth_rss_conf *rss_conf)
1649 {
1650 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1651 	struct sfc_rss *rss = &sas->rss;
1652 
1653 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1654 		return -ENOTSUP;
1655 
1656 	/*
1657 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1658 	 * hence, conversion is done here to derive a correct set of RTE_ETH_RSS
1659 	 * flags which corresponds to the active EFX configuration stored
1660 	 * locally in 'sfc_adapter' and kept up-to-date
1661 	 */
1662 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types);
1663 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1664 	if (rss_conf->rss_key != NULL)
1665 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1666 
1667 	return 0;
1668 }
1669 
1670 static int
1671 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1672 			struct rte_eth_rss_conf *rss_conf)
1673 {
1674 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1675 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1676 	unsigned int efx_hash_types;
1677 	uint32_t contexts[] = {EFX_RSS_CONTEXT_DEFAULT, rss->dummy_rss_context};
1678 	unsigned int n_contexts;
1679 	unsigned int mode_i = 0;
1680 	unsigned int key_i = 0;
1681 	unsigned int i = 0;
1682 	int rc = 0;
1683 
1684 	n_contexts = rss->dummy_rss_context == EFX_RSS_CONTEXT_DEFAULT ? 1 : 2;
1685 
1686 	if (sfc_sa2shared(sa)->isolated)
1687 		return -ENOTSUP;
1688 
1689 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1690 		sfc_err(sa, "RSS is not available");
1691 		return -ENOTSUP;
1692 	}
1693 
1694 	if (rss->channels == 0) {
1695 		sfc_err(sa, "RSS is not configured");
1696 		return -EINVAL;
1697 	}
1698 
1699 	if ((rss_conf->rss_key != NULL) &&
1700 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1701 		sfc_err(sa, "RSS key size is wrong (should be %zu)",
1702 			sizeof(rss->key));
1703 		return -EINVAL;
1704 	}
1705 
1706 	sfc_adapter_lock(sa);
1707 
1708 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1709 	if (rc != 0)
1710 		goto fail_rx_hf_rte_to_efx;
1711 
1712 	for (mode_i = 0; mode_i < n_contexts; mode_i++) {
1713 		rc = efx_rx_scale_mode_set(sa->nic, contexts[mode_i],
1714 					   rss->hash_alg, efx_hash_types,
1715 					   B_TRUE);
1716 		if (rc != 0)
1717 			goto fail_scale_mode_set;
1718 	}
1719 
1720 	if (rss_conf->rss_key != NULL) {
1721 		if (sa->state == SFC_ETHDEV_STARTED) {
1722 			for (key_i = 0; key_i < n_contexts; key_i++) {
1723 				rc = efx_rx_scale_key_set(sa->nic,
1724 							  contexts[key_i],
1725 							  rss_conf->rss_key,
1726 							  sizeof(rss->key));
1727 				if (rc != 0)
1728 					goto fail_scale_key_set;
1729 			}
1730 		}
1731 
1732 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1733 	}
1734 
1735 	rss->hash_types = efx_hash_types;
1736 
1737 	sfc_adapter_unlock(sa);
1738 
1739 	return 0;
1740 
1741 fail_scale_key_set:
1742 	for (i = 0; i < key_i; i++) {
1743 		if (efx_rx_scale_key_set(sa->nic, contexts[i], rss->key,
1744 					 sizeof(rss->key)) != 0)
1745 			sfc_err(sa, "failed to restore RSS key");
1746 	}
1747 
1748 fail_scale_mode_set:
1749 	for (i = 0; i < mode_i; i++) {
1750 		if (efx_rx_scale_mode_set(sa->nic, contexts[i],
1751 					  EFX_RX_HASHALG_TOEPLITZ,
1752 					  rss->hash_types, B_TRUE) != 0)
1753 			sfc_err(sa, "failed to restore RSS mode");
1754 	}
1755 
1756 fail_rx_hf_rte_to_efx:
1757 	sfc_adapter_unlock(sa);
1758 	return -rc;
1759 }
1760 
1761 /*
1762  * The function is used by the secondary process as well. It must not
1763  * use any process-local pointers from the adapter data.
1764  */
1765 static int
1766 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1767 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1768 		       uint16_t reta_size)
1769 {
1770 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1771 	struct sfc_rss *rss = &sas->rss;
1772 	int entry;
1773 
1774 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated)
1775 		return -ENOTSUP;
1776 
1777 	if (rss->channels == 0)
1778 		return -EINVAL;
1779 
1780 	if (reta_size != EFX_RSS_TBL_SIZE)
1781 		return -EINVAL;
1782 
1783 	for (entry = 0; entry < reta_size; entry++) {
1784 		int grp = entry / RTE_ETH_RETA_GROUP_SIZE;
1785 		int grp_idx = entry % RTE_ETH_RETA_GROUP_SIZE;
1786 
1787 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1788 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1789 	}
1790 
1791 	return 0;
1792 }
1793 
1794 static int
1795 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1796 			struct rte_eth_rss_reta_entry64 *reta_conf,
1797 			uint16_t reta_size)
1798 {
1799 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
1800 	struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1801 	unsigned int *rss_tbl_new;
1802 	uint16_t entry;
1803 	int rc = 0;
1804 
1805 
1806 	if (sfc_sa2shared(sa)->isolated)
1807 		return -ENOTSUP;
1808 
1809 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1810 		sfc_err(sa, "RSS is not available");
1811 		return -ENOTSUP;
1812 	}
1813 
1814 	if (rss->channels == 0) {
1815 		sfc_err(sa, "RSS is not configured");
1816 		return -EINVAL;
1817 	}
1818 
1819 	if (reta_size != EFX_RSS_TBL_SIZE) {
1820 		sfc_err(sa, "RETA size is wrong (should be %u)",
1821 			EFX_RSS_TBL_SIZE);
1822 		return -EINVAL;
1823 	}
1824 
1825 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1826 	if (rss_tbl_new == NULL)
1827 		return -ENOMEM;
1828 
1829 	sfc_adapter_lock(sa);
1830 
1831 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1832 
1833 	for (entry = 0; entry < reta_size; entry++) {
1834 		int grp_idx = entry % RTE_ETH_RETA_GROUP_SIZE;
1835 		struct rte_eth_rss_reta_entry64 *grp;
1836 
1837 		grp = &reta_conf[entry / RTE_ETH_RETA_GROUP_SIZE];
1838 
1839 		if (grp->mask & (1ull << grp_idx)) {
1840 			if (grp->reta[grp_idx] >= rss->channels) {
1841 				rc = EINVAL;
1842 				goto bad_reta_entry;
1843 			}
1844 			rss_tbl_new[entry] = grp->reta[grp_idx];
1845 		}
1846 	}
1847 
1848 	if (sa->state == SFC_ETHDEV_STARTED) {
1849 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1850 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1851 		if (rc != 0)
1852 			goto fail_scale_tbl_set;
1853 	}
1854 
1855 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1856 
1857 fail_scale_tbl_set:
1858 bad_reta_entry:
1859 	sfc_adapter_unlock(sa);
1860 
1861 	rte_free(rss_tbl_new);
1862 
1863 	SFC_ASSERT(rc >= 0);
1864 	return -rc;
1865 }
1866 
1867 static int
1868 sfc_dev_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
1869 		     const struct rte_flow_ops **ops)
1870 {
1871 	*ops = &sfc_flow_ops;
1872 	return 0;
1873 }
1874 
1875 static int
1876 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1877 {
1878 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1879 
1880 	/*
1881 	 * If Rx datapath does not provide callback to check mempool,
1882 	 * all pools are supported.
