1 /* SPDX-License-Identifier: BSD-3-Clause 2 * 3 * Copyright (c) 2016-2018 Solarflare Communications Inc. 4 * All rights reserved. 5 * 6 * This software was jointly developed between OKTET Labs (under contract 7 * for Solarflare) and Solarflare Communications, Inc. 8 */ 9 10 #include <rte_dev.h> 11 #include <rte_ethdev_driver.h> 12 #include <rte_ethdev_pci.h> 13 #include <rte_pci.h> 14 #include <rte_bus_pci.h> 15 #include <rte_errno.h> 16 #include <rte_string_fns.h> 17 18 #include "efx.h" 19 20 #include "sfc.h" 21 #include "sfc_debug.h" 22 #include "sfc_log.h" 23 #include "sfc_kvargs.h" 24 #include "sfc_ev.h" 25 #include "sfc_rx.h" 26 #include "sfc_tx.h" 27 #include "sfc_flow.h" 28 #include "sfc_dp.h" 29 #include "sfc_dp_rx.h" 30 31 uint32_t sfc_logtype_driver; 32 33 static struct sfc_dp_list sfc_dp_head = 34 TAILQ_HEAD_INITIALIZER(sfc_dp_head); 35 36 static int 37 sfc_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size) 38 { 39 struct sfc_adapter *sa = dev->data->dev_private; 40 efx_nic_fw_info_t enfi; 41 int ret; 42 int rc; 43 44 /* 45 * Return value of the callback is likely supposed to be 46 * equal to or greater than 0, nevertheless, if an error 47 * occurs, it will be desirable to pass it to the caller 48 */ 49 if ((fw_version == NULL) || (fw_size == 0)) 50 return -EINVAL; 51 52 rc = efx_nic_get_fw_version(sa->nic, &enfi); 53 if (rc != 0) 54 return -rc; 55 56 ret = snprintf(fw_version, fw_size, 57 "%" PRIu16 ".%" PRIu16 ".%" PRIu16 ".%" PRIu16, 58 enfi.enfi_mc_fw_version[0], enfi.enfi_mc_fw_version[1], 59 enfi.enfi_mc_fw_version[2], enfi.enfi_mc_fw_version[3]); 60 if (ret < 0) 61 return ret; 62 63 if (enfi.enfi_dpcpu_fw_ids_valid) { 64 size_t dpcpu_fw_ids_offset = MIN(fw_size - 1, (size_t)ret); 65 int ret_extra; 66 67 ret_extra = snprintf(fw_version + dpcpu_fw_ids_offset, 68 fw_size - dpcpu_fw_ids_offset, 69 " rx%" PRIx16 " tx%" PRIx16, 70 enfi.enfi_rx_dpcpu_fw_id, 71 enfi.enfi_tx_dpcpu_fw_id); 72 if (ret_extra < 0) 73 return ret_extra; 74 75 ret += ret_extra; 76 } 77 78 if (fw_size < (size_t)(++ret)) 79 return ret; 80 else 81 return 0; 82 } 83 84 static void 85 sfc_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) 86 { 87 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 88 struct sfc_adapter *sa = dev->data->dev_private; 89 struct sfc_rss *rss = &sa->rss; 90 uint64_t txq_offloads_def = 0; 91 92 sfc_log_init(sa, "entry"); 93 94 dev_info->max_rx_pktlen = EFX_MAC_PDU_MAX; 95 96 /* Autonegotiation may be disabled */ 97 dev_info->speed_capa = ETH_LINK_SPEED_FIXED; 98 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_1000FDX) 99 dev_info->speed_capa |= ETH_LINK_SPEED_1G; 100 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_10000FDX) 101 dev_info->speed_capa |= ETH_LINK_SPEED_10G; 102 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_25000FDX) 103 dev_info->speed_capa |= ETH_LINK_SPEED_25G; 104 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_40000FDX) 105 dev_info->speed_capa |= ETH_LINK_SPEED_40G; 106 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_50000FDX) 107 dev_info->speed_capa |= ETH_LINK_SPEED_50G; 108 if (sa->port.phy_adv_cap_mask & EFX_PHY_CAP_100000FDX) 109 dev_info->speed_capa |= ETH_LINK_SPEED_100G; 110 111 dev_info->max_rx_queues = sa->rxq_max; 112 dev_info->max_tx_queues = sa->txq_max; 113 114 /* By default packets are dropped if no descriptors are available */ 115 dev_info->default_rxconf.rx_drop_en = 1; 116 117 dev_info->rx_queue_offload_capa = sfc_rx_get_queue_offload_caps(sa); 118 119 /* 120 * rx_offload_capa includes both device and queue offloads since 121 * the latter may be requested on a per device basis which makes 122 * sense when some offloads are needed to be set on all queues. 123 */ 124 dev_info->rx_offload_capa = sfc_rx_get_dev_offload_caps(sa) | 125 dev_info->rx_queue_offload_capa; 126 127 dev_info->tx_queue_offload_capa = sfc_tx_get_queue_offload_caps(sa); 128 129 /* 130 * tx_offload_capa includes both device and queue offloads since 131 * the latter may be requested on a per device basis which makes 132 * sense when some offloads are needed to be set on all queues. 133 */ 134 dev_info->tx_offload_capa = sfc_tx_get_dev_offload_caps(sa) | 135 dev_info->tx_queue_offload_capa; 136 137 if (dev_info->tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) 138 txq_offloads_def |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; 139 140 dev_info->default_txconf.offloads |= txq_offloads_def; 141 142 if (rss->context_type != EFX_RX_SCALE_UNAVAILABLE) { 143 uint64_t rte_hf = 0; 144 unsigned int i; 145 146 for (i = 0; i < rss->hf_map_nb_entries; ++i) 147 rte_hf |= rss->hf_map[i].rte; 148 149 dev_info->reta_size = EFX_RSS_TBL_SIZE; 150 dev_info->hash_key_size = EFX_RSS_KEY_SIZE; 151 dev_info->flow_type_rss_offloads = rte_hf; 152 } 153 154 /* Initialize to hardware limits */ 155 dev_info->rx_desc_lim.nb_max = EFX_RXQ_MAXNDESCS; 156 dev_info->rx_desc_lim.nb_min = EFX_RXQ_MINNDESCS; 157 /* The RXQ hardware requires that the descriptor count is a power 158 * of 2, but rx_desc_lim cannot properly describe that constraint. 159 */ 160 dev_info->rx_desc_lim.nb_align = EFX_RXQ_MINNDESCS; 161 162 /* Initialize to hardware limits */ 163 dev_info->tx_desc_lim.nb_max = sa->txq_max_entries; 164 dev_info->tx_desc_lim.nb_min = EFX_TXQ_MINNDESCS; 165 /* 166 * The TXQ hardware requires that the descriptor count is a power 167 * of 2, but tx_desc_lim cannot properly describe that constraint 168 */ 169 dev_info->tx_desc_lim.nb_align = EFX_TXQ_MINNDESCS; 170 171 if (sap->dp_rx->get_dev_info != NULL) 172 sap->dp_rx->get_dev_info(dev_info); 173 if (sap->dp_tx->get_dev_info != NULL) 174 sap->dp_tx->get_dev_info(dev_info); 175 176 dev_info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP | 177 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP; 178 } 179 180 static const uint32_t * 181 sfc_dev_supported_ptypes_get(struct rte_eth_dev *dev) 182 { 183 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 184 struct sfc_adapter *sa = dev->data->dev_private; 185 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 186 uint32_t tunnel_encaps = encp->enc_tunnel_encapsulations_supported; 187 188 return sap->dp_rx->supported_ptypes_get(tunnel_encaps); 189 } 190 191 static int 192 sfc_dev_configure(struct rte_eth_dev *dev) 193 { 194 struct rte_eth_dev_data *dev_data = dev->data; 195 struct sfc_adapter *sa = dev_data->dev_private; 196 int rc; 197 198 sfc_log_init(sa, "entry n_rxq=%u n_txq=%u", 199 dev_data->nb_rx_queues, dev_data->nb_tx_queues); 200 201 sfc_adapter_lock(sa); 202 switch (sa->state) { 203 case SFC_ADAPTER_CONFIGURED: 204 /* FALLTHROUGH */ 205 case SFC_ADAPTER_INITIALIZED: 206 rc = sfc_configure(sa); 207 break; 208 default: 209 sfc_err(sa, "unexpected adapter state %u to configure", 210 sa->state); 211 rc = EINVAL; 212 break; 213 } 214 sfc_adapter_unlock(sa); 215 216 sfc_log_init(sa, "done %d", rc); 217 SFC_ASSERT(rc >= 0); 218 return -rc; 219 } 220 221 static int 222 sfc_dev_start(struct rte_eth_dev *dev) 223 { 224 struct sfc_adapter *sa = dev->data->dev_private; 225 int rc; 226 227 sfc_log_init(sa, "entry"); 228 229 sfc_adapter_lock(sa); 230 rc = sfc_start(sa); 231 sfc_adapter_unlock(sa); 232 233 sfc_log_init(sa, "done %d", rc); 234 SFC_ASSERT(rc >= 0); 235 return -rc; 236 } 237 238 static int 239 sfc_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete) 240 { 241 struct sfc_adapter *sa = dev->data->dev_private; 242 struct rte_eth_link current_link; 243 int ret; 244 245 sfc_log_init(sa, "entry"); 246 247 if (sa->state != SFC_ADAPTER_STARTED) { 248 sfc_port_link_mode_to_info(EFX_LINK_UNKNOWN, ¤t_link); 249 } else if (wait_to_complete) { 250 efx_link_mode_t link_mode; 251 252 if (efx_port_poll(sa->nic, &link_mode) != 0) 253 link_mode = EFX_LINK_UNKNOWN; 254 sfc_port_link_mode_to_info(link_mode, ¤t_link); 255 256 } else { 257 sfc_ev_mgmt_qpoll(sa); 258 rte_eth_linkstatus_get(dev, ¤t_link); 259 } 260 261 ret = rte_eth_linkstatus_set(dev, ¤t_link); 262 if (ret == 0) 263 sfc_notice(sa, "Link status is %s", 264 current_link.link_status ? "UP" : "DOWN"); 265 266 return ret; 267 } 268 269 static void 270 sfc_dev_stop(struct rte_eth_dev *dev) 271 { 272 struct sfc_adapter *sa = dev->data->dev_private; 273 274 sfc_log_init(sa, "entry"); 275 276 sfc_adapter_lock(sa); 277 sfc_stop(sa); 278 sfc_adapter_unlock(sa); 279 280 sfc_log_init(sa, "done"); 281 } 282 283 static int 284 sfc_dev_set_link_up(struct rte_eth_dev *dev) 285 { 286 struct sfc_adapter *sa = dev->data->dev_private; 287 int rc; 288 289 sfc_log_init(sa, "entry"); 290 291 sfc_adapter_lock(sa); 292 rc = sfc_start(sa); 293 sfc_adapter_unlock(sa); 294 295 SFC_ASSERT(rc >= 0); 296 return -rc; 297 } 298 299 static int 300 sfc_dev_set_link_down(struct rte_eth_dev *dev) 301 { 302 struct sfc_adapter *sa = dev->data->dev_private; 303 304 sfc_log_init(sa, "entry"); 305 306 sfc_adapter_lock(sa); 307 sfc_stop(sa); 308 sfc_adapter_unlock(sa); 309 310 return 0; 311 } 312 313 static void 314 sfc_dev_close(struct rte_eth_dev *dev) 315 { 316 struct sfc_adapter *sa = dev->data->dev_private; 317 318 sfc_log_init(sa, "entry"); 319 320 sfc_adapter_lock(sa); 321 switch (sa->state) { 322 case SFC_ADAPTER_STARTED: 323 sfc_stop(sa); 324 SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED); 325 /* FALLTHROUGH */ 326 case SFC_ADAPTER_CONFIGURED: 327 sfc_close(sa); 328 SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED); 329 /* FALLTHROUGH */ 330 case SFC_ADAPTER_INITIALIZED: 331 break; 332 default: 333 sfc_err(sa, "unexpected adapter state %u on close", sa->state); 334 break; 335 } 336 sfc_adapter_unlock(sa); 337 338 sfc_log_init(sa, "done"); 339 } 340 341 static void 342 sfc_dev_filter_set(struct rte_eth_dev *dev, enum sfc_dev_filter_mode mode, 343 boolean_t enabled) 344 { 345 struct sfc_port *port; 346 boolean_t *toggle; 347 struct sfc_adapter *sa = dev->data->dev_private; 348 boolean_t allmulti = (mode == SFC_DEV_FILTER_MODE_ALLMULTI); 349 const char *desc = (allmulti) ? "all-multi" : "promiscuous"; 350 351 sfc_adapter_lock(sa); 352 353 port = &sa->port; 354 toggle = (allmulti) ? (&port->allmulti) : (&port->promisc); 355 356 if (*toggle != enabled) { 357 *toggle = enabled; 358 359 if (port->isolated) { 360 sfc_warn(sa, "isolated mode is active on the port"); 361 sfc_warn(sa, "the change is to be applied on the next " 362 "start provided that isolated mode is " 363 "disabled prior the next start"); 364 } else if ((sa->state == SFC_ADAPTER_STARTED) && 365 (sfc_set_rx_mode(sa) != 0)) { 366 *toggle = !(enabled); 367 sfc_warn(sa, "Failed to %s %s mode", 368 ((enabled) ? "enable" : "disable"), desc); 369 } 370 } 371 372 sfc_adapter_unlock(sa); 373 } 374 375 static void 376 sfc_dev_promisc_enable(struct rte_eth_dev *dev) 377 { 378 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_TRUE); 379 } 380 381 static void 382 sfc_dev_promisc_disable(struct rte_eth_dev *dev) 383 { 384 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_PROMISC, B_FALSE); 385 } 386 387 static void 388 sfc_dev_allmulti_enable(struct rte_eth_dev *dev) 389 { 390 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_TRUE); 391 } 392 393 static void 394 sfc_dev_allmulti_disable(struct rte_eth_dev *dev) 395 { 396 sfc_dev_filter_set(dev, SFC_DEV_FILTER_MODE_ALLMULTI, B_FALSE); 397 } 398 399 static int 400 sfc_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, 401 uint16_t nb_rx_desc, unsigned int socket_id, 402 const struct rte_eth_rxconf *rx_conf, 403 struct rte_mempool *mb_pool) 404 { 405 struct sfc_adapter *sa = dev->data->dev_private; 406 int rc; 407 408 sfc_log_init(sa, "RxQ=%u nb_rx_desc=%u socket_id=%u", 409 rx_queue_id, nb_rx_desc, socket_id); 410 411 sfc_adapter_lock(sa); 412 413 rc = sfc_rx_qinit(sa, rx_queue_id, nb_rx_desc, socket_id, 414 rx_conf, mb_pool); 415 if (rc != 0) 416 goto fail_rx_qinit; 417 418 dev->data->rx_queues[rx_queue_id] = sa->rxq_info[rx_queue_id].dp; 419 420 sfc_adapter_unlock(sa); 421 422 return 0; 423 424 fail_rx_qinit: 425 sfc_adapter_unlock(sa); 426 SFC_ASSERT(rc > 0); 427 return -rc; 428 } 429 430 static void 431 sfc_rx_queue_release(void *queue) 432 { 433 struct sfc_dp_rxq *dp_rxq = queue; 434 struct sfc_rxq *rxq; 435 struct sfc_adapter *sa; 436 unsigned int sw_index; 437 438 if (dp_rxq == NULL) 439 return; 440 441 rxq = sfc_rxq_by_dp_rxq(dp_rxq); 442 sa = rxq->evq->sa; 443 sfc_adapter_lock(sa); 444 445 sw_index = dp_rxq->dpq.queue_id; 446 447 sfc_log_init(sa, "RxQ=%u", sw_index); 448 449 sfc_rx_qfini(sa, sw_index); 450 451 sfc_adapter_unlock(sa); 452 } 453 454 static int 455 sfc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, 456 uint16_t nb_tx_desc, unsigned int socket_id, 457 const struct rte_eth_txconf *tx_conf) 458 { 459 struct sfc_adapter *sa = dev->data->dev_private; 460 int rc; 461 462 sfc_log_init(sa, "TxQ = %u, nb_tx_desc = %u, socket_id = %u", 463 tx_queue_id, nb_tx_desc, socket_id); 464 465 sfc_adapter_lock(sa); 466 467 rc = sfc_tx_qinit(sa, tx_queue_id, nb_tx_desc, socket_id, tx_conf); 468 if (rc != 0) 469 goto fail_tx_qinit; 470 471 dev->data->tx_queues[tx_queue_id] = sa->txq_info[tx_queue_id].dp; 472 473 sfc_adapter_unlock(sa); 474 return 0; 475 476 fail_tx_qinit: 477 sfc_adapter_unlock(sa); 478 SFC_ASSERT(rc > 0); 479 return -rc; 480 } 481 482 static void 483 sfc_tx_queue_release(void *queue) 484 { 485 struct sfc_dp_txq *dp_txq = queue; 486 struct sfc_txq *txq; 487 unsigned int sw_index; 488 struct sfc_adapter *sa; 489 490 if (dp_txq == NULL) 491 return; 492 493 txq = sfc_txq_by_dp_txq(dp_txq); 494 sw_index = sfc_txq_sw_index(txq); 495 496 SFC_ASSERT(txq->evq != NULL); 497 sa = txq->evq->sa; 498 499 sfc_log_init(sa, "TxQ = %u", sw_index); 500 501 sfc_adapter_lock(sa); 502 503 sfc_tx_qfini(sa, sw_index); 504 505 sfc_adapter_unlock(sa); 506 } 507 508 /* 509 * Some statistics are computed as A - B where A and B each increase 510 * monotonically with some hardware counter(s) and the counters are read 511 * asynchronously. 512 * 513 * If packet X is counted in A, but not counted in B yet, computed value is 514 * greater than real. 515 * 516 * If packet X is not counted in A at the moment of reading the counter, 517 * but counted in B at the moment of reading the counter, computed value 518 * is less than real. 519 * 520 * However, counter which grows backward is worse evil than slightly wrong 521 * value. So, let's try to guarantee that it never happens except may be 522 * the case when the MAC stats are zeroed as a result of a NIC reset. 