xref: /dpdk/drivers/net/sfc/sfc_ethdev.c (revision ab77a0013a811aacdde49e903786eff7abb308ec)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright (c) 2016-2018 Solarflare Communications Inc.
4  * All rights reserved.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 #include <rte_dev.h>
11 #include <rte_ethdev_driver.h>
12 #include <rte_ethdev_pci.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_errno.h>
16 #include <rte_string_fns.h>
17 
18 #include "efx.h"
19 
20 #include "sfc.h"
21 #include "sfc_debug.h"
22 #include "sfc_log.h"
23 #include "sfc_kvargs.h"
24 #include "sfc_ev.h"
25 #include "sfc_rx.h"
26 #include "sfc_tx.h"
27 #include "sfc_flow.h"
28 #include "sfc_dp.h"
29 #include "sfc_dp_rx.h"
30 
31 uint32_t sfc_logtype_driver;
32 
33 static struct sfc_dp_list sfc_dp_head =
34 	TAILQ_HEAD_INITIALIZER(sfc_dp_head);
35 
36 static int
37 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
38 {
39 	struct sfc_adapter *sa = dev->data->dev_private;
40 	efx_nic_fw_info_t enfi;
41 	int ret;
42 	int rc;
43 
44 	/*
45 	 * Return value of the callback is likely supposed to be
46 	 * equal to or greater than 0, nevertheless, if an error
47 	 * occurs, it will be desirable to pass it to the caller
48 	 */
49 	if ((fw_version == NULL) || (fw_size == 0))
50 		return -EINVAL;
51 
52 	rc = efx_nic_get_fw_version(sa->nic, &enfi);
53 	if (rc != 0)
54 		return -rc;
55 
56 	ret = snprintf(fw_version, fw_size,
57 		       "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16,
58 		       enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1],
59 		       enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]);
60 	if (ret < 0)
61 		return ret;
62 
63 	if (enfi.enfi_dpcpu_fw_ids_valid) {
64 		size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret);
65 		int ret_extra;
66 
67 		ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset,
68 				     fw_size - dpcpu_fw_ids_offset,
69 				     " rx%" PRIx16 " tx%" PRIx16,
70 				     enfi.enfi_rx_dpcpu_fw_id,
71 				     enfi.enfi_tx_dpcpu_fw_id);
72 		if (ret_extra < 0)
73 			return ret_extra;
74 
75 		ret += ret_extra;
76 	}
77 
78 	if (fw_size < (size_t)(++ret))
79 		return ret;
80 	else
81 		return 0;
82 }
83 
84 static void
85 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
86 {
87 	struct sfc_adapter *sa = dev->data->dev_private;
88 	struct sfc_rss *rss = &sa->rss;
89 	uint64_t txq_offloads_def = 0;
90 
91 	sfc_log_init(sa, "entry");
92 
93 	dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX;
94 
95 	/* Autonegotiation may be disabled */
96 	dev_info->speed_capa = ETH_LINK_SPEED_FIXED;
97 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX)
98 		dev_info->speed_capa |= ETH_LINK_SPEED_1G;
99 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX)
100 		dev_info->speed_capa |= ETH_LINK_SPEED_10G;
101 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX)
102 		dev_info->speed_capa |= ETH_LINK_SPEED_25G;
103 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX)
104 		dev_info->speed_capa |= ETH_LINK_SPEED_40G;
105 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX)
106 		dev_info->speed_capa |= ETH_LINK_SPEED_50G;
107 	if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX)
108 		dev_info->speed_capa |= ETH_LINK_SPEED_100G;
109 
110 	dev_info->max_rx_queues = sa->rxq_max;
111 	dev_info->max_tx_queues = sa->txq_max;
112 
113 	/* By default packets are dropped if no descriptors are available */
114 	dev_info->default_rxconf.rx_drop_en = 1;
115 
116 	dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa);
117 
118 	/*
119 	 * rx_offload_capa includes both device and queue offloads since
120 	 * the latter may be requested on a per device basis which makes
121 	 * sense when some offloads are needed to be set on all queues.
122 	 */
123 	dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) |
124 				    dev_info->rx_queue_offload_capa;
125 
126 	dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa);
127 
128 	/*
129 	 * tx_offload_capa includes both device and queue offloads since
130 	 * the latter may be requested on a per device basis which makes
131 	 * sense when some offloads are needed to be set on all queues.
132 	 */
133 	dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) |
134 				    dev_info->tx_queue_offload_capa;
135 
136 	if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
137 		txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
138 
139 	dev_info->default_txconf.offloads |= txq_offloads_def;
140 
141 	if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) {
142 		uint64_t rte_hf = 0;
143 		unsigned int i;
144 
145 		for (i = 0; i < rss->hf_map_nb_entries; ++i)
146 			rte_hf |= rss->hf_map[i].rte;
147 
148 		dev_info->reta_size = EFX_RSS_TBL_SIZE;
149 		dev_info->hash_key_size = EFX_RSS_KEY_SIZE;
150 		dev_info->flow_type_rss_offloads = rte_hf;
151 	}
152 
153 	/* Initialize to hardware limits */
154 	dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS;
155 	dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS;
156 	/* The RXQ hardware requires that the descriptor count is a power
157 	 * of 2, but rx_desc_lim cannot properly describe that constraint.
158 	 */
159 	dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS;
160 
161 	/* Initialize to hardware limits */
162 	dev_info->tx_desc_lim.nb_max = sa->txq_max_entries;
163 	dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS;
164 	/*
165 	 * The TXQ hardware requires that the descriptor count is a power
166 	 * of 2, but tx_desc_lim cannot properly describe that constraint
167 	 */
168 	dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS;
169 
170 	if (sa->dp_rx->get_dev_info != NULL)
171 		sa->dp_rx->get_dev_info(dev_info);
172 	if (sa->dp_tx->get_dev_info != NULL)
173 		sa->dp_tx->get_dev_info(dev_info);
174 
175 	dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
176 			     RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
177 }
178 
179 static const uint32_t *
180 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev)
181 {
182 	struct sfc_adapter *sa = dev->data->dev_private;
183 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
184 	uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported;
185 
186 	return sa->dp_rx->supported_ptypes_get(tunnel_encaps);
187 }
188 
189 static int
190 sfc_dev_configure(struct rte_eth_dev *dev)
191 {
192 	struct rte_eth_dev_data *dev_data = dev->data;
193 	struct sfc_adapter *sa = dev_data->dev_private;
194 	int rc;
195 
196 	sfc_log_init(sa, "entry n_rxq=%u n_txq=%u",
197 		     dev_data->nb_rx_queues, dev_data->nb_tx_queues);
198 
199 	sfc_adapter_lock(sa);
200 	switch (sa->state) {
201 	case SFC_ADAPTER_CONFIGURED:
202 		/* FALLTHROUGH */
203 	case SFC_ADAPTER_INITIALIZED:
204 		rc = sfc_configure(sa);
205 		break;
206 	default:
207 		sfc_err(sa, "unexpected adapter state %u to configure",
208 			sa->state);
209 		rc = EINVAL;
210 		break;
211 	}
212 	sfc_adapter_unlock(sa);
213 
214 	sfc_log_init(sa, "done %d", rc);
215 	SFC_ASSERT(rc >= 0);
216 	return -rc;
217 }
218 
219 static int
220 sfc_dev_start(struct rte_eth_dev *dev)
221 {
222 	struct sfc_adapter *sa = dev->data->dev_private;
223 	int rc;
224 
225 	sfc_log_init(sa, "entry");
226 
227 	sfc_adapter_lock(sa);
228 	rc = sfc_start(sa);
229 	sfc_adapter_unlock(sa);
230 
231 	sfc_log_init(sa, "done %d", rc);
232 	SFC_ASSERT(rc >= 0);
233 	return -rc;
234 }
235 
236 static int
237 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete)
238 {
239 	struct sfc_adapter *sa = dev->data->dev_private;
240 	struct rte_eth_link current_link;
241 	int ret;
242 
243 	sfc_log_init(sa, "entry");
244 
245 	if (sa->state != SFC_ADAPTER_STARTED) {
246 		sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, &current_link);
247 	} else if (wait_to_complete) {
248 		efx_link_mode_t link_mode;
249 
250 		if (efx_port_poll(sa->nic, &link_mode) != 0)
251 			link_mode = EFX_LINK_UNKNOWN;
252 		sfc_port_link_mode_to_info(link_mode, &current_link);
253 
254 	} else {
255 		sfc_ev_mgmt_qpoll(sa);
256 		rte_eth_linkstatus_get(dev, &current_link);
257 	}
258 
259 	ret = rte_eth_linkstatus_set(dev, &current_link);
260 	if (ret == 0)
261 		sfc_notice(sa, "Link status is %s",
262 			   current_link.link_status ? "UP" : "DOWN");
263 
264 	return ret;
265 }
266 
267 static void
268 sfc_dev_stop(struct rte_eth_dev *dev)
269 {
270 	struct sfc_adapter *sa = dev->data->dev_private;
271 
272 	sfc_log_init(sa, "entry");
273 
274 	sfc_adapter_lock(sa);
