1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_debug.h" 22 #include "sfc_log.h" 23 #include "sfc_kvargs.h" 24 #include "sfc_ev.h" 25 #include "sfc_rx.h" 26 #include "sfc_tx.h" 27 #include "sfc_flow.h" 28 #include "sfc_dp.h" 29 #include "sfc_dp_rx.h" 30 31 uint32_t sfc_logtype_driver; 32 33 static struct sfc_dp_list sfc_dp_head = 34 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 35 36 static int 37 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 38 { 39 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 40 efx_nic_fw_info_t enfi; 41 int ret; 42 int rc; 43 44 /* 45 * Return value of the callback is likely supposed to be 46 * equal to or greater than 0, nevertheless, if an error 47 * occurs, it will be desirable to pass it to the caller 48 */ 49 if ((fw_version == NULL) || (fw_size == 0)) 50 return -EINVAL; 51 52 rc = efx_nic_get_fw_version(sa->nic, &enfi); 53 if (rc != 0) 54 return -rc; 55 56 ret = snprintf(fw_version, fw_size, 57 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 58 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 59 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 60 if (ret < 0) 61 return ret; 62 63 if (enfi.enfi_dpcpu_fw_ids_valid) { 64 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 65 int ret_extra; 66 67 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 68 fw_size - dpcpu_fw_ids_offset, 69 " rx%" PRIx16 " tx%" PRIx16, 70 enfi.enfi_rx_dpcpu_fw_id, 71 enfi.enfi_tx_dpcpu_fw_id); 72 if (ret_extra < 0) 73 return ret_extra; 74 75 ret += ret_extra; 76 } 77 78 if (fw_size < (size_t)(++ret)) 79 return ret; 80 else 81 return 0; 82 } 83 84 static void 85 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 86 { 87 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 88 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 89 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 90 struct sfc_rss *rss = &sas->rss; 91 uint64_t txq_offloads_def = 0; 92 93 sfc_log_init(sa, "entry"); 94 95 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 96 97 /* Autonegotiation may be disabled */ 98 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 99 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_1000FDX)) 100 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 101 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_10000FDX)) 102 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 103 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_25000FDX)) 104 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 105 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_40000FDX)) 106 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 107 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_50000FDX)) 108 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 109 if (sa->port.phy_adv_cap_mask & (1u << EFX_PHY_CAP_100000FDX)) 110 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 111 112 dev_info->max_rx_queues = sa->rxq_max; 113 dev_info->max_tx_queues = sa->txq_max; 114 115 /* By default packets are dropped if no descriptors are available */ 116 dev_info->default_rxconf.rx_drop_en = 1; 117 118 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 119 120 /* 121 * rx_offload_capa includes both device and queue offloads since 122 * the latter may be requested on a per device basis which makes 123 * sense when some offloads are needed to be set on all queues. 124 */ 125 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 126 dev_info->rx_queue_offload_capa; 127 128 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 129 130 /* 131 * tx_offload_capa includes both device and queue offloads since 132 * the latter may be requested on a per device basis which makes 133 * sense when some offloads are needed to be set on all queues. 134 */ 135 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 136 dev_info->tx_queue_offload_capa; 137 138 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 139 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 140 141 dev_info->default_txconf.offloads |= txq_offloads_def; 142 143 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 144 uint64_t rte_hf = 0; 145 unsigned int i; 146 147 for (i = 0; i < rss->hf_map_nb_entries; ++i) 148 rte_hf |= rss->hf_map[i].rte; 149 150 dev_info->reta_size = EFX_RSS_TBL_SIZE; 151 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 152 dev_info->flow_type_rss_offloads = rte_hf; 153 } 154 155 /* Initialize to hardware limits */ 156 dev_info->rx_desc_lim.nb_max = sa->rxq_max_entries; 157 dev_info->rx_desc_lim.nb_min = sa->rxq_min_entries; 158 /* The RXQ hardware requires that the descriptor count is a power 159 * of 2, but rx_desc_lim cannot properly describe that constraint. 160 */ 161 dev_info->rx_desc_lim.nb_align = sa->rxq_min_entries; 162 163 /* Initialize to hardware limits */ 164 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 165 dev_info->tx_desc_lim.nb_min = sa->txq_min_entries; 166 /* 167 * The TXQ hardware requires that the descriptor count is a power 168 * of 2, but tx_desc_lim cannot properly describe that constraint 169 */ 170 dev_info->tx_desc_lim.nb_align = sa->txq_min_entries; 171 172 if (sap->dp_rx->get_dev_info != NULL) 173 sap->dp_rx->get_dev_info(dev_info); 174 if (sap->dp_tx->get_dev_info != NULL) 175 sap->dp_tx->get_dev_info(dev_info); 176 177 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 178 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 179 } 180 181 static const uint32_t * 182 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 183 { 184 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 185 186 return sap->dp_rx->supported_ptypes_get(sap->shared->tunnel_encaps); 187 } 188 189 static int 190 sfc_dev_configure(struct rte_eth_dev *dev) 191 { 192 struct rte_eth_dev_data *dev_data = dev->data; 193 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 194 int rc; 195 196 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 197 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 198 199 sfc_adapter_lock(sa); 200 switch (sa->state) { 201 case SFC_ADAPTER_CONFIGURED: 202 /* FALLTHROUGH */ 203 case SFC_ADAPTER_INITIALIZED: 204 rc = sfc_configure(sa); 205 break; 206 default: 207 sfc_err(sa, "unexpected adapter state %u to configure", 208 sa->state); 209 rc = EINVAL; 210 break; 211 } 212 sfc_adapter_unlock(sa); 213 214 sfc_log_init(sa, "done %d", rc); 215 SFC_ASSERT(rc >= 0); 216 return -rc; 217 } 218 219 static int 220 sfc_dev_start(struct rte_eth_dev *dev) 221 { 222 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 223 int rc; 224 225 sfc_log_init(sa, "entry"); 226 227 sfc_adapter_lock(sa); 228 rc = sfc_start(sa); 229 sfc_adapter_unlock(sa); 230 231 sfc_log_init(sa, "done %d", rc); 232 SFC_ASSERT(rc >= 0); 233 return -rc; 234 } 235 236 static int 237 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 238 { 239 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 240 struct rte_eth_link current_link; 241 int ret; 242 243 sfc_log_init(sa, "entry"); 244 245 if (sa->state != SFC_ADAPTER_STARTED) { 246 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 247 } else if (wait_to_complete) { 248 efx_link_mode_t link_mode; 249 250 if (efx_port_poll(sa->nic, &link_mode) != 0) 251 link_mode = EFX_LINK_UNKNOWN; 252 sfc_port_link_mode_to_info(link_mode, ¤t_link); 253 254 } else { 255 sfc_ev_mgmt_qpoll(sa); 256 rte_eth_linkstatus_get(dev, ¤t_link); 257 } 258 259 ret = rte_eth_linkstatus_set(dev, ¤t_link); 260 if (ret == 0) 261 sfc_notice(sa, "Link status is %s", 262 current_link.link_status ? "UP" : "DOWN"); 263 264 return ret; 265 } 266 267 static void 268 sfc_dev_stop(struct rte_eth_dev *dev) 269 { 270 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 