523 */ 524 static void 525 sfc_update_diff_stat(uint64_t *stat, uint64_t newval) 526 { 527 if ((int64_t)(newval - *stat) > 0 || newval == 0) 528 *stat = newval; 529 } 530 531 static int 532 sfc_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats) 533 { 534 struct sfc_adapter *sa = dev->data->dev_private; 535 struct sfc_port *port = &sa->port; 536 uint64_t *mac_stats; 537 int ret; 538 539 rte_spinlock_lock(&port->mac_stats_lock); 540 541 ret = sfc_port_update_mac_stats(sa); 542 if (ret != 0) 543 goto unlock; 544 545 mac_stats = port->mac_stats_buf; 546 547 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, 548 EFX_MAC_VADAPTER_RX_UNICAST_PACKETS)) { 549 stats->ipackets = 550 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_PACKETS] + 551 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_PACKETS] + 552 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_PACKETS]; 553 stats->opackets = 554 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_PACKETS] + 555 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_PACKETS] + 556 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_PACKETS]; 557 stats->ibytes = 558 mac_stats[EFX_MAC_VADAPTER_RX_UNICAST_BYTES] + 559 mac_stats[EFX_MAC_VADAPTER_RX_MULTICAST_BYTES] + 560 mac_stats[EFX_MAC_VADAPTER_RX_BROADCAST_BYTES]; 561 stats->obytes = 562 mac_stats[EFX_MAC_VADAPTER_TX_UNICAST_BYTES] + 563 mac_stats[EFX_MAC_VADAPTER_TX_MULTICAST_BYTES] + 564 mac_stats[EFX_MAC_VADAPTER_TX_BROADCAST_BYTES]; 565 stats->imissed = mac_stats[EFX_MAC_VADAPTER_RX_BAD_PACKETS]; 566 stats->oerrors = mac_stats[EFX_MAC_VADAPTER_TX_BAD_PACKETS]; 567 } else { 568 stats->opackets = mac_stats[EFX_MAC_TX_PKTS]; 569 stats->ibytes = mac_stats[EFX_MAC_RX_OCTETS]; 570 stats->obytes = mac_stats[EFX_MAC_TX_OCTETS]; 571 /* 572 * Take into account stats which are whenever supported 573 * on EF10. If some stat is not supported by current 574 * firmware variant or HW revision, it is guaranteed 575 * to be zero in mac_stats. 576 */ 577 stats->imissed = 578 mac_stats[EFX_MAC_RX_NODESC_DROP_CNT] + 579 mac_stats[EFX_MAC_PM_TRUNC_BB_OVERFLOW] + 580 mac_stats[EFX_MAC_PM_DISCARD_BB_OVERFLOW] + 581 mac_stats[EFX_MAC_PM_TRUNC_VFIFO_FULL] + 582 mac_stats[EFX_MAC_PM_DISCARD_VFIFO_FULL] + 583 mac_stats[EFX_MAC_PM_TRUNC_QBB] + 584 mac_stats[EFX_MAC_PM_DISCARD_QBB] + 585 mac_stats[EFX_MAC_PM_DISCARD_MAPPING] + 586 mac_stats[EFX_MAC_RXDP_Q_DISABLED_PKTS] + 587 mac_stats[EFX_MAC_RXDP_DI_DROPPED_PKTS]; 588 stats->ierrors = 589 mac_stats[EFX_MAC_RX_FCS_ERRORS] + 590 mac_stats[EFX_MAC_RX_ALIGN_ERRORS] + 591 mac_stats[EFX_MAC_RX_JABBER_PKTS]; 592 /* no oerrors counters supported on EF10 */ 593 594 /* Exclude missed, errors and pauses from Rx packets */ 595 sfc_update_diff_stat(&port->ipackets, 596 mac_stats[EFX_MAC_RX_PKTS] - 597 mac_stats[EFX_MAC_RX_PAUSE_PKTS] - 598 stats->imissed - stats->ierrors); 599 stats->ipackets = port->ipackets; 600 } 601 602 unlock: 603 rte_spinlock_unlock(&port->mac_stats_lock); 604 SFC_ASSERT(ret >= 0); 605 return -ret; 606 } 607 608 static void 609 sfc_stats_reset(struct rte_eth_dev *dev) 610 { 611 struct sfc_adapter *sa = dev->data->dev_private; 612 struct sfc_port *port = &sa->port; 613 int rc; 614 615 if (sa->state != SFC_ADAPTER_STARTED) { 616 /* 617 * The operation cannot be done if port is not started; it 618 * will be scheduled to be done during the next port start 619 */ 620 port->mac_stats_reset_pending = B_TRUE; 621 return; 622 } 623 624 rc = sfc_port_reset_mac_stats(sa); 625 if (rc != 0) 626 sfc_err(sa, "failed to reset statistics (rc = %d)", rc); 627 } 628 629 static int 630 sfc_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats, 631 unsigned int xstats_count) 632 { 633 struct sfc_adapter *sa = dev->data->dev_private; 634 struct sfc_port *port = &sa->port; 635 uint64_t *mac_stats; 636 int rc; 637 unsigned int i; 638 int nstats = 0; 639 640 rte_spinlock_lock(&port->mac_stats_lock); 641 642 rc = sfc_port_update_mac_stats(sa); 643 if (rc != 0) { 644 SFC_ASSERT(rc > 0); 645 nstats = -rc; 646 goto unlock; 647 } 648 649 mac_stats = port->mac_stats_buf; 650 651 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 652 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 653 if (xstats != NULL && nstats < (int)xstats_count) { 654 xstats[nstats].id = nstats; 655 xstats[nstats].value = mac_stats[i]; 656 } 657 nstats++; 658 } 659 } 660 661 unlock: 662 rte_spinlock_unlock(&port->mac_stats_lock); 663 664 return nstats; 665 } 666 667 static int 668 sfc_xstats_get_names(struct rte_eth_dev *dev, 669 struct rte_eth_xstat_name *xstats_names, 670 unsigned int xstats_count) 671 { 672 struct sfc_adapter *sa = dev->data->dev_private; 673 struct sfc_port *port = &sa->port; 674 unsigned int i; 675 unsigned int nstats = 0; 676 677 for (i = 0; i < EFX_MAC_NSTATS; ++i) { 678 if (EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) { 679 if (xstats_names != NULL && nstats < xstats_count) 680 strlcpy(xstats_names[nstats].name, 681 efx_mac_stat_name(sa->nic, i), 682 sizeof(xstats_names[0].name)); 683 nstats++; 684 } 685 } 686 687 return nstats; 688 } 689 690 static int 691 sfc_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids, 692 uint64_t *values, unsigned int n) 693 { 694 struct sfc_adapter *sa = dev->data->dev_private; 695 struct sfc_port *port = &sa->port; 696 uint64_t *mac_stats; 697 unsigned int nb_supported = 0; 698 unsigned int nb_written = 0; 699 unsigned int i; 700 int ret; 701 int rc; 702 703 if (unlikely(values == NULL) || 704 unlikely((ids == NULL) && (n < port->mac_stats_nb_supported))) 705 return port->mac_stats_nb_supported; 706 707 rte_spinlock_lock(&port->mac_stats_lock); 708 709 rc = sfc_port_update_mac_stats(sa); 710 if (rc != 0) { 711 SFC_ASSERT(rc > 0); 712 ret = -rc; 713 goto unlock; 714 } 715 716 mac_stats = port->mac_stats_buf; 717 718 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < n); ++i) { 719 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 720 continue; 721 722 if ((ids == NULL) || (ids[nb_written] == nb_supported)) 723 values[nb_written++] = mac_stats[i]; 724 725 ++nb_supported; 726 } 727 728 ret = nb_written; 729 730 unlock: 731 rte_spinlock_unlock(&port->mac_stats_lock); 732 733 return ret; 734 } 735 736 static int 737 sfc_xstats_get_names_by_id(struct rte_eth_dev *dev, 738 struct rte_eth_xstat_name *xstats_names, 739 const uint64_t *ids, unsigned int size) 740 { 741 struct sfc_adapter *sa = dev->data->dev_private; 742 struct sfc_port *port = &sa->port; 743 unsigned int nb_supported = 0; 744 unsigned int nb_written = 0; 745 unsigned int i; 746 747 if (unlikely(xstats_names == NULL) || 748 unlikely((ids == NULL) && (size < port->mac_stats_nb_supported))) 749 return port->mac_stats_nb_supported; 750 751 for (i = 0; (i < EFX_MAC_NSTATS) && (nb_written < size); ++i) { 752 if (!EFX_MAC_STAT_SUPPORTED(port->mac_stats_mask, i)) 753 continue; 754 755 if ((ids == NULL) || (ids[nb_written] == nb_supported)) { 756 char *name = xstats_names[nb_written++].name; 757 758 strlcpy(name, efx_mac_stat_name(sa->nic, i), 759 sizeof(xstats_names[0].name)); 760 } 761 762 ++nb_supported; 763 } 764 765 return nb_written; 766 } 767 768 static int 769 sfc_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 770 { 771 struct sfc_adapter *sa = dev->data->dev_private; 772 unsigned int wanted_fc, link_fc; 773 774 memset(fc_conf, 0, sizeof(*fc_conf)); 775 776 sfc_adapter_lock(sa); 777 778 if (sa->state == SFC_ADAPTER_STARTED) 779 efx_mac_fcntl_get(sa->nic, &wanted_fc, &link_fc); 780 else 781 link_fc = sa->port.flow_ctrl; 782 783 switch (link_fc) { 784 case 0: 785 fc_conf->mode = RTE_FC_NONE; 786 break; 787 case EFX_FCNTL_RESPOND: 788 fc_conf->mode = RTE_FC_RX_PAUSE; 789 break; 790 case EFX_FCNTL_GENERATE: 791 fc_conf->mode = RTE_FC_TX_PAUSE; 792 break; 793 case (EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE): 794 fc_conf->mode = RTE_FC_FULL; 795 break; 796 default: 797 sfc_err(sa, "%s: unexpected flow control value %#x", 798 __func__, link_fc); 799 } 800 801 fc_conf->autoneg = sa->port.flow_ctrl_autoneg; 802 803 sfc_adapter_unlock(sa); 804 805 return 0; 806 } 807 808 static int 809 sfc_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) 810 { 811 struct sfc_adapter *sa = dev->data->dev_private; 812 struct sfc_port *port = &sa->port; 813 unsigned int fcntl; 814 int rc; 815 816 if (fc_conf->high_water != 0 || fc_conf->low_water != 0 || 817 fc_conf->pause_time != 0 || fc_conf->send_xon != 0 || 818 fc_conf->mac_ctrl_frame_fwd != 0) { 819 sfc_err(sa, "unsupported flow control settings specified"); 820 rc = EINVAL; 821 goto fail_inval; 822 } 823 824 switch (fc_conf->mode) { 825 case RTE_FC_NONE: 826 fcntl = 0; 827 break; 828 case