275 	sfc_stop(sa);
276 	sfc_adapter_unlock(sa);
277 
278 	sfc_log_init(sa, "done");
279 }
280 
281 static int
282 sfc_dev_set_link_up(struct rte_eth_dev *dev)
283 {
284 	struct sfc_adapter *sa = dev->data->dev_private;
285 	int rc;
286 
287 	sfc_log_init(sa, "entry");
288 
289 	sfc_adapter_lock(sa);
290 	rc = sfc_start(sa);
291 	sfc_adapter_unlock(sa);
292 
293 	SFC_ASSERT(rc >= 0);
294 	return -rc;
295 }
296 
297 static int
298 sfc_dev_set_link_down(struct rte_eth_dev *dev)
299 {
300 	struct sfc_adapter *sa = dev->data->dev_private;
301 
302 	sfc_log_init(sa, "entry");
303 
304 	sfc_adapter_lock(sa);
305 	sfc_stop(sa);
306 	sfc_adapter_unlock(sa);
307 
308 	return 0;
309 }
310 
311 static void
312 sfc_dev_close(struct rte_eth_dev *dev)
313 {
314 	struct sfc_adapter *sa = dev->data->dev_private;
315 
316 	sfc_log_init(sa, "entry");
317 
318 	sfc_adapter_lock(sa);
319 	switch (sa->state) {
320 	case SFC_ADAPTER_STARTED:
321 		sfc_stop(sa);
322 		SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
323 		/* FALLTHROUGH */
324 	case SFC_ADAPTER_CONFIGURED:
325 		sfc_close(sa);
326 		SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
327 		/* FALLTHROUGH */
328 	case SFC_ADAPTER_INITIALIZED:
329 		break;
330 	default:
331 		sfc_err(sa, "unexpected adapter state %u on close", sa->state);
332 		break;
333 	}
334 	sfc_adapter_unlock(sa);
335 
336 	sfc_log_init(sa, "done");
337 }
338 
339 static void
340 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode,
341 		   boolean_t enabled)
342 {
343 	struct sfc_port *port;
344 	boolean_t *toggle;
345 	struct sfc_adapter *sa = dev->data->dev_private;
346 	boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI);
347 	const char *desc = (allmulti) ? "all-multi" : "promiscuous";
348 
349 	sfc_adapter_lock(sa);
350 
351 	port = &sa->port;
352 	toggle = (allmulti) ? (&port->allmulti) : (&port->promisc);
353 
354 	if (*toggle != enabled) {
355 		*toggle = enabled;
356 
357 		if (port->isolated) {
358 			sfc_warn(sa, "isolated mode is active on the port");
359 			sfc_warn(sa, "the change is to be applied on the next "
360 				     "start provided that isolated mode is "
361 				     "disabled prior the next start");
362 		} else if ((sa->state == SFC_ADAPTER_STARTED) &&
363 			   (sfc_set_rx_mode(sa) != 0)) {
364 			*toggle = !(enabled);
365 			sfc_warn(sa, "Failed to %s %s mode",
366 				 ((enabled) ? "enable" : "disable"), desc);
367 		}
368 	}
369 
370 	sfc_adapter_unlock(sa);
371 }
372 
373 static void
374 sfc_dev_promisc_enable(struct rte_eth_dev *dev)
375 {
376 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE);
377 }
378 
379 static void
380 sfc_dev_promisc_disable(struct rte_eth_dev *dev)
381 {
382 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE);
383 }
384 
385 static void
386 sfc_dev_allmulti_enable(struct rte_eth_dev *dev)
387 {
388 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE);
389 }
390 
391 static void
392 sfc_dev_allmulti_disable(struct rte_eth_dev *dev)
393 {
394 	sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE);
395 }
396 
397 static int
398 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id,
399 		   uint16_t nb_rx_desc, unsigned int socket_id,
400 		   const struct rte_eth_rxconf *rx_conf,
401 		   struct rte_mempool *mb_pool)
402 {
403 	struct sfc_adapter *sa = dev->data->dev_private;
404 	int rc;
405 
406 	sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u",
407 		     rx_queue_id, nb_rx_desc, socket_id);
408 
409 	sfc_adapter_lock(sa);
410 
411 	rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id,
412 			  rx_conf, mb_pool);
413 	if (rc != 0)
414 		goto fail_rx_qinit;
415 
416 	dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp;
417 
418 	sfc_adapter_unlock(sa);
419 
420 	return 0;
421 
422 fail_rx_qinit:
423 	sfc_adapter_unlock(sa);
424 	SFC_ASSERT(rc > 0);
425 	return -rc;
426 }
427 
428 static void
429 sfc_rx_queue_release(void *queue)
430 {
431 	struct sfc_dp_rxq *dp_rxq = queue;
432 	struct sfc_rxq *rxq;
433 	struct sfc_adapter *sa;
434 	unsigned int sw_index;
435 
436 	if (dp_rxq == NULL)
437 		return;
438 
439 	rxq = sfc_rxq_by_dp_rxq(dp_rxq);
440 	sa = rxq->evq->sa;
441 	sfc_adapter_lock(sa);
442 
443 	sw_index = sfc_rxq_sw_index(rxq);
444 
445 	sfc_log_init(sa, "RxQ=%u", sw_index);
446 
447 	sfc_rx_qfini(sa, sw_index);
448 
449 	sfc_adapter_unlock(sa);
450 }
451 
452 static int
453 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id,
454 		   uint16_t nb_tx_desc, unsigned int socket_id,
455 		   const struct rte_eth_txconf *tx_conf)
456 {
457 	struct sfc_adapter *sa = dev->data->dev_private;
458 	int rc;
459 
460 	sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u",
461 		     tx_queue_id, nb_tx_desc, socket_id);
462 
463 	sfc_adapter_lock(sa);
464 
465 	rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf);
466 	if (rc != 0)
467 		goto fail_tx_qinit;
468 
469 	dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp;
470 
471 	sfc_adapter_unlock(sa);
472 	return 0;
473 
474 fail_tx_qinit:
475 	sfc_adapter_unlock(sa);
476 	SFC_ASSERT(rc > 0);
477 	return -rc;
478 }
479 
480 static void
481 sfc_tx_queue_release(void *queue)
482 {
483 	struct sfc_dp_txq *dp_txq = queue;
484 	struct sfc_txq *txq;
485 	unsigned int sw_index;
486 	struct sfc_adapter *sa;
487 
488 	if (dp_txq == NULL)
489 		return;
490 
491 	txq = sfc_txq_by_dp_txq(dp_txq);
492 	sw_index = sfc_txq_sw_index(txq);
493 
494 	SFC_ASSERT(txq->evq != NULL);
495 	sa = txq->evq->sa;
496 
497 	sfc_log_init(sa, "TxQ = %u", sw_index);
498 
499 	sfc_adapter_lock(sa);
500 
501 	sfc_tx_qfini(sa, sw_index);
502 
503 	sfc_adapter_unlock(sa);
504 }
505 
506 /*
507  * Some statistics are computed as A - B where A and B each increase
508  * monotonically with some hardware counter(s) and the counters are read
509  * asynchronously.
510  *
511  * If packet X is counted in A, but not counted in B yet, computed value is
512  * greater than real.
513  *
514  * If packet X is not counted in A at the moment of reading the counter,
515  * but counted in B at the moment of reading the counter, computed value
516  * is less than real.
517  *
518  * However, counter which grows backward is worse evil than slightly wrong
519  * value. So, let's try to guarantee that it never happens except may be
520  * the case when the MAC stats are zeroed as a result of a NIC reset.
521  */
522 static void
523 sfc_update_diff_stat(uint64_t *stat, uint64_t newval)
524 {
525 	if ((int64_t)(newval - *stat) > 0 || newval == 0)
526 		*stat = newval;
527 }
528 
529 static int
530 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
531 {
532 	struct sfc_adapter *sa = dev->data->dev_private;
533 	struct sfc_port *port = &sa->port;
534 	uint64_t *mac_stats;
535 	int ret;
536 
537 	rte_spinlock_lock(&port->mac_stats_lock);
538 
539 	ret = sfc_port_update_mac_stats(sa);
540 	if (ret != 0)
541 		goto unlock;
542 
543 	mac_stats = port->mac_stats_buf;
544 
545 	if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask,
546 				   EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) {
547 		stats->ipackets =
548 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] +
549 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] +
550 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS];
551 		stats->opackets =
552 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] +
553 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] +
554 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS];
555 		stats->ibytes =
556 			mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] +
557 			mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] +
558 			mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES];
559 		stats->obytes =
560 			mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] +
561 			mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] +
562 			mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES];
563 		stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS];
564 		stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS];
565 	} else {
566 		stats->opackets = mac_stats[EFX_MAC_TX_PKTS];
567 		stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS];
568 		stats->obytes = mac_stats[EFX_MAC_TX_OCTETS];
569 		/*
570 		 * Take into account stats which are whenever supported
571 		 * on EF10. If some stat is not supported by current
572 		 * firmware variant or HW revision, it is guaranteed
573 		 * to be zero in mac_stats.
