1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 17 #include "efx.h" 18 19 #include "sfc.h" 20 #include "sfc_debug.h" 21 #include "sfc_log.h" 22 #include "sfc_kvargs.h" 23 #include "sfc_ev.h" 24 #include "sfc_rx.h" 25 #include "sfc_tx.h" 26 #include "sfc_flow.h" 27 #include "sfc_dp.h" 28 #include "sfc_dp_rx.h" 29 30 uint32_t sfc_logtype_driver; 31 32 static struct sfc_dp_list sfc_dp_head = 33 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 34 35 static int 36 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 37 { 38 struct sfc_adapter *sa = dev->data->dev_private; 39 efx_nic_fw_info_t enfi; 40 int ret; 41 int rc; 42 43 /* 44 * Return value of the callback is likely supposed to be 45 * equal to or greater than 0, nevertheless, if an error 46 * occurs, it will be desirable to pass it to the caller 47 */ 48 if ((fw_version == NULL) || (fw_size == 0)) 49 return -EINVAL; 50 51 rc = efx_nic_get_fw_version(sa->nic, &enfi); 52 if (rc != 0) 53 return -rc; 54 55 ret = snprintf(fw_version, fw_size, 56 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 57 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 58 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 59 if (ret < 0) 60 return ret; 61 62 if (enfi.enfi_dpcpu_fw_ids_valid) { 63 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 64 int ret_extra; 65 66 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 67 fw_size - dpcpu_fw_ids_offset, 68 " rx%" PRIx16 " tx%" PRIx16, 69 enfi.enfi_rx_dpcpu_fw_id, 70 enfi.enfi_tx_dpcpu_fw_id); 71 if (ret_extra < 0) 72 return ret_extra; 73 74 ret += ret_extra; 75 } 76 77 if (fw_size < (size_t)(++ret)) 78 return ret; 79 else 80 return 0; 81 } 82 83 static void 84 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 85 { 86 struct sfc_adapter *sa = dev->data->dev_private; 87 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 88 uint64_t txq_offloads_def = 0; 89 90 sfc_log_init(sa, "entry"); 91 92 dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev); 93 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 94 95 /* Autonegotiation may be disabled */ 96 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 97 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 98 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 99 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 100 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 101 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 102 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 103 104 dev_info->max_rx_queues = sa->rxq_max; 105 dev_info->max_tx_queues = sa->txq_max; 106 107 /* By default packets are dropped if no descriptors are available */ 108 dev_info->default_rxconf.rx_drop_en = 1; 109 110 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 111 112 /* 113 * rx_offload_capa includes both device and queue offloads since 114 * the latter may be requested on a per device basis which makes 115 * sense when some offloads are needed to be set on all queues. 116 */ 117 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 118 dev_info->rx_queue_offload_capa; 119 120 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 121 122 /* 123 * tx_offload_capa includes both device and queue offloads since 124 * the latter may be requested on a per device basis which makes 125 * sense when some offloads are needed to be set on all queues. 126 */ 127 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 128 dev_info->tx_queue_offload_capa; 129 130 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 131 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 132 133 dev_info->default_txconf.offloads |= txq_offloads_def; 134 135 dev_info->default_txconf.txq_flags = ETH_TXQ_FLAGS_NOXSUMSCTP; 136 if ((~sa->dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) || 137 !encp->enc_hw_tx_insert_vlan_enabled) 138 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOVLANOFFL; 139 140 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG) 141 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTSEGS; 142 143 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL) 144 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOMULTMEMP; 145 146 if (~sa->dp_tx->features & SFC_DP_TX_FEAT_REFCNT) 147 dev_info->default_txconf.txq_flags |= ETH_TXQ_FLAGS_NOREFCOUNT; 148 149 #if EFSYS_OPT_RX_SCALE 150 if (sa->rss_support != EFX_RX_SCALE_UNAVAILABLE) { 151 dev_info->reta_size = EFX_RSS_TBL_SIZE; 152 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 153 dev_info->flow_type_rss_offloads = SFC_RSS_OFFLOADS; 154 } 155 #endif 156 157 /* Initialize to hardware limits */ 158 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 159 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 160 /* The RXQ hardware requires that the descriptor count is a power 161 * of 2, but rx_desc_lim cannot properly describe that constraint. 162 */ 163 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 164 165 /* Initialize to hardware limits */ 166 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 167 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 168 /* 169 * The TXQ hardware requires that the descriptor count is a power 170 * of 2, but tx_desc_lim cannot properly describe that constraint 171 */ 172 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 173 174 if (sa->dp_rx->get_dev_info != NULL) 175 sa->dp_rx->get_dev_info(dev_info); 176 if (sa->dp_tx->get_dev_info != NULL) 177 sa->dp_tx->get_dev_info(dev_info); 178 } 179 180 static const uint32_t * 181 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 182 { 183 struct sfc_adapter *sa = dev->data->dev_private; 184 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 185 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 186 187 return sa->dp_rx->supported_ptypes_get(tunnel_encaps); 188 } 189 190 static int 191 sfc_dev_configure(struct rte_eth_dev *dev) 192 { 193 struct rte_eth_dev_data *dev_data = dev->data; 194 struct sfc_adapter *sa = dev_data->dev_private; 195 int rc; 196 197 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 198 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 199 200 sfc_adapter_lock(sa); 201 switch (sa->state) { 202 case SFC_ADAPTER_CONFIGURED: 203 /* FALLTHROUGH */ 204 case SFC_ADAPTER_INITIALIZED: 205 rc = sfc_configure(sa); 206 break; 207 default: 208 sfc_err(sa, "unexpected adapter state %u to configure", 209 sa->state); 210 rc = EINVAL; 211 break; 212 } 213 sfc_adapter_unlock(sa); 214 215 sfc_log_init(sa, "done %d", rc); 216 SFC_ASSERT(rc >= 0); 217 return -rc; 218 } 219 220 static int 221 sfc_dev_start(struct rte_eth_dev *dev) 222 { 223 struct sfc_adapter *sa = dev->data->dev_private; 224 int rc; 225 226 sfc_log_init(sa, "entry"); 227 228 sfc_adapter_lock(sa); 229 rc = sfc_start(sa); 230 sfc_adapter_unlock(sa); 231 232 sfc_log_init(sa, "done %d", rc); 233 SFC_ASSERT(rc >= 0); 234 return -rc; 235 } 236 237 static int 238 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 239 { 240 struct sfc_adapter *sa = dev->data->dev_private; 241 struct rte_eth_link current_link; 242 int ret; 243 244 