RTE_FC_RX_PAUSE: 829 fcntl = EFX_FCNTL_RESPOND; 830 break; 831 case RTE_FC_TX_PAUSE: 832 fcntl = EFX_FCNTL_GENERATE; 833 break; 834 case RTE_FC_FULL: 835 fcntl = EFX_FCNTL_RESPOND | EFX_FCNTL_GENERATE; 836 break; 837 default: 838 rc = EINVAL; 839 goto fail_inval; 840 } 841 842 sfc_adapter_lock(sa); 843 844 if (sa->state == SFC_ADAPTER_STARTED) { 845 rc = efx_mac_fcntl_set(sa->nic, fcntl, fc_conf->autoneg); 846 if (rc != 0) 847 goto fail_mac_fcntl_set; 848 } 849 850 port->flow_ctrl = fcntl; 851 port->flow_ctrl_autoneg = fc_conf->autoneg; 852 853 sfc_adapter_unlock(sa); 854 855 return 0; 856 857 fail_mac_fcntl_set: 858 sfc_adapter_unlock(sa); 859 fail_inval: 860 SFC_ASSERT(rc > 0); 861 return -rc; 862 } 863 864 static int 865 sfc_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu) 866 { 867 struct sfc_adapter *sa = dev->data->dev_private; 868 size_t pdu = EFX_MAC_PDU(mtu); 869 size_t old_pdu; 870 int rc; 871 872 sfc_log_init(sa, "mtu=%u", mtu); 873 874 rc = EINVAL; 875 if (pdu < EFX_MAC_PDU_MIN) { 876 sfc_err(sa, "too small MTU %u (PDU size %u less than min %u)", 877 (unsigned int)mtu, (unsigned int)pdu, 878 EFX_MAC_PDU_MIN); 879 goto fail_inval; 880 } 881 if (pdu > EFX_MAC_PDU_MAX) { 882 sfc_err(sa, "too big MTU %u (PDU size %u greater than max %u)", 883 (unsigned int)mtu, (unsigned int)pdu, 884 EFX_MAC_PDU_MAX); 885 goto fail_inval; 886 } 887 888 sfc_adapter_lock(sa); 889 890 if (pdu != sa->port.pdu) { 891 if (sa->state == SFC_ADAPTER_STARTED) { 892 sfc_stop(sa); 893 894 old_pdu = sa->port.pdu; 895 sa->port.pdu = pdu; 896 rc = sfc_start(sa); 897 if (rc != 0) 898 goto fail_start; 899 } else { 900 sa->port.pdu = pdu; 901 } 902 } 903 904 /* 905 * The driver does not use it, but other PMDs update jumbo frame 906 * flag and max_rx_pkt_len when MTU is set. 907 */ 908 if (mtu > ETHER_MAX_LEN) { 909 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode; 910 rxmode->offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 911 } 912 913 dev->data->dev_conf.rxmode.max_rx_pkt_len = sa->port.pdu; 914 915 sfc_adapter_unlock(sa); 916 917 sfc_log_init(sa, "done"); 918 return 0; 919 920 fail_start: 921 sa->port.pdu = old_pdu; 922 if (sfc_start(sa) != 0) 923 sfc_err(sa, "cannot start with neither new (%u) nor old (%u) " 924 "PDU max size - port is stopped", 925 (unsigned int)pdu, (unsigned int)old_pdu); 926 sfc_adapter_unlock(sa); 927 928 fail_inval: 929 sfc_log_init(sa, "failed %d", rc); 930 SFC_ASSERT(rc > 0); 931 return -rc; 932 } 933 static int 934 sfc_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr) 935 { 936 struct sfc_adapter *sa = dev->data->dev_private; 937 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic); 938 struct sfc_port *port = &sa->port; 939 struct ether_addr *old_addr = &dev->data->mac_addrs[0]; 940 int rc = 0; 941 942 sfc_adapter_lock(sa); 943 944 /* 945 * Copy the address to the device private data so that 946 * it could be recalled in the case of adapter restart. 947 */ 948 ether_addr_copy(mac_addr, &port->default_mac_addr); 949 950 /* 951 * Neither of the two following checks can return 952 * an error. The new MAC address is preserved in 953 * the device private data and can be activated 954 * on the next port start if the user prevents 955 * isolated mode from being enabled. 956 */ 957 if (port->isolated) { 958 sfc_warn(sa, "isolated mode is active on the port"); 959 sfc_warn(sa, "will not set MAC address"); 960 goto unlock; 961 } 962 963 if (sa->state != SFC_ADAPTER_STARTED) { 964 sfc_notice(sa, "the port is not started"); 965 sfc_notice(sa, "the new MAC address will be set on port start"); 966 967 goto unlock; 968 } 969 970 if (encp->enc_allow_set_mac_with_installed_filters) { 971 rc = efx_mac_addr_set(sa->nic, mac_addr->addr_bytes); 972 if (rc != 0) { 973 sfc_err(sa, "cannot set MAC address (rc = %u)", rc); 974 goto unlock; 975 } 976 977 /* 978 * Changing the MAC address by means of MCDI request 979 * has no effect on received traffic, therefore 980 * we also need to update unicast filters 981 */ 982 rc = sfc_set_rx_mode(sa); 983 if (rc != 0) { 984 sfc_err(sa, "cannot set filter (rc = %u)", rc); 985 /* Rollback the old address */ 986 (void)efx_mac_addr_set(sa->nic, old_addr->addr_bytes); 987 (void)sfc_set_rx_mode(sa); 988 } 989 } else { 990 sfc_warn(sa, "cannot set MAC address with filters installed"); 991 sfc_warn(sa, "adapter will be restarted to pick the new MAC"); 992 sfc_warn(sa, "(some traffic may be dropped)"); 993 994 /* 995 * Since setting MAC address with filters installed is not 996 * allowed on the adapter, the new MAC address will be set 997 * by means of adapter restart. sfc_start() shall retrieve 998 * the new address from the device private data and set it. 999 */ 1000 sfc_stop(sa); 1001 rc = sfc_start(sa); 1002 if (rc != 0) 1003 sfc_err(sa, "cannot restart adapter (rc = %u)", rc); 1004 } 1005 1006 unlock: 1007 if (rc != 0) 1008 ether_addr_copy(old_addr, &port->default_mac_addr); 1009 1010 sfc_adapter_unlock(sa); 1011 1012 SFC_ASSERT(rc >= 0); 1013 return -rc; 1014 } 1015 1016 1017 static int 1018 sfc_set_mc_addr_list(struct rte_eth_dev *dev, struct ether_addr *mc_addr_set, 1019 uint32_t nb_mc_addr) 1020 { 1021 struct sfc_adapter *sa = dev->data->dev_private; 1022 struct sfc_port *port = &sa->port; 1023 uint8_t *mc_addrs = port->mcast_addrs; 1024 int rc; 1025 unsigned int i; 1026 1027 if (port->isolated) { 1028 sfc_err(sa, "isolated mode is active on the port"); 1029 sfc_err(sa, "will not set multicast address list"); 1030 return -ENOTSUP; 1031 } 1032 1033 if (mc_addrs == NULL) 1034 return -ENOBUFS; 1035 1036 if (nb_mc_addr > port->max_mcast_addrs) { 1037 sfc_err(sa, "too many multicast addresses: %u > %u", 1038 nb_mc_addr, port->max_mcast_addrs); 1039 return -EINVAL; 1040 } 1041 1042 for (i = 0; i < nb_mc_addr; ++i) { 1043 rte_memcpy(mc_addrs, mc_addr_set[i].addr_bytes, 1044 EFX_MAC_ADDR_LEN); 1045 mc_addrs += EFX_MAC_ADDR_LEN; 1046 } 1047 1048 port->nb_mcast_addrs = nb_mc_addr; 1049 1050 if (sa->state != SFC_ADAPTER_STARTED) 1051 return 0; 1052 1053 rc = efx_mac_multicast_list_set(sa->nic, port->mcast_addrs, 1054 port->nb_mcast_addrs); 1055 if (rc != 0) 1056 sfc_err(sa, "cannot set multicast address list (rc = %u)", rc); 1057 1058 SFC_ASSERT(rc >= 0); 1059 return -rc; 1060 } 1061 1062 /* 1063 * The function is used by the secondary process as well. It must not 1064 * use any process-local pointers from the adapter data. 1065 */ 1066 static void 1067 sfc_rx_queue_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id, 1068 struct rte_eth_rxq_info *qinfo) 1069 { 1070 struct sfc_adapter *sa = dev->data->dev_private; 1071 struct sfc_rxq_info *rxq_info; 1072 1073 sfc_adapter_lock(sa); 1074 1075 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1076 1077 rxq_info = &sa->rxq_info[rx_queue_id]; 1078 1079 qinfo->mp = rxq_info->refill_mb_pool; 1080 qinfo->conf.rx_free_thresh = rxq_info->refill_threshold; 1081 qinfo->conf.rx_drop_en = 1; 1082 qinfo->conf.rx_deferred_start = rxq_info->deferred_start; 1083 qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads; 1084 if (rxq_info->type_flags & EFX_RXQ_FLAG_SCATTER) { 1085 qinfo->conf.offloads |= DEV_RX_OFFLOAD_SCATTER; 1086 qinfo->scattered_rx = 1; 1087 } 1088 qinfo->nb_desc = rxq_info->entries; 1089 1090 sfc_adapter_unlock(sa); 1091 } 1092 1093 /* 1094 * The function is used by the secondary process as well. It must not 1095 * use any process-local pointers from the adapter data. 1096 */ 1097 static void 1098 sfc_tx_queue_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id, 1099 struct rte_eth_txq_info *qinfo) 1100 { 1101 struct sfc_adapter *sa = dev->data->dev_private; 1102 struct sfc_txq_info *txq_info; 1103 1104 sfc_adapter_lock(sa); 1105 1106 