271 272 sfc_log_init(sa, "entry"); 273 274 sfc_adapter_lock(sa); 275 sfc_stop(sa); 276 sfc_adapter_unlock(sa); 277 278 sfc_log_init(sa, "done"); 279 } 280 281 static int 282 sfc_dev_set_link_up(struct rte_eth_dev *dev) 283 { 284 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 285 int rc; 286 287 sfc_log_init(sa, "entry"); 288 289 sfc_adapter_lock(sa); 290 rc = sfc_start(sa); 291 sfc_adapter_unlock(sa); 292 293 SFC_ASSERT(rc >= 0); 294 return -rc; 295 } 296 297 static int 298 sfc_dev_set_link_down(struct rte_eth_dev *dev) 299 { 300 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 301 302 sfc_log_init(sa, "entry"); 303 304 sfc_adapter_lock(sa); 305 sfc_stop(sa); 306 sfc_adapter_unlock(sa); 307 308 return 0; 309 } 310 311 static void 312 sfc_dev_close(struct rte_eth_dev *dev) 313 { 314 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 315 316 sfc_log_init(sa, "entry"); 317 318 sfc_adapter_lock(sa); 319 switch (sa->state) { 320 case SFC_ADAPTER_STARTED: 321 sfc_stop(sa); 322 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 323 /* FALLTHROUGH */ 324 case SFC_ADAPTER_CONFIGURED: 325 sfc_close(sa); 326 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 327 /* FALLTHROUGH */ 328 case SFC_ADAPTER_INITIALIZED: 329 break; 330 default: 331 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 332 break; 333 } 334 sfc_adapter_unlock(sa); 335 336 sfc_log_init(sa, "done"); 337 } 338 339 static void 340 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 341 boolean_t enabled) 342 { 343 struct sfc_port *port; 344 boolean_t *toggle; 345 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 346 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 347 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 348 349 sfc_adapter_lock(sa); 350 351 port = &sa->port; 352 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 353 354 if (*toggle != enabled) { 355 *toggle = enabled; 356 357 if (sfc_sa2shared(sa)->isolated) { 358 sfc_warn(sa, "isolated mode is active on the port"); 359 sfc_warn(sa, "the change is to be applied on the next " 360 "start provided that isolated mode is " 361 "disabled prior the next start"); 362 } else if ((sa->state == SFC_ADAPTER_STARTED) && 363 (sfc_set_rx_mode(sa) != 0)) { 364 *toggle = !(enabled); 365 sfc_warn(sa, "Failed to %s %s mode", 366 ((enabled) ? "enable" : "disable"), desc); 367 } 368 } 369 370 sfc_adapter_unlock(sa); 371 } 372 373 static void 374 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 375 { 376 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 377 } 378 379 static void 380 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 381 { 382 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 383 } 384 385 static void 386 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 387 { 388 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 389 } 390 391 static void 392 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 393 { 394 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 395 } 396 397 static int 398 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 399 uint16_t nb_rx_desc, unsigned int socket_id, 400 const struct rte_eth_rxconf *rx_conf, 401 struct rte_mempool *mb_pool) 402 { 403 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 404 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 405 int rc; 406 407 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 408 rx_queue_id, nb_rx_desc, socket_id); 409 410 sfc_adapter_lock(sa); 411 412 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 413 rx_conf, mb_pool); 414 if (rc != 0) 415 goto fail_rx_qinit; 416 417 dev->data->rx_queues[rx_queue_id] = sas->rxq_info[rx_queue_id].dp; 418 419 sfc_adapter_unlock(sa); 420 421 return 0; 422 423 fail_rx_qinit: 424 sfc_adapter_unlock(sa); 425 SFC_ASSERT(rc > 0); 426 return -rc; 427 } 428 429 static void 430 sfc_rx_queue_release(void *queue) 431 { 432 struct sfc_dp_rxq *dp_rxq = queue; 433 struct sfc_rxq *rxq; 434 struct sfc_adapter *sa; 435 unsigned int sw_index; 436 437 if (dp_rxq == NULL) 438 return; 439 440 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 441 sa = rxq->evq->sa; 442 sfc_adapter_lock(sa); 443 444 sw_index = dp_rxq->dpq.queue_id; 445 446 sfc_log_init(sa, "RxQ=%u", sw_index); 447 448 sfc_rx_qfini(sa, sw_index); 449 450 sfc_adapter_unlock(sa); 451 } 452 453 static int 454 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 455 uint16_t nb_tx_desc, unsigned int socket_id, 456 const struct rte_eth_txconf *tx_conf) 457 { 458 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 459 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 460 int rc; 461 462 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 463 tx_queue_id, nb_tx_desc, socket_id); 464 465 sfc_adapter_lock(sa); 466 467 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 468 if (rc != 0) 469 goto fail_tx_qinit; 470 471 dev->data->tx_queues[tx_queue_id] = sas->txq_info[tx_queue_id].dp; 472 473 sfc_adapter_unlock(sa); 474 return 0; 475 476 fail_tx_qinit: 477 sfc_adapter_unlock(sa); 478 SFC_ASSERT(rc > 0); 479 return -rc; 480 } 481 482 static void 483 sfc_tx_queue_release(void *queue) 484 { 485 struct sfc_dp_txq *dp_txq = queue; 486 struct sfc_txq *txq; 487 unsigned int sw_index; 488 struct sfc_adapter *sa; 489 490 if (dp_txq == NULL) 491 return; 492 493 txq = sfc_txq_by_dp_txq(dp_txq); 494 sw_index = dp_txq->dpq.queue_id; 495 496 SFC_ASSERT(txq->evq != NULL); 497 sa = txq->evq->sa; 498 499 sfc_log_init(sa, "TxQ = %u", sw_index); 500 501 sfc_adapter_lock(sa); 502 503 sfc_tx_qfini(sa, sw_index); 504 505 sfc_adapter_unlock(sa); 506 } 507 508 /* 509 * Some statistics are computed as A - B where A and B each increase 510 * monotonically with some hardware counter(s) and the counters are read 511 * asynchronously. 512 * 513 * If packet X is counted in A, but not counted in B yet, computed value is 514 * greater than real. 515 * 516 * If packet X is not counted in A at the moment of reading the counter, 517 * but counted in B at the moment of reading the counter, computed value 518 * is less than real. 519 * 520 * However, counter which grows backward is worse evil than slightly wrong 521 * value. So, let's try to guarantee that it never happens except may be 522 * the case when the MAC stats are zeroed as a result of a NIC reset. 523 */ 524 static void 525 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 526 { 527 if ((int64_t)(newval - *stat) > 0 || newval == 0) 528 *stat = newval; 529 } 530 531 static int 532 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 533 { 534 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 535 struct sfc_port *port = &sa->port; 536 uint64_t *mac_stats; 537 int ret; 538 539 rte_spinlock_lock(&port->mac_stats_lock); 540 541 ret = sfc_port_update_mac_stats(sa); 542 if (ret != 0) 543 goto unlock; 544 545 mac_stats = port->mac_stats_buf; 546 547 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 548 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 549 stats->ipackets = 550 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 551 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 552 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 553 stats->opackets = 554 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 555 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 556 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 557 stats->ibytes = 558 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 559 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 560 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 561 stats->obytes = 562 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 563 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 564 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 565 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 566 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 567 } else { 568 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 569 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 570 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 571 /* 572 * Take into account stats which are whenever supported 573 * on EF10. If some stat is not supported by current 574 * firmware variant or HW revision, it is guaranteed 575 * to be zero in mac_stats. 