1883 	 */
1884 	if (sap->dp_rx->pool_ops_supported == NULL)
1885 		return 1;
1886 
1887 	return sap->dp_rx->pool_ops_supported(pool);
1888 }
1889 
1890 static int
1891 sfc_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1892 {
1893 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1894 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1895 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1896 	struct sfc_rxq_info *rxq_info;
1897 
1898 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1899 
1900 	return sap->dp_rx->intr_enable(rxq_info->dp);
1901 }
1902 
1903 static int
1904 sfc_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t ethdev_qid)
1905 {
1906 	const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev);
1907 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
1908 	sfc_ethdev_qid_t sfc_ethdev_qid = ethdev_qid;
1909 	struct sfc_rxq_info *rxq_info;
1910 
1911 	rxq_info = sfc_rxq_info_by_ethdev_qid(sas, sfc_ethdev_qid);
1912 
1913 	return sap->dp_rx->intr_disable(rxq_info->dp);
1914 }
1915 
1916 struct sfc_mport_journal_ctx {
1917 	struct sfc_adapter		*sa;
1918 	uint16_t			switch_domain_id;
1919 	uint32_t			mcdi_handle;
1920 	bool				controllers_assigned;
1921 	efx_pcie_interface_t		*controllers;
1922 	size_t				nb_controllers;
1923 };
1924 
1925 static int
1926 sfc_journal_ctx_add_controller(struct sfc_mport_journal_ctx *ctx,
1927 			       efx_pcie_interface_t intf)
1928 {
1929 	efx_pcie_interface_t *new_controllers;
1930 	size_t i, target;
1931 	size_t new_size;
1932 
1933 	if (ctx->controllers == NULL) {
1934 		ctx->controllers = rte_malloc("sfc_controller_mapping",
1935 					      sizeof(ctx->controllers[0]), 0);
1936 		if (ctx->controllers == NULL)
1937 			return ENOMEM;
1938 
1939 		ctx->controllers[0] = intf;
1940 		ctx->nb_controllers = 1;
1941 
1942 		return 0;
1943 	}
1944 
1945 	for (i = 0; i < ctx->nb_controllers; i++) {
1946 		if (ctx->controllers[i] == intf)
1947 			return 0;
1948 		if (ctx->controllers[i] > intf)
1949 			break;
1950 	}
1951 	target = i;
1952 
1953 	ctx->nb_controllers += 1;
1954 	new_size = ctx->nb_controllers * sizeof(ctx->controllers[0]);
1955 
1956 	new_controllers = rte_realloc(ctx->controllers, new_size, 0);
1957 	if (new_controllers == NULL) {
1958 		rte_free(ctx->controllers);
1959 		return ENOMEM;
1960 	}
1961 	ctx->controllers = new_controllers;
1962 
1963 	for (i = target + 1; i < ctx->nb_controllers; i++)
1964 		ctx->controllers[i] = ctx->controllers[i - 1];
1965 
1966 	ctx->controllers[target] = intf;
1967 
1968 	return 0;
1969 }
1970 
1971 static efx_rc_t
1972 sfc_process_mport_journal_entry(struct sfc_mport_journal_ctx *ctx,
1973 				efx_mport_desc_t *mport)
1974 {
1975 	struct sfc_mae_switch_port_request req;
1976 	efx_mport_sel_t entity_selector;
1977 	efx_mport_sel_t ethdev_mport;
1978 	uint16_t switch_port_id;
1979 	efx_rc_t efx_rc;
1980 	int rc;
1981 
1982 	sfc_dbg(ctx->sa,
1983 		"processing mport id %u (controller %u pf %u vf %u)",
1984 		mport->emd_id.id, mport->emd_vnic.ev_intf,
1985 		mport->emd_vnic.ev_pf, mport->emd_vnic.ev_vf);
1986 	efx_mae_mport_invalid(&ethdev_mport);
1987 
1988 	if (!ctx->controllers_assigned) {
1989 		rc = sfc_journal_ctx_add_controller(ctx,
1990 						    mport->emd_vnic.ev_intf);
1991 		if (rc != 0)
1992 			return rc;
1993 	}
1994 
1995 	/* Build Mport selector */
1996 	efx_rc = efx_mae_mport_by_pcie_mh_function(mport->emd_vnic.ev_intf,
1997 						mport->emd_vnic.ev_pf,
1998 						mport->emd_vnic.ev_vf,
1999 						&entity_selector);
2000 	if (efx_rc != 0) {
2001 		sfc_err(ctx->sa, "failed to build entity mport selector for c%upf%uvf%u",
2002 			mport->emd_vnic.ev_intf,
2003 			mport->emd_vnic.ev_pf,
2004 			mport->emd_vnic.ev_vf);
2005 		return efx_rc;
2006 	}
2007 
2008 	rc = sfc_mae_switch_port_id_by_entity(ctx->switch_domain_id,
2009 					      &entity_selector,
2010 					      SFC_MAE_SWITCH_PORT_REPRESENTOR,
2011 					      &switch_port_id);
2012 	switch (rc) {
2013 	case 0:
2014 		/* Already registered */
2015 		break;
2016 	case ENOENT:
2017 		/*
2018 		 * No representor has been created for this entity.
2019 		 * Create a dummy switch registry entry with an invalid ethdev
2020 		 * mport selector. When a corresponding representor is created,
2021 		 * this entry will be updated.
2022 		 */
2023 		req.type = SFC_MAE_SWITCH_PORT_REPRESENTOR;
2024 		req.entity_mportp = &entity_selector;
2025 		req.ethdev_mportp = &ethdev_mport;
2026 		req.ethdev_port_id = RTE_MAX_ETHPORTS;
2027 		req.port_data.repr.intf = mport->emd_vnic.ev_intf;
2028 		req.port_data.repr.pf = mport->emd_vnic.ev_pf;
2029 		req.port_data.repr.vf = mport->emd_vnic.ev_vf;
2030 
2031 		rc = sfc_mae_assign_switch_port(ctx->switch_domain_id,
2032 						&req, &switch_port_id);
2033 		if (rc != 0) {
2034 			sfc_err(ctx->sa,
2035 				"failed to assign MAE switch port for c%upf%uvf%u: %s",
2036 				mport->emd_vnic.ev_intf,
2037 				mport->emd_vnic.ev_pf,
2038 				mport->emd_vnic.ev_vf,
2039 				rte_strerror(rc));
2040 			return rc;
2041 		}
2042 		break;
2043 	default:
2044 		sfc_err(ctx->sa, "failed to find MAE switch port for c%upf%uvf%u: %s",
2045 			mport->emd_vnic.ev_intf,
2046 			mport->emd_vnic.ev_pf,
2047 			mport->emd_vnic.ev_vf,
2048 			rte_strerror(rc));
2049 		return rc;
2050 	}
2051 
2052 	return 0;
2053 }
2054 
2055 static efx_rc_t
2056 sfc_process_mport_journal_cb(void *data, efx_mport_desc_t *mport,
2057 			     size_t mport_len)
2058 {
2059 	struct sfc_mport_journal_ctx *ctx = data;
2060 
2061 	if (ctx == NULL || ctx->sa == NULL) {
2062 		sfc_err(ctx->sa, "received NULL context or SFC adapter");
2063 		return EINVAL;
2064 	}
2065 
2066 	if (mport_len != sizeof(*mport)) {
2067 		sfc_err(ctx->sa, "actual and expected mport buffer sizes differ");
2068 		return EINVAL;
2069 	}
2070 
2071 	SFC_ASSERT(sfc_adapter_is_locked(ctx->sa));
2072 
2073 	/*
2074 	 * If a zombie flag is set, it means the mport has been marked for
2075 	 * deletion and cannot be used for any new operations. The mport will
2076 	 * be destroyed completely once all references to it are released.