SFC_ASSERT(tx_queue_id < sa->txq_count); 1107 1108 txq_info = &sa->txq_info[tx_queue_id]; 1109 1110 memset(qinfo, 0, sizeof(*qinfo)); 1111 1112 qinfo->conf.offloads = txq_info->offloads; 1113 qinfo->conf.tx_free_thresh = txq_info->free_thresh; 1114 qinfo->conf.tx_deferred_start = txq_info->deferred_start; 1115 qinfo->nb_desc = txq_info->entries; 1116 1117 sfc_adapter_unlock(sa); 1118 } 1119 1120 /* 1121 * The function is used by the secondary process as well. It must not 1122 * use any process-local pointers from the adapter data. 1123 */ 1124 static uint32_t 1125 sfc_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1126 { 1127 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1128 struct sfc_adapter *sa = dev->data->dev_private; 1129 struct sfc_rxq_info *rxq_info; 1130 1131 SFC_ASSERT(rx_queue_id < sa->rxq_count); 1132 rxq_info = &sa->rxq_info[rx_queue_id]; 1133 1134 if ((rxq_info->state & SFC_RXQ_STARTED) == 0) 1135 return 0; 1136 1137 return sap->dp_rx->qdesc_npending(rxq_info->dp); 1138 } 1139 1140 /* 1141 * The function is used by the secondary process as well. It must not 1142 * use any process-local pointers from the adapter data. 1143 */ 1144 static int 1145 sfc_rx_descriptor_done(void *queue, uint16_t offset) 1146 { 1147 struct sfc_dp_rxq *dp_rxq = queue; 1148 const struct sfc_dp_rx *dp_rx; 1149 1150 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1151 1152 return offset < dp_rx->qdesc_npending(dp_rxq); 1153 } 1154 1155 /* 1156 * The function is used by the secondary process as well. It must not 1157 * use any process-local pointers from the adapter data. 1158 */ 1159 static int 1160 sfc_rx_descriptor_status(void *queue, uint16_t offset) 1161 { 1162 struct sfc_dp_rxq *dp_rxq = queue; 1163 const struct sfc_dp_rx *dp_rx; 1164 1165 dp_rx = sfc_dp_rx_by_dp_rxq(dp_rxq); 1166 1167 return dp_rx->qdesc_status(dp_rxq, offset); 1168 } 1169 1170 /* 1171 * The function is used by the secondary process as well. It must not 1172 * use any process-local pointers from the adapter data. 1173 */ 1174 static int 1175 sfc_tx_descriptor_status(void *queue, uint16_t offset) 1176 { 1177 struct sfc_dp_txq *dp_txq = queue; 1178 const struct sfc_dp_tx *dp_tx; 1179 1180 dp_tx = sfc_dp_tx_by_dp_txq(dp_txq); 1181 1182 return dp_tx->qdesc_status(dp_txq, offset); 1183 } 1184 1185 static int 1186 sfc_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1187 { 1188 struct sfc_adapter *sa = dev->data->dev_private; 1189 int rc; 1190 1191 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1192 1193 sfc_adapter_lock(sa); 1194 1195 rc = EINVAL; 1196 if (sa->state != SFC_ADAPTER_STARTED) 1197 goto fail_not_started; 1198 1199 if (sa->rxq_info[rx_queue_id].rxq == NULL) 1200 goto fail_not_setup; 1201 1202 rc = sfc_rx_qstart(sa, rx_queue_id); 1203 if (rc != 0) 1204 goto fail_rx_qstart; 1205 1206 sa->rxq_info[rx_queue_id].deferred_started = B_TRUE; 1207 1208 sfc_adapter_unlock(sa); 1209 1210 return 0; 1211 1212 fail_rx_qstart: 1213 fail_not_setup: 1214 fail_not_started: 1215 sfc_adapter_unlock(sa); 1216 SFC_ASSERT(rc > 0); 1217 return -rc; 1218 } 1219 1220 static int 1221 sfc_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) 1222 { 1223 struct sfc_adapter *sa = dev->data->dev_private; 1224 1225 sfc_log_init(sa, "RxQ=%u", rx_queue_id); 1226 1227 sfc_adapter_lock(sa); 1228 sfc_rx_qstop(sa, rx_queue_id); 1229 1230 sa->rxq_info[rx_queue_id].deferred_started = B_FALSE; 1231 1232 sfc_adapter_unlock(sa); 1233 1234 return 0; 1235 } 1236 1237 static int 1238 sfc_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1239 { 1240 struct sfc_adapter *sa = dev->data->dev_private; 1241 int rc; 1242 1243 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1244 1245 sfc_adapter_lock(sa); 1246 1247 rc = EINVAL; 1248 if (sa->state != SFC_ADAPTER_STARTED) 1249 goto fail_not_started; 1250 1251 if (sa->txq_info[tx_queue_id].txq == NULL) 1252 goto fail_not_setup; 1253 1254 rc = sfc_tx_qstart(sa, tx_queue_id); 1255 if (rc != 0) 1256 goto fail_tx_qstart; 1257 1258 sa->txq_info[tx_queue_id].deferred_started = B_TRUE; 1259 1260 sfc_adapter_unlock(sa); 1261 return 0; 1262 1263 fail_tx_qstart: 1264 1265 fail_not_setup: 1266 fail_not_started: 1267 sfc_adapter_unlock(sa); 1268 SFC_ASSERT(rc > 0); 1269 return -rc; 1270 } 1271 1272 static int 1273 sfc_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) 1274 { 1275 struct sfc_adapter *sa = dev->data->dev_private; 1276 1277 sfc_log_init(sa, "TxQ = %u", tx_queue_id); 1278 1279 sfc_adapter_lock(sa); 1280 1281 sfc_tx_qstop(sa, tx_queue_id); 1282 1283 sa->txq_info[tx_queue_id].deferred_started = B_FALSE; 1284 1285 sfc_adapter_unlock(sa); 1286 return 0; 1287 } 1288 1289 static efx_tunnel_protocol_t 1290 sfc_tunnel_rte_type_to_efx_udp_proto(enum rte_eth_tunnel_type rte_type) 1291 { 1292 switch (rte_type) { 1293 case RTE_TUNNEL_TYPE_VXLAN: 1294 return EFX_TUNNEL_PROTOCOL_VXLAN; 1295 case RTE_TUNNEL_TYPE_GENEVE: 1296 return EFX_TUNNEL_PROTOCOL_GENEVE; 1297 default: 1298 return EFX_TUNNEL_NPROTOS; 1299 } 1300 } 1301 1302 enum sfc_udp_tunnel_op_e { 1303 SFC_UDP_TUNNEL_ADD_PORT, 1304 SFC_UDP_TUNNEL_DEL_PORT, 1305 }; 1306 1307 static int 1308 sfc_dev_udp_tunnel_op(struct rte_eth_dev *dev, 1309 struct rte_eth_udp_tunnel *tunnel_udp, 1310 enum sfc_udp_tunnel_op_e op) 1311 { 1312 struct sfc_adapter *sa = dev->data->dev_private; 1313 efx_tunnel_protocol_t tunnel_proto; 1314 int rc; 1315 1316 sfc_log_init(sa, "%s udp_port=%u prot_type=%u", 1317 (op == SFC_UDP_TUNNEL_ADD_PORT) ? "add" : 1318 (op == SFC_UDP_TUNNEL_DEL_PORT) ? "delete" : "unknown", 1319 tunnel_udp->udp_port, tunnel_udp->prot_type); 1320 1321 tunnel_proto = 1322 sfc_tunnel_rte_type_to_efx_udp_proto(tunnel_udp->prot_type); 1323 if (tunnel_proto >= EFX_TUNNEL_NPROTOS) { 1324 rc = ENOTSUP; 1325 goto fail_bad_proto; 1326 } 1327 1328 sfc_adapter_lock(sa); 1329 1330 switch (op) { 1331 case SFC_UDP_TUNNEL_ADD_PORT: 1332 rc = efx_tunnel_config_udp_add(sa->nic, 1333 tunnel_udp->udp_port, 1334 tunnel_proto); 1335 break; 1336 case SFC_UDP_TUNNEL_DEL_PORT: 1337 rc = efx_tunnel_config_udp_remove(sa->nic, 1338 tunnel_udp->udp_port, 1339 tunnel_proto); 1340 break; 1341 default: 1342 rc = EINVAL; 1343 goto fail_bad_op; 1344 } 1345 1346 if (rc != 0) 1347 goto fail_op; 1348 1349 if (sa->state == SFC_ADAPTER_STARTED) { 1350 rc = efx_tunnel_reconfigure(sa->nic); 1351 if (rc == EAGAIN) { 1352 /* 1353 * Configuration is accepted by FW and MC reboot 1354 * is initiated to apply the changes. MC reboot 1355 * will be handled in a usual way (MC reboot 1356 * event on management event queue and adapter 1357 * restart). 