576 */ 577 stats->imissed = 578 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 579 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 580 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 581 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 582 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 583 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 584 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 585 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 586 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 587 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 588 stats->ierrors = 589 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 590 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 591 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 592 /* no oerrors counters supported on EF10 */ 593 594 /* Exclude missed, errors and pauses from Rx packets */ 595 sfc_update_diff_stat(&port->ipackets, 596 mac_stats[EFX_MAC_RX_PKTS] - 597 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 598 stats->imissed - stats->ierrors); 599 stats->ipackets = port->ipackets; 600 } 601 602 unlock: 603 rte_spinlock_unlock(&port->mac_stats_lock); 604 SFC_ASSERT(ret >= 0); 605 return -ret; 606 } 607 608 static void 609 sfc_stats_reset(struct rte_eth_dev *dev) 610 { 611 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 612 struct sfc_port *port = &sa->port; 613 int rc; 614 615 if (sa->state != SFC_ADAPTER_STARTED) { 616 /* 617 * The operation cannot be done if port is not started; it 618 * will be scheduled to be done during the next port start 619 */ 620 port->mac_stats_reset_pending = B_TRUE; 621 return; 622 } 623 624 rc = sfc_port_reset_mac_stats(sa); 625 if (rc != 0) 626 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 627 } 628 629 static int 630 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 631 unsigned int xstats_count) 632 { 633 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 634 struct sfc_port *port = &sa->port; 635 uint64_t *mac_stats; 636 int rc; 637 unsigned int i; 638 int nstats = 0; 639 640 rte_spinlock_lock(&port->mac_stats_lock); 641 642 rc = sfc_port_update_mac_stats(sa); 643 if (rc != 0) { 644 SFC_ASSERT(rc > 0); 645 nstats = -rc; 646 goto unlock; 647 } 648 649 mac_stats = port->mac_stats_buf; 650 651 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 652 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 653 if (xstats != NULL && nstats < (int)xstats_count) { 654 xstats[nstats].id = nstats; 655 xstats[nstats].value = mac_stats[i]; 656 } 657 nstats++; 658 } 659 } 660 661 unlock: 662 rte_spinlock_unlock(&port->mac_stats_lock); 663 664 return nstats; 665 } 666 667 static int 668 sfc_xstats_get_names(struct rte_eth_dev *dev, 669 struct rte_eth_xstat_name *xstats_names, 670 unsigned int xstats_count) 671 { 672 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 673 struct sfc_port *port = &sa->port; 674 unsigned int i; 675 unsigned int nstats = 0; 676 677 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 678 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 679 if (xstats_names != NULL && nstats < xstats_count) 680 strlcpy(xstats_names[nstats].name, 681 efx_mac_stat_name(sa->nic, i), 682 sizeof(xstats_names[0].name)); 683 nstats++; 684 } 685 } 686 687 return nstats; 688 } 689 690 static int 691 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 692 uint64_t *values, unsigned int n) 693 { 694 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 695 struct sfc_port *port = &sa->port; 696 uint64_t *mac_stats; 697 unsigned int nb_supported = 0; 698 unsigned int nb_written = 0; 699 unsigned int i; 700 int ret; 701 int rc; 702 703 if (unlikely(values == NULL) || 704 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 705 return port->mac_stats_nb_supported; 706 707 rte_spinlock_lock(&port->mac_stats_lock); 708 709 rc = sfc_port_update_mac_stats(sa); 710 if (rc != 0) { 711 SFC_ASSERT(rc > 0); 712 ret = -rc; 713 goto unlock; 714 } 715 716 mac_stats = port->mac_stats_buf; 717 718 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 719 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 720 continue; 721 722 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 723 values[nb_written++] = mac_stats[i]; 724 725 ++nb_supported; 726 } 727 728 ret = nb_written; 729 730 unlock: 731 rte_spinlock_unlock(&port->mac_stats_lock); 732 733 return ret; 734 } 735 736 static int 737 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 738 struct rte_eth_xstat_name *xstats_names, 739 const uint64_t *ids, unsigned int size) 740 { 741 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 742 struct sfc_port *port = &sa->port; 743 unsigned int nb_supported = 0; 744 unsigned int nb_written = 0; 745 unsigned int i; 746 747 if (unlikely(xstats_names == NULL) || 748 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 749 return port->mac_stats_nb_supported; 750 751 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 752 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 753 continue; 754 755 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 756 char *name = xstats_names[nb_written++].name; 757 758 strlcpy(name, efx_mac_stat_name(sa->nic, i), 759 sizeof(xstats_names[0].name)); 760 } 761 762 ++nb_supported; 763 } 764 765 return nb_written; 766 } 767 768 static int 769 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 770 { 771 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 772 unsigned int wanted_fc, link_fc; 773 774 memset(fc_conf, 0, sizeof(*fc_conf)); 775 776 sfc_adapter_lock(sa); 777 778 if (sa->state == SFC_ADAPTER_STARTED) 779 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 780 else 781 link_fc = sa->port.flow_ctrl; 782 783 switch (link_fc) { 784 case 0: 785 fc_conf->mode = RTE_FC_NONE; 786 break; 787 case EFX_FCNTL_RESPOND: 788 fc_conf->mode = RTE_FC_RX_PAUSE; 789 break; 790 case EFX_FCNTL_GENERATE: 791 fc_conf->mode = RTE_FC_TX_PAUSE; 792 break; 793 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 794 fc_conf->mode = RTE_FC_FULL; 795 break; 796 default: 797 sfc_err(sa, "%s: unexpected flow control value %#x", 798 __func__, link_fc); 799 } 800 801 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 802 803 sfc_adapter_unlock(sa); 804 805 return 0; 806 } 807 808 static int 809 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 810 { 811 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 812 struct sfc_port *port = &sa->port; 813 unsigned int fcntl; 814 int rc; 815 816 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 817 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 818 fc_conf->mac_ctrl_frame_fwd != 0) { 819 sfc_err(sa, "unsupported flow control settings specified"); 820 rc = EINVAL; 821 goto fail_inval; 822 } 823 824 switch (fc_conf->mode) { 825 case RTE_FC_NONE: 826 fcntl = 0; 827 break; 828 case RTE_FC_RX_PAUSE: 829 fcntl = EFX_FCNTL_RESPOND; 830 break; 831 case RTE_FC_TX_PAUSE: 832 fcntl = EFX_FCNTL_GENERATE; 833 break; 834 case RTE_FC_FULL: 835 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 