2077 	 */
2078 	if (mport->emd_zombie) {
2079 		sfc_dbg(ctx->sa, "mport is a zombie, skipping");
2080 		return 0;
2081 	}
2082 	if (mport->emd_type != EFX_MPORT_TYPE_VNIC) {
2083 		sfc_dbg(ctx->sa, "mport is not a VNIC, skipping");
2084 		return 0;
2085 	}
2086 	if (mport->emd_vnic.ev_client_type != EFX_MPORT_VNIC_CLIENT_FUNCTION) {
2087 		sfc_dbg(ctx->sa, "mport is not a function, skipping");
2088 		return 0;
2089 	}
2090 	if (mport->emd_vnic.ev_handle == ctx->mcdi_handle) {
2091 		sfc_dbg(ctx->sa, "mport is this driver instance, skipping");
2092 		return 0;
2093 	}
2094 
2095 	return sfc_process_mport_journal_entry(ctx, mport);
2096 }
2097 
2098 static int
2099 sfc_process_mport_journal(struct sfc_adapter *sa)
2100 {
2101 	struct sfc_mport_journal_ctx ctx;
2102 	const efx_pcie_interface_t *controllers;
2103 	size_t nb_controllers;
2104 	efx_rc_t efx_rc;
2105 	int rc;
2106 
2107 	memset(&ctx, 0, sizeof(ctx));
2108 	ctx.sa = sa;
2109 	ctx.switch_domain_id = sa->mae.switch_domain_id;
2110 
2111 	efx_rc = efx_mcdi_get_own_client_handle(sa->nic, &ctx.mcdi_handle);
2112 	if (efx_rc != 0) {
2113 		sfc_err(sa, "failed to get own MCDI handle");
2114 		SFC_ASSERT(efx_rc > 0);
2115 		return efx_rc;
2116 	}
2117 
2118 	rc = sfc_mae_switch_domain_controllers(ctx.switch_domain_id,
2119 					       &controllers, &nb_controllers);
2120 	if (rc != 0) {
2121 		sfc_err(sa, "failed to get controller mapping");
2122 		return rc;
2123 	}
2124 
2125 	ctx.controllers_assigned = controllers != NULL;
2126 	ctx.controllers = NULL;
2127 	ctx.nb_controllers = 0;
2128 
2129 	efx_rc = efx_mae_read_mport_journal(sa->nic,
2130 					    sfc_process_mport_journal_cb, &ctx);
2131 	if (efx_rc != 0) {
2132 		sfc_err(sa, "failed to process MAE mport journal");
2133 		SFC_ASSERT(efx_rc > 0);
2134 		return efx_rc;
2135 	}
2136 
2137 	if (controllers == NULL) {
2138 		rc = sfc_mae_switch_domain_map_controllers(ctx.switch_domain_id,
2139 							   ctx.controllers,
2140 							   ctx.nb_controllers);
2141 		if (rc != 0)
2142 			return rc;
2143 	}
2144 
2145 	return 0;
2146 }
2147 
2148 static void
2149 sfc_count_representors_cb(enum sfc_mae_switch_port_type type,
2150 			  const efx_mport_sel_t *ethdev_mportp __rte_unused,
2151 			  uint16_t ethdev_port_id __rte_unused,
2152 			  const efx_mport_sel_t *entity_mportp __rte_unused,
2153 			  uint16_t switch_port_id __rte_unused,
2154 			  union sfc_mae_switch_port_data *port_datap
2155 				__rte_unused,
2156 			  void *user_datap)
2157 {
2158 	int *counter = user_datap;
2159 
2160 	SFC_ASSERT(counter != NULL);
2161 
2162 	if (type == SFC_MAE_SWITCH_PORT_REPRESENTOR)
2163 		(*counter)++;
2164 }
2165 
2166 struct sfc_get_representors_ctx {
2167 	struct rte_eth_representor_info	*info;
2168 	struct sfc_adapter		*sa;
2169 	uint16_t			switch_domain_id;
2170 	const efx_pcie_interface_t	*controllers;
2171 	size_t				nb_controllers;
2172 };
2173 
2174 static void
2175 sfc_get_representors_cb(enum sfc_mae_switch_port_type type,
2176 			const efx_mport_sel_t *ethdev_mportp __rte_unused,
2177 			uint16_t ethdev_port_id __rte_unused,
2178 			const efx_mport_sel_t *entity_mportp __rte_unused,
2179 			uint16_t switch_port_id,
2180 			union sfc_mae_switch_port_data *port_datap,
2181 			void *user_datap)
2182 {
2183 	struct sfc_get_representors_ctx *ctx = user_datap;
2184 	struct rte_eth_representor_range *range;
2185 	int ret;
2186 	int rc;
2187 
2188 	SFC_ASSERT(ctx != NULL);
2189 	SFC_ASSERT(ctx->info != NULL);
2190 	SFC_ASSERT(ctx->sa != NULL);
2191 
2192 	if (type != SFC_MAE_SWITCH_PORT_REPRESENTOR) {
2193 		sfc_dbg(ctx->sa, "not a representor, skipping");
2194 		return;
2195 	}
2196 	if (ctx->info->nb_ranges >= ctx->info->nb_ranges_alloc) {
2197 		sfc_dbg(ctx->sa, "info structure is full already");
2198 		return;
2199 	}
2200 
2201 	range = &ctx->info->ranges[ctx->info->nb_ranges];
2202 	rc = sfc_mae_switch_controller_from_mapping(ctx->controllers,
2203 						    ctx->nb_controllers,
2204 						    port_datap->repr.intf,
2205 						    &range->controller);
2206 	if (rc != 0) {
2207 		sfc_err(ctx->sa, "invalid representor controller: %d",
2208 			port_datap->repr.intf);
2209 		range->controller = -1;
2210 	}
2211 	range->pf = port_datap->repr.pf;
2212 	range->id_base = switch_port_id;
2213 	range->id_end = switch_port_id;
2214 
2215 	if (port_datap->repr.vf != EFX_PCI_VF_INVALID) {
2216 		range->type = RTE_ETH_REPRESENTOR_VF;
2217 		range->vf = port_datap->repr.vf;
2218 		ret = snprintf(range->name, RTE_DEV_NAME_MAX_LEN,
2219 			       "c%dpf%dvf%d", range->controller, range->pf,
2220 			       range->vf);
2221 	} else {
2222 		range->type = RTE_ETH_REPRESENTOR_PF;
2223 		ret = snprintf(range->name, RTE_DEV_NAME_MAX_LEN,
2224 			 "c%dpf%d", range->controller, range->pf);
2225 	}
2226 	if (ret >= RTE_DEV_NAME_MAX_LEN) {
2227 		sfc_err(ctx->sa, "representor name has been truncated: %s",
2228 			range->name);
2229 	}
2230 
2231 	ctx->info->nb_ranges++;
2232 }
2233 
2234 static int
2235 sfc_representor_info_get(struct rte_eth_dev *dev,
2236 			 struct rte_eth_representor_info *info)
2237 {
2238 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2239 	struct sfc_get_representors_ctx get_repr_ctx;
2240 	const efx_nic_cfg_t *nic_cfg;
2241 	uint16_t switch_domain_id;