1358 */ 1359 rc = 0; 1360 } else if (rc != 0) { 1361 goto fail_reconfigure; 1362 } 1363 } 1364 1365 sfc_adapter_unlock(sa); 1366 return 0; 1367 1368 fail_reconfigure: 1369 /* Remove/restore entry since the change makes the trouble */ 1370 switch (op) { 1371 case SFC_UDP_TUNNEL_ADD_PORT: 1372 (void)efx_tunnel_config_udp_remove(sa->nic, 1373 tunnel_udp->udp_port, 1374 tunnel_proto); 1375 break; 1376 case SFC_UDP_TUNNEL_DEL_PORT: 1377 (void)efx_tunnel_config_udp_add(sa->nic, 1378 tunnel_udp->udp_port, 1379 tunnel_proto); 1380 break; 1381 } 1382 1383 fail_op: 1384 fail_bad_op: 1385 sfc_adapter_unlock(sa); 1386 1387 fail_bad_proto: 1388 SFC_ASSERT(rc > 0); 1389 return -rc; 1390 } 1391 1392 static int 1393 sfc_dev_udp_tunnel_port_add(struct rte_eth_dev *dev, 1394 struct rte_eth_udp_tunnel *tunnel_udp) 1395 { 1396 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_ADD_PORT); 1397 } 1398 1399 static int 1400 sfc_dev_udp_tunnel_port_del(struct rte_eth_dev *dev, 1401 struct rte_eth_udp_tunnel *tunnel_udp) 1402 { 1403 return sfc_dev_udp_tunnel_op(dev, tunnel_udp, SFC_UDP_TUNNEL_DEL_PORT); 1404 } 1405 1406 /* 1407 * The function is used by the secondary process as well. It must not 1408 * use any process-local pointers from the adapter data. 1409 */ 1410 static int 1411 sfc_dev_rss_hash_conf_get(struct rte_eth_dev *dev, 1412 struct rte_eth_rss_conf *rss_conf) 1413 { 1414 struct sfc_adapter *sa = dev->data->dev_private; 1415 struct sfc_rss *rss = &sa->rss; 1416 1417 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) 1418 return -ENOTSUP; 1419 1420 sfc_adapter_lock(sa); 1421 1422 /* 1423 * Mapping of hash configuration between RTE and EFX is not one-to-one, 1424 * hence, conversion is done here to derive a correct set of ETH_RSS 1425 * flags which corresponds to the active EFX configuration stored 1426 * locally in 'sfc_adapter' and kept up-to-date 1427 */ 1428 rss_conf->rss_hf = sfc_rx_hf_efx_to_rte(sa, rss->hash_types); 1429 rss_conf->rss_key_len = EFX_RSS_KEY_SIZE; 1430 if (rss_conf->rss_key != NULL) 1431 rte_memcpy(rss_conf->rss_key, rss->key, EFX_RSS_KEY_SIZE); 1432 1433 sfc_adapter_unlock(sa); 1434 1435 return 0; 1436 } 1437 1438 static int 1439 sfc_dev_rss_hash_update(struct rte_eth_dev *dev, 1440 struct rte_eth_rss_conf *rss_conf) 1441 { 1442 struct sfc_adapter *sa = dev->data->dev_private; 1443 struct sfc_rss *rss = &sa->rss; 1444 struct sfc_port *port = &sa->port; 1445 unsigned int efx_hash_types; 1446 int rc = 0; 1447 1448 if (port->isolated) 1449 return -ENOTSUP; 1450 1451 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1452 sfc_err(sa, "RSS is not available"); 1453 return -ENOTSUP; 1454 } 1455 1456 if (rss->channels == 0) { 1457 sfc_err(sa, "RSS is not configured"); 1458 return -EINVAL; 1459 } 1460 1461 if ((rss_conf->rss_key != NULL) && 1462 (rss_conf->rss_key_len != sizeof(rss->key))) { 1463 sfc_err(sa, "RSS key size is wrong (should be %lu)", 1464 sizeof(rss->key)); 1465 return -EINVAL; 1466 } 1467 1468 sfc_adapter_lock(sa); 1469 1470 rc = sfc_rx_hf_rte_to_efx(sa, rss_conf->rss_hf, &efx_hash_types); 1471 if (rc != 0) 1472 goto fail_rx_hf_rte_to_efx; 1473 1474 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1475 rss->hash_alg, efx_hash_types, B_TRUE); 1476 if (rc != 0) 1477 goto fail_scale_mode_set; 1478 1479 if (rss_conf->rss_key != NULL) { 1480 if (sa->state == SFC_ADAPTER_STARTED) { 1481 rc = efx_rx_scale_key_set(sa->nic, 1482 EFX_RSS_CONTEXT_DEFAULT, 1483 rss_conf->rss_key, 1484 sizeof(rss->key)); 1485 if (rc != 0) 1486 goto fail_scale_key_set; 1487 } 1488 1489 rte_memcpy(rss->key, rss_conf->rss_key, sizeof(rss->key)); 1490 } 1491 1492 rss->hash_types = efx_hash_types; 1493 1494 sfc_adapter_unlock(sa); 1495 1496 return 0; 1497 1498 fail_scale_key_set: 1499 if (efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1500 EFX_RX_HASHALG_TOEPLITZ, 1501 rss->hash_types, B_TRUE) != 0) 1502 sfc_err(sa, "failed to restore RSS mode"); 1503 1504 fail_scale_mode_set: 1505 fail_rx_hf_rte_to_efx: 1506 sfc_adapter_unlock(sa); 1507 return -rc; 1508 } 1509 1510 /* 1511 * The function is used by the secondary process as well. It must not 1512 * use any process-local pointers from the adapter data. 1513 */ 1514 static int 1515 sfc_dev_rss_reta_query(struct rte_eth_dev *dev, 1516 struct rte_eth_rss_reta_entry64 *reta_conf, 1517 uint16_t reta_size) 1518 { 1519 struct sfc_adapter *sa = dev->data->dev_private; 1520 struct sfc_rss *rss = &sa->rss; 1521 struct sfc_port *port = &sa->port; 1522 int entry; 1523 1524 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE || port->isolated) 1525 return -ENOTSUP; 1526 1527 if (rss->channels == 0) 1528 return -EINVAL; 1529 1530 if (reta_size != EFX_RSS_TBL_SIZE) 1531 return -EINVAL; 1532 1533 sfc_adapter_lock(sa); 1534 1535 for (entry = 0; entry < reta_size; entry++) { 1536 int grp = entry / RTE_RETA_GROUP_SIZE; 1537 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1538 1539 if ((reta_conf[grp].mask >> grp_idx) & 1) 1540 reta_conf[grp].reta[grp_idx] = rss->tbl[entry]; 1541 } 1542 1543 sfc_adapter_unlock(sa); 1544 1545 return 0; 1546 } 1547 1548 static int 1549 sfc_dev_rss_reta_update(struct rte_eth_dev *dev, 1550 struct rte_eth_rss_reta_entry64 *reta_conf, 1551 uint16_t reta_size) 1552 { 1553 struct sfc_adapter *sa = dev->data->dev_private; 1554 struct sfc_rss *rss = &sa->rss; 1555 struct sfc_port *port = &sa->port; 1556 unsigned int *rss_tbl_new; 1557 uint16_t entry; 1558 int rc = 0; 1559 1560 1561 if (port->isolated) 1562 return -ENOTSUP; 1563 1564 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) { 1565 sfc_err(sa, "RSS is not available"); 1566 return -ENOTSUP; 1567 } 1568 1569 if (rss->channels == 0) { 1570 sfc_err(sa, "RSS is not configured"); 1571 return -EINVAL; 1572 } 1573 1574 if (reta_size != EFX_RSS_TBL_SIZE) { 1575 sfc_err(sa, "RETA size is wrong (should be %u)", 1576 EFX_RSS_TBL_SIZE); 1577 return -EINVAL; 1578 } 1579 1580 rss_tbl_new = rte_zmalloc("rss_tbl_new", sizeof(rss->tbl), 0); 1581 if (rss_tbl_new == NULL) 1582 return -ENOMEM; 1583 1584 sfc_adapter_lock(sa); 1585 1586 rte_memcpy(rss_tbl_new, rss->tbl, sizeof(rss->tbl)); 1587 1588 for (entry = 0; entry < reta_size; entry++) { 1589 int grp_idx = entry % RTE_RETA_GROUP_SIZE; 1590 struct rte_eth_rss_reta_entry64 *grp; 1591 1592 grp = &reta_conf[entry / RTE_RETA_GROUP_SIZE]; 1593 1594 if (grp->mask & (1ull << grp_idx)) { 1595 if (grp->reta[grp_idx] >= rss->channels) { 1596 rc = EINVAL; 1597 goto bad_reta_entry; 1598 } 1599 rss_tbl_new[entry] = grp->reta[grp_idx]; 1600 } 1601 } 1602 1603 if (sa->state == SFC_ADAPTER_STARTED) { 1604 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT, 1605 rss_tbl_new, EFX_RSS_TBL_SIZE); 1606 if (rc != 0) 1607 goto fail_scale_tbl_set; 1608 } 1609 1610 rte_memcpy(rss->tbl, rss_tbl_new, sizeof(rss->tbl)); 1611 1612 fail_scale_tbl_set: 1613 bad_reta_entry: 1614 sfc_adapter_unlock(sa); 1615 1616 rte_free(rss_tbl_new); 1617 1618 SFC_ASSERT(rc >= 0); 1619 return -rc; 1620 } 1621 1622 static int 1623 sfc_dev_filter_ctrl(struct rte_eth_dev *dev, enum rte_filter_type filter_type, 1624 enum rte_filter_op filter_op, 1625 void *arg) 1626 { 1627 struct sfc_adapter *sa = dev->data->dev_private; 1628 int rc = ENOTSUP; 1629 1630 sfc_log_init(sa, "entry"); 1631 1632 switch (filter_type) { 1633 case RTE_ETH_FILTER_NONE: 1634 sfc_err(sa, "Global filters configuration not supported"); 1635 break; 1636 case RTE_ETH_FILTER_MACVLAN: 1637 sfc_err(sa, "MACVLAN filters not supported"); 1638 break; 1639 case RTE_ETH_FILTER_ETHERTYPE: 1640 sfc_err(sa, "EtherType filters not supported"); 1641 break; 1642 case RTE_ETH_FILTER_FLEXIBLE: 1643 sfc_err(sa, "Flexible filters not supported"); 1644 break; 1645 case RTE_ETH_FILTER_SYN: 1646 sfc_err(sa, "SYN filters not supported"); 1647 break; 1648 case RTE_ETH_FILTER_NTUPLE: 1649 sfc_err(sa, "NTUPLE filters not supported"); 1650 break; 1651 case RTE_ETH_FILTER_TUNNEL: 1652 sfc_err(sa, "Tunnel filters not supported"); 1653 break; 1654 case RTE_ETH_FILTER_FDIR: 1655 sfc_err(sa, "Flow Director filters not supported"); 1656 break; 1657 case RTE_ETH_FILTER_HASH: 1658 sfc_err(sa, "Hash filters not supported"); 1659 break; 1660 case RTE_ETH_FILTER_GENERIC: 1661 if (filter_op != RTE_ETH_FILTER_GET) { 1662 rc = EINVAL; 1663 } else { 1664 *(const void **)arg = &sfc_flow_ops; 1665 rc = 0; 1666 } 1667 break; 1668 default: 1669 sfc_err(sa, "Unknown filter type %u", filter_type); 1670 break; 1671 } 1672 1673 sfc_log_init(sa, "exit: %d", -rc); 1674 SFC_ASSERT(rc >= 0); 1675 return -rc; 1676 } 1677 1678 static int 1679 sfc_pool_ops_supported(struct rte_eth_dev *dev, const char *pool) 1680 { 1681 const struct sfc_adapter_priv *sap = sfc_adapter_priv_by_eth_dev(dev); 1682 1683 /* 1684 * If Rx datapath does not provide callback to check mempool, 1685 * all pools are supported. 