836 break; 837 default: 838 rc = EINVAL; 839 goto fail_inval; 840 } 841 842 sfc_adapter_lock(sa); 843 844 if (sa->state == SFC_ADAPTER_STARTED) { 845 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 846 if (rc != 0) 847 goto fail_mac_fcntl_set; 848 } 849 850 port->flow_ctrl = fcntl; 851 port->flow_ctrl_autoneg = fc_conf->autoneg; 852 853 sfc_adapter_unlock(sa); 854 855 return 0; 856 857 fail_mac_fcntl_set: 858 sfc_adapter_unlock(sa); 859 fail_inval: 860 SFC_ASSERT(rc > 0); 861 return -rc; 862 } 863 864 static int 865 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 866 { 867 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 868 size_t pdu = EFX_MAC_PDU(mtu); 869 size_t old_pdu; 870 int rc; 871 872 sfc_log_init(sa, "mtu=%u", mtu); 873 874 rc = EINVAL; 875 if (pdu < EFX_MAC_PDU_MIN) { 876 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 877 (unsigned int)mtu, (unsigned int)pdu, 878 EFX_MAC_PDU_MIN); 879 goto fail_inval; 880 } 881 if (pdu > EFX_MAC_PDU_MAX) { 882 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 883 (unsigned int)mtu, (unsigned int)pdu, 884 EFX_MAC_PDU_MAX); 885 goto fail_inval; 886 } 887 888 sfc_adapter_lock(sa); 889 890 if (pdu != sa->port.pdu) { 891 if (sa->state == SFC_ADAPTER_STARTED) { 892 sfc_stop(sa); 893 894 old_pdu = sa->port.pdu; 895 sa->port.pdu = pdu; 896 rc = sfc_start(sa); 897 if (rc != 0) 898 goto fail_start; 899 } else { 900 sa->port.pdu = pdu; 901 } 902 } 903 904 /* 905 * The driver does not use it, but other PMDs update jumbo frame 906 * flag and max_rx_pkt_len when MTU is set. 907 */ 908 if (mtu > ETHER_MAX_LEN) { 909 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 910 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 911 } 912 913 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 914 915 sfc_adapter_unlock(sa); 916 917 sfc_log_init(sa, "done"); 918 return 0; 919 920 fail_start: 921 sa->port.pdu = old_pdu; 922 if (sfc_start(sa) != 0) 923 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 924 "PDU max size - port is stopped", 925 (unsigned int)pdu, (unsigned int)old_pdu); 926 sfc_adapter_unlock(sa); 927 928 fail_inval: 929 sfc_log_init(sa, "failed %d", rc); 930 SFC_ASSERT(rc > 0); 931 return -rc; 932 } 933 static int 934 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 935 { 936 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 937 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 938 struct sfc_port *port = &sa->port; 939 struct ether_addr *old_addr = &dev->data->mac_addrs[0]; 940 int rc = 0; 941 942 sfc_adapter_lock(sa); 943 944 /* 945 * Copy the address to the device private data so that 946 * it could be recalled in the case of adapter restart. 947 */ 948 ether_addr_copy(mac_addr, &port->default_mac_addr); 949 950 /* 951 * Neither of the two following checks can return 952 * an error. The new MAC address is preserved in 953 * the device private data and can be activated 954 * on the next port start if the user prevents 955 * isolated mode from being enabled. 956 */ 957 if (sfc_sa2shared(sa)->isolated) { 958 sfc_warn(sa, "isolated mode is active on the port"); 959 sfc_warn(sa, "will not set MAC address"); 960 goto unlock; 961 } 962 963 if (sa->state != SFC_ADAPTER_STARTED) { 964 sfc_notice(sa, "the port is not started"); 965 sfc_notice(sa, "the new MAC address will be set on port start"); 966 967 goto unlock; 968 } 969 970 if (encp->enc_allow_set_mac_with_installed_filters) { 971 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 972 if (rc != 0) { 973 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 974 goto unlock; 975 } 976 977 /* 978 * Changing the MAC address by means of MCDI request 979 * has no effect on received traffic, therefore 980 * we also need to update unicast filters 981 */ 982 rc = sfc_set_rx_mode(sa); 983 if (rc != 0) { 984 sfc_err(sa, "cannot set filter (rc = %u)", rc); 985 /* Rollback the old address */ 986 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 987 (void)sfc_set_rx_mode(sa); 988 } 989 } else { 990 sfc_warn(sa, "cannot set MAC address with filters installed"); 991 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 992 sfc_warn(sa, "(some traffic may be dropped)"); 993 994 /* 995 * Since setting MAC address with filters installed is not 996 * allowed on the adapter, the new MAC address will be set 997 * by means of adapter restart. sfc_start() shall retrieve 998 * the new address from the device private data and set it. 999 */ 1000 sfc_stop(sa); 1001 rc = sfc_start(sa); 1002 if (rc != 0) 1003 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1004 } 1005 1006 unlock: 1007 if (rc != 0) 1008 ether_addr_copy(old_addr, &port->default_mac_addr); 1009 1010 sfc_adapter_unlock(sa); 1011 1012 SFC_ASSERT(rc >= 0); 1013 return -rc; 1014 } 1015 1016 1017 static int 1018 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 1019 uint32_t nb_mc_addr) 1020 { 1021 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1022 struct sfc_port *port = &sa->port; 1023 uint8_t *mc_addrs = port->mcast_addrs; 1024 int rc; 1025 unsigned int i; 1026 1027 if (sfc_sa2shared(sa)->isolated) { 1028 sfc_err(sa, "isolated mode is active on the port"); 1029 sfc_err(sa, "will not set multicast address list"); 1030 return -ENOTSUP; 1031 } 1032 1033 if (mc_addrs == NULL) 1034 return -ENOBUFS; 1035 1036 if (nb_mc_addr > port->max_mcast_addrs) { 1037 sfc_err(sa, "too many multicast addresses: %u > %u", 1038 nb_mc_addr, port->max_mcast_addrs); 1039 return -EINVAL; 1040 } 1041 1042 for (i = 0; i < nb_mc_addr; ++i) { 1043 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1044 EFX_MAC_ADDR_LEN); 1045 mc_addrs += EFX_MAC_ADDR_LEN; 1046 } 1047 1048 port->nb_mcast_addrs = nb_mc_addr; 1049 1050 if (sa->state != SFC_ADAPTER_STARTED) 1051 return 0; 1052 1053 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1054 port->nb_mcast_addrs); 1055 if (rc != 0) 1056 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1057 1058 SFC_ASSERT(rc >= 0); 1059 return -rc; 1060 } 1061 1062 /* 1063 * The function is used by the secondary process as well. It must not 1064 * use any process-local pointers from the adapter data. 1065 */ 1066 static void 1067 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1068 struct rte_eth_rxq_info *qinfo) 1069 { 1070 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1071 struct sfc_rxq_info *rxq_info; 1072 1073 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1074 1075 rxq_info = &sas->rxq_info[rx_queue_id]; 1076 1077 qinfo->mp = rxq_info->refill_mb_pool; 1078 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1079 qinfo->conf.rx_drop_en = 1; 1080 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1081 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1082 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1083 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1084 qinfo->scattered_rx = 1; 1085 } 1086 qinfo->nb_desc = rxq_info->entries; 1087 } 1088 1089 /* 1090 * The function is used by the secondary process as well. It must not 1091 * use any process-local pointers from the adapter data. 1092 */ 1093 static void 1094 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1095 struct rte_eth_txq_info *qinfo) 1096 { 1097 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1098 struct sfc_txq_info *txq_info; 1099 1100 SFC_ASSERT(tx_queue_id < sas->txq_count); 1101 1102 txq_info = &sas->txq_info[tx_queue_id]; 1103 1104 memset(qinfo, 0, sizeof(*qinfo)); 1105 1106 qinfo->conf.offloads = txq_info->offloads; 1107 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1108 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1109 qinfo->nb_desc = txq_info->entries; 