2242 	uint32_t nb_repr;
2243 	int controller;
2244 	int rc;
2245 
2246 	sfc_adapter_lock(sa);
2247 
2248 	if (sa->mae.status != SFC_MAE_STATUS_ADMIN) {
2249 		sfc_adapter_unlock(sa);
2250 		return -ENOTSUP;
2251 	}
2252 
2253 	rc = sfc_process_mport_journal(sa);
2254 	if (rc != 0) {
2255 		sfc_adapter_unlock(sa);
2256 		SFC_ASSERT(rc > 0);
2257 		return -rc;
2258 	}
2259 
2260 	switch_domain_id = sa->mae.switch_domain_id;
2261 
2262 	nb_repr = 0;
2263 	rc = sfc_mae_switch_ports_iterate(switch_domain_id,
2264 					  sfc_count_representors_cb,
2265 					  &nb_repr);
2266 	if (rc != 0) {
2267 		sfc_adapter_unlock(sa);
2268 		SFC_ASSERT(rc > 0);
2269 		return -rc;
2270 	}
2271 
2272 	if (info == NULL) {
2273 		sfc_adapter_unlock(sa);
2274 		return nb_repr;
2275 	}
2276 
2277 	rc = sfc_mae_switch_domain_controllers(switch_domain_id,
2278 					       &get_repr_ctx.controllers,
2279 					       &get_repr_ctx.nb_controllers);
2280 	if (rc != 0) {
2281 		sfc_adapter_unlock(sa);
2282 		SFC_ASSERT(rc > 0);
2283 		return -rc;
2284 	}
2285 
2286 	nic_cfg = efx_nic_cfg_get(sa->nic);
2287 
2288 	rc = sfc_mae_switch_domain_get_controller(switch_domain_id,
2289 						  nic_cfg->enc_intf,
2290 						  &controller);
2291 	if (rc != 0) {
2292 		sfc_err(sa, "invalid controller: %d", nic_cfg->enc_intf);
2293 		controller = -1;
2294 	}
2295 
2296 	info->controller = controller;
2297 	info->pf = nic_cfg->enc_pf;
2298 
2299 	get_repr_ctx.info = info;
2300 	get_repr_ctx.sa = sa;
2301 	get_repr_ctx.switch_domain_id = switch_domain_id;
2302 	rc = sfc_mae_switch_ports_iterate(switch_domain_id,
2303 					  sfc_get_representors_cb,
2304 					  &get_repr_ctx);
2305 	if (rc != 0) {
2306 		sfc_adapter_unlock(sa);
2307 		SFC_ASSERT(rc > 0);
2308 		return -rc;
2309 	}
2310 
2311 	sfc_adapter_unlock(sa);
2312 	return nb_repr;
2313 }
2314 
2315 static int
2316 sfc_rx_metadata_negotiate(struct rte_eth_dev *dev, uint64_t *features)
2317 {
2318 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2319 	uint64_t supported = 0;
2320 
2321 	sfc_adapter_lock(sa);
2322 
2323 	if ((sa->priv.dp_rx->features & SFC_DP_RX_FEAT_FLOW_FLAG) != 0)
2324 		supported |= RTE_ETH_RX_METADATA_USER_FLAG;
2325 
2326 	if ((sa->priv.dp_rx->features & SFC_DP_RX_FEAT_FLOW_MARK) != 0)
2327 		supported |= RTE_ETH_RX_METADATA_USER_MARK;
2328 
2329 	if (sfc_flow_tunnel_is_supported(sa))
2330 		supported |= RTE_ETH_RX_METADATA_TUNNEL_ID;
2331 
2332 	sa->negotiated_rx_metadata = supported & *features;
2333 	*features = sa->negotiated_rx_metadata;
2334 
2335 	sfc_adapter_unlock(sa);
2336 
2337 	return 0;
2338 }
2339 
2340 static const struct eth_dev_ops sfc_eth_dev_ops = {
2341 	.dev_configure			= sfc_dev_configure,
2342 	.dev_start			= sfc_dev_start,
2343 	.dev_stop			= sfc_dev_stop,
2344 	.dev_set_link_up		= sfc_dev_set_link_up,
2345 	.dev_set_link_down		= sfc_dev_set_link_down,
2346 	.dev_close			= sfc_dev_close,
2347 	.promiscuous_enable		= sfc_dev_promisc_enable,
2348 	.promiscuous_disable		= sfc_dev_promisc_disable,
2349 	.allmulticast_enable		= sfc_dev_allmulti_enable,
2350 	.allmulticast_disable		= sfc_dev_allmulti_disable,
2351 	.link_update			= sfc_dev_link_update,
2352 	.stats_get			= sfc_stats_get,
2353 	.stats_reset			= sfc_stats_reset,
2354 	.xstats_get			= sfc_xstats_get,
2355 	.xstats_reset			= sfc_stats_reset,
2356 	.xstats_get_names		= sfc_xstats_get_names,
2357 	.dev_infos_get			= sfc_dev_infos_get,
2358 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2359 	.mtu_set			= sfc_dev_set_mtu,
2360 	.rx_queue_start			= sfc_rx_queue_start,
2361 	.rx_queue_stop			= sfc_rx_queue_stop,
2362 	.tx_queue_start			= sfc_tx_queue_start,
2363 	.tx_queue_stop			= sfc_tx_queue_stop,
2364 	.rx_queue_setup			= sfc_rx_queue_setup,
2365 	.rx_queue_release		= sfc_rx_queue_release,
2366 	.rx_queue_intr_enable		= sfc_rx_queue_intr_enable,
2367 	.rx_queue_intr_disable		= sfc_rx_queue_intr_disable,
2368 	.tx_queue_setup			= sfc_tx_queue_setup,
2369 	.tx_queue_release		= sfc_tx_queue_release,
2370 	.flow_ctrl_get			= sfc_flow_ctrl_get,
2371 	.flow_ctrl_set			= sfc_flow_ctrl_set,
2372 	.mac_addr_set			= sfc_mac_addr_set,
2373 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
2374 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
2375 	.reta_update			= sfc_dev_rss_reta_update,
2376 	.reta_query			= sfc_dev_rss_reta_query,
2377 	.rss_hash_update		= sfc_dev_rss_hash_update,
2378 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2379 	.flow_ops_get			= sfc_dev_flow_ops_get,
2380 	.set_mc_addr_list		= sfc_set_mc_addr_list,
2381 	.rxq_info_get			= sfc_rx_queue_info_get,
2382 	.txq_info_get			= sfc_tx_queue_info_get,
2383 	.fw_version_get			= sfc_fw_version_get,
2384 	.xstats_get_by_id		= sfc_xstats_get_by_id,
2385 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
2386 	.pool_ops_supported		= sfc_pool_ops_supported,
2387 	.representor_info_get		= sfc_representor_info_get,
2388 	.rx_metadata_negotiate		= sfc_rx_metadata_negotiate,
2389 };
2390 
2391 struct sfc_ethdev_init_data {
2392 	uint16_t		nb_representors;
2393 };
2394 
2395 /**
2396  * Duplicate a string in potentially shared memory required for
2397  * multi-process support.
2398  *
2399  * strdup() allocates from process-local heap/memory.