1686 */ 1687 if (sap->dp_rx->pool_ops_supported == NULL) 1688 return 1; 1689 1690 return sap->dp_rx->pool_ops_supported(pool); 1691 } 1692 1693 static const struct eth_dev_ops sfc_eth_dev_ops = { 1694 .dev_configure = sfc_dev_configure, 1695 .dev_start = sfc_dev_start, 1696 .dev_stop = sfc_dev_stop, 1697 .dev_set_link_up = sfc_dev_set_link_up, 1698 .dev_set_link_down = sfc_dev_set_link_down, 1699 .dev_close = sfc_dev_close, 1700 .promiscuous_enable = sfc_dev_promisc_enable, 1701 .promiscuous_disable = sfc_dev_promisc_disable, 1702 .allmulticast_enable = sfc_dev_allmulti_enable, 1703 .allmulticast_disable = sfc_dev_allmulti_disable, 1704 .link_update = sfc_dev_link_update, 1705 .stats_get = sfc_stats_get, 1706 .stats_reset = sfc_stats_reset, 1707 .xstats_get = sfc_xstats_get, 1708 .xstats_reset = sfc_stats_reset, 1709 .xstats_get_names = sfc_xstats_get_names, 1710 .dev_infos_get = sfc_dev_infos_get, 1711 .dev_supported_ptypes_get = sfc_dev_supported_ptypes_get, 1712 .mtu_set = sfc_dev_set_mtu, 1713 .rx_queue_start = sfc_rx_queue_start, 1714 .rx_queue_stop = sfc_rx_queue_stop, 1715 .tx_queue_start = sfc_tx_queue_start, 1716 .tx_queue_stop = sfc_tx_queue_stop, 1717 .rx_queue_setup = sfc_rx_queue_setup, 1718 .rx_queue_release = sfc_rx_queue_release, 1719 .rx_queue_count = sfc_rx_queue_count, 1720 .rx_descriptor_done = sfc_rx_descriptor_done, 1721 .rx_descriptor_status = sfc_rx_descriptor_status, 1722 .tx_descriptor_status = sfc_tx_descriptor_status, 1723 .tx_queue_setup = sfc_tx_queue_setup, 1724 .tx_queue_release = sfc_tx_queue_release, 1725 .flow_ctrl_get = sfc_flow_ctrl_get, 1726 .flow_ctrl_set = sfc_flow_ctrl_set, 1727 .mac_addr_set = sfc_mac_addr_set, 1728 .udp_tunnel_port_add = sfc_dev_udp_tunnel_port_add, 1729 .udp_tunnel_port_del = sfc_dev_udp_tunnel_port_del, 1730 .reta_update = sfc_dev_rss_reta_update, 1731 .reta_query = sfc_dev_rss_reta_query, 1732 .rss_hash_update = sfc_dev_rss_hash_update, 1733 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1734 .filter_ctrl = sfc_dev_filter_ctrl, 1735 .set_mc_addr_list = sfc_set_mc_addr_list, 1736 .rxq_info_get = sfc_rx_queue_info_get, 1737 .txq_info_get = sfc_tx_queue_info_get, 1738 .fw_version_get = sfc_fw_version_get, 1739 .xstats_get_by_id = sfc_xstats_get_by_id, 1740 .xstats_get_names_by_id = sfc_xstats_get_names_by_id, 1741 .pool_ops_supported = sfc_pool_ops_supported, 1742 }; 1743 1744 /** 1745 * Duplicate a string in potentially shared memory required for 1746 * multi-process support. 1747 * 1748 * strdup() allocates from process-local heap/memory. 1749 */ 1750 static char * 1751 sfc_strdup(const char *str) 1752 { 1753 size_t size; 1754 char *copy; 1755 1756 if (str == NULL) 1757 return NULL; 1758 1759 size = strlen(str) + 1; 1760 copy = rte_malloc(__func__, size, 0); 1761 if (copy != NULL) 1762 rte_memcpy(copy, str, size); 1763 1764 return copy; 1765 } 1766 1767 static int 1768 sfc_eth_dev_set_ops(struct rte_eth_dev *dev) 1769 { 1770 struct sfc_adapter *sa = dev->data->dev_private; 1771 const struct sfc_dp_rx *dp_rx; 1772 const struct sfc_dp_tx *dp_tx; 1773 const efx_nic_cfg_t *encp; 1774 unsigned int avail_caps = 0; 1775 const char *rx_name = NULL; 1776 const char *tx_name = NULL; 1777 int rc; 1778 1779 switch (sa->family) { 1780 case EFX_FAMILY_HUNTINGTON: 1781 case EFX_FAMILY_MEDFORD: 1782 case EFX_FAMILY_MEDFORD2: 1783 avail_caps |= SFC_DP_HW_FW_CAP_EF10; 1784 break; 1785 default: 1786 break; 1787 } 1788 1789 encp = efx_nic_cfg_get(sa->nic); 1790 if (encp->enc_rx_es_super_buffer_supported) 1791 avail_caps |= SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER; 1792 1793 rc = sfc_kvargs_process(sa, SFC_KVARG_RX_DATAPATH, 1794 sfc_kvarg_string_handler, &rx_name); 1795 if (rc != 0) 1796 goto fail_kvarg_rx_datapath; 1797 1798 if (rx_name != NULL) { 1799 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, rx_name); 1800 if (dp_rx == NULL) { 1801 sfc_err(sa, "Rx datapath %s not found", rx_name); 1802 rc = ENOENT; 1803 goto fail_dp_rx; 1804 } 1805 if (!sfc_dp_match_hw_fw_caps(&dp_rx->dp, avail_caps)) { 1806 sfc_err(sa, 1807 "Insufficient Hw/FW capabilities to use Rx datapath %s", 1808 rx_name); 1809 rc = EINVAL; 1810 goto fail_dp_rx_caps; 1811 } 1812 } else { 1813 dp_rx = sfc_dp_find_rx_by_caps(&sfc_dp_head, avail_caps); 1814 if (dp_rx == NULL) { 1815 sfc_err(sa, "Rx datapath by caps %#x not found", 1816 avail_caps); 1817 rc = ENOENT; 1818 goto fail_dp_rx; 1819 } 1820 } 1821 1822 sa->dp_rx_name = sfc_strdup(dp_rx->dp.name); 1823 if (sa->dp_rx_name == NULL) { 1824 rc = ENOMEM; 1825 goto fail_dp_rx_name; 1826 } 1827 1828 sfc_notice(sa, "use %s Rx datapath", sa->dp_rx_name); 1829 1830 rc = sfc_kvargs_process(sa, SFC_KVARG_TX_DATAPATH, 1831 sfc_kvarg_string_handler, &tx_name); 1832 if (rc != 0) 1833 goto fail_kvarg_tx_datapath; 1834 1835 if (tx_name != NULL) { 1836 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, tx_name); 1837 if (dp_tx == NULL) { 1838 sfc_err(sa, "Tx datapath %s not found", tx_name); 1839 rc = ENOENT; 1840 goto fail_dp_tx; 1841 } 1842 if (!sfc_dp_match_hw_fw_caps(&dp_tx->dp, avail_caps)) { 1843 sfc_err(sa, 1844 "Insufficient Hw/FW capabilities to use Tx datapath %s", 1845 tx_name); 1846 rc = EINVAL; 1847 goto fail_dp_tx_caps; 1848 } 1849 } else { 1850 dp_tx = sfc_dp_find_tx_by_caps(&sfc_dp_head, avail_caps); 1851 if (dp_tx == NULL) { 1852 sfc_err(sa, "Tx datapath by caps %#x not found", 1853 avail_caps); 1854 rc = ENOENT; 1855 goto fail_dp_tx; 1856 } 1857 } 1858 1859 sa->dp_tx_name = sfc_strdup(dp_tx->dp.name); 1860 if (sa->dp_tx_name == NULL) { 1861 rc = ENOMEM; 1862 goto fail_dp_tx_name; 1863 } 1864 1865 sfc_notice(sa, "use %s Tx datapath", sa->dp_tx_name); 1866 1867 sa->priv.dp_rx = dp_rx; 1868 sa->priv.dp_tx = dp_tx; 1869 1870 dev->rx_pkt_burst = dp_rx->pkt_burst; 1871 dev->tx_pkt_burst = dp_tx->pkt_burst; 1872 1873 dev->dev_ops = &sfc_eth_dev_ops; 1874 1875 return 0; 1876 1877 fail_dp_tx_name: 1878 fail_dp_tx_caps: 1879 fail_dp_tx: 1880 fail_kvarg_tx_datapath: 1881 rte_free(sa->dp_rx_name); 1882 sa->dp_rx_name = NULL; 1883 1884 fail_dp_rx_name: 1885 fail_dp_rx_caps: 1886 fail_dp_rx: 1887 fail_kvarg_rx_datapath: 1888 return rc; 1889 } 1890 1891 static void 1892 sfc_eth_dev_clear_ops(struct rte_eth_dev *dev) 1893 { 1894 struct sfc_adapter *sa = dev->data->dev_private; 1895 1896 dev->dev_ops = NULL; 1897 dev->rx_pkt_burst = NULL; 1898 dev->tx_pkt_burst = NULL; 1899 1900 rte_free(sa->dp_tx_name); 1901 sa->dp_tx_name = NULL; 1902 sa->priv.dp_tx = NULL; 1903 1904 rte_free(sa->dp_rx_name); 1905 sa->dp_rx_name = NULL; 1906 sa->priv.dp_rx = NULL; 1907 } 1908 1909 static const struct eth_dev_ops sfc_eth_dev_secondary_ops = { 1910 .rx_queue_count = sfc_rx_queue_count, 1911 .rx_descriptor_done = sfc_rx_descriptor_done, 1912 .rx_descriptor_status = sfc_rx_descriptor_status, 1913 .tx_descriptor_status = sfc_tx_descriptor_status, 1914 .reta_query = sfc_dev_rss_reta_query, 1915 .rss_hash_conf_get = sfc_dev_rss_hash_conf_get, 1916 .rxq_info_get = sfc_rx_queue_info_get, 1917 .txq_info_get = sfc_tx_queue_info_get, 1918 }; 1919 1920 static int 1921 sfc_eth_dev_secondary_init(struct rte_eth_dev *dev, uint32_t logtype_main) 1922 { 1923 /* 1924 * Device private data has really many process-local pointers. 