1110 } 1111 1112 /* 1113 * The function is used by the secondary process as well. It must not 1114 * use any process-local pointers from the adapter data. 1115 */ 1116 static uint32_t 1117 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1118 { 1119 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1120 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1121 struct sfc_rxq_info *rxq_info; 1122 1123 SFC_ASSERT(rx_queue_id < sas->rxq_count); 1124 rxq_info = &sas->rxq_info[rx_queue_id]; 1125 1126 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1127 return 0; 1128 1129 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1130 } 1131 1132 /* 1133 * The function is used by the secondary process as well. It must not 1134 * use any process-local pointers from the adapter data. 1135 */ 1136 static int 1137 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1138 { 1139 struct sfc_dp_rxq *dp_rxq = queue; 1140 const struct sfc_dp_rx *dp_rx; 1141 1142 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1143 1144 return offset < dp_rx->qdesc_npending(dp_rxq); 1145 } 1146 1147 /* 1148 * The function is used by the secondary process as well. It must not 1149 * use any process-local pointers from the adapter data. 1150 */ 1151 static int 1152 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1153 { 1154 struct sfc_dp_rxq *dp_rxq = queue; 1155 const struct sfc_dp_rx *dp_rx; 1156 1157 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1158 1159 return dp_rx->qdesc_status(dp_rxq, offset); 1160 } 1161 1162 /* 1163 * The function is used by the secondary process as well. It must not 1164 * use any process-local pointers from the adapter data. 1165 */ 1166 static int 1167 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1168 { 1169 struct sfc_dp_txq *dp_txq = queue; 1170 const struct sfc_dp_tx *dp_tx; 1171 1172 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1173 1174 return dp_tx->qdesc_status(dp_txq, offset); 1175 } 1176 1177 static int 1178 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1179 { 1180 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1181 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1182 int rc; 1183 1184 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1185 1186 sfc_adapter_lock(sa); 1187 1188 rc = EINVAL; 1189 if (sa->state != SFC_ADAPTER_STARTED) 1190 goto fail_not_started; 1191 1192 if (sas->rxq_info[rx_queue_id].state != SFC_RXQ_INITIALIZED) 1193 goto fail_not_setup; 1194 1195 rc = sfc_rx_qstart(sa, rx_queue_id); 1196 if (rc != 0) 1197 goto fail_rx_qstart; 1198 1199 sas->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1200 1201 sfc_adapter_unlock(sa); 1202 1203 return 0; 1204 1205 fail_rx_qstart: 1206 fail_not_setup: 1207 fail_not_started: 1208 sfc_adapter_unlock(sa); 1209 SFC_ASSERT(rc > 0); 1210 return -rc; 1211 } 1212 1213 static int 1214 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1215 { 1216 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1217 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1218 1219 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1220 1221 sfc_adapter_lock(sa); 1222 sfc_rx_qstop(sa, rx_queue_id); 1223 1224 sas->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1225 1226 sfc_adapter_unlock(sa); 1227 1228 return 0; 1229 } 1230 1231 static int 1232 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1233 { 1234 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1235 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1236 int rc; 1237 1238 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1239 1240 sfc_adapter_lock(sa); 1241 1242 rc = EINVAL; 1243 if (sa->state != SFC_ADAPTER_STARTED) 1244 goto fail_not_started; 1245 1246 if (sas->txq_info[tx_queue_id].state != SFC_TXQ_INITIALIZED) 1247 goto fail_not_setup; 1248 1249 rc = sfc_tx_qstart(sa, tx_queue_id); 1250 if (rc != 0) 1251 goto fail_tx_qstart; 1252 1253 sas->txq_info[tx_queue_id].deferred_started = B_TRUE; 1254 1255 sfc_adapter_unlock(sa); 1256 return 0; 1257 1258 fail_tx_qstart: 1259 1260 fail_not_setup: 1261 fail_not_started: 1262 sfc_adapter_unlock(sa); 1263 SFC_ASSERT(rc > 0); 1264 return -rc; 1265 } 1266 1267 static int 1268 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1269 { 1270 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1271 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1272 1273 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1274 1275 sfc_adapter_lock(sa); 1276 1277 sfc_tx_qstop(sa, tx_queue_id); 1278 1279 sas->txq_info[tx_queue_id].deferred_started = B_FALSE; 1280 1281 sfc_adapter_unlock(sa); 1282 return 0; 1283 } 1284 1285 static efx_tunnel_protocol_t 1286 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1287 { 1288 switch (rte_type) { 1289 case RTE_TUNNEL_TYPE_VXLAN: 1290 return EFX_TUNNEL_PROTOCOL_VXLAN; 1291 case RTE_TUNNEL_TYPE_GENEVE: 1292 return EFX_TUNNEL_PROTOCOL_GENEVE; 1293 default: 1294 return EFX_TUNNEL_NPROTOS; 1295 } 1296 } 1297 1298 enum sfc_udp_tunnel_op_e { 1299 SFC_UDP_TUNNEL_ADD_PORT, 1300 SFC_UDP_TUNNEL_DEL_PORT, 1301 }; 1302 1303 static int 1304 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1305 struct rte_eth_udp_tunnel *tunnel_udp, 1306 enum sfc_udp_tunnel_op_e op) 1307 { 1308 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1309 efx_tunnel_protocol_t tunnel_proto; 1310 int rc; 1311 1312 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1313 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1314 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1315 tunnel_udp->udp_port, tunnel_udp->prot_type); 1316 1317 tunnel_proto = 1318 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1319 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1320 rc = ENOTSUP; 1321 goto fail_bad_proto; 1322 } 1323 1324 sfc_adapter_lock(sa); 1325 1326 switch (op) { 1327 case SFC_UDP_TUNNEL_ADD_PORT: 1328 rc = efx_tunnel_config_udp_add(sa->nic, 1329 tunnel_udp->udp_port, 1330 tunnel_proto); 1331 break; 1332 case SFC_UDP_TUNNEL_DEL_PORT: 1333 rc = efx_tunnel_config_udp_remove(sa->nic, 1334 tunnel_udp->udp_port, 1335 tunnel_proto); 1336 break; 1337 default: 1338 rc = EINVAL; 1339 goto fail_bad_op; 1340 } 1341 1342 if (rc != 0) 1343 goto fail_op; 1344 1345 if (sa->state == SFC_ADAPTER_STARTED) { 1346 rc = efx_tunnel_reconfigure(sa->nic); 1347 if (rc == EAGAIN) { 1348 /* 1349 * Configuration is accepted by FW and MC reboot 1350 * is initiated to apply the changes. MC reboot 1351 * will be handled in a usual way (MC reboot 1352 * event on management event queue and adapter 1353 * restart). 