2400  */
2401 static char *
2402 sfc_strdup(const char *str)
2403 {
2404 	size_t size;
2405 	char *copy;
2406 
2407 	if (str == NULL)
2408 		return NULL;
2409 
2410 	size = strlen(str) + 1;
2411 	copy = rte_malloc(__func__, size, 0);
2412 	if (copy != NULL)
2413 		rte_memcpy(copy, str, size);
2414 
2415 	return copy;
2416 }
2417 
2418 static int
2419 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
2420 {
2421 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2422 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2423 	const struct sfc_dp_rx *dp_rx;
2424 	const struct sfc_dp_tx *dp_tx;
2425 	const efx_nic_cfg_t *encp;
2426 	unsigned int avail_caps = 0;
2427 	const char *rx_name = NULL;
2428 	const char *tx_name = NULL;
2429 	int rc;
2430 
2431 	switch (sa->family) {
2432 	case EFX_FAMILY_HUNTINGTON:
2433 	case EFX_FAMILY_MEDFORD:
2434 	case EFX_FAMILY_MEDFORD2:
2435 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
2436 		avail_caps |= SFC_DP_HW_FW_CAP_RX_EFX;
2437 		avail_caps |= SFC_DP_HW_FW_CAP_TX_EFX;
2438 		break;
2439 	case EFX_FAMILY_RIVERHEAD:
2440 		avail_caps |= SFC_DP_HW_FW_CAP_EF100;
2441 		break;
2442 	default:
2443 		break;
2444 	}
2445 
2446 	encp = efx_nic_cfg_get(sa->nic);
2447 	if (encp->enc_rx_es_super_buffer_supported)
2448 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
2449 
2450 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
2451 				sfc_kvarg_string_handler, &rx_name);
2452 	if (rc != 0)
2453 		goto fail_kvarg_rx_datapath;
2454 
2455 	if (rx_name != NULL) {
2456 		dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
2457 		if (dp_rx == NULL) {
2458 			sfc_err(sa, "Rx datapath %s not found", rx_name);
2459 			rc = ENOENT;
2460 			goto fail_dp_rx;
2461 		}
2462 		if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) {
2463 			sfc_err(sa,
2464 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
2465 				rx_name);
2466 			rc = EINVAL;
2467 			goto fail_dp_rx_caps;
2468 		}
2469 	} else {
2470 		dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
2471 		if (dp_rx == NULL) {
2472 			sfc_err(sa, "Rx datapath by caps %#x not found",
2473 				avail_caps);
2474 			rc = ENOENT;
2475 			goto fail_dp_rx;
2476 		}
2477 	}
2478 
2479 	sas->dp_rx_name = sfc_strdup(dp_rx->dp.name);
2480 	if (sas->dp_rx_name == NULL) {
2481 		rc = ENOMEM;
2482 		goto fail_dp_rx_name;
2483 	}
2484 
2485 	if (strcmp(dp_rx->dp.name, SFC_KVARG_DATAPATH_EF10_ESSB) == 0) {
2486 		/* FLAG and MARK are always available from Rx prefix. */
2487 		sa->negotiated_rx_metadata |= RTE_ETH_RX_METADATA_USER_FLAG;
2488 		sa->negotiated_rx_metadata |= RTE_ETH_RX_METADATA_USER_MARK;
2489 	}
2490 
2491 	sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name);
2492 
2493 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
2494 				sfc_kvarg_string_handler, &tx_name);
2495 	if (rc != 0)
2496 		goto fail_kvarg_tx_datapath;
2497 
2498 	if (tx_name != NULL) {
2499 		dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
2500 		if (dp_tx == NULL) {
2501 			sfc_err(sa, "Tx datapath %s not found", tx_name);
2502 			rc = ENOENT;
2503 			goto fail_dp_tx;
2504 		}
2505 		if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) {
2506 			sfc_err(sa,
2507 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
2508 				tx_name);
2509 			rc = EINVAL;
2510 			goto fail_dp_tx_caps;
2511 		}
2512 	} else {
2513 		dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
2514 		if (dp_tx == NULL) {
2515 			sfc_err(sa, "Tx datapath by caps %#x not found",
2516 				avail_caps);
2517 			rc = ENOENT;
2518 			goto fail_dp_tx;
2519 		}
2520 	}
2521 
2522 	sas->dp_tx_name = sfc_strdup(dp_tx->dp.name);
2523 	if (sas->dp_tx_name == NULL) {
2524 		rc = ENOMEM;
2525 		goto fail_dp_tx_name;
2526 	}
2527 
2528 	sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name);
2529 
2530 	sa->priv.dp_rx = dp_rx;
2531 	sa->priv.dp_tx = dp_tx;
2532 
2533 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2534 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2535 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2536 
2537 	dev->rx_queue_count = sfc_rx_queue_count;
2538 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2539 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2540 	dev->dev_ops = &sfc_eth_dev_ops;
2541 
2542 	return 0;
2543 
2544 fail_dp_tx_name:
2545 fail_dp_tx_caps:
2546 fail_dp_tx:
2547 fail_kvarg_tx_datapath:
2548 	rte_free(sas->dp_rx_name);
2549 	sas->dp_rx_name = NULL;
2550 
2551 fail_dp_rx_name:
2552 fail_dp_rx_caps:
2553 fail_dp_rx:
2554 fail_kvarg_rx_datapath:
2555 	return rc;
2556 }
2557 
2558 static void
2559 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
2560 {
2561 	struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev);
2562 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2563 
2564 	dev->dev_ops = NULL;
2565 	dev->tx_pkt_prepare = NULL;
2566 	dev->rx_pkt_burst = NULL;
2567 	dev->tx_pkt_burst = NULL;
2568 
2569 	rte_free(sas->dp_tx_name);
2570 	sas->dp_tx_name = NULL;
2571 	sa->priv.dp_tx = NULL;
2572 
2573 	rte_free(sas->dp_rx_name);
2574 	sas->dp_rx_name = NULL;
2575 	sa->priv.dp_rx = NULL;
2576 }
2577 
2578 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
2579 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
2580 	.reta_query			= sfc_dev_rss_reta_query,
2581 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
2582 	.rxq_info_get			= sfc_rx_queue_info_get,
2583 	.txq_info_get			= sfc_tx_queue_info_get,
2584 };
2585 
2586 static int
2587 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main)
2588 {
2589 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2590 	struct sfc_adapter_priv *sap;
2591 	const struct sfc_dp_rx *dp_rx;
2592 	const struct sfc_dp_tx *dp_tx;
2593 	int rc;
2594 
2595 	/*
2596 	 * Allocate process private data from heap, since it should not
2597 	 * be located in shared memory allocated using rte_malloc() API.