sfc_log_init(sa, "entry"); 245 246 if (sa->state != SFC_ADAPTER_STARTED) { 247 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 248 } else if (wait_to_complete) { 249 efx_link_mode_t link_mode; 250 251 if (efx_port_poll(sa->nic, &link_mode) != 0) 252 link_mode = EFX_LINK_UNKNOWN; 253 sfc_port_link_mode_to_info(link_mode, ¤t_link); 254 255 } else { 256 sfc_ev_mgmt_qpoll(sa); 257 rte_eth_linkstatus_get(dev, ¤t_link); 258 } 259 260 ret = rte_eth_linkstatus_set(dev, ¤t_link); 261 if (ret == 0) 262 sfc_notice(sa, "Link status is %s", 263 current_link.link_status ? "UP" : "DOWN"); 264 265 return ret; 266 } 267 268 static void 269 sfc_dev_stop(struct rte_eth_dev *dev) 270 { 271 struct sfc_adapter *sa = dev->data->dev_private; 272 273 sfc_log_init(sa, "entry"); 274 275 sfc_adapter_lock(sa); 276 sfc_stop(sa); 277 sfc_adapter_unlock(sa); 278 279 sfc_log_init(sa, "done"); 280 } 281 282 static int 283 sfc_dev_set_link_up(struct rte_eth_dev *dev) 284 { 285 struct sfc_adapter *sa = dev->data->dev_private; 286 int rc; 287 288 sfc_log_init(sa, "entry"); 289 290 sfc_adapter_lock(sa); 291 rc = sfc_start(sa); 292 sfc_adapter_unlock(sa); 293 294 SFC_ASSERT(rc >= 0); 295 return -rc; 296 } 297 298 static int 299 sfc_dev_set_link_down(struct rte_eth_dev *dev) 300 { 301 struct sfc_adapter *sa = dev->data->dev_private; 302 303 sfc_log_init(sa, "entry"); 304 305 sfc_adapter_lock(sa); 306 sfc_stop(sa); 307 sfc_adapter_unlock(sa); 308 309 return 0; 310 } 311 312 static void 313 sfc_dev_close(struct rte_eth_dev *dev) 314 { 315 struct sfc_adapter *sa = dev->data->dev_private; 316 317 sfc_log_init(sa, "entry"); 318 319 sfc_adapter_lock(sa); 320 switch (sa->state) { 321 case SFC_ADAPTER_STARTED: 322 sfc_stop(sa); 323 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 324 /* FALLTHROUGH */ 325 case SFC_ADAPTER_CONFIGURED: 326 sfc_close(sa); 327 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 328 /* FALLTHROUGH */ 329 case SFC_ADAPTER_INITIALIZED: 330 break; 331 default: 332 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 333 break; 334 } 335 sfc_adapter_unlock(sa); 336 337 sfc_log_init(sa, "done"); 338 } 339 340 static void 341 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 342 boolean_t enabled) 343 { 344 struct sfc_port *port; 345 boolean_t *toggle; 346 struct sfc_adapter *sa = dev->data->dev_private; 347 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 348 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 349 350 sfc_adapter_lock(sa); 351 352 port = &sa->port; 353 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 354 355 if (*toggle != enabled) { 356 *toggle = enabled; 357 358 if (port->isolated) { 359 sfc_warn(sa, "isolated mode is active on the port"); 360 sfc_warn(sa, "the change is to be applied on the next " 361 "start provided that isolated mode is " 362 "disabled prior the next start"); 363 } else if ((sa->state == SFC_ADAPTER_STARTED) && 364 (sfc_set_rx_mode(sa) != 0)) { 365 *toggle = !(enabled); 366 sfc_warn(sa, "Failed to %s %s mode", 367 ((enabled) ? "enable" : "disable"), desc); 368 } 369 } 370 371 sfc_adapter_unlock(sa); 372 } 373 374 static void 375 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 376 { 377 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 378 } 379 380 static void 381 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 382 { 383 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 384 } 385 386 static void 387 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 388 { 389 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 390 } 391 392 static void 393 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 394 { 395 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 396 } 397 398 static int 399 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 400 uint16_t nb_rx_desc, unsigned int socket_id, 401 const struct rte_eth_rxconf *rx_conf, 402 struct rte_mempool *mb_pool) 403 { 404 struct sfc_adapter *sa = dev->data->dev_private; 405 int rc; 406 407 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 408 rx_queue_id, nb_rx_desc, socket_id); 409 410 sfc_adapter_lock(sa); 411 412 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 413 rx_conf, mb_pool); 414 if (rc != 0) 415 goto fail_rx_qinit; 416 417 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].rxq->dp; 418 419 sfc_adapter_unlock(sa); 420 421 return 0; 422 423 fail_rx_qinit: 424 sfc_adapter_unlock(sa); 425 SFC_ASSERT(rc > 0); 426 return -rc; 427 } 428 429 static void 430 sfc_rx_queue_release(void *queue) 431 { 432 struct sfc_dp_rxq *dp_rxq = queue; 433 struct sfc_rxq *rxq; 434 struct sfc_adapter *sa; 435 unsigned int sw_index; 436 437 if (dp_rxq == NULL) 438 return; 439 440 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 441 sa = rxq->evq->sa; 442 sfc_adapter_lock(sa); 443 444 sw_index = sfc_rxq_sw_index(rxq); 445 446 sfc_log_init(sa, "RxQ=%u", sw_index); 447 448 sa->eth_dev->data->rx_queues[sw_index] = NULL; 449 450 sfc_rx_qfini(sa, sw_index); 451 452 sfc_adapter_unlock(sa); 453 } 454 455 static int 456 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 457 uint16_t nb_tx_desc, unsigned int socket_id, 458 const struct rte_eth_txconf *tx_conf) 459 { 460 struct sfc_adapter *sa = dev->data->dev_private; 461 int rc; 462 463 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 464 tx_queue_id, nb_tx_desc, socket_id); 465 466 sfc_adapter_lock(sa); 467 468 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 469 if (rc != 0) 470 goto fail_tx_qinit; 471 472 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].txq->dp; 473 474 sfc_adapter_unlock(sa); 475 return 0; 476 477 fail_tx_qinit: 478 sfc_adapter_unlock(sa); 479 SFC_ASSERT(rc > 0); 480 return -rc; 481 } 482 483 static void 484 sfc_tx_queue_release(void *queue) 485 { 486 struct sfc_dp_txq *dp_txq = queue; 487 struct sfc_txq *txq; 488 unsigned int sw_index; 489 struct sfc_adapter *sa; 490 491 if (dp_txq == NULL) 492 return; 493 494 txq = sfc_txq_by_dp_txq(dp_txq); 495 sw_index = sfc_txq_sw_index(txq); 496 497 SFC_ASSERT(txq->evq != NULL); 498 sa = txq->evq->sa; 499 500 sfc_log_init(sa, "TxQ = %u", sw_index); 501 502 sfc_adapter_lock(sa); 503 504 SFC_ASSERT(sw_index < sa->eth_dev->data->nb_tx_queues); 505 sa->eth_dev->data->tx_queues[sw_index] = NULL; 506 507 sfc_tx_qfini(sa, sw_index); 508 509 sfc_adapter_unlock(sa); 510 } 511 512 static int 513 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 514 { 515 struct sfc_adapter *sa = dev->data->dev_private; 516 struct sfc_port *port = &sa->port; 517 uint64_t *mac_stats; 518 int ret; 519 520 rte_spinlock_lock(&port->mac_stats_lock); 521 522 ret = sfc_port_update_mac_stats(sa); 523 if (ret != 0) 524 goto unlock; 525 526 mac_stats = port->mac_stats_buf; 527 528 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 529 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 530 stats->ipackets = 531 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 532 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 533 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 534 stats->opackets = 535 