574 		 */
575 		stats->imissed =
576 			mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] +
577 			mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] +
578 			mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] +
579 			mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] +
580 			mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] +
581 			mac_stats[EFX_MAC_PM_TRUNC_QBB] +
582 			mac_stats[EFX_MAC_PM_DISCARD_QBB] +
583 			mac_stats[EFX_MAC_PM_DISCARD_MAPPING] +
584 			mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] +
585 			mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS];
586 		stats->ierrors =
587 			mac_stats[EFX_MAC_RX_FCS_ERRORS] +
588 			mac_stats[EFX_MAC_RX_ALIGN_ERRORS] +
589 			mac_stats[EFX_MAC_RX_JABBER_PKTS];
590 		/* no oerrors counters supported on EF10 */
591 
592 		/* Exclude missed, errors and pauses from Rx packets */
593 		sfc_update_diff_stat(&port->ipackets,
594 			mac_stats[EFX_MAC_RX_PKTS] -
595 			mac_stats[EFX_MAC_RX_PAUSE_PKTS] -
596 			stats->imissed - stats->ierrors);
597 		stats->ipackets = port->ipackets;
598 	}
599 
600 unlock:
601 	rte_spinlock_unlock(&port->mac_stats_lock);
602 	SFC_ASSERT(ret >= 0);
603 	return -ret;
604 }
605 
606 static void
607 sfc_stats_reset(struct rte_eth_dev *dev)
608 {
609 	struct sfc_adapter *sa = dev->data->dev_private;
610 	struct sfc_port *port = &sa->port;
611 	int rc;
612 
613 	if (sa->state != SFC_ADAPTER_STARTED) {
614 		/*
615 		 * The operation cannot be done if port is not started; it
616 		 * will be scheduled to be done during the next port start
617 		 */
618 		port->mac_stats_reset_pending = B_TRUE;
619 		return;
620 	}
621 
622 	rc = sfc_port_reset_mac_stats(sa);
623 	if (rc != 0)
624 		sfc_err(sa, "failed to reset statistics (rc = %d)", rc);
625 }
626 
627 static int
628 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
629 	       unsigned int xstats_count)
630 {
631 	struct sfc_adapter *sa = dev->data->dev_private;
632 	struct sfc_port *port = &sa->port;
633 	uint64_t *mac_stats;
634 	int rc;
635 	unsigned int i;
636 	int nstats = 0;
637 
638 	rte_spinlock_lock(&port->mac_stats_lock);
639 
640 	rc = sfc_port_update_mac_stats(sa);
641 	if (rc != 0) {
642 		SFC_ASSERT(rc > 0);
643 		nstats = -rc;
644 		goto unlock;
645 	}
646 
647 	mac_stats = port->mac_stats_buf;
648 
649 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
650 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
651 			if (xstats != NULL && nstats < (int)xstats_count) {
652 				xstats[nstats].id = nstats;
653 				xstats[nstats].value = mac_stats[i];
654 			}
655 			nstats++;
656 		}
657 	}
658 
659 unlock:
660 	rte_spinlock_unlock(&port->mac_stats_lock);
661 
662 	return nstats;
663 }
664 
665 static int
666 sfc_xstats_get_names(struct rte_eth_dev *dev,
667 		     struct rte_eth_xstat_name *xstats_names,
668 		     unsigned int xstats_count)
669 {
670 	struct sfc_adapter *sa = dev->data->dev_private;
671 	struct sfc_port *port = &sa->port;
672 	unsigned int i;
673 	unsigned int nstats = 0;
674 
675 	for (i = 0; i < EFX_MAC_NSTATS; ++i) {
676 		if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) {
677 			if (xstats_names != NULL && nstats < xstats_count)
678 				strlcpy(xstats_names[nstats].name,
679 					efx_mac_stat_name(sa->nic, i),
680 					sizeof(xstats_names[0].name));
681 			nstats++;
682 		}
683 	}
684 
685 	return nstats;
686 }
687 
688 static int
689 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
690 		     uint64_t *values, unsigned int n)
691 {
692 	struct sfc_adapter *sa = dev->data->dev_private;
693 	struct sfc_port *port = &sa->port;
694 	uint64_t *mac_stats;
695 	unsigned int nb_supported = 0;
696 	unsigned int nb_written = 0;
697 	unsigned int i;
698 	int ret;
699 	int rc;
700 
701 	if (unlikely(values == NULL) ||
702 	    unlikely((ids == NULL) && (n < port->mac_stats_nb_supported)))
703 		return port->mac_stats_nb_supported;
704 
705 	rte_spinlock_lock(&port->mac_stats_lock);
706 
707 	rc = sfc_port_update_mac_stats(sa);
708 	if (rc != 0) {
709 		SFC_ASSERT(rc > 0);
710 		ret = -rc;
711 		goto unlock;
712 	}
713 
714 	mac_stats = port->mac_stats_buf;
715 
716 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) {
717 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
718 			continue;
719 
720 		if ((ids == NULL) || (ids[nb_written] == nb_supported))
721 			values[nb_written++] = mac_stats[i];
722 
723 		++nb_supported;
724 	}
725 
726 	ret = nb_written;
727 
728 unlock:
729 	rte_spinlock_unlock(&port->mac_stats_lock);
730 
731 	return ret;
732 }
733 
734 static int
735 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev,
736 			   struct rte_eth_xstat_name *xstats_names,
737 			   const uint64_t *ids, unsigned int size)
738 {
739 	struct sfc_adapter *sa = dev->data->dev_private;
740 	struct sfc_port *port = &sa->port;
741 	unsigned int nb_supported = 0;
742 	unsigned int nb_written = 0;
743 	unsigned int i;
744 
745 	if (unlikely(xstats_names == NULL) ||
746 	    unlikely((ids == NULL) && (size < port->mac_stats_nb_supported)))
747 		return port->mac_stats_nb_supported;
748 
749 	for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) {
750 		if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i))
751 			continue;
752 
753 		if ((ids == NULL) || (ids[nb_written] == nb_supported)) {
754 			char *name = xstats_names[nb_written++].name;
755 
756 			strlcpy(name, efx_mac_stat_name(sa->nic, i),
757 				sizeof(xstats_names[0].name));
758 		}
759 
760 		++nb_supported;
761 	}
762 
763 	return nb_written;
764 }
765 
766 static int
767 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
768 {
769 	struct sfc_adapter *sa = dev->data->dev_private;
770 	unsigned int wanted_fc, link_fc;
771 
772 	memset(fc_conf, 0, sizeof(*fc_conf));
773 
774 	sfc_adapter_lock(sa);
775 
776 	if (sa->state == SFC_ADAPTER_STARTED)
777 		efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc);
778 	else
779 		link_fc = sa->port.flow_ctrl;
780 
781 	switch (link_fc) {
782 	case 0:
783 		fc_conf->mode = RTE_FC_NONE;
784 		break;
785 	case EFX_FCNTL_RESPOND:
786 		fc_conf->mode = RTE_FC_RX_PAUSE;
787 		break;
788 	case EFX_FCNTL_GENERATE:
789 		fc_conf->mode = RTE_FC_TX_PAUSE;
790 		break;
791 	case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE):
792 		fc_conf->mode = RTE_FC_FULL;
793 		break;
794 	default:
795 		sfc_err(sa, "%s: unexpected flow control value %#x",
796 			__func__, link_fc);
797 	}
798 
799 	fc_conf->autoneg = sa->port.flow_ctrl_autoneg;
800 
801 	sfc_adapter_unlock(sa);
802 
803 	return 0;
804 }
805 
806 static int
807 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
808 {
809 	struct sfc_adapter *sa = dev->data->dev_private;
810 	struct sfc_port *port = &sa->port;
811 	unsigned int fcntl;
812 	int rc;
813 
814 	if (fc_conf->high_water != 0 || fc_conf->low_water != 0 ||
815 	    fc_conf->pause_time != 0 || fc_conf->send_xon != 0 ||
816 	    fc_conf->mac_ctrl_frame_fwd != 0) {
817 		sfc_err(sa, "unsupported flow control settings specified");
818 		rc = EINVAL;
819 		goto fail_inval;
820 	}
821 
822 	switch (fc_conf->mode) {
823 	case RTE_FC_NONE:
824 		fcntl = 0;
825 		break;
826 	case RTE_FC_RX_PAUSE:
827 		fcntl = EFX_FCNTL_RESPOND;
828 		break;
829 	case RTE_FC_TX_PAUSE:
830 		fcntl = EFX_FCNTL_GENERATE;
831 		break;
832 	case RTE_FC_FULL:
833 		fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE;
834 		break;
835 	default:
836 		rc = EINVAL;
837 		goto fail_inval;
838 	}
839 
840 	sfc_adapter_lock(sa);
841 
842 	if (sa->state == SFC_ADAPTER_STARTED) {
843 		rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg);
844 		if (rc != 0)
845 			goto fail_mac_fcntl_set;
846 	}
847 
848 	port->flow_ctrl = fcntl;
849 	port->flow_ctrl_autoneg = fc_conf->autoneg;
850 
851 	sfc_adapter_unlock(sa);
852 
853 	return 0;
854 
855 fail_mac_fcntl_set:
856 	sfc_adapter_unlock(sa);
857 fail_inval:
858 	SFC_ASSERT(rc > 0);
859 	return -rc;
860 }
861 
862 static int
863 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
864 {
865 	struct sfc_adapter *sa = dev->data->dev_private;
866 	size_t pdu = EFX_MAC_PDU(mtu);
867 	size_t old_pdu;
868 	int rc;
869 
870 	sfc_log_init(sa, "mtu=%u", mtu);
871 
872 	rc = EINVAL;
873 	if (pdu < EFX_MAC_PDU_MIN) {
874 		sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)",
875 			(unsigned int)mtu, (unsigned int)pdu,
876 			EFX_MAC_PDU_MIN);
877 		goto fail_inval;
878 	}
879 	if (pdu > EFX_MAC_PDU_MAX) {
880 		sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)",
881 			(unsigned int)mtu, (unsigned int)pdu,
882 			EFX_MAC_PDU_MAX);
883 		goto fail_inval;
884 	}
885 
886 	sfc_adapter_lock(sa);
887 
888 	if (pdu != sa->port.pdu) {
889 		if (sa->state == SFC_ADAPTER_STARTED) {
890 			sfc_stop(sa);
891 
892 			old_pdu = sa->port.pdu;
893 			sa->port.pdu = pdu;
894 			rc = sfc_start(sa);
895 			if (rc != 0)
896 				goto fail_start;
897 		} else {
898 			sa->port.pdu = pdu;
899 		}
900 	}
901 
902 	/*
903 	 * The driver does not use it, but other PMDs update jumbo frame
904 	 * flag and max_rx_pkt_len when MTU is set.