2598 	 */
2599 	sap = calloc(1, sizeof(*sap));
2600 	if (sap == NULL) {
2601 		rc = ENOMEM;
2602 		goto fail_alloc_priv;
2603 	}
2604 
2605 	sap->logtype_main = logtype_main;
2606 
2607 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name);
2608 	if (dp_rx == NULL) {
2609 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2610 			"cannot find %s Rx datapath", sas->dp_rx_name);
2611 		rc = ENOENT;
2612 		goto fail_dp_rx;
2613 	}
2614 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
2615 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2616 			"%s Rx datapath does not support multi-process",
2617 			sas->dp_rx_name);
2618 		rc = EINVAL;
2619 		goto fail_dp_rx_multi_process;
2620 	}
2621 
2622 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name);
2623 	if (dp_tx == NULL) {
2624 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2625 			"cannot find %s Tx datapath", sas->dp_tx_name);
2626 		rc = ENOENT;
2627 		goto fail_dp_tx;
2628 	}
2629 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
2630 		SFC_LOG(sas, RTE_LOG_ERR, logtype_main,
2631 			"%s Tx datapath does not support multi-process",
2632 			sas->dp_tx_name);
2633 		rc = EINVAL;
2634 		goto fail_dp_tx_multi_process;
2635 	}
2636 
2637 	sap->dp_rx = dp_rx;
2638 	sap->dp_tx = dp_tx;
2639 
2640 	dev->process_private = sap;
2641 	dev->rx_pkt_burst = dp_rx->pkt_burst;
2642 	dev->tx_pkt_prepare = dp_tx->pkt_prepare;
2643 	dev->tx_pkt_burst = dp_tx->pkt_burst;
2644 	dev->rx_queue_count = sfc_rx_queue_count;
2645 	dev->rx_descriptor_status = sfc_rx_descriptor_status;
2646 	dev->tx_descriptor_status = sfc_tx_descriptor_status;
2647 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
2648 
2649 	return 0;
2650 
2651 fail_dp_tx_multi_process:
2652 fail_dp_tx:
2653 fail_dp_rx_multi_process:
2654 fail_dp_rx:
2655 	free(sap);
2656 
2657 fail_alloc_priv:
2658 	return rc;
2659 }
2660 
2661 static void
2662 sfc_register_dp(void)
2663 {
2664 	/* Register once */
2665 	if (TAILQ_EMPTY(&sfc_dp_head)) {
2666 		/* Prefer EF10 datapath */
2667 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_rx.dp);
2668 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
2669 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
2670 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
2671 
2672 		sfc_dp_register(&sfc_dp_head, &sfc_ef100_tx.dp);
2673 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
2674 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
2675 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
2676 	}
2677 }
2678 
2679 static int
2680 sfc_parse_switch_mode(struct sfc_adapter *sa, bool has_representors)
2681 {
2682 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
2683 	const char *switch_mode = NULL;
2684 	int rc;
2685 
2686 	sfc_log_init(sa, "entry");
2687 
2688 	rc = sfc_kvargs_process(sa, SFC_KVARG_SWITCH_MODE,
2689 				sfc_kvarg_string_handler, &switch_mode);
2690 	if (rc != 0)
2691 		goto fail_kvargs;
2692 
2693 	if (switch_mode == NULL) {
2694 		sa->switchdev = encp->enc_mae_admin &&
2695 				(!encp->enc_datapath_cap_evb ||
2696 				 has_representors);
2697 	} else if (strcasecmp(switch_mode, SFC_KVARG_SWITCH_MODE_LEGACY) == 0) {
2698 		sa->switchdev = false;
2699 	} else if (strcasecmp(switch_mode,
2700 			      SFC_KVARG_SWITCH_MODE_SWITCHDEV) == 0) {
2701 		sa->switchdev = true;
2702 	} else {
2703 		sfc_err(sa, "invalid switch mode device argument '%s'",
2704 			switch_mode);
2705 		rc = EINVAL;
2706 		goto fail_mode;
2707 	}
2708 
2709 	sfc_log_init(sa, "done");
2710 
2711 	return 0;
2712 
2713 fail_mode:
2714 fail_kvargs:
2715 	sfc_log_init(sa, "failed: %s", rte_strerror(rc));
2716 
2717 	return rc;
2718 }
2719 
2720 static int
2721 sfc_eth_dev_init(struct rte_eth_dev *dev, void *init_params)
2722 {
2723 	struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev);
2724 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2725 	struct sfc_ethdev_init_data *init_data = init_params;
2726 	uint32_t logtype_main;
2727 	struct sfc_adapter *sa;
2728 	int rc;
2729 	const efx_nic_cfg_t *encp;
2730 	const struct rte_ether_addr *from;
2731 	int ret;
2732 
2733 	if (sfc_efx_dev_class_get(pci_dev->device.devargs) !=
2734 			SFC_EFX_DEV_CLASS_NET) {
2735 		SFC_GENERIC_LOG(DEBUG,
2736 			"Incompatible device class: skip probing, should be probed by other sfc driver.");
2737 		return 1;
2738 	}
2739 
2740 	rc = sfc_dp_mport_register();
2741 	if (rc != 0)
2742 		return rc;
2743 
2744 	sfc_register_dp();
2745 
2746 	logtype_main = sfc_register_logtype(&pci_dev->addr,
2747 					    SFC_LOGTYPE_MAIN_STR,
2748 					    RTE_LOG_NOTICE);
2749 
2750 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2751 		return -sfc_eth_dev_secondary_init(dev, logtype_main);
2752 
2753 	/* Required for logging */
2754 	ret = snprintf(sas->log_prefix, sizeof(sas->log_prefix),
2755 			"PMD: sfc_efx " PCI_PRI_FMT " #%" PRIu16 ": ",
2756 			pci_dev->addr.domain, pci_dev->addr.bus,
2757 			pci_dev->addr.devid, pci_dev->addr.function,
2758 			dev->data->port_id);
2759 	if (ret < 0 || ret >= (int)sizeof(sas->log_prefix)) {
2760 		SFC_GENERIC_LOG(ERR,
2761 			"reserved log prefix is too short for " PCI_PRI_FMT,
2762 			pci_dev->addr.domain, pci_dev->addr.bus,
2763 			pci_dev->addr.devid, pci_dev->addr.function);
2764 		return -EINVAL;
2765 	}
2766 	sas->pci_addr = pci_dev->addr;
2767 	sas->port_id = dev->data->port_id;
2768 
2769 	/*
2770 	 * Allocate process private data from heap, since it should not
2771 	 * be located in shared memory allocated using rte_malloc() API.
2772 	 */
2773 	sa = calloc(1, sizeof(*sa));
2774 	if (sa == NULL) {
2775 		rc = ENOMEM;
2776 		goto fail_alloc_sa;
2777 	}
2778 
2779 	dev->process_private = sa;
2780 
2781 	/* Required for logging */
2782 	sa->priv.shared = sas;
2783 	sa->priv.logtype_main = logtype_main;
2784 
2785 	sa->eth_dev = dev;
2786 
2787 	/* Copy PCI device info to the dev->data */
2788 	rte_eth_copy_pci_info(dev, pci_dev);
2789 	dev->data->dev_flags |= RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE;
2790 
2791 	rc = sfc_kvargs_parse(sa);
2792 	if (rc != 0)
2793 		goto fail_kvargs_parse;
2794 
2795 	sfc_log_init(sa, "entry");
2796 
2797 	dev->data->mac_addrs = rte_zmalloc("sfc", RTE_ETHER_ADDR_LEN, 0);
2798 	if (dev->data->mac_addrs == NULL) {
2799 		rc = ENOMEM;
2800 		goto fail_mac_addrs;
2801 	}
2802 
2803 	sfc_adapter_lock_init(sa);
2804 	sfc_adapter_lock(sa);
2805 
2806 	sfc_log_init(sa, "probing");
2807 	rc = sfc_probe(sa);
2808 	if (rc != 0)
2809 		goto fail_probe;
2810 
2811 	/*
2812 	 * Selecting a default switch mode requires the NIC to be probed and
2813 	 * to have its capabilities filled in.