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 536 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 537 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 538 stats->ibytes = 539 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 540 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 541 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 542 stats->obytes = 543 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 544 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 545 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 546 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_OVERFLOW]; 547 stats->ierrors = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 548 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 549 } else { 550 stats->ipackets = mac_stats[EFX_MAC_RX_PKTS]; 551 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 552 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 553 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 554 /* 555 * Take into account stats which are whenever supported 556 * on EF10. If some stat is not supported by current 557 * firmware variant or HW revision, it is guaranteed 558 * to be zero in mac_stats. 559 */ 560 stats->imissed = 561 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 562 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 563 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 564 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 565 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 566 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 567 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 568 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 569 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 570 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 571 stats->ierrors = 572 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 573 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 574 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 575 /* no oerrors counters supported on EF10 */ 576 } 577 578 unlock: 579 rte_spinlock_unlock(&port->mac_stats_lock); 580 SFC_ASSERT(ret >= 0); 581 return -ret; 582 } 583 584 static void 585 sfc_stats_reset(struct rte_eth_dev *dev) 586 { 587 struct sfc_adapter *sa = dev->data->dev_private; 588 struct sfc_port *port = &sa->port; 589 int rc; 590 591 if (sa->state != SFC_ADAPTER_STARTED) { 592 /* 593 * The operation cannot be done if port is not started; it 594 * will be scheduled to be done during the next port start 595 */ 596 port->mac_stats_reset_pending = B_TRUE; 597 return; 598 } 599 600 rc = sfc_port_reset_mac_stats(sa); 601 if (rc != 0) 602 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 603 } 604 605 static int 606 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 607 unsigned int xstats_count) 608 { 609 struct sfc_adapter *sa = dev->data->dev_private; 610 struct sfc_port *port = &sa->port; 611 uint64_t *mac_stats; 612 int rc; 613 unsigned int i; 614 int nstats = 0; 615 616 rte_spinlock_lock(&port->mac_stats_lock); 617 618 rc = sfc_port_update_mac_stats(sa); 619 if (rc != 0) { 620 SFC_ASSERT(rc > 0); 621 nstats = -rc; 622 goto unlock; 623 } 624 625 mac_stats = port->mac_stats_buf; 626 627 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 628 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 629 if (xstats != NULL && nstats < (int)xstats_count) { 630 xstats[nstats].id = nstats; 631 xstats[nstats].value = mac_stats[i]; 632 } 633 nstats++; 634 } 635 } 636 637 unlock: 638 rte_spinlock_unlock(&port->mac_stats_lock); 639 640 return nstats; 641 } 642 643 static int 644 sfc_xstats_get_names(struct rte_eth_dev *dev, 645 struct rte_eth_xstat_name *xstats_names, 646 unsigned int xstats_count) 647 { 648 struct sfc_adapter *sa = dev->data->dev_private; 649 struct sfc_port *port = &sa->port; 650 unsigned int i; 651 unsigned int nstats = 0; 652 653 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 654 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 655 if (xstats_names != NULL && nstats < xstats_count) 656 strncpy(xstats_names[nstats].name, 657 efx_mac_stat_name(sa->nic, i), 658 sizeof(xstats_names[0].name)); 659 nstats++; 660 } 661 } 662 663 return nstats; 664 } 665 666 static int 667 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 668 uint64_t *values, unsigned int n) 669 { 670 struct sfc_adapter *sa = dev->data->dev_private; 671 struct sfc_port *port = &sa->port; 672 uint64_t *mac_stats; 673 unsigned int nb_supported = 0; 674 unsigned int nb_written = 0; 675 unsigned int i; 676 int ret; 677 int rc; 678 679 if (unlikely(values == NULL) || 680 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 681 return port->mac_stats_nb_supported; 682 683 rte_spinlock_lock(&port->mac_stats_lock); 684 685 rc = sfc_port_update_mac_stats(sa); 686 if (rc != 0) { 687 SFC_ASSERT(rc > 0); 688 ret = -rc; 689 goto unlock; 690 } 691 692 mac_stats = port->mac_stats_buf; 693 694 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 695 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 696 continue; 697 698 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 699 values[nb_written++] = mac_stats[i]; 700 701 ++nb_supported; 702 } 703 704 ret = nb_written; 705 706 unlock: 707 rte_spinlock_unlock(&port->mac_stats_lock); 708 709 return ret; 710 } 711 712 static int 713 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 714 struct rte_eth_xstat_name *xstats_names, 715 const uint64_t *ids, unsigned int size) 716 { 717 struct sfc_adapter *sa = dev->data->dev_private; 718 struct sfc_port *port = &sa->port; 719 unsigned int nb_supported = 0; 720 unsigned int nb_written = 0; 721 unsigned int i; 722 723 if (unlikely(xstats_names == NULL) || 724 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 725 return port->mac_stats_nb_supported; 726 727 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 728 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 729 continue; 730 731 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 732 char *name = xstats_names[nb_written++].name; 733 734 strncpy(name, efx_mac_stat_name(sa->nic, i), 735 sizeof(xstats_names[0].name)); 736 name[sizeof(xstats_names[0].name) - 1] = '\0'; 737 } 738 739 ++nb_supported; 740 } 741 742 return nb_written; 743 } 744 745 static int 746 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 747 { 748 struct sfc_adapter *sa = dev->data->dev_private; 749 unsigned int wanted_fc, link_fc; 750 751 memset(fc_conf, 0, sizeof(*fc_conf)); 752 753 sfc_adapter_lock(sa); 754 755 if (sa->state == SFC_ADAPTER_STARTED) 756 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 757 else 758 link_fc = sa->port.flow_ctrl; 759 760 switch (link_fc) { 761 case 0: 762 fc_conf->mode = RTE_FC_NONE; 763 break; 764 case EFX_FCNTL_RESPOND: 765 fc_conf->mode = RTE_FC_RX_PAUSE; 766 break; 767 case EFX_FCNTL_GENERATE: 768 fc_conf->mode = RTE_FC_TX_PAUSE; 769 break; 770 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 771 fc_conf->mode = RTE_FC_FULL; 772 break; 773 default: 774 sfc_err(sa, "%s: unexpected flow