905 	 */
906 	if (mtu > ETHER_MAX_LEN) {
907 		struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
908 		rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME;
909 	}
910 
911 	dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu;
912 
913 	sfc_adapter_unlock(sa);
914 
915 	sfc_log_init(sa, "done");
916 	return 0;
917 
918 fail_start:
919 	sa->port.pdu = old_pdu;
920 	if (sfc_start(sa) != 0)
921 		sfc_err(sa, "cannot start with neither new (%u) nor old (%u) "
922 			"PDU max size - port is stopped",
923 			(unsigned int)pdu, (unsigned int)old_pdu);
924 	sfc_adapter_unlock(sa);
925 
926 fail_inval:
927 	sfc_log_init(sa, "failed %d", rc);
928 	SFC_ASSERT(rc > 0);
929 	return -rc;
930 }
931 static int
932 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
933 {
934 	struct sfc_adapter *sa = dev->data->dev_private;
935 	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
936 	struct sfc_port *port = &sa->port;
937 	struct ether_addr *old_addr = &dev->data->mac_addrs[0];
938 	int rc = 0;
939 
940 	sfc_adapter_lock(sa);
941 
942 	/*
943 	 * Copy the address to the device private data so that
944 	 * it could be recalled in the case of adapter restart.
945 	 */
946 	ether_addr_copy(mac_addr, &port->default_mac_addr);
947 
948 	/*
949 	 * Neither of the two following checks can return
950 	 * an error. The new MAC address is preserved in
951 	 * the device private data and can be activated
952 	 * on the next port start if the user prevents
953 	 * isolated mode from being enabled.
954 	 */
955 	if (port->isolated) {
956 		sfc_warn(sa, "isolated mode is active on the port");
957 		sfc_warn(sa, "will not set MAC address");
958 		goto unlock;
959 	}
960 
961 	if (sa->state != SFC_ADAPTER_STARTED) {
962 		sfc_notice(sa, "the port is not started");
963 		sfc_notice(sa, "the new MAC address will be set on port start");
964 
965 		goto unlock;
966 	}
967 
968 	if (encp->enc_allow_set_mac_with_installed_filters) {
969 		rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes);
970 		if (rc != 0) {
971 			sfc_err(sa, "cannot set MAC address (rc = %u)", rc);
972 			goto unlock;
973 		}
974 
975 		/*
976 		 * Changing the MAC address by means of MCDI request
977 		 * has no effect on received traffic, therefore
978 		 * we also need to update unicast filters
979 		 */
980 		rc = sfc_set_rx_mode(sa);
981 		if (rc != 0) {
982 			sfc_err(sa, "cannot set filter (rc = %u)", rc);
983 			/* Rollback the old address */
984 			(void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes);
985 			(void)sfc_set_rx_mode(sa);
986 		}
987 	} else {
988 		sfc_warn(sa, "cannot set MAC address with filters installed");
989 		sfc_warn(sa, "adapter will be restarted to pick the new MAC");
990 		sfc_warn(sa, "(some traffic may be dropped)");
991 
992 		/*
993 		 * Since setting MAC address with filters installed is not
994 		 * allowed on the adapter, the new MAC address will be set
995 		 * by means of adapter restart. sfc_start() shall retrieve
996 		 * the new address from the device private data and set it.
997 		 */
998 		sfc_stop(sa);
999 		rc = sfc_start(sa);
1000 		if (rc != 0)
1001 			sfc_err(sa, "cannot restart adapter (rc = %u)", rc);
1002 	}
1003 
1004 unlock:
1005 	if (rc != 0)
1006 		ether_addr_copy(old_addr, &port->default_mac_addr);
1007 
1008 	sfc_adapter_unlock(sa);
1009 
1010 	SFC_ASSERT(rc >= 0);
1011 	return -rc;
1012 }
1013 
1014 
1015 static int
1016 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set,
1017 		     uint32_t nb_mc_addr)
1018 {
1019 	struct sfc_adapter *sa = dev->data->dev_private;
1020 	struct sfc_port *port = &sa->port;
1021 	uint8_t *mc_addrs = port->mcast_addrs;
1022 	int rc;
1023 	unsigned int i;
1024 
1025 	if (port->isolated) {
1026 		sfc_err(sa, "isolated mode is active on the port");
1027 		sfc_err(sa, "will not set multicast address list");
1028 		return -ENOTSUP;
1029 	}
1030 
1031 	if (mc_addrs == NULL)
1032 		return -ENOBUFS;
1033 
1034 	if (nb_mc_addr > port->max_mcast_addrs) {
1035 		sfc_err(sa, "too many multicast addresses: %u > %u",
1036 			 nb_mc_addr, port->max_mcast_addrs);
1037 		return -EINVAL;
1038 	}
1039 
1040 	for (i = 0; i < nb_mc_addr; ++i) {
1041 		rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes,
1042 				 EFX_MAC_ADDR_LEN);
1043 		mc_addrs += EFX_MAC_ADDR_LEN;
1044 	}
1045 
1046 	port->nb_mcast_addrs = nb_mc_addr;
1047 
1048 	if (sa->state != SFC_ADAPTER_STARTED)
1049 		return 0;
1050 
1051 	rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs,
1052 					port->nb_mcast_addrs);
1053 	if (rc != 0)
1054 		sfc_err(sa, "cannot set multicast address list (rc = %u)", rc);
1055 
1056 	SFC_ASSERT(rc >= 0);
1057 	return -rc;
1058 }
1059 
1060 /*
1061  * The function is used by the secondary process as well. It must not
1062  * use any process-local pointers from the adapter data.
1063  */
1064 static void
1065 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
1066 		      struct rte_eth_rxq_info *qinfo)
1067 {
1068 	struct sfc_adapter *sa = dev->data->dev_private;
1069 	struct sfc_rxq_info *rxq_info;
1070 	struct sfc_rxq *rxq;
1071 
1072 	sfc_adapter_lock(sa);
1073 
1074 	SFC_ASSERT(rx_queue_id < sa->rxq_count);
1075 
1076 	rxq_info = &sa->rxq_info[rx_queue_id];
1077 	rxq = rxq_info->rxq;
1078 	SFC_ASSERT(rxq != NULL);
1079 
1080 	qinfo->mp = rxq->refill_mb_pool;
1081 	qinfo->conf.rx_free_thresh = rxq->refill_threshold;
1082 	qinfo->conf.rx_drop_en = 1;
1083 	qinfo->conf.rx_deferred_start = rxq_info->deferred_start;
1084 	qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
1085 	if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) {
1086 		qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER;
1087 		qinfo->scattered_rx = 1;
1088 	}
1089 	qinfo->nb_desc = rxq_info->entries;
1090 
1091 	sfc_adapter_unlock(sa);
1092 }
1093 
1094 /*
1095  * The function is used by the secondary process as well. It must not
1096  * use any process-local pointers from the adapter data.