1925 * Below code should be extremely careful to use data located 1926 * in shared memory only. 1927 */ 1928 struct sfc_adapter *sa = dev->data->dev_private; 1929 struct sfc_adapter_priv *sap; 1930 const struct sfc_dp_rx *dp_rx; 1931 const struct sfc_dp_tx *dp_tx; 1932 int rc; 1933 1934 /* 1935 * Allocate process private data from heap, since it should not 1936 * be located in shared memory allocated using rte_malloc() API. 1937 */ 1938 sap = calloc(1, sizeof(*sap)); 1939 if (sap == NULL) { 1940 rc = ENOMEM; 1941 goto fail_alloc_priv; 1942 } 1943 1944 sap->logtype_main = logtype_main; 1945 1946 dp_rx = sfc_dp_find_rx_by_name(&sfc_dp_head, sa->dp_rx_name); 1947 if (dp_rx == NULL) { 1948 SFC_LOG(sa, RTE_LOG_ERR, logtype_main, 1949 "cannot find %s Rx datapath", sa->dp_rx_name); 1950 rc = ENOENT; 1951 goto fail_dp_rx; 1952 } 1953 if (~dp_rx->features & SFC_DP_RX_FEAT_MULTI_PROCESS) { 1954 SFC_LOG(sa, RTE_LOG_ERR, logtype_main, 1955 "%s Rx datapath does not support multi-process", 1956 sa->dp_rx_name); 1957 rc = EINVAL; 1958 goto fail_dp_rx_multi_process; 1959 } 1960 1961 dp_tx = sfc_dp_find_tx_by_name(&sfc_dp_head, sa->dp_tx_name); 1962 if (dp_tx == NULL) { 1963 SFC_LOG(sa, RTE_LOG_ERR, logtype_main, 1964 "cannot find %s Tx datapath", sa->dp_tx_name); 1965 rc = ENOENT; 1966 goto fail_dp_tx; 1967 } 1968 if (~dp_tx->features & SFC_DP_TX_FEAT_MULTI_PROCESS) { 1969 SFC_LOG(sa, RTE_LOG_ERR, logtype_main, 1970 "%s Tx datapath does not support multi-process", 1971 sa->dp_tx_name); 1972 rc = EINVAL; 1973 goto fail_dp_tx_multi_process; 1974 } 1975 1976 sap->dp_rx = dp_rx; 1977 sap->dp_tx = dp_tx; 1978 1979 dev->process_private = sap; 1980 dev->rx_pkt_burst = dp_rx->pkt_burst; 1981 dev->tx_pkt_burst = dp_tx->pkt_burst; 1982 dev->dev_ops = &sfc_eth_dev_secondary_ops; 1983 1984 return 0; 1985 1986 fail_dp_tx_multi_process: 1987 fail_dp_tx: 1988 fail_dp_rx_multi_process: 1989 fail_dp_rx: 1990 free(sap); 1991 1992 fail_alloc_priv: 1993 return rc; 1994 } 1995 1996 static void 1997 sfc_eth_dev_secondary_clear_ops(struct rte_eth_dev *dev) 1998 { 1999 free(dev->process_private); 2000 dev->process_private = NULL; 2001 dev->dev_ops = NULL; 2002 dev->tx_pkt_burst = NULL; 2003 dev->rx_pkt_burst = NULL; 2004 } 2005 2006 static void 2007 sfc_register_dp(void) 2008 { 2009 /* Register once */ 2010 if (TAILQ_EMPTY(&sfc_dp_head)) { 2011 /* Prefer EF10 datapath */ 2012 sfc_dp_register(&sfc_dp_head, &sfc_ef10_essb_rx.dp); 2013 sfc_dp_register(&sfc_dp_head, &sfc_ef10_rx.dp); 2014 sfc_dp_register(&sfc_dp_head, &sfc_efx_rx.dp); 2015 2016 sfc_dp_register(&sfc_dp_head, &sfc_ef10_tx.dp); 2017 sfc_dp_register(&sfc_dp_head, &sfc_efx_tx.dp); 2018 sfc_dp_register(&sfc_dp_head, &sfc_ef10_simple_tx.dp); 2019 } 2020 } 2021 2022 static int 2023 sfc_eth_dev_init(struct rte_eth_dev *dev) 2024 { 2025 struct sfc_adapter *sa = dev->data->dev_private; 2026 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev); 2027 uint32_t logtype_main; 2028 int rc; 2029 const efx_nic_cfg_t *encp; 2030 const struct ether_addr *from; 2031 2032 sfc_register_dp(); 2033 2034 logtype_main = sfc_register_logtype(&pci_dev->addr, 2035 SFC_LOGTYPE_MAIN_STR, 2036 RTE_LOG_NOTICE); 2037 2038 if (rte_eal_process_type() != RTE_PROC_PRIMARY) 2039 return -sfc_eth_dev_secondary_init(dev, logtype_main); 2040 2041 /* 2042 * sfc_adapter is a mixture of shared and process private data. 2043 * During transition period use it in both kinds. When the 2044 * driver becomes ready to separate it, sfc_adapter will become 2045 * primary process private only. 2046 */ 2047 dev->process_private = sa; 2048 2049 /* Required for logging */ 2050 sa->pci_addr = pci_dev->addr; 2051 sa->port_id = dev->data->port_id; 2052 sa->priv.logtype_main = logtype_main; 2053 2054 sa->eth_dev = dev; 2055 2056 /* Copy PCI device info to the dev->data */ 2057 rte_eth_copy_pci_info(dev, pci_dev); 2058 2059 rc = sfc_kvargs_parse(sa); 2060 if (rc != 0) 2061 goto fail_kvargs_parse; 2062 2063 sfc_log_init(sa, "entry"); 2064 2065 dev->data->mac_addrs = rte_zmalloc("sfc", ETHER_ADDR_LEN, 0); 2066 if (dev->data->mac_addrs == NULL) { 2067 rc = ENOMEM; 2068 goto fail_mac_addrs; 2069 } 2070 2071 sfc_adapter_lock_init(sa); 2072 sfc_adapter_lock(sa); 2073 2074 sfc_log_init(sa, "probing"); 2075 rc = sfc_probe(sa); 2076 if (rc != 0) 2077 goto fail_probe; 2078 2079 sfc_log_init(sa, "set device ops"); 2080 rc = sfc_eth_dev_set_ops(dev); 2081 if (rc != 0) 2082 goto fail_set_ops; 2083 2084 sfc_log_init(sa, "attaching"); 2085 rc = sfc_attach(sa); 2086 if (rc != 0) 2087 goto fail_attach; 2088 2089 encp = efx_nic_cfg_get(sa->nic); 2090 2091 /* 2092 * The arguments are really reverse order in comparison to 2093 * Linux kernel. Copy from NIC config to Ethernet device data. 2094 */ 2095 from = (const struct ether_addr *)(encp->enc_mac_addr); 2096 ether_addr_copy(from, &dev->data->mac_addrs[0]); 2097 2098 sfc_adapter_unlock(sa); 2099 2100 sfc_log_init(sa, "done"); 2101 return 0; 2102 2103 fail_attach: 2104 sfc_eth_dev_clear_ops(dev); 2105 2106 fail_set_ops: 2107 sfc_unprobe(sa); 2108 2109 fail_probe: 2110 sfc_adapter_unlock(sa); 2111 sfc_adapter_lock_fini(sa); 2112 rte_free(dev->data->mac_addrs); 2113 dev->data->mac_addrs = NULL; 2114 2115 fail_mac_addrs: 2116 sfc_kvargs_cleanup(sa); 2117 2118 fail_kvargs_parse: 2119 sfc_log_init(sa, "failed %d", rc); 2120 dev->process_private = NULL; 2121 SFC_ASSERT(rc > 0); 2122 return -rc; 2123 } 2124 2125 static int 2126 sfc_eth_dev_uninit(struct rte_eth_dev *dev) 2127 { 2128 struct sfc_adapter *sa; 2129 2130 if (rte_eal_process_type() != RTE_PROC_PRIMARY) { 2131 sfc_eth_dev_secondary_clear_ops(dev); 2132 return 0; 2133 } 2134 2135 sa = dev->data->dev_private; 2136 sfc_log_init(sa, "entry"); 2137 2138 sfc_adapter_lock(sa); 2139 2140 sfc_eth_dev_clear_ops(dev); 2141 2142 sfc_detach(sa); 2143 sfc_unprobe(sa); 2144 2145 sfc_kvargs_cleanup(sa); 2146 2147 sfc_adapter_unlock(sa); 2148 sfc_adapter_lock_fini(sa); 2149 2150 sfc_log_init(sa, "done"); 2151 2152 /* Required for logging, so cleanup last */ 2153 sa->eth_dev = NULL; 2154 return 0; 2155 } 2156 2157 static const struct rte_pci_id pci_id_sfc_efx_map[] = { 2158 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE) }, 2159 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_FARMINGDALE_VF) }, 2160 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT) }, 2161 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_GREENPORT_VF) }, 2162 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD) }, 2163 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD_VF) }, 2164 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2) }, 2165 { RTE_PCI_DEVICE(EFX_PCI_VENID_SFC, EFX_PCI_DEVID_MEDFORD2_VF) }, 2166 { .vendor_id = 0 /* sentinel */ } 2167 }; 2168 2169 static int sfc_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused, 2170 struct rte_pci_device *pci_dev) 2171 { 2172 return rte_eth_dev_pci_generic_probe(pci_dev, 2173 sizeof(struct sfc_adapter), sfc_eth_dev_init); 2174 } 2175 2176 static int sfc_eth_dev_pci_remove(struct rte_pci_device *pci_dev) 2177 { 2178 return rte_eth_dev_pci_generic_remove(pci_dev, sfc_eth_dev_uninit); 2179 } 2180 2181 static struct rte_pci_driver sfc_efx_pmd = { 2182 .id_table = pci_id_sfc_efx_map, 2183 .drv_flags = 2184 RTE_PCI_DRV_INTR_LSC | 2185 RTE_PCI_DRV_NEED_MAPPING, 2186 .probe = sfc_eth_dev_pci_probe, 2187 .remove = sfc_eth_dev_pci_remove, 2188 }; 2189 2190 RTE_PMD_REGISTER_PCI(net_sfc_efx, sfc_efx_pmd); 2191 RTE_PMD_REGISTER_PCI_TABLE(net_sfc_efx, pci_id_sfc_efx_map); 2192 RTE_PMD_REGISTER_KMOD_DEP(net_sfc_efx, "* igb_uio | uio_pci_generic | vfio-pci"); 2193 RTE_PMD_REGISTER_PARAM_STRING(net_sfc_efx, 2194 SFC_KVARG_RX_DATAPATH "=" SFC_KVARG_VALUES_RX_DATAPATH " " 2195 SFC_KVARG_TX_DATAPATH "=" SFC_KVARG_VALUES_TX_DATAPATH " " 2196 SFC_KVARG_PERF_PROFILE "=" SFC_KVARG_VALUES_PERF_PROFILE " " 2197 SFC_KVARG_FW_VARIANT "=" SFC_KVARG_VALUES_FW_VARIANT " " 2198 SFC_KVARG_RXD_WAIT_TIMEOUT_NS "=<long> " 2199 SFC_KVARG_STATS_UPDATE_PERIOD_MS "=<long>"); 2200 2201 RTE_INIT(sfc_driver_register_logtype) 2202 { 2203 int ret; 2204 2205 ret = rte_log_register_type_and_pick_level(SFC_LOGTYPE_PREFIX "driver", 2206 RTE_LOG_NOTICE); 2207 sfc_logtype_driver = (ret < 0) ? RTE_LOGTYPE_PMD : ret; 2208 } 2209