control value %#x", 775 __func__, link_fc); 776 } 777 778 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 779 780 sfc_adapter_unlock(sa); 781 782 return 0; 783 } 784 785 static int 786 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 787 { 788 struct sfc_adapter *sa = dev->data->dev_private; 789 struct sfc_port *port = &sa->port; 790 unsigned int fcntl; 791 int rc; 792 793 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 794 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 795 fc_conf->mac_ctrl_frame_fwd != 0) { 796 sfc_err(sa, "unsupported flow control settings specified"); 797 rc = EINVAL; 798 goto fail_inval; 799 } 800 801 switch (fc_conf->mode) { 802 case RTE_FC_NONE: 803 fcntl = 0; 804 break; 805 case RTE_FC_RX_PAUSE: 806 fcntl = EFX_FCNTL_RESPOND; 807 break; 808 case RTE_FC_TX_PAUSE: 809 fcntl = EFX_FCNTL_GENERATE; 810 break; 811 case RTE_FC_FULL: 812 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 813 break; 814 default: 815 rc = EINVAL; 816 goto fail_inval; 817 } 818 819 sfc_adapter_lock(sa); 820 821 if (sa->state == SFC_ADAPTER_STARTED) { 822 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 823 if (rc != 0) 824 goto fail_mac_fcntl_set; 825 } 826 827 port->flow_ctrl = fcntl; 828 port->flow_ctrl_autoneg = fc_conf->autoneg; 829 830 sfc_adapter_unlock(sa); 831 832 return 0; 833 834 fail_mac_fcntl_set: 835 sfc_adapter_unlock(sa); 836 fail_inval: 837 SFC_ASSERT(rc > 0); 838 return -rc; 839 } 840 841 static int 842 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 843 { 844 struct sfc_adapter *sa = dev->data->dev_private; 845 size_t pdu = EFX_MAC_PDU(mtu); 846 size_t old_pdu; 847 int rc; 848 849 sfc_log_init(sa, "mtu=%u", mtu); 850 851 rc = EINVAL; 852 if (pdu < EFX_MAC_PDU_MIN) { 853 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 854 (unsigned int)mtu, (unsigned int)pdu, 855 EFX_MAC_PDU_MIN); 856 goto fail_inval; 857 } 858 if (pdu > EFX_MAC_PDU_MAX) { 859 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 860 (unsigned int)mtu, (unsigned int)pdu, 861 EFX_MAC_PDU_MAX); 862 goto fail_inval; 863 } 864 865 sfc_adapter_lock(sa); 866 867 if (pdu != sa->port.pdu) { 868 if (sa->state == SFC_ADAPTER_STARTED) { 869 sfc_stop(sa); 870 871 old_pdu = sa->port.pdu; 872 sa->port.pdu = pdu; 873 rc = sfc_start(sa); 874 if (rc != 0) 875 goto fail_start; 876 } else { 877 sa->port.pdu = pdu; 878 } 879 } 880 881 /* 882 * The driver does not use it, but other PMDs update jumbo_frame 883 * flag and max_rx_pkt_len when MTU is set. 884 */ 885 if (mtu > ETHER_MAX_LEN) { 886 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 887 888 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 889 rxmode->jumbo_frame = 1; 890 } 891 892 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 893 894 sfc_adapter_unlock(sa); 895 896 sfc_log_init(sa, "done"); 897 return 0; 898 899 fail_start: 900 sa->port.pdu = old_pdu; 901 if (sfc_start(sa) != 0) 902 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 903 "PDU max size - port is stopped", 904 (unsigned int)pdu, (unsigned int)old_pdu); 905 sfc_adapter_unlock(sa); 906 907 fail_inval: 908 sfc_log_init(sa, "failed %d", rc); 909 SFC_ASSERT(rc > 0); 910 return -rc; 911 } 912 static void 913 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 914 { 915 struct sfc_adapter *sa = dev->data->dev_private; 916 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 917 struct sfc_port *port = &sa->port; 918 int rc; 919 920 sfc_adapter_lock(sa); 921 922 /* 923 * Copy the address to the device private data so that 924 * it could be recalled in the case of adapter restart. 925 */ 926 ether_addr_copy(mac_addr, &port->default_mac_addr); 927 928 if (port->isolated) { 929 sfc_err(sa, "isolated mode is active on the port"); 930 sfc_err(sa, "will not set MAC address"); 931 goto unlock; 932 } 933 934 if (sa->state != SFC_ADAPTER_STARTED) { 935 sfc_notice(sa, "the port is not started"); 936 sfc_notice(sa, "the new MAC address will be set on port start"); 937 938 goto unlock; 939 } 940 941 if (encp->enc_allow_set_mac_with_installed_filters) { 942 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 943 if (rc != 0) { 944 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 945 goto unlock; 946 } 947 948 /* 949 * Changing the MAC address by means of MCDI request 950 * has no effect on received traffic, therefore 951 * we also need to update unicast filters 952 */ 953 rc = sfc_set_rx_mode(sa); 954 if (rc != 0) 955 sfc_err(sa, "cannot set filter (rc = %u)", rc); 956 } else { 957 sfc_warn(sa, "cannot set MAC address with filters installed"); 958 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 959 sfc_warn(sa, "(some traffic may be dropped)"); 960 961 /* 962 * Since setting MAC address with filters installed is not 963 * allowed on the adapter, the new MAC address will be set 964 * by means of adapter restart. sfc_start() shall retrieve 965 * the new address from the device private data and set it. 966 */ 967 sfc_stop(sa); 968 rc = sfc_start(sa); 969 if (rc != 0) 970 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 971 } 972 973 unlock: 974 /* 975 * In the case of failure sa->port->default_mac_addr does not 976 * need rollback since no error code is returned, and the upper 977 * API will anyway update the external MAC address storage. 978 * To be consistent with that new value it is better to keep 979 * the device private value the same. 980 */ 981 sfc_adapter_unlock(sa); 982 } 983 984 985 static int 986 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 987 uint32_t nb_mc_addr) 988 { 989 struct sfc_adapter *sa = dev->data->dev_private; 990 struct sfc_port *port = &sa->port; 991 uint8_t *mc_addrs = port->mcast_addrs; 992 int rc; 993 unsigned int i; 994 995 if (port->isolated) { 996 sfc_err(sa, "isolated mode is active on the port"); 997 sfc_err(sa, "will not set multicast address list"); 998 return -ENOTSUP; 999 } 1000 1001 if (mc_addrs == NULL) 1002 return -ENOBUFS; 1003 1004 if (nb_mc_addr > port->max_mcast_addrs) { 1005 sfc_err(sa, "too many multicast addresses: %u > %u", 1006 nb_mc_addr, port->max_mcast_addrs); 1007 return -EINVAL; 1008 } 1009 1010 for (i = 0; i < nb_mc_addr; ++i) { 1011 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1012 EFX_MAC_ADDR_LEN); 1013 mc_addrs += EFX_MAC_ADDR_LEN; 1014 } 1015 1016 port->nb_mcast_addrs = nb_mc_addr; 1017 1018 if (sa->state != SFC_ADAPTER_STARTED) 1019 return 0; 1020 1021 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1022 port->nb_mcast_addrs); 1023 if (rc != 0) 1024 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1025 1026 SFC_ASSERT(rc > 0); 1027 return -rc; 1028 } 1029 1030 /* 1031 * The function is used by the secondary process as well. It must not 1032 * use any process-local pointers from the adapter data. 1033 */ 1034 static void 1035 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1036 struct rte_eth_rxq_info *qinfo) 1037 { 1038 struct sfc_adapter *sa = dev->data->dev_private; 1039 struct sfc_rxq_info *rxq_info; 1040 struct sfc_rxq *rxq; 1041 1042 sfc_adapter_lock(sa); 1043 1044 