1097  */
1098 static void
1099 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
1100 		      struct rte_eth_txq_info *qinfo)
1101 {
1102 	struct sfc_adapter *sa = dev->data->dev_private;
1103 	struct sfc_txq_info *txq_info;
1104 
1105 	sfc_adapter_lock(sa);
1106 
1107 	SFC_ASSERT(tx_queue_id < sa->txq_count);
1108 
1109 	txq_info = &sa->txq_info[tx_queue_id];
1110 	SFC_ASSERT(txq_info->txq != NULL);
1111 
1112 	memset(qinfo, 0, sizeof(*qinfo));
1113 
1114 	qinfo->conf.offloads = txq_info->txq->offloads;
1115 	qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh;
1116 	qinfo->conf.tx_deferred_start = txq_info->deferred_start;
1117 	qinfo->nb_desc = txq_info->entries;
1118 
1119 	sfc_adapter_unlock(sa);
1120 }
1121 
1122 static uint32_t
1123 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1124 {
1125 	struct sfc_adapter *sa = dev->data->dev_private;
1126 
1127 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1128 
1129 	return sfc_rx_qdesc_npending(sa, rx_queue_id);
1130 }
1131 
1132 static int
1133 sfc_rx_descriptor_done(void *queue, uint16_t offset)
1134 {
1135 	struct sfc_dp_rxq *dp_rxq = queue;
1136 
1137 	return sfc_rx_qdesc_done(dp_rxq, offset);
1138 }
1139 
1140 static int
1141 sfc_rx_descriptor_status(void *queue, uint16_t offset)
1142 {
1143 	struct sfc_dp_rxq *dp_rxq = queue;
1144 	struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
1145 
1146 	return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset);
1147 }
1148 
1149 static int
1150 sfc_tx_descriptor_status(void *queue, uint16_t offset)
1151 {
1152 	struct sfc_dp_txq *dp_txq = queue;
1153 	struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq);
1154 
1155 	return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset);
1156 }
1157 
1158 static int
1159 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1160 {
1161 	struct sfc_adapter *sa = dev->data->dev_private;
1162 	int rc;
1163 
1164 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1165 
1166 	sfc_adapter_lock(sa);
1167 
1168 	rc = EINVAL;
1169 	if (sa->state != SFC_ADAPTER_STARTED)
1170 		goto fail_not_started;
1171 
1172 	if (sa->rxq_info[rx_queue_id].rxq == NULL)
1173 		goto fail_not_setup;
1174 
1175 	rc = sfc_rx_qstart(sa, rx_queue_id);
1176 	if (rc != 0)
1177 		goto fail_rx_qstart;
1178 
1179 	sa->rxq_info[rx_queue_id].deferred_started = B_TRUE;
1180 
1181 	sfc_adapter_unlock(sa);
1182 
1183 	return 0;
1184 
1185 fail_rx_qstart:
1186 fail_not_setup:
1187 fail_not_started:
1188 	sfc_adapter_unlock(sa);
1189 	SFC_ASSERT(rc > 0);
1190 	return -rc;
1191 }
1192 
1193 static int
1194 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1195 {
1196 	struct sfc_adapter *sa = dev->data->dev_private;
1197 
1198 	sfc_log_init(sa, "RxQ=%u", rx_queue_id);
1199 
1200 	sfc_adapter_lock(sa);
1201 	sfc_rx_qstop(sa, rx_queue_id);
1202 
1203 	sa->rxq_info[rx_queue_id].deferred_started = B_FALSE;
1204 
1205 	sfc_adapter_unlock(sa);
1206 
1207 	return 0;
1208 }
1209 
1210 static int
1211 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1212 {
1213 	struct sfc_adapter *sa = dev->data->dev_private;
1214 	int rc;
1215 
1216 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1217 
1218 	sfc_adapter_lock(sa);
1219 
1220 	rc = EINVAL;
1221 	if (sa->state != SFC_ADAPTER_STARTED)
1222 		goto fail_not_started;
1223 
1224 	if (sa->txq_info[tx_queue_id].txq == NULL)
1225 		goto fail_not_setup;
1226 
1227 	rc = sfc_tx_qstart(sa, tx_queue_id);
1228 	if (rc != 0)
1229 		goto fail_tx_qstart;
1230 
1231 	sa->txq_info[tx_queue_id].deferred_started = B_TRUE;
1232 
1233 	sfc_adapter_unlock(sa);
1234 	return 0;
1235 
1236 fail_tx_qstart:
1237 
1238 fail_not_setup:
1239 fail_not_started:
1240 	sfc_adapter_unlock(sa);
1241 	SFC_ASSERT(rc > 0);
1242 	return -rc;
1243 }
1244 
1245 static int
1246 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1247 {
1248 	struct sfc_adapter *sa = dev->data->dev_private;
1249 
1250 	sfc_log_init(sa, "TxQ = %u", tx_queue_id);
1251 
1252 	sfc_adapter_lock(sa);
1253 
1254 	sfc_tx_qstop(sa, tx_queue_id);
1255 
1256 	sa->txq_info[tx_queue_id].deferred_started = B_FALSE;
1257 
1258 	sfc_adapter_unlock(sa);
1259 	return 0;
1260 }
1261 
1262 static efx_tunnel_protocol_t
1263 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type)
1264 {
1265 	switch (rte_type) {
1266 	case RTE_TUNNEL_TYPE_VXLAN:
1267 		return EFX_TUNNEL_PROTOCOL_VXLAN;
1268 	case RTE_TUNNEL_TYPE_GENEVE:
1269 		return EFX_TUNNEL_PROTOCOL_GENEVE;
1270 	default:
1271 		return EFX_TUNNEL_NPROTOS;
1272 	}
1273 }
1274 
1275 enum sfc_udp_tunnel_op_e {
1276 	SFC_UDP_TUNNEL_ADD_PORT,
1277 	SFC_UDP_TUNNEL_DEL_PORT,
1278 };
1279 
1280 static int
1281 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev,
1282 		      struct rte_eth_udp_tunnel *tunnel_udp,
1283 		      enum sfc_udp_tunnel_op_e op)
1284 {
1285 	struct sfc_adapter *sa = dev->data->dev_private;
1286 	efx_tunnel_protocol_t tunnel_proto;
1287 	int rc;
1288 
1289 	sfc_log_init(sa, "%s udp_port=%u prot_type=%u",
1290 		     (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" :
1291 		     (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown",
1292 		     tunnel_udp->udp_port, tunnel_udp->prot_type);
1293 
1294 	tunnel_proto =
1295 		sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type);
1296 	if (tunnel_proto >= EFX_TUNNEL_NPROTOS) {
1297 		rc = ENOTSUP;
1298 		goto fail_bad_proto;
1299 	}
1300 
1301 	sfc_adapter_lock(sa);
1302 
1303 	switch (op) {
1304 	case SFC_UDP_TUNNEL_ADD_PORT:
1305 		rc = efx_tunnel_config_udp_add(sa->nic,
1306 					       tunnel_udp->udp_port,
1307 					       tunnel_proto);
1308 		break;
1309 	case SFC_UDP_TUNNEL_DEL_PORT:
1310 		rc = efx_tunnel_config_udp_remove(sa->nic,
1311 						  tunnel_udp->udp_port,
1312 						  tunnel_proto);
1313 		break;
1314 	default:
1315 		rc = EINVAL;
1316 		goto fail_bad_op;
1317 	}
1318 
1319 	if (rc != 0)
1320 		goto fail_op;
1321 
1322 	if (sa->state == SFC_ADAPTER_STARTED) {
1323 		rc = efx_tunnel_reconfigure(sa->nic);
1324 		if (rc == EAGAIN) {
1325 			/*
1326 			 * Configuration is accepted by FW and MC reboot
1327 			 * is initiated to apply the changes. MC reboot
1328 			 * will be handled in a usual way (MC reboot
1329 			 * event on management event queue and adapter
1330 			 * restart).