1354 */ 1355 rc = 0; 1356 } else if (rc != 0) { 1357 goto fail_reconfigure; 1358 } 1359 } 1360 1361 sfc_adapter_unlock(sa); 1362 return 0; 1363 1364 fail_reconfigure: 1365 /* Remove/restore entry since the change makes the trouble */ 1366 switch (op) { 1367 case SFC_UDP_TUNNEL_ADD_PORT: 1368 (void)efx_tunnel_config_udp_remove(sa->nic, 1369 tunnel_udp->udp_port, 1370 tunnel_proto); 1371 break; 1372 case SFC_UDP_TUNNEL_DEL_PORT: 1373 (void)efx_tunnel_config_udp_add(sa->nic, 1374 tunnel_udp->udp_port, 1375 tunnel_proto); 1376 break; 1377 } 1378 1379 fail_op: 1380 fail_bad_op: 1381 sfc_adapter_unlock(sa); 1382 1383 fail_bad_proto: 1384 SFC_ASSERT(rc > 0); 1385 return -rc; 1386 } 1387 1388 static int 1389 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1390 struct rte_eth_udp_tunnel *tunnel_udp) 1391 { 1392 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1393 } 1394 1395 static int 1396 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1397 struct rte_eth_udp_tunnel *tunnel_udp) 1398 { 1399 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1400 } 1401 1402 /* 1403 * The function is used by the secondary process as well. It must not 1404 * use any process-local pointers from the adapter data. 1405 */ 1406 static int 1407 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1408 struct rte_eth_rss_conf *rss_conf) 1409 { 1410 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1411 struct sfc_rss *rss = &sas->rss; 1412 1413 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1414 return -ENOTSUP; 1415 1416 /* 1417 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1418 * hence, conversion is done here to derive a correct set of ETH_RSS 1419 * flags which corresponds to the active EFX configuration stored 1420 * locally in 'sfc_adapter' and kept up-to-date 1421 */ 1422 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(rss, rss->hash_types); 1423 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1424 if (rss_conf->rss_key != NULL) 1425 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1426 1427 return 0; 1428 } 1429 1430 static int 1431 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1432 struct rte_eth_rss_conf *rss_conf) 1433 { 1434 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1435 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1436 unsigned int efx_hash_types; 1437 int rc = 0; 1438 1439 if (sfc_sa2shared(sa)->isolated) 1440 return -ENOTSUP; 1441 1442 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1443 sfc_err(sa, "RSS is not available"); 1444 return -ENOTSUP; 1445 } 1446 1447 if (rss->channels == 0) { 1448 sfc_err(sa, "RSS is not configured"); 1449 return -EINVAL; 1450 } 1451 1452 if ((rss_conf->rss_key != NULL) && 1453 (rss_conf->rss_key_len != sizeof(rss->key))) { 1454 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1455 sizeof(rss->key)); 1456 return -EINVAL; 1457 } 1458 1459 sfc_adapter_lock(sa); 1460 1461 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1462 if (rc != 0) 1463 goto fail_rx_hf_rte_to_efx; 1464 1465 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1466 rss->hash_alg, efx_hash_types, B_TRUE); 1467 if (rc != 0) 1468 goto fail_scale_mode_set; 1469 1470 if (rss_conf->rss_key != NULL) { 1471 if (sa->state == SFC_ADAPTER_STARTED) { 1472 rc = efx_rx_scale_key_set(sa->nic, 1473 EFX_RSS_CONTEXT_DEFAULT, 1474 rss_conf->rss_key, 1475 sizeof(rss->key)); 1476 if (rc != 0) 1477 goto fail_scale_key_set; 1478 } 1479 1480 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1481 } 1482 1483 rss->hash_types = efx_hash_types; 1484 1485 sfc_adapter_unlock(sa); 1486 1487 return 0; 1488 1489 fail_scale_key_set: 1490 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1491 EFX_RX_HASHALG_TOEPLITZ, 1492 rss->hash_types, B_TRUE) != 0) 1493 sfc_err(sa, "failed to restore RSS mode"); 1494 1495 fail_scale_mode_set: 1496 fail_rx_hf_rte_to_efx: 1497 sfc_adapter_unlock(sa); 1498 return -rc; 1499 } 1500 1501 /* 1502 * The function is used by the secondary process as well. It must not 1503 * use any process-local pointers from the adapter data. 1504 */ 1505 static int 1506 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1507 struct rte_eth_rss_reta_entry64 *reta_conf, 1508 uint16_t reta_size) 1509 { 1510 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1511 struct sfc_rss *rss = &sas->rss; 1512 int entry; 1513 1514 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || sas->isolated) 1515 return -ENOTSUP; 1516 1517 if (rss->channels == 0) 1518 return -EINVAL; 1519 1520 if (reta_size != EFX_RSS_TBL_SIZE) 1521 return -EINVAL; 1522 1523 for (entry = 0; entry < reta_size; entry++) { 1524 int grp = entry / RTE_RETA_GROUP_SIZE; 1525 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1526 1527 if ((reta_conf[grp].mask >> grp_idx) & 1) 1528 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1529 } 1530 1531 return 0; 1532 } 1533 1534 static int 1535 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1536 struct rte_eth_rss_reta_entry64 *reta_conf, 1537 uint16_t reta_size) 1538 { 1539 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1540 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss; 1541 unsigned int *rss_tbl_new; 1542 uint16_t entry; 1543 int rc = 0; 1544 1545 1546 if (sfc_sa2shared(sa)->isolated) 1547 return -ENOTSUP; 1548 1549 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1550 sfc_err(sa, "RSS is not available"); 1551 return -ENOTSUP; 1552 } 1553 1554 if (rss->channels == 0) { 1555 sfc_err(sa, "RSS is not configured"); 1556 return -EINVAL; 1557 } 1558 1559 if (reta_size != EFX_RSS_TBL_SIZE) { 1560 sfc_err(sa, "RETA size is wrong (should be %u)", 1561 EFX_RSS_TBL_SIZE); 1562 return -EINVAL; 1563 } 1564 1565 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1566 if (rss_tbl_new == NULL) 1567 return -ENOMEM; 1568 1569 sfc_adapter_lock(sa); 1570 1571 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1572 1573 for (entry = 0; entry < reta_size; entry++) { 1574 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1575 struct rte_eth_rss_reta_entry64 *grp; 1576 1577 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1578 1579 if (grp->mask & (1ull << grp_idx)) { 1580 if (grp->reta[grp_idx] >= rss->channels) { 1581 rc = EINVAL; 1582 goto bad_reta_entry; 1583 } 1584 rss_tbl_new[entry] = grp->reta[grp_idx]; 1585 } 1586 } 1587 1588 if (sa->state == SFC_ADAPTER_STARTED) { 1589 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1590 rss_tbl_new, EFX_RSS_TBL_SIZE); 1591 if (rc != 0) 1592 goto fail_scale_tbl_set; 1593 } 1594 1595 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1596 1597 fail_scale_tbl_set: 1598 bad_reta_entry: 1599 sfc_adapter_unlock(sa); 1600 1601 rte_free(rss_tbl_new); 1602 1603 SFC_ASSERT(rc >= 0); 1604 return -rc; 1605 } 1606 1607 static int 1608 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1609 enum rte_filter_op filter_op, 1610 void *arg) 1611 { 1612 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1613 int rc = ENOTSUP; 1614 1615 sfc_log_init(sa, "entry"); 1616 1617 switch (filter_type) { 1618 case RTE_ETH_FILTER_NONE: 1619 sfc_err(sa, "Global filters configuration not supported"); 1620 break; 1621 case RTE_ETH_FILTER_MACVLAN: 1622 sfc_err(sa, "MACVLAN filters not supported"); 1623 break; 1624 case RTE_ETH_FILTER_ETHERTYPE: 1625 sfc_err(sa, "EtherType filters not supported"); 1626 break; 1627 case RTE_ETH_FILTER_FLEXIBLE: 1628 sfc_err(sa, "Flexible filters not supported"); 1629 break; 1630 case RTE_ETH_FILTER_SYN: 1631 sfc_err(sa, "SYN filters not supported"); 1632 break; 1633 case RTE_ETH_FILTER_NTUPLE: 1634 sfc_err(sa, "NTUPLE filters not supported"); 1635 break; 1636 case RTE_ETH_FILTER_TUNNEL: 1637 sfc_err(sa, "Tunnel filters not supported"); 1638 break; 1639 case RTE_ETH_FILTER_FDIR: 1640 sfc_err(sa, "Flow Director filters not supported"); 1641 break; 1642 case RTE_ETH_FILTER_HASH: 1643 sfc_err(sa, "Hash filters not supported"); 1644 break; 1645 case RTE_ETH_FILTER_GENERIC: 1646 if (filter_op != RTE_ETH_FILTER_GET) { 1647 rc = EINVAL; 1648 } else { 1649 *(const void **)arg = &sfc_flow_ops; 1650 rc = 0; 1651 } 1652 break; 1653 default: 1654 sfc_err(sa, "Unknown filter type %u", filter_type); 1655 break; 1656 } 1657 1658 sfc_log_init(sa, "exit: %d", -rc); 1659 SFC_ASSERT(rc >= 0); 1660 return -rc; 1661 } 1662 1663 static int 1664 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1665 { 1666 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1667 1668 /* 1669 * If Rx datapath does not provide callback to check mempool, 1670 * all pools are supported. 