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1045 1046 rxq_info = &sa->rxq_info[rx_queue_id]; 1047 rxq = rxq_info->rxq; 1048 SFC_ASSERT(rxq != NULL); 1049 1050 qinfo->mp = rxq->refill_mb_pool; 1051 qinfo->conf.rx_free_thresh = rxq->refill_threshold; 1052 qinfo->conf.rx_drop_en = 1; 1053 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1054 qinfo->conf.offloads = DEV_RX_OFFLOAD_IPV4_CKSUM | 1055 DEV_RX_OFFLOAD_UDP_CKSUM | 1056 DEV_RX_OFFLOAD_TCP_CKSUM; 1057 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1058 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1059 qinfo->scattered_rx = 1; 1060 } 1061 qinfo->nb_desc = rxq_info->entries; 1062 1063 sfc_adapter_unlock(sa); 1064 } 1065 1066 /* 1067 * The function is used by the secondary process as well. It must not 1068 * use any process-local pointers from the adapter data. 1069 */ 1070 static void 1071 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1072 struct rte_eth_txq_info *qinfo) 1073 { 1074 struct sfc_adapter *sa = dev->data->dev_private; 1075 struct sfc_txq_info *txq_info; 1076 1077 sfc_adapter_lock(sa); 1078 1079 SFC_ASSERT(tx_queue_id < sa->txq_count); 1080 1081 txq_info = &sa->txq_info[tx_queue_id]; 1082 SFC_ASSERT(txq_info->txq != NULL); 1083 1084 memset(qinfo, 0, sizeof(*qinfo)); 1085 1086 qinfo->conf.txq_flags = txq_info->txq->flags; 1087 qinfo->conf.offloads = txq_info->txq->offloads; 1088 qinfo->conf.tx_free_thresh = txq_info->txq->free_thresh; 1089 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1090 qinfo->nb_desc = txq_info->entries; 1091 1092 sfc_adapter_unlock(sa); 1093 } 1094 1095 static uint32_t 1096 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1097 { 1098 struct sfc_adapter *sa = dev->data->dev_private; 1099 1100 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1101 1102 return sfc_rx_qdesc_npending(sa, rx_queue_id); 1103 } 1104 1105 static int 1106 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1107 { 1108 struct sfc_dp_rxq *dp_rxq = queue; 1109 1110 return sfc_rx_qdesc_done(dp_rxq, offset); 1111 } 1112 1113 static int 1114 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1115 { 1116 struct sfc_dp_rxq *dp_rxq = queue; 1117 struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq); 1118 1119 return rxq->evq->sa->dp_rx->qdesc_status(dp_rxq, offset); 1120 } 1121 1122 static int 1123 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1124 { 1125 struct sfc_dp_txq *dp_txq = queue; 1126 struct sfc_txq *txq = sfc_txq_by_dp_txq(dp_txq); 1127 1128 return txq->evq->sa->dp_tx->qdesc_status(dp_txq, offset); 1129 } 1130 1131 static int 1132 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1133 { 1134 struct sfc_adapter *sa = dev->data->dev_private; 1135 int rc; 1136 1137 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1138 1139 sfc_adapter_lock(sa); 1140 1141 rc = EINVAL; 1142 if (sa->state != SFC_ADAPTER_STARTED) 1143 goto fail_not_started; 1144 1145 rc = sfc_rx_qstart(sa, rx_queue_id); 1146 if (rc != 0) 1147 goto fail_rx_qstart; 1148 1149 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1150 1151 sfc_adapter_unlock(sa); 1152 1153 return 0; 1154 1155 fail_rx_qstart: 1156 fail_not_started: 1157 sfc_adapter_unlock(sa); 1158 SFC_ASSERT(rc > 0); 1159 return -rc; 1160 } 1161 1162 static int 1163 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1164 { 1165 struct sfc_adapter *sa = dev->data->dev_private; 1166 1167 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1168 1169 sfc_adapter_lock(sa); 1170 sfc_rx_qstop(sa, rx_queue_id); 1171 1172 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1173 1174 sfc_adapter_unlock(sa); 1175 1176 return 0; 1177 } 1178 1179 static int 1180 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1181 { 1182 struct sfc_adapter *sa = dev->data->dev_private; 1183 int rc; 1184 1185 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1186 1187 sfc_adapter_lock(sa); 1188 1189 rc = EINVAL; 1190 if (sa->state != SFC_ADAPTER_STARTED) 1191 goto fail_not_started; 1192 1193 rc = sfc_tx_qstart(sa, tx_queue_id); 1194 if (rc != 0) 1195 goto fail_tx_qstart; 1196 1197 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1198 1199 sfc_adapter_unlock(sa); 1200 return 0; 1201 1202 fail_tx_qstart: 1203 1204 fail_not_started: 1205 sfc_adapter_unlock(sa); 1206 SFC_ASSERT(rc > 0); 1207 return -rc; 1208 } 1209 1210 static int 1211 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1212 { 1213 struct sfc_adapter *sa = dev->data->dev_private; 1214 1215 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1216 1217 sfc_adapter_lock(sa); 1218 1219 sfc_tx_qstop(sa, tx_queue_id); 1220 1221 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1222 1223 sfc_adapter_unlock(sa); 1224 return 0; 1225 } 1226 1227 static efx_tunnel_protocol_t 1228 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1229 { 1230 switch (rte_type) { 1231 case RTE_TUNNEL_TYPE_VXLAN: 1232 return EFX_TUNNEL_PROTOCOL_VXLAN; 1233 case RTE_TUNNEL_TYPE_GENEVE: 1234 return EFX_TUNNEL_PROTOCOL_GENEVE; 1235 default: 1236 return EFX_TUNNEL_NPROTOS; 1237 } 1238 } 1239 1240 enum sfc_udp_tunnel_op_e { 1241 SFC_UDP_TUNNEL_ADD_PORT, 1242 SFC_UDP_TUNNEL_DEL_PORT, 1243 }; 1244 1245 static int 1246 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1247 struct rte_eth_udp_tunnel *tunnel_udp, 1248 enum sfc_udp_tunnel_op_e op) 1249 { 1250 struct sfc_adapter *sa = dev->data->dev_private; 1251 efx_tunnel_protocol_t tunnel_proto; 1252 int rc; 1253 1254 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1255 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1256 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1257 tunnel_udp->udp_port, tunnel_udp->prot_type); 1258 1259 tunnel_proto = 1260 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1261 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1262 rc = ENOTSUP; 1263 goto fail_bad_proto; 1264 } 1265 1266 sfc_adapter_lock(sa); 1267 1268 switch (op) { 1269 case SFC_UDP_TUNNEL_ADD_PORT: 1270 rc = efx_tunnel_config_udp_add(sa->nic, 1271 tunnel_udp->udp_port, 1272 tunnel_proto); 1273 break; 1274 case SFC_UDP_TUNNEL_DEL_PORT: 1275 rc = efx_tunnel_config_udp_remove(sa->nic, 1276 tunnel_udp->udp_port, 1277 tunnel_proto); 1278 break; 1279 default: 1280 rc = EINVAL; 1281 goto fail_bad_op; 1282 } 1283 1284 if (rc != 0) 1285 goto fail_op; 1286 1287 if (sa->state == SFC_ADAPTER_STARTED) { 1288 rc = efx_tunnel_reconfigure(sa->nic); 1289 if (rc == EAGAIN) { 1290 /* 1291 * Configuration is accepted by FW and MC reboot 1292 * is initiated to apply the changes. MC reboot 1293 * will be handled in a usual way (MC reboot 1294 * event on management event queue and adapter 1295 * restart). 