1331 			 */
1332 			rc = 0;
1333 		} else if (rc != 0) {
1334 			goto fail_reconfigure;
1335 		}
1336 	}
1337 
1338 	sfc_adapter_unlock(sa);
1339 	return 0;
1340 
1341 fail_reconfigure:
1342 	/* Remove/restore entry since the change makes the trouble */
1343 	switch (op) {
1344 	case SFC_UDP_TUNNEL_ADD_PORT:
1345 		(void)efx_tunnel_config_udp_remove(sa->nic,
1346 						   tunnel_udp->udp_port,
1347 						   tunnel_proto);
1348 		break;
1349 	case SFC_UDP_TUNNEL_DEL_PORT:
1350 		(void)efx_tunnel_config_udp_add(sa->nic,
1351 						tunnel_udp->udp_port,
1352 						tunnel_proto);
1353 		break;
1354 	}
1355 
1356 fail_op:
1357 fail_bad_op:
1358 	sfc_adapter_unlock(sa);
1359 
1360 fail_bad_proto:
1361 	SFC_ASSERT(rc > 0);
1362 	return -rc;
1363 }
1364 
1365 static int
1366 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
1367 			    struct rte_eth_udp_tunnel *tunnel_udp)
1368 {
1369 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT);
1370 }
1371 
1372 static int
1373 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
1374 			    struct rte_eth_udp_tunnel *tunnel_udp)
1375 {
1376 	return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT);
1377 }
1378 
1379 static int
1380 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1381 			  struct rte_eth_rss_conf *rss_conf)
1382 {
1383 	struct sfc_adapter *sa = dev->data->dev_private;
1384 	struct sfc_rss *rss = &sa->rss;
1385 
1386 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE)
1387 		return -ENOTSUP;
1388 
1389 	sfc_adapter_lock(sa);
1390 
1391 	/*
1392 	 * Mapping of hash configuration between RTE and EFX is not one-to-one,
1393 	 * hence, conversion is done here to derive a correct set of ETH_RSS
1394 	 * flags which corresponds to the active EFX configuration stored
1395 	 * locally in 'sfc_adapter' and kept up-to-date
1396 	 */
1397 	rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types);
1398 	rss_conf->rss_key_len = EFX_RSS_KEY_SIZE;
1399 	if (rss_conf->rss_key != NULL)
1400 		rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE);
1401 
1402 	sfc_adapter_unlock(sa);
1403 
1404 	return 0;
1405 }
1406 
1407 static int
1408 sfc_dev_rss_hash_update(struct rte_eth_dev *dev,
1409 			struct rte_eth_rss_conf *rss_conf)
1410 {
1411 	struct sfc_adapter *sa = dev->data->dev_private;
1412 	struct sfc_rss *rss = &sa->rss;
1413 	struct sfc_port *port = &sa->port;
1414 	unsigned int efx_hash_types;
1415 	int rc = 0;
1416 
1417 	if (port->isolated)
1418 		return -ENOTSUP;
1419 
1420 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1421 		sfc_err(sa, "RSS is not available");
1422 		return -ENOTSUP;
1423 	}
1424 
1425 	if (rss->channels == 0) {
1426 		sfc_err(sa, "RSS is not configured");
1427 		return -EINVAL;
1428 	}
1429 
1430 	if ((rss_conf->rss_key != NULL) &&
1431 	    (rss_conf->rss_key_len != sizeof(rss->key))) {
1432 		sfc_err(sa, "RSS key size is wrong (should be %lu)",
1433 			sizeof(rss->key));
1434 		return -EINVAL;
1435 	}
1436 
1437 	sfc_adapter_lock(sa);
1438 
1439 	rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types);
1440 	if (rc != 0)
1441 		goto fail_rx_hf_rte_to_efx;
1442 
1443 	rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1444 				   rss->hash_alg, efx_hash_types, B_TRUE);
1445 	if (rc != 0)
1446 		goto fail_scale_mode_set;
1447 
1448 	if (rss_conf->rss_key != NULL) {
1449 		if (sa->state == SFC_ADAPTER_STARTED) {
1450 			rc = efx_rx_scale_key_set(sa->nic,
1451 						  EFX_RSS_CONTEXT_DEFAULT,
1452 						  rss_conf->rss_key,
1453 						  sizeof(rss->key));
1454 			if (rc != 0)
1455 				goto fail_scale_key_set;
1456 		}
1457 
1458 		rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key));
1459 	}
1460 
1461 	rss->hash_types = efx_hash_types;
1462 
1463 	sfc_adapter_unlock(sa);
1464 
1465 	return 0;
1466 
1467 fail_scale_key_set:
1468 	if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1469 				  EFX_RX_HASHALG_TOEPLITZ,
1470 				  rss->hash_types, B_TRUE) != 0)
1471 		sfc_err(sa, "failed to restore RSS mode");
1472 
1473 fail_scale_mode_set:
1474 fail_rx_hf_rte_to_efx:
1475 	sfc_adapter_unlock(sa);
1476 	return -rc;
1477 }
1478 
1479 static int
1480 sfc_dev_rss_reta_query(struct rte_eth_dev *dev,
1481 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1482 		       uint16_t reta_size)
1483 {
1484 	struct sfc_adapter *sa = dev->data->dev_private;
1485 	struct sfc_rss *rss = &sa->rss;
1486 	struct sfc_port *port = &sa->port;
1487 	int entry;
1488 
1489 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated)
1490 		return -ENOTSUP;
1491 
1492 	if (rss->channels == 0)
1493 		return -EINVAL;
1494 
1495 	if (reta_size != EFX_RSS_TBL_SIZE)
1496 		return -EINVAL;
1497 
1498 	sfc_adapter_lock(sa);
1499 
1500 	for (entry = 0; entry < reta_size; entry++) {
1501 		int grp = entry / RTE_RETA_GROUP_SIZE;
1502 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1503 
1504 		if ((reta_conf[grp].mask >> grp_idx) & 1)
1505 			reta_conf[grp].reta[grp_idx] = rss->tbl[entry];
1506 	}
1507 
1508 	sfc_adapter_unlock(sa);
1509 
1510 	return 0;
1511 }
1512 
1513 static int
1514 sfc_dev_rss_reta_update(struct rte_eth_dev *dev,
1515 			struct rte_eth_rss_reta_entry64 *reta_conf,
1516 			uint16_t reta_size)
1517 {
1518 	struct sfc_adapter *sa = dev->data->dev_private;
1519 	struct sfc_rss *rss = &sa->rss;
1520 	struct sfc_port *port = &sa->port;
1521 	unsigned int *rss_tbl_new;
1522 	uint16_t entry;
1523 	int rc = 0;
1524 
1525 
1526 	if (port->isolated)
1527 		return -ENOTSUP;
1528 
1529 	if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1530 		sfc_err(sa, "RSS is not available");
1531 		return -ENOTSUP;
1532 	}
1533 
1534 	if (rss->channels == 0) {
1535 		sfc_err(sa, "RSS is not configured");
1536 		return -EINVAL;
1537 	}
1538 
1539 	if (reta_size != EFX_RSS_TBL_SIZE) {
1540 		sfc_err(sa, "RETA size is wrong (should be %u)",
1541 			EFX_RSS_TBL_SIZE);
1542 		return -EINVAL;
1543 	}
1544 
1545 	rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0);
1546 	if (rss_tbl_new == NULL)
1547 		return -ENOMEM;
1548 
1549 	sfc_adapter_lock(sa);
1550 
1551 	rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl));
1552 
1553 	for (entry = 0; entry < reta_size; entry++) {
1554 		int grp_idx = entry % RTE_RETA_GROUP_SIZE;
1555 		struct rte_eth_rss_reta_entry64 *grp;
1556 
1557 		grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE];
1558 
1559 		if (grp->mask & (1ull << grp_idx)) {
1560 			if (grp->reta[grp_idx] >= rss->channels) {
1561 				rc = EINVAL;
1562 				goto bad_reta_entry;
1563 			}
1564 			rss_tbl_new[entry] = grp->reta[grp_idx];
1565 		}
1566 	}
1567 
1568 	if (sa->state == SFC_ADAPTER_STARTED) {
1569 		rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1570 					  rss_tbl_new, EFX_RSS_TBL_SIZE);
1571 		if (rc != 0)
1572 			goto fail_scale_tbl_set;
1573 	}
1574 
1575 	rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl));
1576 
1577 fail_scale_tbl_set:
1578 bad_reta_entry:
1579 	sfc_adapter_unlock(sa);
1580 
1581 	rte_free(rss_tbl_new);
1582 
1583 	SFC_ASSERT(rc >= 0);
1584 	return -rc;
1585 }
1586 
1587 static int
1588 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type,
1589 		    enum rte_filter_op filter_op,
1590 		    void *arg)
1591 {
1592 	struct sfc_adapter *sa = dev->data->dev_private;
1593 	int rc = ENOTSUP;
1594 
1595 	sfc_log_init(sa, "entry");
1596 
1597 	switch (filter_type) {
1598 	case RTE_ETH_FILTER_NONE:
1599 		sfc_err(sa, "Global filters configuration not supported");
1600 		break;
1601 	case RTE_ETH_FILTER_MACVLAN:
1602 		sfc_err(sa, "MACVLAN filters not supported");
1603 		break;
1604 	case RTE_ETH_FILTER_ETHERTYPE:
1605 		sfc_err(sa, "EtherType filters not supported");
1606 		break;
1607 	case RTE_ETH_FILTER_FLEXIBLE:
1608 		sfc_err(sa, "Flexible filters not supported");
1609 		break;
1610 	case RTE_ETH_FILTER_SYN:
1611 		sfc_err(sa, "SYN filters not supported");
1612 		break;
1613 	case RTE_ETH_FILTER_NTUPLE:
1614 		sfc_err(sa, "NTUPLE filters not supported");
1615 		break;
1616 	case RTE_ETH_FILTER_TUNNEL:
1617 		sfc_err(sa, "Tunnel filters not supported");
1618 		break;
1619 	case RTE_ETH_FILTER_FDIR:
1620 		sfc_err(sa, "Flow Director filters not supported");
1621 		break;
1622 	case RTE_ETH_FILTER_HASH:
1623 		sfc_err(sa, "Hash filters not supported");
1624 		break;
1625 	case RTE_ETH_FILTER_GENERIC:
1626 		if (filter_op != RTE_ETH_FILTER_GET) {
1627 			rc = EINVAL;
1628 		} else {
1629 			*(const void **)arg = &sfc_flow_ops;
1630 			rc = 0;
1631 		}
1632 		break;
1633 	default:
1634 		sfc_err(sa, "Unknown filter type %u", filter_type);
1635 		break;
1636 	}
1637 
1638 	sfc_log_init(sa, "exit: %d", -rc);
1639 	SFC_ASSERT(rc >= 0);
1640 	return -rc;
1641 }
1642 
1643 static int
1644 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool)
1645 {
1646 	struct sfc_adapter *sa = dev->data->dev_private;
1647 
1648 	/*
1649 	 * If Rx datapath does not provide callback to check mempool,
1650 	 * all pools are supported.