1671 */ 1672 if (sap->dp_rx->pool_ops_supported == NULL) 1673 return 1; 1674 1675 return sap->dp_rx->pool_ops_supported(pool); 1676 } 1677 1678 static const struct eth_dev_ops sfc_eth_dev_ops = { 1679 .dev_configure = sfc_dev_configure, 1680 .dev_start = sfc_dev_start, 1681 .dev_stop = sfc_dev_stop, 1682 .dev_set_link_up = sfc_dev_set_link_up, 1683 .dev_set_link_down = sfc_dev_set_link_down, 1684 .dev_close = sfc_dev_close, 1685 .promiscuous_enable = sfc_dev_promisc_enable, 1686 .promiscuous_disable = sfc_dev_promisc_disable, 1687 .allmulticast_enable = sfc_dev_allmulti_enable, 1688 .allmulticast_disable = sfc_dev_allmulti_disable, 1689 .link_update = sfc_dev_link_update, 1690 .stats_get = sfc_stats_get, 1691 .stats_reset = sfc_stats_reset, 1692 .xstats_get = sfc_xstats_get, 1693 .xstats_reset = sfc_stats_reset, 1694 .xstats_get_names = sfc_xstats_get_names, 1695 .dev_infos_get = sfc_dev_infos_get, 1696 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1697 .mtu_set = sfc_dev_set_mtu, 1698 .rx_queue_start = sfc_rx_queue_start, 1699 .rx_queue_stop = sfc_rx_queue_stop, 1700 .tx_queue_start = sfc_tx_queue_start, 1701 .tx_queue_stop = sfc_tx_queue_stop, 1702 .rx_queue_setup = sfc_rx_queue_setup, 1703 .rx_queue_release = sfc_rx_queue_release, 1704 .rx_queue_count = sfc_rx_queue_count, 1705 .rx_descriptor_done = sfc_rx_descriptor_done, 1706 .rx_descriptor_status = sfc_rx_descriptor_status, 1707 .tx_descriptor_status = sfc_tx_descriptor_status, 1708 .tx_queue_setup = sfc_tx_queue_setup, 1709 .tx_queue_release = sfc_tx_queue_release, 1710 .flow_ctrl_get = sfc_flow_ctrl_get, 1711 .flow_ctrl_set = sfc_flow_ctrl_set, 1712 .mac_addr_set = sfc_mac_addr_set, 1713 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1714 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1715 .reta_update = sfc_dev_rss_reta_update, 1716 .reta_query = sfc_dev_rss_reta_query, 1717 .rss_hash_update = sfc_dev_rss_hash_update, 1718 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1719 .filter_ctrl = sfc_dev_filter_ctrl, 1720 .set_mc_addr_list = sfc_set_mc_addr_list, 1721 .rxq_info_get = sfc_rx_queue_info_get, 1722 .txq_info_get = sfc_tx_queue_info_get, 1723 .fw_version_get = sfc_fw_version_get, 1724 .xstats_get_by_id = sfc_xstats_get_by_id, 1725 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1726 .pool_ops_supported = sfc_pool_ops_supported, 1727 }; 1728 1729 /** 1730 * Duplicate a string in potentially shared memory required for 1731 * multi-process support. 1732 * 1733 * strdup() allocates from process-local heap/memory. 1734 */ 1735 static char * 1736 sfc_strdup(const char *str) 1737 { 1738 size_t size; 1739 char *copy; 1740 1741 if (str == NULL) 1742 return NULL; 1743 1744 size = strlen(str) + 1; 1745 copy = rte_malloc(__func__, size, 0); 1746 if (copy != NULL) 1747 rte_memcpy(copy, str, size); 1748 1749 return copy; 1750 } 1751 1752 static int 1753 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1754 { 1755 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1756 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1757 const struct sfc_dp_rx *dp_rx; 1758 const struct sfc_dp_tx *dp_tx; 1759 const efx_nic_cfg_t *encp; 1760 unsigned int avail_caps = 0; 1761 const char *rx_name = NULL; 1762 const char *tx_name = NULL; 1763 int rc; 1764 1765 switch (sa->family) { 1766 case EFX_FAMILY_HUNTINGTON: 1767 case EFX_FAMILY_MEDFORD: 1768 case EFX_FAMILY_MEDFORD2: 1769 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1770 break; 1771 default: 1772 break; 1773 } 1774 1775 encp = efx_nic_cfg_get(sa->nic); 1776 if (encp->enc_rx_es_super_buffer_supported) 1777 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1778 1779 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1780 sfc_kvarg_string_handler, &rx_name); 1781 if (rc != 0) 1782 goto fail_kvarg_rx_datapath; 1783 1784 if (rx_name != NULL) { 1785 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1786 if (dp_rx == NULL) { 1787 sfc_err(sa, "Rx datapath %s not found", rx_name); 1788 rc = ENOENT; 1789 goto fail_dp_rx; 1790 } 1791 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1792 sfc_err(sa, 1793 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1794 rx_name); 1795 rc = EINVAL; 1796 goto fail_dp_rx_caps; 1797 } 1798 } else { 1799 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1800 if (dp_rx == NULL) { 1801 sfc_err(sa, "Rx datapath by caps %#x not found", 1802 avail_caps); 1803 rc = ENOENT; 1804 goto fail_dp_rx; 1805 } 1806 } 1807 1808 sas->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1809 if (sas->dp_rx_name == NULL) { 1810 rc = ENOMEM; 1811 goto fail_dp_rx_name; 1812 } 1813 1814 sfc_notice(sa, "use %s Rx datapath", sas->dp_rx_name); 1815 1816 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1817 sfc_kvarg_string_handler, &tx_name); 1818 if (rc != 0) 1819 goto fail_kvarg_tx_datapath; 1820 1821 if (tx_name != NULL) { 1822 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1823 if (dp_tx == NULL) { 1824 sfc_err(sa, "Tx datapath %s not found", tx_name); 1825 rc = ENOENT; 1826 goto fail_dp_tx; 1827 } 1828 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1829 sfc_err(sa, 1830 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1831 tx_name); 1832 rc = EINVAL; 1833 goto fail_dp_tx_caps; 1834 } 1835 } else { 1836 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1837 if (dp_tx == NULL) { 1838 sfc_err(sa, "Tx datapath by caps %#x not found", 1839 avail_caps); 1840 rc = ENOENT; 1841 goto fail_dp_tx; 1842 } 1843 } 1844 1845 sas->dp_tx_name = sfc_strdup(dp_tx->dp.name); 1846 if (sas->dp_tx_name == NULL) { 1847 rc = ENOMEM; 1848 goto fail_dp_tx_name; 1849 } 1850 1851 sfc_notice(sa, "use %s Tx datapath", sas->dp_tx_name); 1852 1853 sa->priv.dp_rx = dp_rx; 1854 sa->priv.dp_tx = dp_tx; 1855 1856 dev->rx_pkt_burst = dp_rx->pkt_burst; 1857 dev->tx_pkt_burst = dp_tx->pkt_burst; 1858 1859 dev->dev_ops = &sfc_eth_dev_ops; 1860 1861 return 0; 1862 1863 fail_dp_tx_name: 1864 fail_dp_tx_caps: 1865 fail_dp_tx: 1866 fail_kvarg_tx_datapath: 1867 rte_free(sas->dp_rx_name); 1868 sas->dp_rx_name = NULL; 1869 1870 fail_dp_rx_name: 1871 fail_dp_rx_caps: 1872 fail_dp_rx: 1873 fail_kvarg_rx_datapath: 1874 return rc; 1875 } 1876 1877 static void 1878 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1879 { 1880 struct sfc_adapter *sa = sfc_adapter_by_eth_dev(dev); 1881 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1882 1883 dev->dev_ops = NULL; 1884 dev->rx_pkt_burst = NULL; 1885 dev->tx_pkt_burst = NULL; 1886 1887 rte_free(sas->dp_tx_name); 1888 sas->dp_tx_name = NULL; 1889 sa->priv.dp_tx = NULL; 1890 1891 rte_free(sas->dp_rx_name); 1892 sas->dp_rx_name = NULL; 1893 sa->priv.dp_rx = NULL; 1894 } 1895 1896 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1897 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1898 .rx_queue_count = sfc_rx_queue_count, 1899 .rx_descriptor_done = sfc_rx_descriptor_done, 1900 .rx_descriptor_status = sfc_rx_descriptor_status, 1901 .tx_descriptor_status = sfc_tx_descriptor_status, 1902 .reta_query = sfc_dev_rss_reta_query, 1903 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1904 .rxq_info_get = sfc_rx_queue_info_get, 1905 .txq_info_get = sfc_tx_queue_info_get, 1906 }; 1907 1908 static int 1909 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 1910 { 1911 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 1912 struct sfc_adapter_priv *sap; 1913 const struct sfc_dp_rx *dp_rx; 1914 const struct sfc_dp_tx *dp_tx; 1915 int rc; 1916 1917 /* 1918 * Allocate process private data from heap, since it should not 1919 * be located in shared memory allocated using rte_malloc() API. 1920 */ 1921 sap = calloc(1, sizeof(*sap)); 1922 if (sap == NULL) { 1923 rc = ENOMEM; 1924 goto fail_alloc_priv; 1925 } 1926 1927 sap->logtype_main = logtype_main; 1928 1929 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sas->dp_rx_name); 1930 if (dp_rx == NULL) { 1931 