1296 */ 1297 rc = 0; 1298 } else if (rc != 0) { 1299 goto fail_reconfigure; 1300 } 1301 } 1302 1303 sfc_adapter_unlock(sa); 1304 return 0; 1305 1306 fail_reconfigure: 1307 /* Remove/restore entry since the change makes the trouble */ 1308 switch (op) { 1309 case SFC_UDP_TUNNEL_ADD_PORT: 1310 (void)efx_tunnel_config_udp_remove(sa->nic, 1311 tunnel_udp->udp_port, 1312 tunnel_proto); 1313 break; 1314 case SFC_UDP_TUNNEL_DEL_PORT: 1315 (void)efx_tunnel_config_udp_add(sa->nic, 1316 tunnel_udp->udp_port, 1317 tunnel_proto); 1318 break; 1319 } 1320 1321 fail_op: 1322 fail_bad_op: 1323 sfc_adapter_unlock(sa); 1324 1325 fail_bad_proto: 1326 SFC_ASSERT(rc > 0); 1327 return -rc; 1328 } 1329 1330 static int 1331 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1332 struct rte_eth_udp_tunnel *tunnel_udp) 1333 { 1334 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1335 } 1336 1337 static int 1338 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1339 struct rte_eth_udp_tunnel *tunnel_udp) 1340 { 1341 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1342 } 1343 1344 #if EFSYS_OPT_RX_SCALE 1345 static int 1346 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1347 struct rte_eth_rss_conf *rss_conf) 1348 { 1349 struct sfc_adapter *sa = dev->data->dev_private; 1350 struct sfc_port *port = &sa->port; 1351 1352 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1353 return -ENOTSUP; 1354 1355 if (sa->rss_channels == 0) 1356 return -EINVAL; 1357 1358 sfc_adapter_lock(sa); 1359 1360 /* 1361 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1362 * hence, conversion is done here to derive a correct set of ETH_RSS 1363 * flags which corresponds to the active EFX configuration stored 1364 * locally in 'sfc_adapter' and kept up-to-date 1365 */ 1366 rss_conf->rss_hf = sfc_efx_to_rte_hash_type(sa->rss_hash_types); 1367 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1368 if (rss_conf->rss_key != NULL) 1369 rte_memcpy(rss_conf->rss_key, sa->rss_key, EFX_RSS_KEY_SIZE); 1370 1371 sfc_adapter_unlock(sa); 1372 1373 return 0; 1374 } 1375 1376 static int 1377 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1378 struct rte_eth_rss_conf *rss_conf) 1379 { 1380 struct sfc_adapter *sa = dev->data->dev_private; 1381 struct sfc_port *port = &sa->port; 1382 unsigned int efx_hash_types; 1383 int rc = 0; 1384 1385 if (port->isolated) 1386 return -ENOTSUP; 1387 1388 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1389 sfc_err(sa, "RSS is not available"); 1390 return -ENOTSUP; 1391 } 1392 1393 if (sa->rss_channels == 0) { 1394 sfc_err(sa, "RSS is not configured"); 1395 return -EINVAL; 1396 } 1397 1398 if ((rss_conf->rss_key != NULL) && 1399 (rss_conf->rss_key_len != sizeof(sa->rss_key))) { 1400 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1401 sizeof(sa->rss_key)); 1402 return -EINVAL; 1403 } 1404 1405 if ((rss_conf->rss_hf & ~SFC_RSS_OFFLOADS) != 0) { 1406 sfc_err(sa, "unsupported hash functions requested"); 1407 return -EINVAL; 1408 } 1409 1410 sfc_adapter_lock(sa); 1411 1412 efx_hash_types = sfc_rte_to_efx_hash_type(rss_conf->rss_hf); 1413 1414 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1415 EFX_RX_HASHALG_TOEPLITZ, 1416 efx_hash_types, B_TRUE); 1417 if (rc != 0) 1418 goto fail_scale_mode_set; 1419 1420 if (rss_conf->rss_key != NULL) { 1421 if (sa->state == SFC_ADAPTER_STARTED) { 1422 rc = efx_rx_scale_key_set(sa->nic, 1423 EFX_RSS_CONTEXT_DEFAULT, 1424 rss_conf->rss_key, 1425 sizeof(sa->rss_key)); 1426 if (rc != 0) 1427 goto fail_scale_key_set; 1428 } 1429 1430 rte_memcpy(sa->rss_key, rss_conf->rss_key, sizeof(sa->rss_key)); 1431 } 1432 1433 sa->rss_hash_types = efx_hash_types; 1434 1435 sfc_adapter_unlock(sa); 1436 1437 return 0; 1438 1439 fail_scale_key_set: 1440 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1441 EFX_RX_HASHALG_TOEPLITZ, 1442 sa->rss_hash_types, B_TRUE) != 0) 1443 sfc_err(sa, "failed to restore RSS mode"); 1444 1445 fail_scale_mode_set: 1446 sfc_adapter_unlock(sa); 1447 return -rc; 1448 } 1449 1450 static int 1451 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1452 struct rte_eth_rss_reta_entry64 *reta_conf, 1453 uint16_t reta_size) 1454 { 1455 struct sfc_adapter *sa = dev->data->dev_private; 1456 struct sfc_port *port = &sa->port; 1457 int entry; 1458 1459 if ((sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) || port->isolated) 1460 return -ENOTSUP; 1461 1462 if (sa->rss_channels == 0) 1463 return -EINVAL; 1464 1465 if (reta_size != EFX_RSS_TBL_SIZE) 1466 return -EINVAL; 1467 1468 sfc_adapter_lock(sa); 1469 1470 for (entry = 0; entry < reta_size; entry++) { 1471 int grp = entry / RTE_RETA_GROUP_SIZE; 1472 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1473 1474 if ((reta_conf[grp].mask >> grp_idx) & 1) 1475 reta_conf[grp].reta[grp_idx] = sa->rss_tbl[entry]; 1476 } 1477 1478 sfc_adapter_unlock(sa); 1479 1480 return 0; 1481 } 1482 1483 static int 1484 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1485 struct rte_eth_rss_reta_entry64 *reta_conf, 1486 uint16_t reta_size) 1487 { 1488 struct sfc_adapter *sa = dev->data->dev_private; 1489 struct sfc_port *port = &sa->port; 1490 unsigned int *rss_tbl_new; 1491 uint16_t entry; 1492 int rc = 0; 1493 1494 1495 if (port->isolated) 1496 return -ENOTSUP; 1497 1498 if (sa->rss_support != EFX_RX_SCALE_EXCLUSIVE) { 1499 sfc_err(sa, "RSS is not available"); 1500 return -ENOTSUP; 1501 } 1502 1503 if (sa->rss_channels == 0) { 1504 sfc_err(sa, "RSS is not configured"); 1505 return -EINVAL; 1506 } 1507 1508 if (reta_size != EFX_RSS_TBL_SIZE) { 1509 sfc_err(sa, "RETA size is wrong (should be %u)", 1510 EFX_RSS_TBL_SIZE); 1511 return -EINVAL; 1512 } 1513 1514 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(sa->rss_tbl), 0); 1515 if (rss_tbl_new == NULL) 1516 return -ENOMEM; 1517 1518 sfc_adapter_lock(sa); 1519 1520 rte_memcpy(rss_tbl_new, sa->rss_tbl, sizeof(sa->rss_tbl)); 1521 1522 for (entry = 0; entry < reta_size; entry++) { 1523 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1524 struct rte_eth_rss_reta_entry64 *grp; 1525 1526 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1527 1528 if (grp->mask & (1ull << grp_idx)) { 1529 if (grp->reta[grp_idx] >= sa->rss_channels) { 1530 rc = EINVAL; 1531 goto bad_reta_entry; 1532 } 1533 rss_tbl_new[entry] = grp->reta[grp_idx]; 1534 } 1535 } 1536 1537 if (sa->state == SFC_ADAPTER_STARTED) { 1538 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1539 rss_tbl_new, EFX_RSS_TBL_SIZE); 1540 if (rc != 0) 1541 goto fail_scale_tbl_set; 1542 } 1543 1544 rte_memcpy(sa->rss_tbl, rss_tbl_new, sizeof(sa->rss_tbl)); 1545 1546 fail_scale_tbl_set: 1547 bad_reta_entry: 1548 sfc_adapter_unlock(sa); 1549 1550 rte_free(rss_tbl_new); 1551 1552 SFC_ASSERT(rc >= 0); 1553 return -rc; 1554 } 1555 #endif 1556 1557 static int 1558 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1559 enum rte_filter_op filter_op, 1560 void *arg) 1561 { 1562 struct sfc_adapter *sa = dev->data->dev_private; 1563 int rc = ENOTSUP; 1564 1565 sfc_log_init(sa, "entry"); 1566 1567 switch (filter_type) { 1568 case RTE_ETH_FILTER_NONE: 1569 sfc_err(sa, "Global filters configuration not supported"); 1570 break; 1571 case RTE_ETH_FILTER_MACVLAN: 1572 sfc_err(sa, "MACVLAN filters not supported"); 1573 break; 1574 case RTE_ETH_FILTER_ETHERTYPE: 1575 sfc_err(sa, "EtherType filters not supported"); 1576 break; 1577 case RTE_ETH_FILTER_FLEXIBLE: 1578 sfc_err(sa, "Flexible filters not supported"); 1579 break; 1580 case RTE_ETH_FILTER_SYN: 