1651 	 */
1652 	if (sa->dp_rx->pool_ops_supported == NULL)
1653 		return 1;
1654 
1655 	return sa->dp_rx->pool_ops_supported(pool);
1656 }
1657 
1658 static const struct eth_dev_ops sfc_eth_dev_ops = {
1659 	.dev_configure			= sfc_dev_configure,
1660 	.dev_start			= sfc_dev_start,
1661 	.dev_stop			= sfc_dev_stop,
1662 	.dev_set_link_up		= sfc_dev_set_link_up,
1663 	.dev_set_link_down		= sfc_dev_set_link_down,
1664 	.dev_close			= sfc_dev_close,
1665 	.promiscuous_enable		= sfc_dev_promisc_enable,
1666 	.promiscuous_disable		= sfc_dev_promisc_disable,
1667 	.allmulticast_enable		= sfc_dev_allmulti_enable,
1668 	.allmulticast_disable		= sfc_dev_allmulti_disable,
1669 	.link_update			= sfc_dev_link_update,
1670 	.stats_get			= sfc_stats_get,
1671 	.stats_reset			= sfc_stats_reset,
1672 	.xstats_get			= sfc_xstats_get,
1673 	.xstats_reset			= sfc_stats_reset,
1674 	.xstats_get_names		= sfc_xstats_get_names,
1675 	.dev_infos_get			= sfc_dev_infos_get,
1676 	.dev_supported_ptypes_get	= sfc_dev_supported_ptypes_get,
1677 	.mtu_set			= sfc_dev_set_mtu,
1678 	.rx_queue_start			= sfc_rx_queue_start,
1679 	.rx_queue_stop			= sfc_rx_queue_stop,
1680 	.tx_queue_start			= sfc_tx_queue_start,
1681 	.tx_queue_stop			= sfc_tx_queue_stop,
1682 	.rx_queue_setup			= sfc_rx_queue_setup,
1683 	.rx_queue_release		= sfc_rx_queue_release,
1684 	.rx_queue_count			= sfc_rx_queue_count,
1685 	.rx_descriptor_done		= sfc_rx_descriptor_done,
1686 	.rx_descriptor_status		= sfc_rx_descriptor_status,
1687 	.tx_descriptor_status		= sfc_tx_descriptor_status,
1688 	.tx_queue_setup			= sfc_tx_queue_setup,
1689 	.tx_queue_release		= sfc_tx_queue_release,
1690 	.flow_ctrl_get			= sfc_flow_ctrl_get,
1691 	.flow_ctrl_set			= sfc_flow_ctrl_set,
1692 	.mac_addr_set			= sfc_mac_addr_set,
1693 	.udp_tunnel_port_add		= sfc_dev_udp_tunnel_port_add,
1694 	.udp_tunnel_port_del		= sfc_dev_udp_tunnel_port_del,
1695 	.reta_update			= sfc_dev_rss_reta_update,
1696 	.reta_query			= sfc_dev_rss_reta_query,
1697 	.rss_hash_update		= sfc_dev_rss_hash_update,
1698 	.rss_hash_conf_get		= sfc_dev_rss_hash_conf_get,
1699 	.filter_ctrl			= sfc_dev_filter_ctrl,
1700 	.set_mc_addr_list		= sfc_set_mc_addr_list,
1701 	.rxq_info_get			= sfc_rx_queue_info_get,
1702 	.txq_info_get			= sfc_tx_queue_info_get,
1703 	.fw_version_get			= sfc_fw_version_get,
1704 	.xstats_get_by_id		= sfc_xstats_get_by_id,
1705 	.xstats_get_names_by_id		= sfc_xstats_get_names_by_id,
1706 	.pool_ops_supported		= sfc_pool_ops_supported,
1707 };
1708 
1709 /**
1710  * Duplicate a string in potentially shared memory required for
1711  * multi-process support.
1712  *
1713  * strdup() allocates from process-local heap/memory.
1714  */
1715 static char *
1716 sfc_strdup(const char *str)
1717 {
1718 	size_t size;
1719 	char *copy;
1720 
1721 	if (str == NULL)
1722 		return NULL;
1723 
1724 	size = strlen(str) + 1;
1725 	copy = rte_malloc(__func__, size, 0);
1726 	if (copy != NULL)
1727 		rte_memcpy(copy, str, size);
1728 
1729 	return copy;
1730 }
1731 
1732 static int
1733 sfc_eth_dev_set_ops(struct rte_eth_dev *dev)
1734 {
1735 	struct sfc_adapter *sa = dev->data->dev_private;
1736 	const efx_nic_cfg_t *encp;
1737 	unsigned int avail_caps = 0;
1738 	const char *rx_name = NULL;
1739 	const char *tx_name = NULL;
1740 	int rc;
1741 
1742 	switch (sa->family) {
1743 	case EFX_FAMILY_HUNTINGTON:
1744 	case EFX_FAMILY_MEDFORD:
1745 	case EFX_FAMILY_MEDFORD2:
1746 		avail_caps |= SFC_DP_HW_FW_CAP_EF10;
1747 		break;
1748 	default:
1749 		break;
1750 	}
1751 
1752 	encp = efx_nic_cfg_get(sa->nic);
1753 	if (encp->enc_rx_es_super_buffer_supported)
1754 		avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER;
1755 
1756 	rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH,
1757 				sfc_kvarg_string_handler, &rx_name);
1758 	if (rc != 0)
1759 		goto fail_kvarg_rx_datapath;
1760 
1761 	if (rx_name != NULL) {
1762 		sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name);
1763 		if (sa->dp_rx == NULL) {
1764 			sfc_err(sa, "Rx datapath %s not found", rx_name);
1765 			rc = ENOENT;
1766 			goto fail_dp_rx;
1767 		}
1768 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) {
1769 			sfc_err(sa,
1770 				"Insufficient Hw/FW capabilities to use Rx datapath %s",
1771 				rx_name);
1772 			rc = EINVAL;
1773 			goto fail_dp_rx_caps;
1774 		}
1775 	} else {
1776 		sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps);
1777 		if (sa->dp_rx == NULL) {
1778 			sfc_err(sa, "Rx datapath by caps %#x not found",
1779 				avail_caps);
1780 			rc = ENOENT;
1781 			goto fail_dp_rx;
1782 		}
1783 	}
1784 
1785 	sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name);
1786 	if (sa->dp_rx_name == NULL) {
1787 		rc = ENOMEM;
1788 		goto fail_dp_rx_name;
1789 	}
1790 
1791 	sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name);
1792 
1793 	dev->rx_pkt_burst = sa->dp_rx->pkt_burst;
1794 
1795 	rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH,
1796 				sfc_kvarg_string_handler, &tx_name);
1797 	if (rc != 0)
1798 		goto fail_kvarg_tx_datapath;
1799 
1800 	if (tx_name != NULL) {
1801 		sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name);
1802 		if (sa->dp_tx == NULL) {
1803 			sfc_err(sa, "Tx datapath %s not found", tx_name);
1804 			rc = ENOENT;
1805 			goto fail_dp_tx;
1806 		}
1807 		if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) {
1808 			sfc_err(sa,
1809 				"Insufficient Hw/FW capabilities to use Tx datapath %s",
1810 				tx_name);
1811 			rc = EINVAL;
1812 			goto fail_dp_tx_caps;
1813 		}
1814 	} else {
1815 		sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps);
1816 		if (sa->dp_tx == NULL) {
1817 			sfc_err(sa, "Tx datapath by caps %#x not found",
1818 				avail_caps);
1819 			rc = ENOENT;
1820 			goto fail_dp_tx;
1821 		}
1822 	}
1823 
1824 	sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name);
1825 	if (sa->dp_tx_name == NULL) {
1826 		rc = ENOMEM;
1827 		goto fail_dp_tx_name;
1828 	}
1829 
1830 	sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name);
1831 
1832 	dev->tx_pkt_burst = sa->dp_tx->pkt_burst;
1833 
1834 	dev->dev_ops = &sfc_eth_dev_ops;
1835 
1836 	return 0;
1837 
1838 fail_dp_tx_name:
1839 fail_dp_tx_caps:
1840 	sa->dp_tx = NULL;
1841 
1842 fail_dp_tx:
1843 fail_kvarg_tx_datapath:
1844 	rte_free(sa->dp_rx_name);
1845 	sa->dp_rx_name = NULL;
1846 
1847 fail_dp_rx_name:
1848 fail_dp_rx_caps:
1849 	sa->dp_rx = NULL;
1850 
1851 fail_dp_rx:
1852 fail_kvarg_rx_datapath:
1853 	return rc;
1854 }
1855 
1856 static void
1857 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev)
1858 {
1859 	struct sfc_adapter *sa = dev->data->dev_private;
1860 
1861 	dev->dev_ops = NULL;
1862 	dev->rx_pkt_burst = NULL;
1863 	dev->tx_pkt_burst = NULL;
1864 
1865 	rte_free(sa->dp_tx_name);
1866 	sa->dp_tx_name = NULL;
1867 	sa->dp_tx = NULL;
1868 
1869 	rte_free(sa->dp_rx_name);
1870 	sa->dp_rx_name = NULL;
1871 	sa->dp_rx = NULL;
1872 }
1873 
1874 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = {
1875 	.rxq_info_get			= sfc_rx_queue_info_get,
1876 	.txq_info_get			= sfc_tx_queue_info_get,
1877 };
1878 
1879 static int
1880 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev)
1881 {
1882 	/*
1883 	 * Device private data has really many process-local pointers.