2814 	 */
2815 	rc = sfc_parse_switch_mode(sa, init_data->nb_representors > 0);
2816 	if (rc != 0)
2817 		goto fail_switch_mode;
2818 
2819 	sfc_log_init(sa, "set device ops");
2820 	rc = sfc_eth_dev_set_ops(dev);
2821 	if (rc != 0)
2822 		goto fail_set_ops;
2823 
2824 	sfc_log_init(sa, "attaching");
2825 	rc = sfc_attach(sa);
2826 	if (rc != 0)
2827 		goto fail_attach;
2828 
2829 	if (sa->switchdev && sa->mae.status != SFC_MAE_STATUS_ADMIN) {
2830 		sfc_err(sa,
2831 			"failed to enable switchdev mode without admin MAE privilege");
2832 		rc = ENOTSUP;
2833 		goto fail_switchdev_no_mae;
2834 	}
2835 
2836 	encp = efx_nic_cfg_get(sa->nic);
2837 
2838 	/*
2839 	 * The arguments are really reverse order in comparison to
2840 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2841 	 */
2842 	from = (const struct rte_ether_addr *)(encp->enc_mac_addr);
2843 	rte_ether_addr_copy(from, &dev->data->mac_addrs[0]);
2844 
2845 	/*
2846 	 * Setup the NIC DMA mapping handler. All internal mempools
2847 	 * MUST be created on attach before this point, and the
2848 	 * adapter MUST NOT create mempools with the adapter lock
2849 	 * held after this point.
2850 	 */
2851 	rc = sfc_nic_dma_attach(sa);
2852 	if (rc != 0)
2853 		goto fail_nic_dma_attach;
2854 
2855 	sfc_adapter_unlock(sa);
2856 
2857 	sfc_log_init(sa, "done");
2858 	return 0;
2859 
2860 fail_nic_dma_attach:
2861 fail_switchdev_no_mae:
2862 	sfc_detach(sa);
2863 
2864 fail_attach:
2865 	sfc_eth_dev_clear_ops(dev);
2866 
2867 fail_set_ops:
2868 fail_switch_mode:
2869 	sfc_unprobe(sa);
2870 
2871 fail_probe:
2872 	sfc_adapter_unlock(sa);
2873 	sfc_adapter_lock_fini(sa);
2874 	rte_free(dev->data->mac_addrs);
2875 	dev->data->mac_addrs = NULL;
2876 
2877 fail_mac_addrs:
2878 	sfc_kvargs_cleanup(sa);
2879 
2880 fail_kvargs_parse:
2881 	sfc_log_init(sa, "failed %d", rc);
2882 	dev->process_private = NULL;
2883 	free(sa);
2884 
2885 fail_alloc_sa:
2886 	SFC_ASSERT(rc > 0);
2887 	return -rc;
2888 }
2889 
2890 static int
2891 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2892 {
2893 	sfc_dev_close(dev);
2894 
2895 	return 0;
2896 }
2897 
2898 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2899 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2900 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2901 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2902 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2903 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2904 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2905 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2906 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2907 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD) },
2908 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_XILINX, EFX_PCI_DEVID_RIVERHEAD_VF) },
2909 	{ .vendor_id = 0 /* sentinel */ }
2910 };
2911 
2912 static int
2913 sfc_parse_rte_devargs(const char *args, struct rte_eth_devargs *devargs)
2914 {
2915 	struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
2916 	int rc;
2917 
2918 	if (args != NULL) {
2919 		rc = rte_eth_devargs_parse(args, &eth_da);
2920 		if (rc != 0) {
2921 			SFC_GENERIC_LOG(ERR,
2922 					"Failed to parse generic devargs '%s'",
2923 					args);
2924 			return rc;
2925 		}
2926 	}
2927 
2928 	*devargs = eth_da;
2929 
2930 	return 0;
2931 }
2932 
2933 static int
2934 sfc_eth_dev_find_or_create(struct rte_pci_device *pci_dev,
2935 			   struct sfc_ethdev_init_data *init_data,
2936 			   struct rte_eth_dev **devp,
2937 			   bool *dev_created)
2938 {
2939 	struct rte_eth_dev *dev;
2940 	bool created = false;
2941 	int rc;
2942 
2943 	dev = rte_eth_dev_allocated(pci_dev->device.name);
2944 	if (dev == NULL) {
2945 		rc = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
2946 					sizeof(struct sfc_adapter_shared),
2947 					eth_dev_pci_specific_init, pci_dev,
2948 					sfc_eth_dev_init, init_data);
2949 		if (rc != 0) {
2950 			SFC_GENERIC_LOG(ERR, "Failed to create sfc ethdev '%s'",
2951 					pci_dev->device.name);
2952 			return rc;
2953 		}
2954 
2955 		created = true;
2956 
2957 		dev = rte_eth_dev_allocated(pci_dev->device.name);
2958 		if (dev == NULL) {
2959 			SFC_GENERIC_LOG(ERR,
2960 				"Failed to find allocated sfc ethdev '%s'",
2961 				pci_dev->device.name);
2962 			return -ENODEV;
2963 		}
2964 	}
2965 
2966 	*devp = dev;
2967 	*dev_created = created;
2968 
2969 	return 0;
2970 }
2971 
2972 static int
2973 sfc_eth_dev_create_repr(struct sfc_adapter *sa,
2974 			efx_pcie_interface_t controller,
2975 			uint16_t port,
2976 			uint16_t repr_port,
2977 			enum rte_eth_representor_type type)
2978 {
2979 	struct sfc_repr_entity_info entity;
2980 	efx_mport_sel_t mport_sel;
2981 	int rc;
2982 
2983 	switch (type) {
2984 	case RTE_ETH_REPRESENTOR_NONE:
2985 		return 0;
2986 	case RTE_ETH_REPRESENTOR_VF:
2987 	case RTE_ETH_REPRESENTOR_PF:
2988 		break;
2989 	case RTE_ETH_REPRESENTOR_SF:
2990 		sfc_err(sa, "SF representors are not supported");
2991 		return ENOTSUP;
2992 	default:
2993 		sfc_err(sa, "unknown representor type: %d", type);
2994 		return ENOTSUP;
2995 	}
2996 
2997 	rc = efx_mae_mport_by_pcie_mh_function(controller,
2998 					       port,
2999 					       repr_port,
3000 					       &mport_sel);
3001 	if (rc != 0) {
3002 		sfc_err(sa,
3003 			"failed to get m-port selector for controller %u port %u repr_port %u: %s",
3004 			controller, port, repr_port, rte_strerror(-rc));
3005 		return rc;
3006 	}
3007 
3008 	memset(&entity, 0, sizeof(entity));
3009 	entity.type = type;
3010 	entity.intf = controller;
3011 	entity.pf = port;
3012 	entity.vf = repr_port;
3013 
3014 	rc = sfc_repr_create(sa->eth_dev, &entity, sa->mae.switch_domain_id,
3015 			     &mport_sel);
3016 	if (rc != 0) {
3017 		sfc_err(sa,
3018 			"failed to create representor for controller %u port %u repr_port %u: %s",
3019 			controller, port, repr_port, rte_strerror(-rc));
3020 		return rc;
3021 	}
3022 
3023 	return 0;
3024 }
3025 
3026 static int
3027 sfc_eth_dev_create_repr_port(struct sfc_adapter *sa,
3028 			     const struct rte_eth_devargs *eth_da,
3029 			     efx_pcie_interface_t controller,
3030 			     uint16_t port)
3031 {
3032 	int first_error = 0;
3033 	uint16_t i;
3034 	int rc;
3035 