1581 sfc_err(sa, "SYN filters not supported"); 1582 break; 1583 case RTE_ETH_FILTER_NTUPLE: 1584 sfc_err(sa, "NTUPLE filters not supported"); 1585 break; 1586 case RTE_ETH_FILTER_TUNNEL: 1587 sfc_err(sa, "Tunnel filters not supported"); 1588 break; 1589 case RTE_ETH_FILTER_FDIR: 1590 sfc_err(sa, "Flow Director filters not supported"); 1591 break; 1592 case RTE_ETH_FILTER_HASH: 1593 sfc_err(sa, "Hash filters not supported"); 1594 break; 1595 case RTE_ETH_FILTER_GENERIC: 1596 if (filter_op != RTE_ETH_FILTER_GET) { 1597 rc = EINVAL; 1598 } else { 1599 *(const void **)arg = &sfc_flow_ops; 1600 rc = 0; 1601 } 1602 break; 1603 default: 1604 sfc_err(sa, "Unknown filter type %u", filter_type); 1605 break; 1606 } 1607 1608 sfc_log_init(sa, "exit: %d", -rc); 1609 SFC_ASSERT(rc >= 0); 1610 return -rc; 1611 } 1612 1613 static const struct eth_dev_ops sfc_eth_dev_ops = { 1614 .dev_configure = sfc_dev_configure, 1615 .dev_start = sfc_dev_start, 1616 .dev_stop = sfc_dev_stop, 1617 .dev_set_link_up = sfc_dev_set_link_up, 1618 .dev_set_link_down = sfc_dev_set_link_down, 1619 .dev_close = sfc_dev_close, 1620 .promiscuous_enable = sfc_dev_promisc_enable, 1621 .promiscuous_disable = sfc_dev_promisc_disable, 1622 .allmulticast_enable = sfc_dev_allmulti_enable, 1623 .allmulticast_disable = sfc_dev_allmulti_disable, 1624 .link_update = sfc_dev_link_update, 1625 .stats_get = sfc_stats_get, 1626 .stats_reset = sfc_stats_reset, 1627 .xstats_get = sfc_xstats_get, 1628 .xstats_reset = sfc_stats_reset, 1629 .xstats_get_names = sfc_xstats_get_names, 1630 .dev_infos_get = sfc_dev_infos_get, 1631 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1632 .mtu_set = sfc_dev_set_mtu, 1633 .rx_queue_start = sfc_rx_queue_start, 1634 .rx_queue_stop = sfc_rx_queue_stop, 1635 .tx_queue_start = sfc_tx_queue_start, 1636 .tx_queue_stop = sfc_tx_queue_stop, 1637 .rx_queue_setup = sfc_rx_queue_setup, 1638 .rx_queue_release = sfc_rx_queue_release, 1639 .rx_queue_count = sfc_rx_queue_count, 1640 .rx_descriptor_done = sfc_rx_descriptor_done, 1641 .rx_descriptor_status = sfc_rx_descriptor_status, 1642 .tx_descriptor_status = sfc_tx_descriptor_status, 1643 .tx_queue_setup = sfc_tx_queue_setup, 1644 .tx_queue_release = sfc_tx_queue_release, 1645 .flow_ctrl_get = sfc_flow_ctrl_get, 1646 .flow_ctrl_set = sfc_flow_ctrl_set, 1647 .mac_addr_set = sfc_mac_addr_set, 1648 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1649 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1650 #if EFSYS_OPT_RX_SCALE 1651 .reta_update = sfc_dev_rss_reta_update, 1652 .reta_query = sfc_dev_rss_reta_query, 1653 .rss_hash_update = sfc_dev_rss_hash_update, 1654 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1655 #endif 1656 .filter_ctrl = sfc_dev_filter_ctrl, 1657 .set_mc_addr_list = sfc_set_mc_addr_list, 1658 .rxq_info_get = sfc_rx_queue_info_get, 1659 .txq_info_get = sfc_tx_queue_info_get, 1660 .fw_version_get = sfc_fw_version_get, 1661 .xstats_get_by_id = sfc_xstats_get_by_id, 1662 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1663 }; 1664 1665 /** 1666 * Duplicate a string in potentially shared memory required for 1667 * multi-process support. 1668 * 1669 * strdup() allocates from process-local heap/memory. 1670 */ 1671 static char * 1672 sfc_strdup(const char *str) 1673 { 1674 size_t size; 1675 char *copy; 1676 1677 if (str == NULL) 1678 return NULL; 1679 1680 size = strlen(str) + 1; 1681 copy = rte_malloc(__func__, size, 0); 1682 if (copy != NULL) 1683 rte_memcpy(copy, str, size); 1684 1685 return copy; 1686 } 1687 1688 static int 1689 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1690 { 1691 struct sfc_adapter *sa = dev->data->dev_private; 1692 unsigned int avail_caps = 0; 1693 const char *rx_name = NULL; 1694 const char *tx_name = NULL; 1695 int rc; 1696 1697 switch (sa->family) { 1698 case EFX_FAMILY_HUNTINGTON: 1699 case EFX_FAMILY_MEDFORD: 1700 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1701 break; 1702 default: 1703 break; 1704 } 1705 1706 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1707 sfc_kvarg_string_handler, &rx_name); 1708 if (rc != 0) 1709 goto fail_kvarg_rx_datapath; 1710 1711 if (rx_name != NULL) { 1712 sa->dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1713 if (sa->dp_rx == NULL) { 1714 sfc_err(sa, "Rx datapath %s not found", rx_name); 1715 rc = ENOENT; 1716 goto fail_dp_rx; 1717 } 1718 if (!sfc_dp_match_hw_fw_caps(&sa->dp_rx->dp, avail_caps)) { 1719 sfc_err(sa, 1720 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1721 rx_name); 1722 rc = EINVAL; 1723 goto fail_dp_rx_caps; 1724 } 1725 } else { 1726 sa->dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1727 if (sa->dp_rx == NULL) { 1728 sfc_err(sa, "Rx datapath by caps %#x not found", 1729 avail_caps); 1730 rc = ENOENT; 1731 goto fail_dp_rx; 1732 } 1733 } 1734 1735 sa->dp_rx_name = sfc_strdup(sa->dp_rx->dp.name); 1736 if (sa->dp_rx_name == NULL) { 1737 rc = ENOMEM; 1738 goto fail_dp_rx_name; 1739 } 1740 1741 sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name); 1742 1743 dev->rx_pkt_burst = sa->dp_rx->pkt_burst; 1744 1745 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1746 sfc_kvarg_string_handler, &tx_name); 1747 if (rc != 0) 1748 goto fail_kvarg_tx_datapath; 1749 1750 if (tx_name != NULL) { 1751 sa->dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1752 if (sa->dp_tx == NULL) { 1753 sfc_err(sa, "Tx datapath %s not found", tx_name); 1754 rc = ENOENT; 1755 goto fail_dp_tx; 1756 } 1757 if (!sfc_dp_match_hw_fw_caps(&sa->dp_tx->dp, avail_caps)) { 1758 sfc_err(sa, 1759 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1760 tx_name); 1761 rc = EINVAL; 1762 goto fail_dp_tx_caps; 1763 } 1764 } else { 1765 sa->dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1766 if (sa->dp_tx == NULL) { 1767 sfc_err(sa, "Tx datapath by caps %#x not found", 1768 avail_caps); 1769 rc = ENOENT; 1770 goto fail_dp_tx; 1771 } 1772 } 1773 1774 sa->dp_tx_name = sfc_strdup(sa->dp_tx->dp.name); 1775 if (sa->dp_tx_name == NULL) { 1776 rc = ENOMEM; 1777 goto fail_dp_tx_name; 1778 } 1779 1780 sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name); 1781 1782 dev->tx_pkt_burst = sa->dp_tx->pkt_burst; 1783 1784 dev->dev_ops = &sfc_eth_dev_ops; 1785 1786 return 0; 1787 1788 fail_dp_tx_name: 1789 fail_dp_tx_caps: 1790 sa->dp_tx = NULL; 1791 1792 fail_dp_tx: 1793 fail_kvarg_tx_datapath: 1794 rte_free(sa->dp_rx_name); 1795 sa->dp_rx_name = NULL; 1796 1797 fail_dp_rx_name: 1798 fail_dp_rx_caps: 1799 sa->dp_rx = NULL; 1800 1801 fail_dp_rx: 1802 fail_kvarg_rx_datapath: 1803 return rc; 1804 } 1805 1806 static void 1807 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1808 { 1809 struct sfc_adapter *sa = dev->data->dev_private; 1810 1811 dev->dev_ops = NULL; 1812 dev->rx_pkt_burst = NULL; 1813 dev->tx_pkt_burst = NULL; 1814 1815 rte_free(sa->dp_tx_name); 1816 sa->dp_tx_name = NULL; 1817 sa->dp_tx = NULL; 1818 1819 rte_free(sa->dp_rx_name); 1820 sa->dp_rx_name = NULL; 1821 sa->dp_rx = NULL; 1822 } 1823 1824 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1825 .rxq_info_get = sfc_rx_queue_info_get, 1826 .txq_info_get = sfc_tx_queue_info_get, 1827 }; 1828 1829 static int 1830 sfc_eth_dev_secondary_set_ops(struct rte_eth_dev *dev) 1831 { 1832 /* 1833 * Device private data has really many process-local pointers. 