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1932 "cannot find %s Rx datapath", sas->dp_rx_name); 1933 rc = ENOENT; 1934 goto fail_dp_rx; 1935 } 1936 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1937 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1938 "%s Rx datapath does not support multi-process", 1939 sas->dp_rx_name); 1940 rc = EINVAL; 1941 goto fail_dp_rx_multi_process; 1942 } 1943 1944 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sas->dp_tx_name); 1945 if (dp_tx == NULL) { 1946 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1947 "cannot find %s Tx datapath", sas->dp_tx_name); 1948 rc = ENOENT; 1949 goto fail_dp_tx; 1950 } 1951 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1952 SFC_LOG(sas, RTE_LOG_ERR, logtype_main, 1953 "%s Tx datapath does not support multi-process", 1954 sas->dp_tx_name); 1955 rc = EINVAL; 1956 goto fail_dp_tx_multi_process; 1957 } 1958 1959 sap->dp_rx = dp_rx; 1960 sap->dp_tx = dp_tx; 1961 1962 dev->process_private = sap; 1963 dev->rx_pkt_burst = dp_rx->pkt_burst; 1964 dev->tx_pkt_burst = dp_tx->pkt_burst; 1965 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1966 1967 return 0; 1968 1969 fail_dp_tx_multi_process: 1970 fail_dp_tx: 1971 fail_dp_rx_multi_process: 1972 fail_dp_rx: 1973 free(sap); 1974 1975 fail_alloc_priv: 1976 return rc; 1977 } 1978 1979 static void 1980 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1981 { 1982 free(dev->process_private); 1983 dev->process_private = NULL; 1984 dev->dev_ops = NULL; 1985 dev->tx_pkt_burst = NULL; 1986 dev->rx_pkt_burst = NULL; 1987 } 1988 1989 static void 1990 sfc_register_dp(void) 1991 { 1992 /* Register once */ 1993 if (TAILQ_EMPTY(&sfc_dp_head)) { 1994 /* Prefer EF10 datapath */ 1995 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 1996 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1997 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1998 1999 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2000 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2001 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2002 } 2003 } 2004 2005 static int 2006 sfc_eth_dev_init(struct rte_eth_dev *dev) 2007 { 2008 struct sfc_adapter_shared *sas = sfc_adapter_shared_by_eth_dev(dev); 2009 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2010 uint32_t logtype_main; 2011 struct sfc_adapter *sa; 2012 int rc; 2013 const efx_nic_cfg_t *encp; 2014 const struct ether_addr *from; 2015 2016 sfc_register_dp(); 2017 2018 logtype_main = sfc_register_logtype(&pci_dev->addr, 2019 SFC_LOGTYPE_MAIN_STR, 2020 RTE_LOG_NOTICE); 2021 2022 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2023 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2024 2025 /* Required for logging */ 2026 sas->pci_addr = pci_dev->addr; 2027 sas->port_id = dev->data->port_id; 2028 2029 /* 2030 * Allocate process private data from heap, since it should not 2031 * be located in shared memory allocated using rte_malloc() API. 2032 */ 2033 sa = calloc(1, sizeof(*sa)); 2034 if (sa == NULL) { 2035 rc = ENOMEM; 2036 goto fail_alloc_sa; 2037 } 2038 2039 dev->process_private = sa; 2040 2041 /* Required for logging */ 2042 sa->priv.shared = sas; 2043 sa->priv.logtype_main = logtype_main; 2044 2045 sa->eth_dev = dev; 2046 2047 /* Copy PCI device info to the dev->data */ 2048 rte_eth_copy_pci_info(dev, pci_dev); 2049 2050 rc = sfc_kvargs_parse(sa); 2051 if (rc != 0) 2052 goto fail_kvargs_parse; 2053 2054 sfc_log_init(sa, "entry"); 2055 2056 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 2057 if (dev->data->mac_addrs == NULL) { 2058 rc = ENOMEM; 2059 goto fail_mac_addrs; 2060 } 2061 2062 sfc_adapter_lock_init(sa); 2063 sfc_adapter_lock(sa); 2064 2065 sfc_log_init(sa, "probing"); 2066 rc = sfc_probe(sa); 2067 if (rc != 0) 2068 goto fail_probe; 2069 2070 sfc_log_init(sa, "set device ops"); 2071 rc = sfc_eth_dev_set_ops(dev); 2072 if (rc != 0) 2073 goto fail_set_ops; 2074 2075 sfc_log_init(sa, "attaching"); 2076 rc = sfc_attach(sa); 2077 if (rc != 0) 2078 goto fail_attach; 2079 2080 encp = efx_nic_cfg_get(sa->nic); 2081 2082 /* 2083 * The arguments are really reverse order in comparison to 2084 * Linux kernel. Copy from NIC config to Ethernet device data. 2085 */ 2086 from = (const struct ether_addr *)(encp->enc_mac_addr); 2087 ether_addr_copy(from, &dev->data->mac_addrs[0]); 2088 2089 sfc_adapter_unlock(sa); 2090 2091 sfc_log_init(sa, "done"); 2092 return 0; 2093 2094 fail_attach: 2095 sfc_eth_dev_clear_ops(dev); 2096 2097 fail_set_ops: 2098 sfc_unprobe(sa); 2099 2100 fail_probe: 2101 sfc_adapter_unlock(sa); 2102 sfc_adapter_lock_fini(sa); 2103 rte_free(dev->data->mac_addrs); 2104 dev->data->mac_addrs = NULL; 2105 2106 fail_mac_addrs: 2107 sfc_kvargs_cleanup(sa); 2108 2109 fail_kvargs_parse: 2110 sfc_log_init(sa, "failed %d", rc); 2111 dev->process_private = NULL; 2112 free(sa); 2113 2114 fail_alloc_sa: 2115 SFC_ASSERT(rc > 0); 2116 return -rc; 2117 } 2118 2119 static int 2120 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2121 { 2122 struct sfc_adapter *sa; 2123 2124 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2125 sfc_eth_dev_secondary_clear_ops(dev); 2126 return 0; 2127 } 2128 2129 sa = sfc_adapter_by_eth_dev(dev); 2130 sfc_log_init(sa, "entry"); 2131 2132 sfc_adapter_lock(sa); 2133 2134 sfc_eth_dev_clear_ops(dev); 2135 2136 sfc_detach(sa); 2137 sfc_unprobe(sa); 2138 2139 sfc_kvargs_cleanup(sa); 2140 2141 sfc_adapter_unlock(sa); 2142 sfc_adapter_lock_fini(sa); 2143 2144 sfc_log_init(sa, "done"); 2145 2146 /* Required for logging, so cleanup last */ 2147 sa->eth_dev = NULL; 2148 2149 dev->process_private = NULL; 2150 free(sa); 2151 2152 return 0; 2153 } 2154 2155 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2156 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2157 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2158 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2159 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2160 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2161 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2162 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2163 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2164 { .vendor_id = 0 /* sentinel */ } 2165 }; 2166 2167 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2168 struct rte_pci_device *pci_dev) 2169 { 2170 return rte_eth_dev_pci_generic_probe(pci_dev, 2171 sizeof(struct sfc_adapter_shared), sfc_eth_dev_init); 2172 } 2173 2174 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2175 { 2176 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2177 } 2178 2179 static struct rte_pci_driver sfc_efx_pmd = { 2180 .id_table = pci_id_sfc_efx_map, 2181 .drv_flags = 2182 RTE_PCI_DRV_INTR_LSC | 2183 RTE_PCI_DRV_NEED_MAPPING, 2184 .probe = sfc_eth_dev_pci_probe, 2185 .remove = sfc_eth_dev_pci_remove, 2186 }; 2187 2188 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2189 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2190 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2191 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2192 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2193 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2194 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2195 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2196 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2197 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2198 2199 RTE_INIT(sfc_driver_register_logtype) 2200 { 2201 int ret; 2202 2203 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2204 RTE_LOG_NOTICE); 2205 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2206 } 2207