3036 	if (eth_da->type == RTE_ETH_REPRESENTOR_PF) {
3037 		return sfc_eth_dev_create_repr(sa, controller, port,
3038 					       EFX_PCI_VF_INVALID,
3039 					       eth_da->type);
3040 	}
3041 
3042 	for (i = 0; i < eth_da->nb_representor_ports; i++) {
3043 		rc = sfc_eth_dev_create_repr(sa, controller, port,
3044 					     eth_da->representor_ports[i],
3045 					     eth_da->type);
3046 		if (rc != 0 && first_error == 0)
3047 			first_error = rc;
3048 	}
3049 
3050 	return first_error;
3051 }
3052 
3053 static int
3054 sfc_eth_dev_create_repr_controller(struct sfc_adapter *sa,
3055 				   const struct rte_eth_devargs *eth_da,
3056 				   efx_pcie_interface_t controller)
3057 {
3058 	const efx_nic_cfg_t *encp;
3059 	int first_error = 0;
3060 	uint16_t default_port;
3061 	uint16_t i;
3062 	int rc;
3063 
3064 	if (eth_da->nb_ports == 0) {
3065 		encp = efx_nic_cfg_get(sa->nic);
3066 		default_port = encp->enc_intf == controller ? encp->enc_pf : 0;
3067 		return sfc_eth_dev_create_repr_port(sa, eth_da, controller,
3068 						    default_port);
3069 	}
3070 
3071 	for (i = 0; i < eth_da->nb_ports; i++) {
3072 		rc = sfc_eth_dev_create_repr_port(sa, eth_da, controller,
3073 						  eth_da->ports[i]);
3074 		if (rc != 0 && first_error == 0)
3075 			first_error = rc;
3076 	}
3077 
3078 	return first_error;
3079 }
3080 
3081 static int
3082 sfc_eth_dev_create_representors(struct rte_eth_dev *dev,
3083 				const struct rte_eth_devargs *eth_da)
3084 {
3085 	efx_pcie_interface_t intf;
3086 	const efx_nic_cfg_t *encp;
3087 	struct sfc_adapter *sa;
3088 	uint16_t switch_domain_id;
3089 	uint16_t i;
3090 	int rc;
3091 
3092 	sa = sfc_adapter_by_eth_dev(dev);
3093 	switch_domain_id = sa->mae.switch_domain_id;
3094 
3095 	switch (eth_da->type) {
3096 	case RTE_ETH_REPRESENTOR_NONE:
3097 		return 0;
3098 	case RTE_ETH_REPRESENTOR_PF:
3099 	case RTE_ETH_REPRESENTOR_VF:
3100 		break;
3101 	case RTE_ETH_REPRESENTOR_SF:
3102 		sfc_err(sa, "SF representors are not supported");
3103 		return -ENOTSUP;
3104 	default:
3105 		sfc_err(sa, "unknown representor type: %d",
3106 			eth_da->type);
3107 		return -ENOTSUP;
3108 	}
3109 
3110 	if (!sa->switchdev) {
3111 		sfc_err(sa, "cannot create representors in non-switchdev mode");
3112 		return -EINVAL;
3113 	}
3114 
3115 	if (!sfc_repr_available(sfc_sa2shared(sa))) {
3116 		sfc_err(sa, "cannot create representors: unsupported");
3117 
3118 		return -ENOTSUP;
3119 	}
3120 
3121 	/*
3122 	 * This is needed to construct the DPDK controller -> EFX interface
3123 	 * mapping.
3124 	 */
3125 	sfc_adapter_lock(sa);
3126 	rc = sfc_process_mport_journal(sa);
3127 	sfc_adapter_unlock(sa);
3128 	if (rc != 0) {
3129 		SFC_ASSERT(rc > 0);
3130 		return -rc;
3131 	}
3132 
3133 	if (eth_da->nb_mh_controllers > 0) {
3134 		for (i = 0; i < eth_da->nb_mh_controllers; i++) {
3135 			rc = sfc_mae_switch_domain_get_intf(switch_domain_id,
3136 						eth_da->mh_controllers[i],
3137 						&intf);
3138 			if (rc != 0) {
3139 				sfc_err(sa, "failed to get representor");
3140 				continue;
3141 			}
3142 			sfc_eth_dev_create_repr_controller(sa, eth_da, intf);
3143 		}
3144 	} else {
3145 		encp = efx_nic_cfg_get(sa->nic);
3146 		sfc_eth_dev_create_repr_controller(sa, eth_da, encp->enc_intf);
3147 	}
3148 
3149 	return 0;
3150 }
3151 
3152 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3153 	struct rte_pci_device *pci_dev)
3154 {
3155 	struct sfc_ethdev_init_data init_data;
3156 	struct rte_eth_devargs eth_da;
3157 	struct rte_eth_dev *dev;
3158 	bool dev_created;
3159 	int rc;
3160 
3161 	if (pci_dev->device.devargs != NULL) {
3162 		rc = sfc_parse_rte_devargs(pci_dev->device.devargs->args,
3163 					   &eth_da);
3164 		if (rc != 0)
3165 			return rc;
3166 	} else {
3167 		memset(&eth_da, 0, sizeof(eth_da));
3168 	}
3169 
3170 	/* If no VF representors specified, check for PF ones */
3171 	if (eth_da.nb_representor_ports > 0)
3172 		init_data.nb_representors = eth_da.nb_representor_ports;
3173 	else
3174 		init_data.nb_representors = eth_da.nb_ports;
3175 
3176 	if (init_data.nb_representors > 0 &&
3177 	    rte_eal_process_type() != RTE_PROC_PRIMARY) {
3178 		SFC_GENERIC_LOG(ERR,
3179 			"Create representors from secondary process not supported, dev '%s'",
3180 			pci_dev->device.name);
3181 		return -ENOTSUP;
3182 	}
3183 
3184 	/*
3185 	 * Driver supports RTE_PCI_DRV_PROBE_AGAIN. Hence create device only
3186 	 * if it does not already exist. Re-probing an existing device is
3187 	 * expected to allow additional representors to be configured.
3188 	 */
3189 	rc = sfc_eth_dev_find_or_create(pci_dev, &init_data, &dev,
3190 					&dev_created);
3191 	if (rc != 0)
3192 		return rc;
3193 
3194 	rc = sfc_eth_dev_create_representors(dev, &eth_da);
3195 	if (rc != 0) {
3196 		if (dev_created)
3197 			(void)rte_eth_dev_destroy(dev, sfc_eth_dev_uninit);
3198 
3199 		return rc;
3200 	}
3201 
3202 	return 0;
3203 }
3204 
3205 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
3206 {
3207 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
3208 }
3209 
3210 static struct rte_pci_driver sfc_efx_pmd = {
3211 	.id_table = pci_id_sfc_efx_map,
3212 	.drv_flags =
3213 		RTE_PCI_DRV_INTR_LSC |
3214 		RTE_PCI_DRV_NEED_MAPPING |
3215 		RTE_PCI_DRV_PROBE_AGAIN,
3216 	.probe = sfc_eth_dev_pci_probe,
3217 	.remove = sfc_eth_dev_pci_remove,
3218 };
3219 
3220 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
3221 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
3222 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
3223 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
3224 	SFC_KVARG_SWITCH_MODE "=" SFC_KVARG_VALUES_SWITCH_MODE " "
3225 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
3226 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
3227 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
3228 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
3229 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
3230 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
3231 
3232 RTE_INIT(sfc_driver_register_logtype)
3233 {
3234 	int ret;
3235 
3236 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
3237 						   RTE_LOG_NOTICE);
3238 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
3239 }
3240