1834 * Below code should be extremely careful to use data located 1835 * in shared memory only. 1836 */ 1837 struct sfc_adapter *sa = dev->data->dev_private; 1838 const struct sfc_dp_rx *dp_rx; 1839 const struct sfc_dp_tx *dp_tx; 1840 int rc; 1841 1842 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1843 if (dp_rx == NULL) { 1844 sfc_err(sa, "cannot find %s Rx datapath", sa->dp_tx_name); 1845 rc = ENOENT; 1846 goto fail_dp_rx; 1847 } 1848 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1849 sfc_err(sa, "%s Rx datapath does not support multi-process", 1850 sa->dp_tx_name); 1851 rc = EINVAL; 1852 goto fail_dp_rx_multi_process; 1853 } 1854 1855 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1856 if (dp_tx == NULL) { 1857 sfc_err(sa, "cannot find %s Tx datapath", sa->dp_tx_name); 1858 rc = ENOENT; 1859 goto fail_dp_tx; 1860 } 1861 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1862 sfc_err(sa, "%s Tx datapath does not support multi-process", 1863 sa->dp_tx_name); 1864 rc = EINVAL; 1865 goto fail_dp_tx_multi_process; 1866 } 1867 1868 dev->rx_pkt_burst = dp_rx->pkt_burst; 1869 dev->tx_pkt_burst = dp_tx->pkt_burst; 1870 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1871 1872 return 0; 1873 1874 fail_dp_tx_multi_process: 1875 fail_dp_tx: 1876 fail_dp_rx_multi_process: 1877 fail_dp_rx: 1878 return rc; 1879 } 1880 1881 static void 1882 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1883 { 1884 dev->dev_ops = NULL; 1885 dev->tx_pkt_burst = NULL; 1886 dev->rx_pkt_burst = NULL; 1887 } 1888 1889 static void 1890 sfc_register_dp(void) 1891 { 1892 /* Register once */ 1893 if (TAILQ_EMPTY(&sfc_dp_head)) { 1894 /* Prefer EF10 datapath */ 1895 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 1896 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 1897 1898 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 1899 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 1900 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 1901 } 1902 } 1903 1904 static int 1905 sfc_eth_dev_init(struct rte_eth_dev *dev) 1906 { 1907 struct sfc_adapter *sa = dev->data->dev_private; 1908 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 1909 int rc; 1910 const efx_nic_cfg_t *encp; 1911 const struct ether_addr *from; 1912 1913 sfc_register_dp(); 1914 1915 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 1916 return -sfc_eth_dev_secondary_set_ops(dev); 1917 1918 /* Required for logging */ 1919 sa->pci_addr = pci_dev->addr; 1920 sa->port_id = dev->data->port_id; 1921 1922 sa->eth_dev = dev; 1923 1924 /* Copy PCI device info to the dev->data */ 1925 rte_eth_copy_pci_info(dev, pci_dev); 1926 1927 sa->logtype_main = sfc_register_logtype(sa, SFC_LOGTYPE_MAIN_STR, 1928 RTE_LOG_NOTICE); 1929 1930 rc = sfc_kvargs_parse(sa); 1931 if (rc != 0) 1932 goto fail_kvargs_parse; 1933 1934 sfc_log_init(sa, "entry"); 1935 1936 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 1937 if (dev->data->mac_addrs == NULL) { 1938 rc = ENOMEM; 1939 goto fail_mac_addrs; 1940 } 1941 1942 sfc_adapter_lock_init(sa); 1943 sfc_adapter_lock(sa); 1944 1945 sfc_log_init(sa, "probing"); 1946 rc = sfc_probe(sa); 1947 if (rc != 0) 1948 goto fail_probe; 1949 1950 sfc_log_init(sa, "set device ops"); 1951 rc = sfc_eth_dev_set_ops(dev); 1952 if (rc != 0) 1953 goto fail_set_ops; 1954 1955 sfc_log_init(sa, "attaching"); 1956 rc = sfc_attach(sa); 1957 if (rc != 0) 1958 goto fail_attach; 1959 1960 encp = efx_nic_cfg_get(sa->nic); 1961 1962 /* 1963 * The arguments are really reverse order in comparison to 1964 * Linux kernel. Copy from NIC config to Ethernet device data. 1965 */ 1966 from = (const struct ether_addr *)(encp->enc_mac_addr); 1967 ether_addr_copy(from, &dev->data->mac_addrs[0]); 1968 1969 sfc_adapter_unlock(sa); 1970 1971 sfc_log_init(sa, "done"); 1972 return 0; 1973 1974 fail_attach: 1975 sfc_eth_dev_clear_ops(dev); 1976 1977 fail_set_ops: 1978 sfc_unprobe(sa); 1979 1980 fail_probe: 1981 sfc_adapter_unlock(sa); 1982 sfc_adapter_lock_fini(sa); 1983 rte_free(dev->data->mac_addrs); 1984 dev->data->mac_addrs = NULL; 1985 1986 fail_mac_addrs: 1987 sfc_kvargs_cleanup(sa); 1988 1989 fail_kvargs_parse: 1990 sfc_log_init(sa, "failed %d", rc); 1991 SFC_ASSERT(rc > 0); 1992 return -rc; 1993 } 1994 1995 static int 1996 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 1997 { 1998 struct sfc_adapter *sa; 1999 2000 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2001 sfc_eth_dev_secondary_clear_ops(dev); 2002 return 0; 2003 } 2004 2005 sa = dev->data->dev_private; 2006 sfc_log_init(sa, "entry"); 2007 2008 sfc_adapter_lock(sa); 2009 2010 sfc_eth_dev_clear_ops(dev); 2011 2012 sfc_detach(sa); 2013 sfc_unprobe(sa); 2014 2015 rte_free(dev->data->mac_addrs); 2016 dev->data->mac_addrs = NULL; 2017 2018 sfc_kvargs_cleanup(sa); 2019 2020 sfc_adapter_unlock(sa); 2021 sfc_adapter_lock_fini(sa); 2022 2023 sfc_log_init(sa, "done"); 2024 2025 /* Required for logging, so cleanup last */ 2026 sa->eth_dev = NULL; 2027 return 0; 2028 } 2029 2030 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2031 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2032 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2033 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2034 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2035 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2036 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2037 { .vendor_id = 0 /* sentinel */ } 2038 }; 2039 2040 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2041 struct rte_pci_device *pci_dev) 2042 { 2043 return rte_eth_dev_pci_generic_probe(pci_dev, 2044 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2045 } 2046 2047 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2048 { 2049 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2050 } 2051 2052 static struct rte_pci_driver sfc_efx_pmd = { 2053 .id_table = pci_id_sfc_efx_map, 2054 .drv_flags = 2055 RTE_PCI_DRV_INTR_LSC | 2056 RTE_PCI_DRV_NEED_MAPPING, 2057 .probe = sfc_eth_dev_pci_probe, 2058 .remove = sfc_eth_dev_pci_remove, 2059 }; 2060 2061 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2062 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2063 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2064 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2065 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2066 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2067 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2068 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2069 2070 RTE_INIT(sfc_driver_register_logtype); 2071 static void 2072 sfc_driver_register_logtype(void) 2073 { 2074 int ret; 2075 2076 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2077 RTE_LOG_NOTICE); 2078 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2079 } 2080