1884 	 * Below code should be extremely careful to use data located
1885 	 * in shared memory only.
1886 	 */
1887 	struct sfc_adapter *sa = dev->data->dev_private;
1888 	const struct sfc_dp_rx *dp_rx;
1889 	const struct sfc_dp_tx *dp_tx;
1890 	int rc;
1891 
1892 	dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name);
1893 	if (dp_rx == NULL) {
1894 		sfc_err(sa, "cannot find %s Rx datapath", sa->dp_rx_name);
1895 		rc = ENOENT;
1896 		goto fail_dp_rx;
1897 	}
1898 	if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) {
1899 		sfc_err(sa, "%s Rx datapath does not support multi-process",
1900 			sa->dp_rx_name);
1901 		rc = EINVAL;
1902 		goto fail_dp_rx_multi_process;
1903 	}
1904 
1905 	dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name);
1906 	if (dp_tx == NULL) {
1907 		sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name);
1908 		rc = ENOENT;
1909 		goto fail_dp_tx;
1910 	}
1911 	if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) {
1912 		sfc_err(sa, "%s Tx datapath does not support multi-process",
1913 			sa->dp_tx_name);
1914 		rc = EINVAL;
1915 		goto fail_dp_tx_multi_process;
1916 	}
1917 
1918 	dev->rx_pkt_burst = dp_rx->pkt_burst;
1919 	dev->tx_pkt_burst = dp_tx->pkt_burst;
1920 	dev->dev_ops = &sfc_eth_dev_secondary_ops;
1921 
1922 	return 0;
1923 
1924 fail_dp_tx_multi_process:
1925 fail_dp_tx:
1926 fail_dp_rx_multi_process:
1927 fail_dp_rx:
1928 	return rc;
1929 }
1930 
1931 static void
1932 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev)
1933 {
1934 	dev->dev_ops = NULL;
1935 	dev->tx_pkt_burst = NULL;
1936 	dev->rx_pkt_burst = NULL;
1937 }
1938 
1939 static void
1940 sfc_register_dp(void)
1941 {
1942 	/* Register once */
1943 	if (TAILQ_EMPTY(&sfc_dp_head)) {
1944 		/* Prefer EF10 datapath */
1945 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp);
1946 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp);
1947 		sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp);
1948 
1949 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp);
1950 		sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp);
1951 		sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp);
1952 	}
1953 }
1954 
1955 static int
1956 sfc_eth_dev_init(struct rte_eth_dev *dev)
1957 {
1958 	struct sfc_adapter *sa = dev->data->dev_private;
1959 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1960 	int rc;
1961 	const efx_nic_cfg_t *encp;
1962 	const struct ether_addr *from;
1963 
1964 	sfc_register_dp();
1965 
1966 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1967 		return -sfc_eth_dev_secondary_set_ops(dev);
1968 
1969 	/* Required for logging */
1970 	sa->pci_addr = pci_dev->addr;
1971 	sa->port_id = dev->data->port_id;
1972 
1973 	sa->eth_dev = dev;
1974 
1975 	/* Copy PCI device info to the dev->data */
1976 	rte_eth_copy_pci_info(dev, pci_dev);
1977 
1978 	sa->logtype_main = sfc_register_logtype(sa, SFC_LOGTYPE_MAIN_STR,
1979 						RTE_LOG_NOTICE);
1980 
1981 	rc = sfc_kvargs_parse(sa);
1982 	if (rc != 0)
1983 		goto fail_kvargs_parse;
1984 
1985 	sfc_log_init(sa, "entry");
1986 
1987 	dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0);
1988 	if (dev->data->mac_addrs == NULL) {
1989 		rc = ENOMEM;
1990 		goto fail_mac_addrs;
1991 	}
1992 
1993 	sfc_adapter_lock_init(sa);
1994 	sfc_adapter_lock(sa);
1995 
1996 	sfc_log_init(sa, "probing");
1997 	rc = sfc_probe(sa);
1998 	if (rc != 0)
1999 		goto fail_probe;
2000 
2001 	sfc_log_init(sa, "set device ops");
2002 	rc = sfc_eth_dev_set_ops(dev);
2003 	if (rc != 0)
2004 		goto fail_set_ops;
2005 
2006 	sfc_log_init(sa, "attaching");
2007 	rc = sfc_attach(sa);
2008 	if (rc != 0)
2009 		goto fail_attach;
2010 
2011 	encp = efx_nic_cfg_get(sa->nic);
2012 
2013 	/*
2014 	 * The arguments are really reverse order in comparison to
2015 	 * Linux kernel. Copy from NIC config to Ethernet device data.
2016 	 */
2017 	from = (const struct ether_addr *)(encp->enc_mac_addr);
2018 	ether_addr_copy(from, &dev->data->mac_addrs[0]);
2019 
2020 	sfc_adapter_unlock(sa);
2021 
2022 	sfc_log_init(sa, "done");
2023 	return 0;
2024 
2025 fail_attach:
2026 	sfc_eth_dev_clear_ops(dev);
2027 
2028 fail_set_ops:
2029 	sfc_unprobe(sa);
2030 
2031 fail_probe:
2032 	sfc_adapter_unlock(sa);
2033 	sfc_adapter_lock_fini(sa);
2034 	rte_free(dev->data->mac_addrs);
2035 	dev->data->mac_addrs = NULL;
2036 
2037 fail_mac_addrs:
2038 	sfc_kvargs_cleanup(sa);
2039 
2040 fail_kvargs_parse:
2041 	sfc_log_init(sa, "failed %d", rc);
2042 	SFC_ASSERT(rc > 0);
2043 	return -rc;
2044 }
2045 
2046 static int
2047 sfc_eth_dev_uninit(struct rte_eth_dev *dev)
2048 {
2049 	struct sfc_adapter *sa;
2050 
2051 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2052 		sfc_eth_dev_secondary_clear_ops(dev);
2053 		return 0;
2054 	}
2055 
2056 	sa = dev->data->dev_private;
2057 	sfc_log_init(sa, "entry");
2058 
2059 	sfc_adapter_lock(sa);
2060 
2061 	sfc_eth_dev_clear_ops(dev);
2062 
2063 	sfc_detach(sa);
2064 	sfc_unprobe(sa);
2065 
2066 	sfc_kvargs_cleanup(sa);
2067 
2068 	sfc_adapter_unlock(sa);
2069 	sfc_adapter_lock_fini(sa);
2070 
2071 	sfc_log_init(sa, "done");
2072 
2073 	/* Required for logging, so cleanup last */
2074 	sa->eth_dev = NULL;
2075 	return 0;
2076 }
2077 
2078 static const struct rte_pci_id pci_id_sfc_efx_map[] = {
2079 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) },
2080 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) },
2081 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) },
2082 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) },
2083 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) },
2084 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) },
2085 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) },
2086 	{ RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) },
2087 	{ .vendor_id = 0 /* sentinel */ }
2088 };
2089 
2090 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2091 	struct rte_pci_device *pci_dev)
2092 {
2093 	return rte_eth_dev_pci_generic_probe(pci_dev,
2094 		sizeof(struct sfc_adapter), sfc_eth_dev_init);
2095 }
2096 
2097 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
2098 {
2099 	return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit);
2100 }
2101 
2102 static struct rte_pci_driver sfc_efx_pmd = {
2103 	.id_table = pci_id_sfc_efx_map,
2104 	.drv_flags =
2105 		RTE_PCI_DRV_INTR_LSC |
2106 		RTE_PCI_DRV_NEED_MAPPING,
2107 	.probe = sfc_eth_dev_pci_probe,
2108 	.remove = sfc_eth_dev_pci_remove,
2109 };
2110 
2111 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd);
2112 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map);
2113 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci");
2114 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx,
2115 	SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " "
2116 	SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " "
2117 	SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " "
2118 	SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " "
2119 	SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> "
2120 	SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>");
2121 
2122 RTE_INIT(sfc_driver_register_logtype)
2123 {
2124 	int ret;
2125 
2126 	ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver",
2127 						   RTE_LOG_NOTICE);
2128 	sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret;
2129 }
2130